
Replace ConditionalAssume set by treating conditional assumes like other predicated instructions (i.e. create a VPReplicateRecipe with a mask) and later remove any assume recipes with masks during VPlan cleanup. This reduces coupling of VPlan construction and Legal by removing a shared set between the 2 and results in a cleaner code structure overall. Reviewed By: Ayal Differential Revision: https://reviews.llvm.org/D157034
807 lines
31 KiB
C++
807 lines
31 KiB
C++
//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements a set of utility VPlan to VPlan transformations.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VPlanTransforms.h"
|
|
#include "VPRecipeBuilder.h"
|
|
#include "VPlanCFG.h"
|
|
#include "VPlanDominatorTree.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Analysis/IVDescriptors.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
|
|
using namespace llvm;
|
|
|
|
using namespace llvm::PatternMatch;
|
|
|
|
void VPlanTransforms::VPInstructionsToVPRecipes(
|
|
VPlanPtr &Plan,
|
|
function_ref<const InductionDescriptor *(PHINode *)>
|
|
GetIntOrFpInductionDescriptor,
|
|
ScalarEvolution &SE, const TargetLibraryInfo &TLI) {
|
|
|
|
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
|
|
Plan->getEntry());
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
|
|
VPRecipeBase *Term = VPBB->getTerminator();
|
|
auto EndIter = Term ? Term->getIterator() : VPBB->end();
|
|
// Introduce each ingredient into VPlan.
|
|
for (VPRecipeBase &Ingredient :
|
|
make_early_inc_range(make_range(VPBB->begin(), EndIter))) {
|
|
|
|
VPValue *VPV = Ingredient.getVPSingleValue();
|
|
Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue());
|
|
|
|
VPRecipeBase *NewRecipe = nullptr;
|
|
if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) {
|
|
auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue());
|
|
if (const auto *II = GetIntOrFpInductionDescriptor(Phi)) {
|
|
VPValue *Start = Plan->getVPValueOrAddLiveIn(II->getStartValue());
|
|
VPValue *Step =
|
|
vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE);
|
|
NewRecipe = new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, *II);
|
|
} else {
|
|
Plan->addVPValue(Phi, VPPhi);
|
|
continue;
|
|
}
|
|
} else {
|
|
assert(isa<VPInstruction>(&Ingredient) &&
|
|
"only VPInstructions expected here");
|
|
assert(!isa<PHINode>(Inst) && "phis should be handled above");
|
|
// Create VPWidenMemoryInstructionRecipe for loads and stores.
|
|
if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
|
|
NewRecipe = new VPWidenMemoryInstructionRecipe(
|
|
*Load, Ingredient.getOperand(0), nullptr /*Mask*/,
|
|
false /*Consecutive*/, false /*Reverse*/);
|
|
} else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
|
|
NewRecipe = new VPWidenMemoryInstructionRecipe(
|
|
*Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
|
|
nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/);
|
|
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
|
|
NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands());
|
|
} else if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
|
|
NewRecipe =
|
|
new VPWidenCallRecipe(*CI, drop_end(Ingredient.operands()),
|
|
getVectorIntrinsicIDForCall(CI, &TLI));
|
|
} else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
|
|
NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands());
|
|
} else if (auto *CI = dyn_cast<CastInst>(Inst)) {
|
|
NewRecipe = new VPWidenCastRecipe(
|
|
CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), CI);
|
|
} else {
|
|
NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands());
|
|
}
|
|
}
|
|
|
|
NewRecipe->insertBefore(&Ingredient);
|
|
if (NewRecipe->getNumDefinedValues() == 1)
|
|
VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
|
|
else
|
|
assert(NewRecipe->getNumDefinedValues() == 0 &&
|
|
"Only recpies with zero or one defined values expected");
|
|
Ingredient.eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool sinkScalarOperands(VPlan &Plan) {
|
|
auto Iter = vp_depth_first_deep(Plan.getEntry());
|
|
bool Changed = false;
|
|
// First, collect the operands of all recipes in replicate blocks as seeds for
|
|
// sinking.
