llvm-project/llvm/unittests/Object/ELFObjectFileTest.cpp
Rahman Lavaee 5f7ef65245 [llvm-objdump] Let --symbolize-operands symbolize basic block addresses based on the SHT_LLVM_BB_ADDR_MAP section.
`--symbolize-operands` already symbolizes branch targets based on the disassembly. When the object file is created with `-fbasic-block-sections=labels` (ELF-only) it will include a SHT_LLVM_BB_ADDR_MAP section which maps basic blocks to their addresses. In such case `llvm-objdump` can annotate the disassembly based on labels inferred on this section.

In contrast to the current labels, SHT_LLVM_BB_ADDR_MAP-based labels are created for every machine basic block including empty blocks and those which are not branched into (fallthrough blocks).

The old logic is still executed even when the SHT_LLVM_BB_ADDR_MAP section is present to handle functions which have not been received an entry in this section.

Reviewed By: jhenderson, MaskRay

Differential Revision: https://reviews.llvm.org/D124560
2022-05-16 10:11:11 -07:00

787 lines
28 KiB
C++

//===- ELFObjectFileTest.cpp - Tests for ELFObjectFile --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/ObjectYAML/yaml2obj.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Testing/Support/Error.h"
#include "gtest/gtest.h"
using namespace llvm;
using namespace llvm::object;
namespace {
// A struct to initialize a buffer to represent an ELF object file.
struct DataForTest {
std::vector<uint8_t> Data;
template <typename T>
std::vector<uint8_t> makeElfData(uint8_t Class, uint8_t Encoding,
uint16_t Machine) {
T Ehdr{}; // Zero-initialise the header.
Ehdr.e_ident[ELF::EI_MAG0] = 0x7f;
Ehdr.e_ident[ELF::EI_MAG1] = 'E';
Ehdr.e_ident[ELF::EI_MAG2] = 'L';
Ehdr.e_ident[ELF::EI_MAG3] = 'F';
Ehdr.e_ident[ELF::EI_CLASS] = Class;
Ehdr.e_ident[ELF::EI_DATA] = Encoding;
Ehdr.e_ident[ELF::EI_VERSION] = 1;
Ehdr.e_type = ELF::ET_REL;
Ehdr.e_machine = Machine;
Ehdr.e_version = 1;
Ehdr.e_ehsize = sizeof(T);
bool IsLittleEndian = Encoding == ELF::ELFDATA2LSB;
if (sys::IsLittleEndianHost != IsLittleEndian) {
sys::swapByteOrder(Ehdr.e_type);
sys::swapByteOrder(Ehdr.e_machine);
sys::swapByteOrder(Ehdr.e_version);
sys::swapByteOrder(Ehdr.e_ehsize);
}
uint8_t *EhdrBytes = reinterpret_cast<uint8_t *>(&Ehdr);
std::vector<uint8_t> Bytes;
std::copy(EhdrBytes, EhdrBytes + sizeof(Ehdr), std::back_inserter(Bytes));
return Bytes;
}
DataForTest(uint8_t Class, uint8_t Encoding, uint16_t Machine) {
if (Class == ELF::ELFCLASS64)
Data = makeElfData<ELF::Elf64_Ehdr>(Class, Encoding, Machine);
else {
assert(Class == ELF::ELFCLASS32);
Data = makeElfData<ELF::Elf32_Ehdr>(Class, Encoding, Machine);
}
}
};
void checkFormatAndArch(const DataForTest &D, StringRef Fmt,
Triple::ArchType Arch) {
Expected<std::unique_ptr<ObjectFile>> ELFObjOrErr =
object::ObjectFile::createELFObjectFile(
MemoryBufferRef(toStringRef(D.Data), "dummyELF"));
ASSERT_THAT_EXPECTED(ELFObjOrErr, Succeeded());
const ObjectFile &File = *(*ELFObjOrErr).get();
EXPECT_EQ(Fmt, File.getFileFormatName());
EXPECT_EQ(Arch, File.getArch());
}
std::array<DataForTest, 4> generateData(uint16_t Machine) {
return {DataForTest(ELF::ELFCLASS32, ELF::ELFDATA2LSB, Machine),
DataForTest(ELF::ELFCLASS32, ELF::ELFDATA2MSB, Machine),
DataForTest(ELF::ELFCLASS64, ELF::ELFDATA2LSB, Machine),
DataForTest(ELF::ELFCLASS64, ELF::ELFDATA2MSB, Machine)};
}
} // namespace
TEST(ELFObjectFileTest, MachineTestForNoneOrUnused) {
std::array<StringRef, 4> Formats = {"elf32-unknown", "elf32-unknown",
"elf64-unknown", "elf64-unknown"};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_NONE))
checkFormatAndArch(D, Formats[I++], Triple::UnknownArch);
// Test an arbitrary unused EM_* value (255).
