llvm-project/flang/lib/Semantics/check-call.cpp
Peter Klausler aad5984b56 [flang] Portability warnings for an ambiguous ASSOCIATED() case
The standard's specification for the ASSOCIATED() intrinsic function
describes its optional second argument (TARGET=) as being required
to be a valid target for a pointer assignment statement in which the
first argument (POINTER=) was the left-hand side.  Some Fortran compilers
apparently interpret this text as a requirement that the POINTER= argument
actually be a valid left-hand side to a pointer assignment statement,
and emit an error if it is not so.  This particularly affects the
use of an explicit NULL pointer as the first argument.

Such usage is well-defined, benign, useful, and supported by at least
two other compilers, so we should continue to accept it.  This patch
adds a portability warning and some documentation.

In order to implement the portability warning in the best way, the
special checks on calls to the ASSOCIATED() intrinsic function have
been moved from intrinsic processing to Semantics/check-calls.cpp,
whence they have access to semantics' toolchest.  Special checks for
other intrinsic functions might also migrate in the future in order
to keep them all in one place.

Differential Revision: https://reviews.llvm.org/D142768
2023-01-27 16:51:03 -08:00

1175 lines
50 KiB
C++

//===-- lib/Semantics/check-call.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "check-call.h"
#include "definable.h"
#include "pointer-assignment.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/check-expression.h"
#include "flang/Evaluate/shape.h"
#include "flang/Evaluate/tools.h"
#include "flang/Parser/characters.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/tools.h"
#include <map>
#include <string>
using namespace Fortran::parser::literals;
namespace characteristics = Fortran::evaluate::characteristics;
namespace Fortran::semantics {
static void CheckImplicitInterfaceArg(evaluate::ActualArgument &arg,
parser::ContextualMessages &messages, evaluate::FoldingContext &context) {
auto restorer{
messages.SetLocation(arg.sourceLocation().value_or(messages.at()))};
if (auto kw{arg.keyword()}) {
messages.Say(*kw,
"Keyword '%s=' may not appear in a reference to a procedure with an implicit interface"_err_en_US,
*kw);
}
if (auto type{arg.GetType()}) {
if (type->IsAssumedType()) {
messages.Say(
"Assumed type argument requires an explicit interface"_err_en_US);
} else if (type->IsPolymorphic()) {
messages.Say(
"Polymorphic argument requires an explicit interface"_err_en_US);
} else if (const DerivedTypeSpec * derived{GetDerivedTypeSpec(type)}) {
if (!derived->parameters().empty()) {
messages.Say(
"Parameterized derived type argument requires an explicit interface"_err_en_US);
}
}
}
if (const auto *expr{arg.UnwrapExpr()}) {
if (IsBOZLiteral(*expr)) {
messages.Say("BOZ argument requires an explicit interface"_err_en_US);
} else if (evaluate::IsNullPointer(*expr)) {
messages.Say(
"Null pointer argument requires an explicit interface"_err_en_US);
} else if (auto named{evaluate::ExtractNamedEntity(*expr)}) {
const Symbol &symbol{named->GetLastSymbol()};
if (symbol.Corank() > 0) {
messages.Say(
"Coarray argument requires an explicit interface"_err_en_US);
}
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (details->IsAssumedRank()) {
messages.Say(
"Assumed rank argument requires an explicit interface"_err_en_US);
}
}
if (symbol.attrs().test(Attr::ASYNCHRONOUS)) {
messages.Say(
"ASYNCHRONOUS argument requires an explicit interface"_err_en_US);
}
if (symbol.attrs().test(Attr::VOLATILE)) {
messages.Say(
"VOLATILE argument requires an explicit interface"_err_en_US);
}
} else if (auto argChars{characteristics::DummyArgument::FromActual(
"actual argument", *expr, context)}) {
const auto *argProcDesignator{
std::get_if<evaluate::ProcedureDesignator>(&expr->u)};
if (const auto *argProcSymbol{
argProcDesignator ? argProcDesignator->GetSymbol() : nullptr}) {
if (!argChars->IsTypelessIntrinsicDummy() && argProcDesignator &&
argProcDesignator->IsElemental()) { // C1533
evaluate::SayWithDeclaration(messages, *argProcSymbol,
"Non-intrinsic ELEMENTAL procedure '%s' may not be passed as an actual argument"_err_en_US,
argProcSymbol->name());
} else if (const auto *subp{argProcSymbol->GetUltimate()
.detailsIf<SubprogramDetails>()}) {
if (subp->stmtFunction()) {
evaluate::SayWithDeclaration(messages, *argProcSymbol,
"Statement function '%s' may not be passed as an actual argument"_err_en_US,
argProcSymbol->name());
}
}
}
}
}
}
// When a scalar CHARACTER actual argument is known to be short,
// we extend it on the right with spaces and a warning if it is an
// expression, and emit an error if it is a variable.
