Mehdi Amini aa4e466caa [mlir][Linalg] Improve region support in Linalg ops
This revision takes advantage of the newly extended `ref` directive in assembly format
to allow better region handling for LinalgOps. Specifically, FillOp and CopyOp now build their regions explicitly which allows retiring older behavior that relied on specific op knowledge in both lowering to loops and vectorization.

This reverts commit 3f22547fd1 and reland 973e133b769 with a workaround for
a gcc bug that does not accept lambda default parameters:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=59949

Differential Revision: https://reviews.llvm.org/D96598
2021-02-12 19:11:24 +00:00

229 lines
8.7 KiB
C++

//===- LinalgToStandard.cpp - conversion from Linalg to Standard dialect --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LinalgToStandard/LinalgToStandard.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
using namespace mlir;
using namespace mlir::linalg;
/// Helper function to extract the operand types that are passed to the
/// generated CallOp. MemRefTypes have their layout canonicalized since the
/// information is not used in signature generation.
/// Note that static size information is not modified.
static SmallVector<Type, 4> extractOperandTypes(Operation *op) {
SmallVector<Type, 4> result;
result.reserve(op->getNumOperands());
if (auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op)) {
auto *ctx = op->getContext();
auto numLoops = indexedGenericOp.getNumLoops();
result.reserve(op->getNumOperands() + numLoops);
result.assign(numLoops, IndexType::get(ctx));
}
for (auto type : op->getOperandTypes()) {
// The underlying descriptor type (e.g. LLVM) does not have layout
// information. Canonicalizing the type at the level of std when going into
// a library call avoids needing to introduce DialectCastOp.
if (auto memrefType = type.dyn_cast<MemRefType>())
result.push_back(eraseStridedLayout(memrefType));
else
result.push_back(type);
}
return result;
}
// Get a SymbolRefAttr containing the library function name for the LinalgOp.
// If the library function does not exist, insert a declaration.
static FlatSymbolRefAttr getLibraryCallSymbolRef(Operation *op,
PatternRewriter &rewriter) {
auto linalgOp = cast<LinalgOp>(op);
auto fnName = linalgOp.getLibraryCallName();
if (fnName.empty()) {
op->emitWarning("No library call defined for: ") << *op;
return {};
}
// fnName is a dynamic std::string, unique it via a SymbolRefAttr.
FlatSymbolRefAttr fnNameAttr = rewriter.getSymbolRefAttr(fnName);
auto module = op->getParentOfType<ModuleOp>();
if (module.lookupSymbol(fnName)) {
return fnNameAttr;
}
SmallVector<Type, 4> inputTypes(extractOperandTypes(op));
assert(op->getNumResults() == 0 &&
"Library call for linalg operation can be generated only for ops that "
"have void return types");
auto libFnType = rewriter.getFunctionType(inputTypes, {});
OpBuilder::InsertionGuard guard(rewriter);
// Insert before module terminator.
rewriter.setInsertionPoint(module.getBody(),
std::prev(module.getBody()->end()));
FuncOp funcOp =
rewriter.create<FuncOp>(op->getLoc(), fnNameAttr.getValue(), libFnType);
// Insert a function attribute that will trigger the emission of the
// corresponding `_mlir_ciface_xxx` interface so that external libraries see
// a normalized ABI. This interface is added during std to llvm conversion.
funcOp->setAttr("llvm.emit_c_interface", UnitAttr::get(op->getContext()));
funcOp.setPrivate();
return fnNameAttr;
}
static SmallVector<Value, 4>
createTypeCanonicalizedMemRefOperands(OpBuilder &b, Location loc,
ValueRange operands) {
SmallVector<Value, 4> res;
res.reserve(operands.size());
for (auto op : operands) {
auto memrefType = op.getType().dyn_cast<MemRefType>();
if (!memrefType) {
res.push_back(op);
continue;
}
Value cast =
b.create<MemRefCastOp>(loc, eraseStridedLayout(memrefType), op);
res.push_back(cast);
}
return res;
}
LogicalResult mlir::linalg::LinalgOpToLibraryCallRewrite::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {
// Only LinalgOp for which there is no specialized pattern go through this.
if (!isa<LinalgOp>(op) || isa<CopyOp>(op) || isa<IndexedGenericOp>(op))
return failure();
auto libraryCallName = getLibraryCallSymbolRef(op, rewriter);