|
|
SetVector<std::pair<VPBasicBlock *, VPRecipeBase *>> WorkList;
|
|
for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) {
|
|
VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock();
|
|
if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2)
|
|
continue;
|
|
VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]);
|
|
if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock())
|
|
continue;
|
|
for (auto &Recipe : *VPBB) {
|
|
for (VPValue *Op : Recipe.operands())
|
|
if (auto *Def = Op->getDefiningRecipe())
|
|
WorkList.insert(std::make_pair(VPBB, Def));
|
|
}
|
|
}
|
|
|
|
bool ScalarVFOnly = Plan.hasScalarVFOnly();
|
|
// Try to sink each replicate or scalar IV steps recipe in the worklist.
|
|
for (unsigned I = 0; I != WorkList.size(); ++I) {
|
|
VPBasicBlock *SinkTo;
|
|
VPRecipeBase *SinkCandidate;
|
|
std::tie(SinkTo, SinkCandidate) = WorkList[I];
|
|
if (SinkCandidate->getParent() == SinkTo ||
|
|
SinkCandidate->mayHaveSideEffects() ||
|
|
SinkCandidate->mayReadOrWriteMemory())
|
|
continue;
|
|
if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
|
|
if (!ScalarVFOnly && RepR->isUniform())
|
|
continue;
|
|
} else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate))
|
|
continue;
|
|
|
|
bool NeedsDuplicating = false;
|
|
// All recipe users of the sink candidate must be in the same block SinkTo
|
|
// or all users outside of SinkTo must be uniform-after-vectorization (
|
|
// i.e., only first lane is used) . In the latter case, we need to duplicate
|
|
// SinkCandidate.
|
|
auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
|
|
SinkCandidate](VPUser *U) {
|
|
auto *UI = dyn_cast<VPRecipeBase>(U);
|
|
if (!UI)
|
|
return false;
|
|
if (UI->getParent() == SinkTo)
|
|
return true;
|
|
NeedsDuplicating =
|
|
UI->onlyFirstLaneUsed(SinkCandidate->getVPSingleValue());
|
|
// We only know how to duplicate VPRecipeRecipes for now.
|
|
return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate);
|
|
};
|
|
if (!all_of(SinkCandidate->getVPSingleValue()->users(), CanSinkWithUser))
|
|
continue;
|
|
|
|
if (NeedsDuplicating) {
|
|
if (ScalarVFOnly)
|
|
continue;
|
|
Instruction *I = cast<Instruction>(
|
|
cast<VPReplicateRecipe>(SinkCandidate)->getUnderlyingValue());
|
|
auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true);
|
|
// TODO: add ".cloned" suffix to name of Clone's VPValue.
|
|
|
|
Clone->insertBefore(SinkCandidate);
|
|
for (auto *U : to_vector(SinkCandidate->getVPSingleValue()->users())) {
|
|
auto *UI = cast<VPRecipeBase>(U);
|
|
if (UI->getParent() == SinkTo)
|
|
continue;
|
|
|
|
for (unsigned Idx = 0; Idx != UI->getNumOperands(); Idx++) {
|
|
if (UI->getOperand(Idx) != SinkCandidate->getVPSingleValue())
|
|
continue;
|
|
UI->setOperand(Idx, Clone);
|
|
}
|
|
}
|
|
}
|
|
SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi());
|
|
for (VPValue *Op : SinkCandidate->operands())
|
|
if (auto *Def = Op->getDefiningRecipe())
|
|
WorkList.insert(std::make_pair(SinkTo, Def));
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return
|
|
/// the mask.
|
|
VPValue *getPredicatedMask(VPRegionBlock *R) {
|
|
auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry());
|
|
if (!EntryBB || EntryBB->size() != 1 ||
|
|
!isa<VPBranchOnMaskRecipe>(EntryBB->begin()))
|
|
return nullptr;
|
|
|
|
return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0);
|
|
}
|
|
|
|
/// If \p R is a triangle region, return the 'then' block of the triangle.