static void CheckCharacterActual(evaluate::Expr<evaluate::SomeType> &actual,
const characteristics::TypeAndShape &dummyType,
characteristics::TypeAndShape &actualType,
evaluate::FoldingContext &context, parser::ContextualMessages &messages) {
if (dummyType.type().category() == TypeCategory::Character &&
actualType.type().category() == TypeCategory::Character &&
dummyType.type().kind() == actualType.type().kind() &&
GetRank(actualType.shape()) == 0) {
if (dummyType.LEN() && actualType.LEN()) {
auto dummyLength{ToInt64(Fold(context, common::Clone(*dummyType.LEN())))};
auto actualLength{
ToInt64(Fold(context, common::Clone(*actualType.LEN())))};
if (dummyLength && actualLength && *actualLength < *dummyLength) {
if (evaluate::IsVariable(actual)) {
messages.Say(
"Actual argument variable length '%jd' is less than expected length '%jd'"_err_en_US,
*actualLength, *dummyLength);
} else {
messages.Say(
"Actual argument expression length '%jd' is less than expected length '%jd'"_warn_en_US,
*actualLength, *dummyLength);
auto converted{ConvertToType(dummyType.type(), std::move(actual))};
CHECK(converted);
actual = std::move(*converted);
actualType.set_LEN(SubscriptIntExpr{*dummyLength});
}
}
}
}
}
// Automatic conversion of different-kind INTEGER scalar actual
// argument expressions (not variables) to INTEGER scalar dummies.
// We return nonstandard INTEGER(8) results from intrinsic functions
// like SIZE() by default in order to facilitate the use of large
// arrays. Emit a warning when downconverting.
static void ConvertIntegerActual(evaluate::Expr<evaluate::SomeType> &actual,
const characteristics::TypeAndShape &dummyType,
characteristics::TypeAndShape &actualType,
parser::ContextualMessages &messages) {
if (dummyType.type().category() == TypeCategory::Integer &&
actualType.type().category() == TypeCategory::Integer &&
dummyType.type().kind() != actualType.type().kind() &&
GetRank(dummyType.shape()) == 0 && GetRank(actualType.shape()) == 0 &&
!evaluate::IsVariable(actual)) {
auto converted{
evaluate::ConvertToType(dummyType.type(), std::move(actual))};
CHECK(converted);
actual = std::move(*converted);
if (dummyType.type().kind() < actualType.type().kind()) {
messages.Say(
"Actual argument scalar expression of type INTEGER(%d) was converted to smaller dummy argument type INTEGER(%d)"_port_en_US,
actualType.type().kind(), dummyType.type().kind());
}
actualType = dummyType;
}
}
static bool DefersSameTypeParameters(
const DerivedTypeSpec &actual, const DerivedTypeSpec &dummy) {
for (const auto &pair : actual.parameters()) {
const ParamValue &actualValue{pair.second};
const ParamValue *dummyValue{dummy.FindParameter(pair.first)};
if (!dummyValue || (actualValue.isDeferred() != dummyValue->isDeferred())) {
return false;
}
}
return true;
}
static void CheckExplicitDataArg(const characteristics::DummyDataObject &dummy,
const std::string &dummyName, evaluate::Expr<evaluate::SomeType> &actual,
characteristics::TypeAndShape &actualType, bool isElemental,
evaluate::FoldingContext &context, const Scope *scope,
const evaluate::SpecificIntrinsic *intrinsic,