I = 0;
for (const DataForTest &D : generateData(255))
checkFormatAndArch(D, Formats[I++], Triple::UnknownArch);
}
TEST(ELFObjectFileTest, MachineTestForVE) {
std::array<StringRef, 4> Formats = {"elf32-unknown", "elf32-unknown",
"elf64-ve", "elf64-ve"};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_VE))
checkFormatAndArch(D, Formats[I++], Triple::ve);
}
TEST(ELFObjectFileTest, MachineTestForX86_64) {
std::array<StringRef, 4> Formats = {"elf32-x86-64", "elf32-x86-64",
"elf64-x86-64", "elf64-x86-64"};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_X86_64))
checkFormatAndArch(D, Formats[I++], Triple::x86_64);
}
TEST(ELFObjectFileTest, MachineTestFor386) {
std::array<StringRef, 4> Formats = {"elf32-i386", "elf32-i386", "elf64-i386",
"elf64-i386"};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_386))
checkFormatAndArch(D, Formats[I++], Triple::x86);
}
TEST(ELFObjectFileTest, MachineTestForMIPS) {
std::array<StringRef, 4> Formats = {"elf32-mips", "elf32-mips", "elf64-mips",
"elf64-mips"};
std::array<Triple::ArchType, 4> Archs = {Triple::mipsel, Triple::mips,
Triple::mips64el, Triple::mips64};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_MIPS)) {
checkFormatAndArch(D, Formats[I], Archs[I]);
++I;
}
}
TEST(ELFObjectFileTest, MachineTestForAMDGPU) {
std::array<StringRef, 4> Formats = {"elf32-amdgpu", "elf32-amdgpu",
"elf64-amdgpu", "elf64-amdgpu"};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_AMDGPU))
checkFormatAndArch(D, Formats[I++], Triple::UnknownArch);
}
TEST(ELFObjectFileTest, MachineTestForIAMCU) {
std::array<StringRef, 4> Formats = {"elf32-iamcu", "elf32-iamcu",
"elf64-unknown", "elf64-unknown"};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_IAMCU))
checkFormatAndArch(D, Formats[I++], Triple::x86);
}
TEST(ELFObjectFileTest, MachineTestForAARCH64) {
std::array<StringRef, 4> Formats = {"elf32-unknown", "elf32-unknown",
"elf64-littleaarch64",
"elf64-bigaarch64"};
std::array<Triple::ArchType, 4> Archs = {Triple::aarch64, Triple::aarch64_be,
Triple::aarch64, Triple::aarch64_be};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_AARCH64)) {
checkFormatAndArch(D, Formats[I], Archs[I]);
++I;
}
}
TEST(ELFObjectFileTest, MachineTestForPPC64) {
std::array<StringRef, 4> Formats = {"elf32-unknown", "elf32-unknown",
"elf64-powerpcle", "elf64-powerpc"};
std::array<Triple::ArchType, 4> Archs = {Triple::ppc64le, Triple::ppc64,
Triple::ppc64le, Triple::ppc64};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_PPC64)) {
checkFormatAndArch(D, Formats[I], Archs[I]);
++I;
}
}
TEST(ELFObjectFileTest, MachineTestForPPC) {
std::array<StringRef, 4> Formats = {"elf32-powerpcle", "elf32-powerpc",
"elf64-unknown", "elf64-unknown"};
std::array<Triple::ArchType, 4> Archs = {Triple::ppcle, Triple::ppc,
Triple::ppcle, Triple::ppc};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_PPC)) {
checkFormatAndArch(D, Formats[I], Archs[I]);
++I;
}
}
TEST(ELFObjectFileTest, MachineTestForRISCV) {
std::array<StringRef, 4> Formats = {"elf32-littleriscv", "elf32-littleriscv",
"elf64-littleriscv", "elf64-littleriscv"};
std::array<Triple::ArchType, 4> Archs = {Triple::riscv32, Triple::riscv32,
Triple::riscv64, Triple::riscv64};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_RISCV)) {
checkFormatAndArch(D, Formats[I], Archs[I]);
++I;
}
}
TEST(ELFObjectFileTest, MachineTestForARM) {
std::array<StringRef, 4> Formats = {"elf32-littlearm", "elf32-bigarm",
"elf64-unknown", "elf64-unknown"};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_ARM))