|
|
static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) {
|
|
auto *EntryBB = cast<VPBasicBlock>(R->getEntry());
|
|
if (EntryBB->getNumSuccessors() != 2)
|
|
return nullptr;
|
|
|
|
auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]);
|
|
auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]);
|
|
if (!Succ0 || !Succ1)
|
|
return nullptr;
|
|
|
|
if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
|
|
return nullptr;
|
|
if (Succ0->getSingleSuccessor() == Succ1)
|
|
return Succ0;
|
|
if (Succ1->getSingleSuccessor() == Succ0)
|
|
return Succ1;
|
|
return nullptr;
|
|
}
|
|
|
|
// Merge replicate regions in their successor region, if a replicate region
|
|
// is connected to a successor replicate region with the same predicate by a
|
|
// single, empty VPBasicBlock.
|
|
static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) {
|
|
SetVector<VPRegionBlock *> DeletedRegions;
|
|
|
|
// Collect replicate regions followed by an empty block, followed by another
|
|
// replicate region with matching masks to process front. This is to avoid
|
|
// iterator invalidation issues while merging regions.
|
|
SmallVector<VPRegionBlock *, 8> WorkList;
|
|
for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>(
|
|
vp_depth_first_deep(Plan.getEntry()))) {
|
|
if (!Region1->isReplicator())
|
|
continue;
|
|
auto *MiddleBasicBlock =
|
|
dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor());
|
|
if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
|
|
continue;
|
|
|
|
auto *Region2 =
|
|
dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
|
|
if (!Region2 || !Region2->isReplicator())
|
|
continue;
|
|
|
|
VPValue *Mask1 = getPredicatedMask(Region1);
|
|
VPValue *Mask2 = getPredicatedMask(Region2);
|
|
if (!Mask1 || Mask1 != Mask2)
|
|
continue;
|
|
|
|
assert(Mask1 && Mask2 && "both region must have conditions");
|
|
WorkList.push_back(Region1);
|
|
}
|
|
|
|
// Move recipes from Region1 to its successor region, if both are triangles.
|
|
for (VPRegionBlock *Region1 : WorkList) {
|
|
if (DeletedRegions.contains(Region1))
|
|
continue;
|
|
auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor());
|
|
auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
|
|
|
|
VPBasicBlock *Then1 = getPredicatedThenBlock(Region1);
|
|
VPBasicBlock *Then2 = getPredicatedThenBlock(Region2);
|
|
if (!Then1 || !Then2)
|
|
continue;
|
|
|
|
// Note: No fusion-preventing memory dependencies are expected in either
|
|
// region. Such dependencies should be rejected during earlier dependence
|
|
// checks, which guarantee accesses can be re-ordered for vectorization.
|
|
//
|
|
// Move recipes to the successor region.
|
|
for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1)))
|
|
ToMove.moveBefore(*Then2, Then2->getFirstNonPhi());
|
|
|
|
auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor());
|
|
auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor());
|
|
|
|
// Move VPPredInstPHIRecipes from the merge block to the successor region's
|
|
// merge block. Update all users inside the successor region to use the
|
|
// original values.
|
|
for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) {
|
|
VPValue *PredInst1 =
|
|
cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0);
|
|
VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
|
|
for (VPUser *U : to_vector(Phi1ToMoveV->users())) {
|
|
auto *UI = dyn_cast<VPRecipeBase>(U);
|
|
if (!UI || UI->getParent() != Then2)
|
|
continue;
|
|
for (unsigned I = 0, E = U->getNumOperands(); I != E; ++I) {
|
|
if (Phi1ToMoveV != U->getOperand(I))
|
|
continue;
|
|
U->setOperand(I, PredInst1);
|
|
}
|
|
}
|
|
|
|
Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
|
|
}
|
|
|
|
// Finally, remove the first region.
|
|
for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) {
|
|
VPBlockUtils::disconnectBlocks(Pred, Region1);
|
|
VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock);
|
|
}
|
|
VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock);
|
|
DeletedRegions.insert(Region1);
|
|
}
|
|
|
|
for (VPRegionBlock *ToDelete : DeletedRegions)
|
|
delete ToDelete;
|
|
return !DeletedRegions.empty();
|
|
}
|
|
|
|
static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe,
|
|
VPlan &Plan) {
|
|
Instruction *Instr = PredRecipe->getUnderlyingInstr();
|
|
// Build the triangular if-then region.