bool allowActualArgumentConversions) {
// Basic type & rank checking
parser::ContextualMessages &messages{context.messages()};
CheckCharacterActual(actual, dummy.type, actualType, context, messages);
if (allowActualArgumentConversions) {
ConvertIntegerActual(actual, dummy.type, actualType, messages);
}
bool typesCompatible{dummy.type.type().IsTkCompatibleWith(actualType.type())};
if (!typesCompatible && dummy.type.Rank() == 0 &&
allowActualArgumentConversions) {
// Extension: pass Hollerith literal to scalar as if it had been BOZ
if (auto converted{
evaluate::HollerithToBOZ(context, actual, dummy.type.type())}) {
messages.Say(
"passing Hollerith or character literal as if it were BOZ"_port_en_US);
actual = *converted;
actualType.type() = dummy.type.type();
typesCompatible = true;
}
}
if (typesCompatible) {
if (isElemental) {
} else if (dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::AssumedRank)) {
} else if (dummy.type.Rank() > 0 &&
!dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::AssumedShape) &&
!dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::DeferredShape) &&
(actualType.Rank() > 0 || IsArrayElement(actual))) {
// Sequence association (15.5.2.11) applies -- rank need not match
// if the actual argument is an array or array element designator,
// and the dummy is an array, but not assumed-shape or an INTENT(IN)
// pointer that's standing in for an assumed-shape dummy.
} else {
// Let CheckConformance accept actual scalars; storage association
// cases are checked here below.
CheckConformance(messages, dummy.type.shape(), actualType.shape(),
evaluate::CheckConformanceFlags::RightScalarExpandable,
"dummy argument", "actual argument");
}
} else {
const auto &len{actualType.LEN()};
messages.Say(
"Actual argument type '%s' is not compatible with dummy argument type '%s'"_err_en_US,
actualType.type().AsFortran(len ? len->AsFortran() : ""),
dummy.type.type().AsFortran());
}
bool actualIsPolymorphic{actualType.type().IsPolymorphic()};
bool dummyIsPolymorphic{dummy.type.type().IsPolymorphic()};
bool actualIsCoindexed{ExtractCoarrayRef(actual).has_value()};
bool actualIsAssumedSize{actualType.attrs().test(
characteristics::TypeAndShape::Attr::AssumedSize)};
bool dummyIsAssumedSize{dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::AssumedSize)};
bool dummyIsAsynchronous{
dummy.attrs.test(characteristics::DummyDataObject::Attr::Asynchronous)};
bool dummyIsVolatile{
dummy.attrs.test(characteristics::DummyDataObject::Attr::Volatile)};
bool dummyIsValue{
dummy.attrs.test(characteristics::DummyDataObject::Attr::Value)};
if (actualIsPolymorphic && dummyIsPolymorphic &&
actualIsCoindexed) { // 15.5.2.4(2)
messages.Say(
"Coindexed polymorphic object may not be associated with a polymorphic %s"_err_en_US,
dummyName);
}
if (actualIsPolymorphic && !dummyIsPolymorphic &&
actualIsAssumedSize) { // 15.5.2.4(2)
messages.Say(
"Assumed-size polymorphic array may not be associated with a monomorphic %s"_err_en_US,
dummyName);
}
// Derived type actual argument checks
const Symbol *actualFirstSymbol{evaluate::GetFirstSymbol(actual)};
bool actualIsAsynchronous{