checkFormatAndArch(D, Formats[I++], Triple::arm);
}
TEST(ELFObjectFileTest, MachineTestForS390) {
std::array<StringRef, 4> Formats = {"elf32-unknown", "elf32-unknown",
"elf64-s390", "elf64-s390"};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_S390))
checkFormatAndArch(D, Formats[I++], Triple::systemz);
}
TEST(ELFObjectFileTest, MachineTestForSPARCV9) {
std::array<StringRef, 4> Formats = {"elf32-unknown", "elf32-unknown",
"elf64-sparc", "elf64-sparc"};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_SPARCV9))
checkFormatAndArch(D, Formats[I++], Triple::sparcv9);
}
TEST(ELFObjectFileTest, MachineTestForSPARC) {
std::array<StringRef, 4> Formats = {"elf32-sparc", "elf32-sparc",
"elf64-unknown", "elf64-unknown"};
std::array<Triple::ArchType, 4> Archs = {Triple::sparcel, Triple::sparc,
Triple::sparcel, Triple::sparc};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_SPARC)) {
checkFormatAndArch(D, Formats[I], Archs[I]);
++I;
}
}
TEST(ELFObjectFileTest, MachineTestForSPARC32PLUS) {
std::array<StringRef, 4> Formats = {"elf32-sparc", "elf32-sparc",
"elf64-unknown", "elf64-unknown"};
std::array<Triple::ArchType, 4> Archs = {Triple::sparcel, Triple::sparc,
Triple::sparcel, Triple::sparc};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_SPARC32PLUS)) {
checkFormatAndArch(D, Formats[I], Archs[I]);
++I;
}
}
TEST(ELFObjectFileTest, MachineTestForBPF) {
std::array<StringRef, 4> Formats = {"elf32-unknown", "elf32-unknown",
"elf64-bpf", "elf64-bpf"};
std::array<Triple::ArchType, 4> Archs = {Triple::bpfel, Triple::bpfeb,
Triple::bpfel, Triple::bpfeb};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_BPF)) {
checkFormatAndArch(D, Formats[I], Archs[I]);
++I;
}
}
TEST(ELFObjectFileTest, MachineTestForAVR) {
std::array<StringRef, 4> Formats = {"elf32-avr", "elf32-avr", "elf64-unknown",
"elf64-unknown"};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_AVR))
checkFormatAndArch(D, Formats[I++], Triple::avr);
}
TEST(ELFObjectFileTest, MachineTestForHEXAGON) {
std::array<StringRef, 4> Formats = {"elf32-hexagon", "elf32-hexagon",
"elf64-unknown", "elf64-unknown"};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_HEXAGON))
checkFormatAndArch(D, Formats[I++], Triple::hexagon);
}
TEST(ELFObjectFileTest, MachineTestForLANAI) {
std::array<StringRef, 4> Formats = {"elf32-lanai", "elf32-lanai",
"elf64-unknown", "elf64-unknown"};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_LANAI))
checkFormatAndArch(D, Formats[I++], Triple::lanai);
}
TEST(ELFObjectFileTest, MachineTestForMSP430) {
std::array<StringRef, 4> Formats = {"elf32-msp430", "elf32-msp430",
"elf64-unknown", "elf64-unknown"};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_MSP430))
checkFormatAndArch(D, Formats[I++], Triple::msp430);
}
TEST(ELFObjectFileTest, MachineTestForLoongArch) {
std::array<StringRef, 4> Formats = {"elf32-loongarch", "elf32-loongarch",
"elf64-loongarch", "elf64-loongarch"};
std::array<Triple::ArchType, 4> Archs = {
Triple::loongarch32, Triple::loongarch32, Triple::loongarch64,
Triple::loongarch64};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_LOONGARCH)) {
checkFormatAndArch(D, Formats[I], Archs[I]);
++I;
}
}
TEST(ELFObjectFileTest, MachineTestForCSKY) {
std::array<StringRef, 4> Formats = {"elf32-csky", "elf32-csky",
"elf64-unknown", "elf64-unknown"};
size_t I = 0;
for (const DataForTest &D : generateData(ELF::EM_CSKY))
checkFormatAndArch(D, Formats[I++], Triple::csky);
}
// ELF relative relocation type test.