|
|
std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
|
|
assert(Instr->getParent() && "Predicated instruction not in any basic block");
|
|
auto *BlockInMask = PredRecipe->getMask();
|
|
auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
|
|
auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
|
|
|
|
// Replace predicated replicate recipe with a replicate recipe without a
|
|
// mask but in the replicate region.
|
|
auto *RecipeWithoutMask = new VPReplicateRecipe(
|
|
PredRecipe->getUnderlyingInstr(),
|
|
make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())),
|
|
PredRecipe->isUniform());
|
|
auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask);
|
|
|
|
VPPredInstPHIRecipe *PHIRecipe = nullptr;
|
|
if (PredRecipe->getNumUsers() != 0) {
|
|
PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask);
|
|
PredRecipe->replaceAllUsesWith(PHIRecipe);
|
|
PHIRecipe->setOperand(0, RecipeWithoutMask);
|
|
}
|
|
PredRecipe->eraseFromParent();
|
|
auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
|
|
VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
|
|
|
|
// Note: first set Entry as region entry and then connect successors starting
|
|
// from it in order, to propagate the "parent" of each VPBasicBlock.
|
|
VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
|
|
VPBlockUtils::connectBlocks(Pred, Exiting);
|
|
|
|
return Region;
|
|
}
|
|
|
|
static void addReplicateRegions(VPlan &Plan) {
|
|
SmallVector<VPReplicateRecipe *> WorkList;
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
|
|
vp_depth_first_deep(Plan.getEntry()))) {
|
|
for (VPRecipeBase &R : *VPBB)
|
|
if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
|
|
if (RepR->isPredicated())
|
|
WorkList.push_back(RepR);
|
|
}
|
|
}
|
|
|
|
unsigned BBNum = 0;
|
|
for (VPReplicateRecipe *RepR : WorkList) {
|
|
VPBasicBlock *CurrentBlock = RepR->getParent();
|
|
VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator());
|
|
|
|
BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent();
|
|
SplitBlock->setName(
|
|
OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : "");
|
|
// Record predicated instructions for above packing optimizations.
|
|
VPBlockBase *Region = createReplicateRegion(RepR, Plan);
|
|
Region->setParent(CurrentBlock->getParent());
|
|
VPBlockUtils::disconnectBlocks(CurrentBlock, SplitBlock);
|
|
VPBlockUtils::connectBlocks(CurrentBlock, Region);
|
|
VPBlockUtils::connectBlocks(Region, SplitBlock);
|
|
}
|
|
}
|
|
|
|
void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) {
|
|
// Convert masked VPReplicateRecipes to if-then region blocks.
|
|
addReplicateRegions(Plan);
|
|
|
|
bool ShouldSimplify = true;
|
|
while (ShouldSimplify) {
|
|
ShouldSimplify = sinkScalarOperands(Plan);
|
|
ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan);
|
|
ShouldSimplify |= VPlanTransforms::mergeBlocksIntoPredecessors(Plan);
|
|
}
|
|
}
|
|
bool VPlanTransforms::mergeBlocksIntoPredecessors(VPlan &Plan) {
|
|
SmallVector<VPBasicBlock *> WorkList;
|
|
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
|
|
vp_depth_first_deep(Plan.getEntry()))) {
|
|
auto *PredVPBB =
|
|
dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor());
|
|
if (PredVPBB && PredVPBB->getNumSuccessors() == 1)
|
|
WorkList.push_back(VPBB);
|
|
}
|
|
|
|
for (VPBasicBlock *VPBB : WorkList) {
|
|
VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor());
|
|
for (VPRecipeBase &R : make_early_inc_range(*VPBB))
|
|
R.moveBefore(*PredVPBB, PredVPBB->end());
|
|
VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
|
|
auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent());
|
|
if (ParentRegion && ParentRegion->getExiting() == VPBB)
|
|
ParentRegion->setExiting(PredVPBB);
|
|
for (auto *Succ : to_vector(VPBB->successors())) {
|
|
VPBlockUtils::disconnectBlocks(VPBB, Succ);
|
|
VPBlockUtils::connectBlocks(PredVPBB, Succ);
|
|
}
|
|
delete VPBB;
|
|
}
|
|
return !WorkList.empty();
|
|
}
|
|
|
|
void VPlanTransforms::removeRedundantInductionCasts(VPlan &Plan) {
|
|
for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
|
|
auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
|
|
if (!IV || IV->getTruncInst())
|
|
continue;
|
|
|
|
// A sequence of IR Casts has potentially been recorded for IV, which
|
|
// *must be bypassed* when the IV is vectorized, because the vectorized IV
|
|
// will produce the desired casted value. This sequence forms a def-use
|
|
// chain and is provided in reverse order, ending with the cast that uses
|
|
// the IV phi. Search for the recipe of the last cast in the chain and
|
|
// replace it with the original IV. Note that only the final cast is
|
|
// expected to have users outside the cast-chain and the dead casts left
|
|
// over will be cleaned up later.