if (!libraryCallName)
return failure();
rewriter.replaceOpWithNewOp<mlir::CallOp>(
op, libraryCallName.getValue(), TypeRange(),
createTypeCanonicalizedMemRefOperands(rewriter, op->getLoc(),
op->getOperands()));
return success();
}
LogicalResult mlir::linalg::CopyOpToLibraryCallRewrite::matchAndRewrite(
CopyOp op, PatternRewriter &rewriter) const {
auto inputPerm = op.inputPermutation();
if (inputPerm.hasValue() && !inputPerm->isIdentity())
return failure();
auto outputPerm = op.outputPermutation();
if (outputPerm.hasValue() && !outputPerm->isIdentity())
return failure();
auto libraryCallName = getLibraryCallSymbolRef(op, rewriter);
if (!libraryCallName)
return failure();
rewriter.replaceOpWithNewOp<mlir::CallOp>(
op, libraryCallName.getValue(), TypeRange(),
createTypeCanonicalizedMemRefOperands(rewriter, op.getLoc(),
op.getOperands()));
return success();
}
LogicalResult mlir::linalg::CopyTransposeRewrite::matchAndRewrite(
CopyOp op, PatternRewriter &rewriter) const {
Value in = op.input(), out = op.output();
// If either inputPerm or outputPerm are non-identities, insert transposes.
auto inputPerm = op.inputPermutation();
if (inputPerm.hasValue() && !inputPerm->isIdentity())
in = rewriter.create<TransposeOp>(op.getLoc(), in,
AffineMapAttr::get(*inputPerm));
auto outputPerm = op.outputPermutation();
if (outputPerm.hasValue() && !outputPerm->isIdentity())
out = rewriter.create<TransposeOp>(op.getLoc(), out,
AffineMapAttr::get(*outputPerm));
// If nothing was transposed, fail and let the conversion kick in.
if (in == op.input() && out == op.output())
return failure();
auto libraryCallName = getLibraryCallSymbolRef(op, rewriter);
if (!libraryCallName)
return failure();
rewriter.replaceOpWithNewOp<mlir::CallOp>(
op, libraryCallName.getValue(), TypeRange(),
createTypeCanonicalizedMemRefOperands(rewriter, op.getLoc(), {in, out}));
return success();
}
LogicalResult
mlir::linalg::IndexedGenericOpToLibraryCallRewrite::matchAndRewrite(
IndexedGenericOp op, PatternRewriter &rewriter) const {
auto libraryCallName = getLibraryCallSymbolRef(op, rewriter);
if (!libraryCallName)
return failure();
// TODO: Use induction variables values instead of zeros, when
// IndexedGenericOp is tiled.
auto zero = rewriter.create<mlir::ConstantOp>(
op.getLoc(), rewriter.getIntegerAttr(rewriter.getIndexType(), 0));
auto indexedGenericOp = cast<IndexedGenericOp>(op);
auto numLoops = indexedGenericOp.getNumLoops();
SmallVector<Value, 4> operands;
operands.reserve(numLoops + op.getNumOperands());
for (unsigned i = 0; i < numLoops; ++i)
operands.push_back(zero);
for (auto operand : op.getOperands())
operands.push_back(operand);
rewriter.replaceOpWithNewOp<mlir::CallOp>(
op, libraryCallName.getValue(), TypeRange(),
createTypeCanonicalizedMemRefOperands(rewriter, op.getLoc(), operands));
return success();
}
/// Populate the given list with patterns that convert from Linalg to Standard.
void mlir::linalg::populateLinalgToStandardConversionPatterns(
OwningRewritePatternList &patterns, MLIRContext *ctx) {
// TODO: ConvOp conversion needs to export a descriptor with relevant
// attribute values such as kernel striding and dilation.
// clang-format off
patterns.insert<
CopyOpToLibraryCallRewrite,
CopyTransposeRewrite,
IndexedGenericOpToLibraryCallRewrite>(ctx);
patterns.insert<LinalgOpToLibraryCallRewrite>();
// clang-format on
}
namespace {
struct ConvertLinalgToStandardPass
: public ConvertLinalgToStandardBase<ConvertLinalgToStandardPass> {
void runOnOperation() override;
};
} // namespace
void ConvertLinalgToStandardPass::runOnOperation() {
auto module = getOperation();
ConversionTarget target(getContext());
target.addLegalDialect<AffineDialect, scf::SCFDialect, StandardOpsDialect>();
target.addLegalOp<ModuleOp, FuncOp, ModuleTerminatorOp, ReturnOp>();
target.addLegalOp<linalg::ReshapeOp, linalg::RangeOp>();
OwningRewritePatternList patterns;
populateLinalgToStandardConversionPatterns(patterns, &getContext());
if (failed(applyFullConversion(module, target, std::move(patterns))))
signalPassFailure();
}
std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertLinalgToStandardPass() {
return std::make_unique<ConvertLinalgToStandardPass>();
}