TEST(ELFObjectFileTest, RelativeRelocationTypeTest) {
EXPECT_EQ(ELF::R_CKCORE_RELATIVE, getELFRelativeRelocationType(ELF::EM_CSKY));
}
template <class ELFT>
static Expected<ELFObjectFile<ELFT>> toBinary(SmallVectorImpl<char> &Storage,
StringRef Yaml) {
raw_svector_ostream OS(Storage);
yaml::Input YIn(Yaml);
if (!yaml::convertYAML(YIn, OS, [](const Twine &Msg) {}))
return createStringError(std::errc::invalid_argument,
"unable to convert YAML");
return ELFObjectFile<ELFT>::create(MemoryBufferRef(OS.str(), "dummyELF"));
}
// Check we are able to create an ELFObjectFile even when the content of the
// SHT_SYMTAB_SHNDX section can't be read properly.
TEST(ELFObjectFileTest, InvalidSymtabShndxTest) {
SmallString<0> Storage;
Expected<ELFObjectFile<ELF64LE>> ExpectedFile = toBinary<ELF64LE>(Storage, R"(
--- !ELF
FileHeader:
Class: ELFCLASS64
Data: ELFDATA2LSB
Type: ET_REL
Sections:
- Name: .symtab_shndx
Type: SHT_SYMTAB_SHNDX
Entries: [ 0 ]
ShSize: 0xFFFFFFFF
)");
ASSERT_THAT_EXPECTED(ExpectedFile, Succeeded());
}
// Test that we are able to create an ELFObjectFile even when loadable segments
// are unsorted by virtual address.
// Test that ELFFile<ELFT>::toMappedAddr works properly in this case.
TEST(ELFObjectFileTest, InvalidLoadSegmentsOrderTest) {
SmallString<0> Storage;
Expected<ELFObjectFile<ELF64LE>> ExpectedFile = toBinary<ELF64LE>(Storage, R"(
--- !ELF
FileHeader:
Class: ELFCLASS64
Data: ELFDATA2LSB
Type: ET_EXEC
Sections:
- Name: .foo
Type: SHT_PROGBITS
Address: 0x1000
Offset: 0x3000
ContentArray: [ 0x11 ]
- Name: .bar
Type: SHT_PROGBITS
Address: 0x2000
Offset: 0x4000
ContentArray: [ 0x99 ]
ProgramHeaders:
- Type: PT_LOAD
VAddr: 0x2000
FirstSec: .bar
LastSec: .bar
- Type: PT_LOAD
VAddr: 0x1000
FirstSec: .foo
LastSec: .foo
)");
ASSERT_THAT_EXPECTED(ExpectedFile, Succeeded());
std::string WarnString;
auto ToMappedAddr = [&](uint64_t Addr) -> const uint8_t * {
Expected<const uint8_t *> DataOrErr =
ExpectedFile->getELFFile().toMappedAddr(Addr, [&](const Twine &Msg) {
EXPECT_TRUE(WarnString.empty());
WarnString = Msg.str();
return Error::success();
});
if (!DataOrErr) {
ADD_FAILURE() << toString(DataOrErr.takeError());
return nullptr;
}
EXPECT_TRUE(WarnString ==
"loadable segments are unsorted by virtual address");
WarnString = "";
return *DataOrErr;
};
const uint8_t *Data = ToMappedAddr(0x1000);
ASSERT_TRUE(Data);
MemoryBufferRef Buf = ExpectedFile->getMemoryBufferRef();
EXPECT_EQ((const char *)Data - Buf.getBufferStart(), 0x3000);
EXPECT_EQ(Data[0], 0x11);
Data = ToMappedAddr(0x2000);
ASSERT_TRUE(Data);
Buf = ExpectedFile->getMemoryBufferRef();
EXPECT_EQ((const char *)Data - Buf.getBufferStart(), 0x4000);
EXPECT_EQ(Data[0], 0x99);
}
// This is a test for API that is related to symbols.