actualFirstSymbol && actualFirstSymbol->attrs().test(Attr::ASYNCHRONOUS)};
bool actualIsVolatile{
actualFirstSymbol && actualFirstSymbol->attrs().test(Attr::VOLATILE)};
if (const auto *derived{evaluate::GetDerivedTypeSpec(actualType.type())}) {
if (dummy.type.type().IsAssumedType()) {
if (!derived->parameters().empty()) { // 15.5.2.4(2)
messages.Say(
"Actual argument associated with TYPE(*) %s may not have a parameterized derived type"_err_en_US,
dummyName);
}
if (const Symbol *
tbp{FindImmediateComponent(*derived, [](const Symbol &symbol) {
return symbol.has<ProcBindingDetails>();
})}) { // 15.5.2.4(2)
evaluate::SayWithDeclaration(messages, *tbp,
"Actual argument associated with TYPE(*) %s may not have type-bound procedure '%s'"_err_en_US,
dummyName, tbp->name());
}
const auto &finals{
derived->typeSymbol().get<DerivedTypeDetails>().finals()};
if (!finals.empty()) { // 15.5.2.4(2)
if (auto *msg{messages.Say(
"Actual argument associated with TYPE(*) %s may not have derived type '%s' with FINAL subroutine '%s'"_err_en_US,
dummyName, derived->typeSymbol().name(),
finals.begin()->first)}) {
msg->Attach(finals.begin()->first,
"FINAL subroutine '%s' in derived type '%s'"_en_US,
finals.begin()->first, derived->typeSymbol().name());
}
}
}
if (actualIsCoindexed) {
if (dummy.intent != common::Intent::In && !dummyIsValue) {
if (auto bad{
FindAllocatableUltimateComponent(*derived)}) { // 15.5.2.4(6)
evaluate::SayWithDeclaration(messages, *bad,
"Coindexed actual argument with ALLOCATABLE ultimate component '%s' must be associated with a %s with VALUE or INTENT(IN) attributes"_err_en_US,
bad.BuildResultDesignatorName(), dummyName);
}
}
if (auto coarrayRef{evaluate::ExtractCoarrayRef(actual)}) { // C1537
const Symbol &coarray{coarrayRef->GetLastSymbol()};
if (const DeclTypeSpec * type{coarray.GetType()}) {
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
if (auto bad{semantics::FindPointerUltimateComponent(*derived)}) {
evaluate::SayWithDeclaration(messages, coarray,
"Coindexed object '%s' with POINTER ultimate component '%s' cannot be associated with %s"_err_en_US,
coarray.name(), bad.BuildResultDesignatorName(), dummyName);
}
}
}
}
}
if (actualIsVolatile != dummyIsVolatile) { // 15.5.2.4(22)
if (auto bad{semantics::FindCoarrayUltimateComponent(*derived)}) {
evaluate::SayWithDeclaration(messages, *bad,
"VOLATILE attribute must match for %s when actual argument has a coarray ultimate component '%s'"_err_en_US,
dummyName, bad.BuildResultDesignatorName());
}
}
}
// Rank and shape checks
const auto *actualLastSymbol{evaluate::GetLastSymbol(actual)};
if (actualLastSymbol) {
actualLastSymbol = &ResolveAssociations(*actualLastSymbol);
}
const ObjectEntityDetails *actualLastObject{actualLastSymbol
? actualLastSymbol->detailsIf<ObjectEntityDetails>()
: nullptr};
int actualRank{evaluate::GetRank(actualType.shape())};
bool actualIsPointer{evaluate::IsObjectPointer(actual, context)};
bool dummyIsAssumedRank{dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::AssumedRank)};
if (dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::AssumedShape)) {