|
|
auto &Casts = IV->getInductionDescriptor().getCastInsts();
|
|
VPValue *FindMyCast = IV;
|
|
for (Instruction *IRCast : reverse(Casts)) {
|
|
VPRecipeBase *FoundUserCast = nullptr;
|
|
for (auto *U : FindMyCast->users()) {
|
|
auto *UserCast = cast<VPRecipeBase>(U);
|
|
if (UserCast->getNumDefinedValues() == 1 &&
|
|
UserCast->getVPSingleValue()->getUnderlyingValue() == IRCast) {
|
|
FoundUserCast = UserCast;
|
|
break;
|
|
}
|
|
}
|
|
FindMyCast = FoundUserCast->getVPSingleValue();
|
|
}
|
|
FindMyCast->replaceAllUsesWith(IV);
|
|
}
|
|
}
|
|
|
|
void VPlanTransforms::removeRedundantCanonicalIVs(VPlan &Plan) {
|
|
VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
|
|
VPWidenCanonicalIVRecipe *WidenNewIV = nullptr;
|
|
for (VPUser *U : CanonicalIV->users()) {
|
|
WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U);
|
|
if (WidenNewIV)
|
|
break;
|
|
}
|
|
|
|
if (!WidenNewIV)
|
|
return;
|
|
|
|
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
|
|
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
|
|
auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
|
|
|
|
if (!WidenOriginalIV || !WidenOriginalIV->isCanonical() ||
|
|
WidenOriginalIV->getScalarType() != WidenNewIV->getScalarType())
|
|
continue;
|
|
|
|
// Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides
|
|
// everything WidenNewIV's users need. That is, WidenOriginalIV will
|
|
// generate a vector phi or all users of WidenNewIV demand the first lane
|
|
// only.
|
|
if (any_of(WidenOriginalIV->users(),
|
|
[WidenOriginalIV](VPUser *U) {
|
|
return !U->usesScalars(WidenOriginalIV);
|
|
}) ||
|
|
vputils::onlyFirstLaneUsed(WidenNewIV)) {
|
|
WidenNewIV->replaceAllUsesWith(WidenOriginalIV);
|
|
WidenNewIV->eraseFromParent();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VPlanTransforms::removeDeadRecipes(VPlan &Plan) {
|
|
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
|
|
Plan.getEntry());
|
|
|
|
for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) {
|
|
// The recipes in the block are processed in reverse order, to catch chains
|
|
// of dead recipes.
|
|
for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
|
|
// A user keeps R alive:
|
|
if (any_of(R.definedValues(),
|
|
[](VPValue *V) { return V->getNumUsers(); }))
|
|
continue;
|
|
|
|
// Having side effects keeps R alive, but do remove conditional assume
|
|
// instructions as their conditions may be flattened.