// We check that errors are properly reported here.
TEST(ELFObjectFileTest, InvalidSymbolTest) {
SmallString<0> Storage;
Expected<ELFObjectFile<ELF64LE>> ElfOrErr = toBinary<ELF64LE>(Storage, R"(
--- !ELF
FileHeader:
Class: ELFCLASS64
Data: ELFDATA2LSB
Type: ET_DYN
Machine: EM_X86_64
Sections:
- Name: .symtab
Type: SHT_SYMTAB
)");
ASSERT_THAT_EXPECTED(ElfOrErr, Succeeded());
const ELFFile<ELF64LE> &Elf = ElfOrErr->getELFFile();
const ELFObjectFile<ELF64LE> &Obj = *ElfOrErr;
Expected<const typename ELF64LE::Shdr *> SymtabSecOrErr = Elf.getSection(1);
ASSERT_THAT_EXPECTED(SymtabSecOrErr, Succeeded());
ASSERT_EQ((*SymtabSecOrErr)->sh_type, ELF::SHT_SYMTAB);
auto DoCheck = [&](unsigned BrokenSymIndex, const char *ErrMsg) {
ELFSymbolRef BrokenSym = Obj.toSymbolRef(*SymtabSecOrErr, BrokenSymIndex);
// 1) Check the behavior of ELFObjectFile<ELFT>::getSymbolName().
// SymbolRef::getName() calls it internally. We can't test it directly,
// because it is protected.
EXPECT_THAT_ERROR(BrokenSym.getName().takeError(),
FailedWithMessage(ErrMsg));
// 2) Check the behavior of ELFObjectFile<ELFT>::getSymbol().
EXPECT_THAT_ERROR(Obj.getSymbol(BrokenSym.getRawDataRefImpl()).takeError(),
FailedWithMessage(ErrMsg));
// 3) Check the behavior of ELFObjectFile<ELFT>::getSymbolSection().
// SymbolRef::getSection() calls it internally. We can't test it
// directly, because it is protected.
EXPECT_THAT_ERROR(BrokenSym.getSection().takeError(),
FailedWithMessage(ErrMsg));
// 4) Check the behavior of ELFObjectFile<ELFT>::getSymbolFlags().
// SymbolRef::getFlags() calls it internally. We can't test it directly,
// because it is protected.
EXPECT_THAT_ERROR(BrokenSym.getFlags().takeError(),
FailedWithMessage(ErrMsg));
// 5) Check the behavior of ELFObjectFile<ELFT>::getSymbolType().
// SymbolRef::getType() calls it internally. We can't test it directly,
// because it is protected.
EXPECT_THAT_ERROR(BrokenSym.getType().takeError(),
FailedWithMessage(ErrMsg));
// 6) Check the behavior of ELFObjectFile<ELFT>::getSymbolAddress().
// SymbolRef::getAddress() calls it internally. We can't test it
// directly, because it is protected.
EXPECT_THAT_ERROR(BrokenSym.getAddress().takeError(),
FailedWithMessage(ErrMsg));
// Finally, check the `ELFFile<ELFT>::getEntry` API. This is an underlying
// method that generates errors for all cases above.
EXPECT_THAT_EXPECTED(
Elf.getEntry<typename ELF64LE::Sym>(**SymtabSecOrErr, 0), Succeeded());
EXPECT_THAT_ERROR(
Elf.getEntry<typename ELF64LE::Sym>(**SymtabSecOrErr, BrokenSymIndex)
.takeError(),
FailedWithMessage(ErrMsg));
};
// We create a symbol with an index that is too large to exist in the symbol
// table.