// 15.5.2.4(16)
if (actualRank == 0) {
messages.Say(
"Scalar actual argument may not be associated with assumed-shape %s"_err_en_US,
dummyName);
}
if (actualIsAssumedSize && actualLastSymbol) {
evaluate::SayWithDeclaration(messages, *actualLastSymbol,
"Assumed-size array may not be associated with assumed-shape %s"_err_en_US,
dummyName);
}
} else if (actualRank == 0 && dummy.type.Rank() > 0) {
// Actual is scalar, dummy is an array. 15.5.2.4(14), 15.5.2.11
if (actualIsCoindexed) {
messages.Say(
"Coindexed scalar actual argument must be associated with a scalar %s"_err_en_US,
dummyName);
}
bool actualIsArrayElement{IsArrayElement(actual)};
bool actualIsCKindCharacter{
actualType.type().category() == TypeCategory::Character &&
actualType.type().kind() == 1};
if (!actualIsCKindCharacter) {
if (!actualIsArrayElement &&
!(dummy.type.type().IsAssumedType() && dummyIsAssumedSize) &&
!dummyIsAssumedRank) {
messages.Say(
"Whole scalar actual argument may not be associated with a %s array"_err_en_US,
dummyName);
}
if (actualIsPolymorphic) {
messages.Say(
"Polymorphic scalar may not be associated with a %s array"_err_en_US,
dummyName);
}
if (actualIsArrayElement && actualLastSymbol &&
IsPointer(*actualLastSymbol)) {
messages.Say(
"Element of pointer array may not be associated with a %s array"_err_en_US,
dummyName);
}
if (actualLastSymbol && IsAssumedShape(*actualLastSymbol)) {
messages.Say(
"Element of assumed-shape array may not be associated with a %s array"_err_en_US,
dummyName);
}
}
}
if (actualLastObject && actualLastObject->IsCoarray() &&
IsAllocatable(*actualLastSymbol) && dummy.intent == common::Intent::Out &&
!(intrinsic &&
evaluate::AcceptsIntentOutAllocatableCoarray(
intrinsic->name))) { // C846
messages.Say(
"ALLOCATABLE coarray '%s' may not be associated with INTENT(OUT) %s"_err_en_US,
actualLastSymbol->name(), dummyName);
}
// Definability
const char *reason{nullptr};
if (dummy.intent == common::Intent::Out) {
reason = "INTENT(OUT)";
} else if (dummy.intent == common::Intent::InOut) {
reason = "INTENT(IN OUT)";
}
bool dummyIsPointer{
dummy.attrs.test(characteristics::DummyDataObject::Attr::Pointer)};
if (reason && scope) {
// Problems with polymorphism are caught in the callee's definition.
DefinabilityFlags flags{DefinabilityFlag::PolymorphicOkInPure};
if (isElemental || dummyIsValue) { // 15.5.2.4(21)
flags.set(DefinabilityFlag::VectorSubscriptIsOk);
}
if (actualIsPointer && dummyIsPointer) { // 19.6.8
flags.set(DefinabilityFlag::PointerDefinition);
}
if (auto whyNot{WhyNotDefinable(messages.at(), *scope, flags, actual)}) {
if (auto *msg{messages.Say(
"Actual argument associated with %s %s is not definable"_err_en_US,
reason, dummyName)}) {
msg->Attach(std::move(*whyNot));
}
}
}
// technically legal but worth emitting a warning
// llvm-project issue #58973: constant actual argument passed in where dummy
// argument is marked volatile
if (dummyIsVolatile && !IsVariable(actual)) {
messages.Say(
"actual argument associated with VOLATILE %s is not a variable"_warn_en_US,
dummyName);
}
// Cases when temporaries might be needed but must not be permitted.