|
|
auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
|
|
bool IsConditionalAssume =
|
|
RepR && RepR->isPredicated() &&
|
|
match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>());
|
|
if (R.mayHaveSideEffects() && !IsConditionalAssume)
|
|
continue;
|
|
|
|
R.eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
void VPlanTransforms::optimizeInductions(VPlan &Plan, ScalarEvolution &SE) {
|
|
SmallVector<VPRecipeBase *> ToRemove;
|
|
VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
|
|
bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1));
|
|
for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
|
|
auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
|
|
if (!WideIV)
|
|
continue;
|
|
if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) {
|
|
return U->usesScalars(WideIV);
|
|
}))
|
|
continue;
|
|
|
|
auto IP = HeaderVPBB->getFirstNonPhi();
|
|
VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
|
|
Type *ResultTy = WideIV->getPHINode()->getType();
|
|
if (Instruction *TruncI = WideIV->getTruncInst())
|
|
ResultTy = TruncI->getType();
|
|
const InductionDescriptor &ID = WideIV->getInductionDescriptor();
|
|
VPValue *Step = WideIV->getStepValue();
|
|
VPValue *BaseIV = CanonicalIV;
|
|
if (!CanonicalIV->isCanonical(ID.getKind(), WideIV->getStartValue(), Step,
|
|
ResultTy)) {
|
|
BaseIV = new VPDerivedIVRecipe(ID, WideIV->getStartValue(), CanonicalIV,
|
|
Step, ResultTy);
|
|
HeaderVPBB->insert(BaseIV->getDefiningRecipe(), IP);
|
|
}
|
|
|
|
VPScalarIVStepsRecipe *Steps = new VPScalarIVStepsRecipe(ID, BaseIV, Step);
|
|
HeaderVPBB->insert(Steps, IP);
|
|
|
|
// Update scalar users of IV to use Step instead. Use SetVector to ensure
|
|
// the list of users doesn't contain duplicates.
|
|
SetVector<VPUser *> Users(WideIV->user_begin(), WideIV->user_end());
|
|
for (VPUser *U : Users) {
|
|
if (HasOnlyVectorVFs && !U->usesScalars(WideIV))
|
|
continue;
|
|
for (unsigned I = 0, E = U->getNumOperands(); I != E; I++) {
|
|
if (U->getOperand(I) != WideIV)
|
|
continue;
|
|
U->setOperand(I, Steps);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VPlanTransforms::removeRedundantExpandSCEVRecipes(VPlan &Plan) {
|
|
DenseMap<const SCEV *, VPValue *> SCEV2VPV;
|
|
|
|
for (VPRecipeBase &R :
|
|
make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) {
|
|
auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R);
|
|
if (!ExpR)
|
|
continue;
|
|
|
|
auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR});
|
|
if (I.second)
|
|
continue;
|
|
ExpR->replaceAllUsesWith(I.first->second);
|
|
ExpR->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
static bool canSimplifyBranchOnCond(VPInstruction *Term) {
|
|
VPInstruction *Not = dyn_cast<VPInstruction>(Term->getOperand(0));
|
|
if (!Not || Not->getOpcode() != VPInstruction::Not)
|
|
return false;
|
|
|
|
VPInstruction *ALM = dyn_cast<VPInstruction>(Not->getOperand(0));
|
|
return ALM && ALM->getOpcode() == VPInstruction::ActiveLaneMask;
|
|
}
|
|
|
|
void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF,
|
|
unsigned BestUF,
|
|
PredicatedScalarEvolution &PSE) {
|
|
assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
|
|
assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
|
|
VPBasicBlock *ExitingVPBB =
|
|
Plan.getVectorLoopRegion()->getExitingBasicBlock();
|
|
auto *Term = dyn_cast<VPInstruction>(&ExitingVPBB->back());
|
|
// Try to simplify the branch condition if TC <= VF * UF when preparing to
|
|
// execute the plan for the main vector loop. We only do this if the
|
|
// terminator is:
|
|
// 1. BranchOnCount, or
|
|
// 2. BranchOnCond where the input is Not(ActiveLaneMask).