DoCheck(0x1, "can't read an entry at 0x18: it goes past the end of the "
"section (0x18)");
// We create a symbol with an index that is too large to exist in the object.
DoCheck(0xFFFFFFFF, "can't read an entry at 0x17ffffffe8: it goes past the "
"end of the section (0x18)");
}
// Tests for error paths of the ELFFile::decodeBBAddrMap API.
TEST(ELFObjectFileTest, InvalidDecodeBBAddrMap) {
StringRef CommonYamlString(R"(
--- !ELF
FileHeader:
Class: ELFCLASS64
Data: ELFDATA2LSB
Type: ET_EXEC
Sections:
- Name: .llvm_bb_addr_map
Type: SHT_LLVM_BB_ADDR_MAP
Entries:
- Address: 0x11111
BBEntries:
- AddressOffset: 0x0
Size: 0x1
Metadata: 0x2
)");
auto DoCheck = [&](StringRef YamlString, const char *ErrMsg) {
SmallString<0> Storage;
Expected<ELFObjectFile<ELF64LE>> ElfOrErr =
toBinary<ELF64LE>(Storage, YamlString);
ASSERT_THAT_EXPECTED(ElfOrErr, Succeeded());
const ELFFile<ELF64LE> &Elf = ElfOrErr->getELFFile();
Expected<const typename ELF64LE::Shdr *> BBAddrMapSecOrErr =
Elf.getSection(1);
ASSERT_THAT_EXPECTED(BBAddrMapSecOrErr, Succeeded());
EXPECT_THAT_ERROR(Elf.decodeBBAddrMap(**BBAddrMapSecOrErr).takeError(),
FailedWithMessage(ErrMsg));
};
// Check that we can detect the malformed encoding when the section is
// truncated.
SmallString<128> TruncatedYamlString(CommonYamlString);
TruncatedYamlString += R"(
ShSize: 0x8
)";
DoCheck(TruncatedYamlString, "unable to decode LEB128 at offset 0x00000008: "
"malformed uleb128, extends past end");
// Check that we can detect when the encoded BB entry fields exceed the UINT32
// limit.
SmallVector<SmallString<128>, 3> OverInt32LimitYamlStrings(3,
CommonYamlString);
OverInt32LimitYamlStrings[0] += R"(
- AddressOffset: 0x100000000
Size: 0xFFFFFFFF
Metadata: 0xFFFFFFFF
)";
OverInt32LimitYamlStrings[1] += R"(
- AddressOffset: 0xFFFFFFFF
Size: 0x100000000
Metadata: 0xFFFFFFFF
)";
OverInt32LimitYamlStrings[2] += R"(
- AddressOffset: 0xFFFFFFFF
Size: 0xFFFFFFFF
Metadata: 0x100000000
)";
DoCheck(OverInt32LimitYamlStrings[0],
"ULEB128 value at offset 0xc exceeds UINT32_MAX (0x100000000)");
DoCheck(OverInt32LimitYamlStrings[1],
"ULEB128 value at offset 0x11 exceeds UINT32_MAX (0x100000000)");
DoCheck(OverInt32LimitYamlStrings[2],
"ULEB128 value at offset 0x16 exceeds UINT32_MAX (0x100000000)");
// Check the proper error handling when the section has fields exceeding
// UINT32 and is also truncated. This is for checking that we don't generate
// unhandled errors.
SmallVector<SmallString<128>, 3> OverInt32LimitAndTruncated(
3, OverInt32LimitYamlStrings[1]);
// Truncate before the end of the 5-byte field.
OverInt32LimitAndTruncated[0] += R"(
ShSize: 0x15
)";
// Truncate at the end of the 5-byte field.
OverInt32LimitAndTruncated[1] += R"(
ShSize: 0x16
)";
// Truncate after the end of the 5-byte field.
OverInt32LimitAndTruncated[2] += R"(
ShSize: 0x17
)";
DoCheck(OverInt32LimitAndTruncated[0],
"unable to decode LEB128 at offset 0x00000011: malformed uleb128, "
"extends past end");
DoCheck(OverInt32LimitAndTruncated[1],
"ULEB128 value at offset 0x11 exceeds UINT32_MAX (0x100000000)");
DoCheck(OverInt32LimitAndTruncated[2],
"ULEB128 value at offset 0x11 exceeds UINT32_MAX (0x100000000)");
// Check for proper error handling when the 'NumBlocks' field is overridden
// with an out-of-range value.
SmallString<128> OverLimitNumBlocks(CommonYamlString);
OverLimitNumBlocks += R"(
NumBlocks: 0x100000000
)";
DoCheck(OverLimitNumBlocks,
"ULEB128 value at offset 0x8 exceeds UINT32_MAX (0x100000000)");
}
// Test for the ELFObjectFile::readBBAddrMap API.
TEST(ELFObjectFileTest, ReadBBAddrMap) {
StringRef CommonYamlString(R"(
--- !ELF
FileHeader:
Class: ELFCLASS64
Data: ELFDATA2LSB
Type: ET_EXEC
Sections:
- Name: .llvm_bb_addr_map_1
Type: SHT_LLVM_BB_ADDR_MAP
Link: 1
Entries:
- Address: 0x11111
BBEntries:
- AddressOffset: 0x0
Size: 0x1
Metadata: 0x2
- Name: .llvm_bb_addr_map_2
Type: SHT_LLVM_BB_ADDR_MAP
Link: 1
Entries:
- Address: 0x22222
BBEntries:
- AddressOffset: 0x0
Size: 0x2
Metadata: 0x4
- Name: .llvm_bb_addr_map
Type: SHT_LLVM_BB_ADDR_MAP
# Link: 0 (by default)
Entries:
- Address: 0x33333
BBEntries:
- AddressOffset: 0x0
Size: 0x3
Metadata: 0x6
)");
BBAddrMap E1 = {0x11111, {{0x0, 0x1, 0x2}}};
BBAddrMap E2 = {0x22222, {{0x0, 0x2, 0x4}}};
BBAddrMap E3 = {0x33333, {{0x0, 0x3, 0x6}}};
std::vector<BBAddrMap> Section0BBAddrMaps = {E3};
std::vector<BBAddrMap> Section1BBAddrMaps = {E1, E2};
std::vector<BBAddrMap> AllBBAddrMaps = {E1, E2, E3};
auto DoCheckSucceeds = [&](StringRef YamlString,
Optional<unsigned> TextSectionIndex,
std::vector<BBAddrMap> ExpectedResult) {
SmallString<0> Storage;
Expected<ELFObjectFile<ELF64LE>> ElfOrErr =
toBinary<ELF64LE>(Storage, YamlString);
ASSERT_THAT_EXPECTED(ElfOrErr, Succeeded());
Expected<const typename ELF64LE::Shdr *> BBAddrMapSecOrErr =
ElfOrErr->getELFFile().getSection(1);
ASSERT_THAT_EXPECTED(BBAddrMapSecOrErr, Succeeded());
auto BBAddrMaps = ElfOrErr->readBBAddrMap(TextSectionIndex);
EXPECT_THAT_EXPECTED(BBAddrMaps, Succeeded());
EXPECT_EQ(*BBAddrMaps, ExpectedResult);
};
auto DoCheckFails = [&](StringRef YamlString,
Optional<unsigned> TextSectionIndex,
const char *ErrMsg) {
SmallString<0> Storage;
Expected<ELFObjectFile<ELF64LE>> ElfOrErr =
toBinary<ELF64LE>(Storage, YamlString);
ASSERT_THAT_EXPECTED(ElfOrErr, Succeeded());
Expected<const typename ELF64LE::Shdr *> BBAddrMapSecOrErr =
ElfOrErr->getELFFile().getSection(1);
ASSERT_THAT_EXPECTED(BBAddrMapSecOrErr, Succeeded());
EXPECT_THAT_ERROR(ElfOrErr->readBBAddrMap(TextSectionIndex).takeError(),
FailedWithMessage(ErrMsg));
};
// Check that we can retrieve the data in the normal case.