|
|
if (!Term || (Term->getOpcode() != VPInstruction::BranchOnCount &&
|
|
(Term->getOpcode() != VPInstruction::BranchOnCond ||
|
|
!canSimplifyBranchOnCond(Term))))
|
|
return;
|
|
|
|
Type *IdxTy =
|
|
Plan.getCanonicalIV()->getStartValue()->getLiveInIRValue()->getType();
|
|
const SCEV *TripCount = createTripCountSCEV(IdxTy, PSE);
|
|
ScalarEvolution &SE = *PSE.getSE();
|
|
const SCEV *C =
|
|
SE.getConstant(TripCount->getType(), BestVF.getKnownMinValue() * BestUF);
|
|
if (TripCount->isZero() ||
|
|
!SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C))
|
|
return;
|
|
|
|
LLVMContext &Ctx = SE.getContext();
|
|
auto *BOC = new VPInstruction(
|
|
VPInstruction::BranchOnCond,
|
|
{Plan.getVPValueOrAddLiveIn(ConstantInt::getTrue(Ctx))});
|
|
Term->eraseFromParent();
|
|
ExitingVPBB->appendRecipe(BOC);
|
|
Plan.setVF(BestVF);
|
|
Plan.setUF(BestUF);
|
|
// TODO: Further simplifications are possible
|
|
// 1. Replace inductions with constants.
|
|
// 2. Replace vector loop region with VPBasicBlock.
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static VPRegionBlock *GetReplicateRegion(VPRecipeBase *R) {
|
|
auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
|
|
if (Region && Region->isReplicator()) {
|
|
assert(Region->getNumSuccessors() == 1 &&
|
|
Region->getNumPredecessors() == 1 && "Expected SESE region!");
|
|
assert(R->getParent()->size() == 1 &&
|
|
"A recipe in an original replicator region must be the only "
|
|
"recipe in its block");
|
|
return Region;
|
|
}
|
|
return nullptr;
|
|
}
|
|
#endif
|
|
|
|
static bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B,
|
|
VPDominatorTree &VPDT) {
|
|
if (A == B)
|
|
return false;
|
|
|
|
auto LocalComesBefore = [](const VPRecipeBase *A, const VPRecipeBase *B) {
|
|
for (auto &R : *A->getParent()) {
|
|
if (&R == A)
|
|
return true;
|
|
if (&R == B)
|
|
return false;
|
|
}
|
|
llvm_unreachable("recipe not found");
|
|
};
|
|
const VPBlockBase *ParentA = A->getParent();
|
|
const VPBlockBase *ParentB = B->getParent();
|
|
if (ParentA == ParentB)
|
|
return LocalComesBefore(A, B);
|
|
|
|
assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(A)) &&
|
|
"No replicate regions expected at this point");
|
|
assert(!GetReplicateRegion(const_cast<VPRecipeBase *>(B)) &&
|
|
"No replicate regions expected at this point");
|
|
return VPDT.properlyDominates(ParentA, ParentB);
|
|
}
|
|
|
|
/// Sink users of \p FOR after the recipe defining the previous value \p
|
|
/// Previous of the recurrence. \returns true if all users of \p FOR could be
|
|
/// re-arranged as needed or false if it is not possible.
|
|
static bool
|
|
sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR,
|
|
VPRecipeBase *Previous,
|
|
VPDominatorTree &VPDT) {
|
|
// Collect recipes that need sinking.
|
|
SmallVector<VPRecipeBase *> WorkList;
|
|
SmallPtrSet<VPRecipeBase *, 8> Seen;
|
|
Seen.insert(Previous);
|
|
auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) {
|
|
// The previous value must not depend on the users of the recurrence phi. In
|
|
// that case, FOR is not a fixed order recurrence.
|
|
if (SinkCandidate == Previous)
|
|
return false;
|
|
|
|
if (isa<VPHeaderPHIRecipe>(SinkCandidate) ||
|
|
!Seen.insert(SinkCandidate).second ||
|
|
properlyDominates(Previous, SinkCandidate, VPDT))
|
|
return true;
|
|
|
|
if (SinkCandidate->mayHaveSideEffects())
|
|
return false;
|
|
|
|
WorkList.push_back(SinkCandidate);
|
|
return true;
|
|
};
|
|
|
|
// Recursively sink users of FOR after Previous.