DoCheckSucceeds(CommonYamlString, /*TextSectionIndex=*/None, AllBBAddrMaps);
DoCheckSucceeds(CommonYamlString, /*TextSectionIndex=*/0, Section0BBAddrMaps);
DoCheckSucceeds(CommonYamlString, /*TextSectionIndex=*/1, Section1BBAddrMaps);
// Check that when no bb-address-map section is found for a text section,
// we return an empty result.
DoCheckSucceeds(CommonYamlString, /*TextSectionIndex=*/2, {});
// Check that we detect when a bb-addr-map section is linked to an invalid
// (not present) section.
SmallString<128> InvalidLinkedYamlString(CommonYamlString);
InvalidLinkedYamlString += R"(
Link: 10
)";
DoCheckFails(InvalidLinkedYamlString, /*TextSectionIndex=*/1,
"unable to get the linked-to section for SHT_LLVM_BB_ADDR_MAP "
"section with index 3: invalid section index: 10");
// Linked sections are not checked when we don't target a specific text
// section.
DoCheckSucceeds(InvalidLinkedYamlString, /*TextSectionIndex=*/None,
AllBBAddrMaps);
// Check that we can detect when bb-address-map decoding fails.
SmallString<128> TruncatedYamlString(CommonYamlString);
TruncatedYamlString += R"(
ShSize: 0x8
)";
DoCheckFails(TruncatedYamlString, /*TextSectionIndex=*/None,
"unable to read SHT_LLVM_BB_ADDR_MAP section with index 3: "
"unable to decode LEB128 at offset 0x00000008: malformed "
"uleb128, extends past end");
// Check that we can read the other section's bb-address-maps which are
// valid.
DoCheckSucceeds(TruncatedYamlString, /*TextSectionIndex=*/1,
Section1BBAddrMaps);
}
// Test for ObjectFile::getRelocatedSection: check that it returns a relocated
// section for executable and relocatable files.
TEST(ELFObjectFileTest, ExecutableWithRelocs) {
StringRef HeaderString(R"(
--- !ELF
FileHeader:
Class: ELFCLASS64
Data: ELFDATA2LSB
)");
StringRef ContentsString(R"(
Sections:
- Name: .text
Type: SHT_PROGBITS
Flags: [ SHF_ALLOC, SHF_EXECINSTR ]
- Name: .rela.text
Type: SHT_RELA
Flags: [ SHF_INFO_LINK ]
Info: .text
)");
auto DoCheck = [&](StringRef YamlString) {
SmallString<0> Storage;
Expected<ELFObjectFile<ELF64LE>> ElfOrErr =
toBinary<ELF64LE>(Storage, YamlString);
ASSERT_THAT_EXPECTED(ElfOrErr, Succeeded());
const ELFObjectFile<ELF64LE> &Obj = *ElfOrErr;
bool FoundRela;
for (SectionRef Sec : Obj.sections()) {
Expected<StringRef> SecNameOrErr = Sec.getName();
ASSERT_THAT_EXPECTED(SecNameOrErr, Succeeded());
StringRef SecName = *SecNameOrErr;
if (SecName != ".rela.text")
continue;
FoundRela = true;
Expected<section_iterator> RelSecOrErr = Sec.getRelocatedSection();
ASSERT_THAT_EXPECTED(RelSecOrErr, Succeeded());
section_iterator RelSec = *RelSecOrErr;
ASSERT_NE(RelSec, Obj.section_end());
Expected<StringRef> TextSecNameOrErr = RelSec->getName();
ASSERT_THAT_EXPECTED(TextSecNameOrErr, Succeeded());
StringRef TextSecName = *TextSecNameOrErr;
EXPECT_EQ(TextSecName, ".text");
}
ASSERT_TRUE(FoundRela);
};
// Check ET_EXEC file (`ld --emit-relocs` use-case).
SmallString<128> ExecFileYamlString(HeaderString);
ExecFileYamlString += R"(
Type: ET_EXEC
)";
ExecFileYamlString += ContentsString;
DoCheck(ExecFileYamlString);
// Check ET_REL file.
SmallString<128> RelocatableFileYamlString(HeaderString);
RelocatableFileYamlString += R"(
Type: ET_REL
)";
RelocatableFileYamlString += ContentsString;
DoCheck(RelocatableFileYamlString);
}