|
|
WorkList.push_back(FOR);
|
|
for (unsigned I = 0; I != WorkList.size(); ++I) {
|
|
VPRecipeBase *Current = WorkList[I];
|
|
assert(Current->getNumDefinedValues() == 1 &&
|
|
"only recipes with a single defined value expected");
|
|
|
|
for (VPUser *User : Current->getVPSingleValue()->users()) {
|
|
if (auto *R = dyn_cast<VPRecipeBase>(User))
|
|
if (!TryToPushSinkCandidate(R))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Keep recipes to sink ordered by dominance so earlier instructions are
|
|
// processed first.
|
|
sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
|
|
return properlyDominates(A, B, VPDT);
|
|
});
|
|
|
|
for (VPRecipeBase *SinkCandidate : WorkList) {
|
|
if (SinkCandidate == FOR)
|
|
continue;
|
|
|
|
SinkCandidate->moveAfter(Previous);
|
|
Previous = SinkCandidate;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan,
|
|
VPBuilder &Builder) {
|
|
VPDominatorTree VPDT;
|
|
VPDT.recalculate(Plan);
|
|
|
|
SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis;
|
|
for (VPRecipeBase &R :
|
|
Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis())
|
|
if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
|
|
RecurrencePhis.push_back(FOR);
|
|
|
|
for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) {
|
|
SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis;
|
|
VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
|
|
// Fixed-order recurrences do not contain cycles, so this loop is guaranteed
|
|
// to terminate.
|
|
while (auto *PrevPhi =
|
|
dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) {
|
|
assert(PrevPhi->getParent() == FOR->getParent());
|
|
assert(SeenPhis.insert(PrevPhi).second);
|
|
Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
|
|
}
|
|
|
|
if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT))
|
|
return false;
|
|
|
|
// Introduce a recipe to combine the incoming and previous values of a
|
|
// fixed-order recurrence.
|
|
VPBasicBlock *InsertBlock = Previous->getParent();
|
|
if (isa<VPHeaderPHIRecipe>(Previous))
|
|
Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
|
|
else
|
|
Builder.setInsertPoint(InsertBlock, std::next(Previous->getIterator()));
|
|
|
|
auto *RecurSplice = cast<VPInstruction>(
|
|
Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
|
|
{FOR, FOR->getBackedgeValue()}));
|
|
|
|
FOR->replaceAllUsesWith(RecurSplice);
|
|
// Set the first operand of RecurSplice to FOR again, after replacing
|
|
// all users.
|
|
RecurSplice->setOperand(0, FOR);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) {
|
|
for (VPRecipeBase &R :
|
|
Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
|
|
auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
|
|
if (!PhiR)
|
|
continue;
|
|
const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
|
|
RecurKind RK = RdxDesc.getRecurrenceKind();
|
|
if (RK != RecurKind::Add && RK != RecurKind::Mul)
|
|
continue;
|
|
|
|
SmallSetVector<VPValue *, 8> Worklist;
|
|
Worklist.insert(PhiR);
|
|
|
|
for (unsigned I = 0; I != Worklist.size(); ++I) {
|
|
VPValue *Cur = Worklist[I];
|
|
if (auto *RecWithFlags =
|
|
dyn_cast<VPRecipeWithIRFlags>(Cur->getDefiningRecipe())) {
|
|
RecWithFlags->dropPoisonGeneratingFlags();
|
|
}
|
|
|
|
for (VPUser *U : Cur->users()) {
|
|
auto *UserRecipe = dyn_cast<VPRecipeBase>(U);
|
|
if (!UserRecipe)
|
|
continue;
|
|
for (VPValue *V : UserRecipe->definedValues())
|
|
Worklist.insert(V);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VPlanTransforms::optimize(VPlan &Plan, ScalarEvolution &SE) {
|
|
removeRedundantCanonicalIVs(Plan);
|
|
removeRedundantInductionCasts(Plan);
|
|
|
|
optimizeInductions(Plan, SE);
|
|
removeDeadRecipes(Plan);
|
|
|
|
createAndOptimizeReplicateRegions(Plan);
|
|
|
|
removeRedundantExpandSCEVRecipes(Plan);
|
|
mergeBlocksIntoPredecessors(Plan);
|
|
}
|