bool actualIsContiguous{IsSimplyContiguous(actual, context)};
bool dummyIsAssumedShape{dummy.type.attrs().test(
characteristics::TypeAndShape::Attr::AssumedShape)};
bool dummyIsContiguous{
dummy.attrs.test(characteristics::DummyDataObject::Attr::Contiguous)};
if ((actualIsAsynchronous || actualIsVolatile) &&
(dummyIsAsynchronous || dummyIsVolatile) && !dummyIsValue) {
if (actualIsCoindexed) { // C1538
messages.Say(
"Coindexed ASYNCHRONOUS or VOLATILE actual argument may not be associated with %s with ASYNCHRONOUS or VOLATILE attributes unless VALUE"_err_en_US,
dummyName);
}
if (actualRank > 0 && !actualIsContiguous) {
if (dummyIsContiguous ||
!(dummyIsAssumedShape || dummyIsAssumedRank ||
(actualIsPointer && dummyIsPointer))) { // C1539 & C1540
messages.Say(
"ASYNCHRONOUS or VOLATILE actual argument that is not simply contiguous may not be associated with a contiguous %s"_err_en_US,
dummyName);
}
}
}
// 15.5.2.6 -- dummy is ALLOCATABLE
bool dummyIsAllocatable{
dummy.attrs.test(characteristics::DummyDataObject::Attr::Allocatable)};
bool actualIsAllocatable{evaluate::IsAllocatableDesignator(actual)};
if (dummyIsAllocatable) {
if (!actualIsAllocatable) {
messages.Say(
"ALLOCATABLE %s must be associated with an ALLOCATABLE actual argument"_err_en_US,
dummyName);
}
if (actualIsAllocatable && actualIsCoindexed &&
dummy.intent != common::Intent::In) {
messages.Say(
"ALLOCATABLE %s must have INTENT(IN) to be associated with a coindexed actual argument"_err_en_US,
dummyName);
}
if (!actualIsCoindexed && actualLastSymbol &&
actualLastSymbol->Corank() != dummy.type.corank()) {
messages.Say(
"ALLOCATABLE %s has corank %d but actual argument has corank %d"_err_en_US,
dummyName, dummy.type.corank(), actualLastSymbol->Corank());
}
}
// 15.5.2.7 -- dummy is POINTER
if (dummyIsPointer) {
if (dummyIsContiguous && !actualIsContiguous) {
messages.Say(
"Actual argument associated with CONTIGUOUS POINTER %s must be simply contiguous"_err_en_US,
dummyName);
}
if (!actualIsPointer) {
if (dummy.intent == common::Intent::In) {
if (scope) {
semantics::CheckPointerAssignment(
context, messages.at(), dummyName, dummy, actual, *scope);
}
} else {
messages.Say(
"Actual argument associated with POINTER %s must also be POINTER unless INTENT(IN)"_err_en_US,
dummyName);
}
}
}
// 15.5.2.5 -- actual & dummy are both POINTER or both ALLOCATABLE
if ((actualIsPointer && dummyIsPointer) ||
(actualIsAllocatable && dummyIsAllocatable)) {
bool actualIsUnlimited{actualType.type().IsUnlimitedPolymorphic()};
bool dummyIsUnlimited{dummy.type.type().IsUnlimitedPolymorphic()};
if (actualIsUnlimited != dummyIsUnlimited) {
if (typesCompatible) {
messages.Say(
"If a POINTER or ALLOCATABLE dummy or actual argument is unlimited polymorphic, both must be so"_err_en_US);
}
} else if (dummyIsPolymorphic != actualIsPolymorphic) {
if (dummy.intent == common::Intent::In && typesCompatible) {
// extension: allow with warning, rule is only relevant for definables
messages.Say(
"If a POINTER or ALLOCATABLE dummy or actual argument is polymorphic, both should be so"_port_en_US);
} else {
messages.Say(
"If a POINTER or ALLOCATABLE dummy or actual argument is polymorphic, both must be so"_err_en_US);
}
} else if (!actualIsUnlimited && typesCompatible) {
if (!actualType.type().IsTkCompatibleWith(dummy.type.type())) {
if (dummy.intent == common::Intent::In) {
// extension: allow with warning, rule is only relevant for definables
messages.Say(
"POINTER or ALLOCATABLE dummy and actual arguments should have the same declared type and kind"_port_en_US);
} else {
messages.Say(
"POINTER or ALLOCATABLE dummy and actual arguments must have the same declared type and kind"_err_en_US);
}
}
// 15.5.2.5(4)
if (const auto *derived{
evaluate::GetDerivedTypeSpec(actualType.type())}) {
if (!DefersSameTypeParameters(
*derived, *evaluate::GetDerivedTypeSpec(dummy.type.type()))) {
messages.Say(
"Dummy and actual arguments must defer the same type parameters when POINTER or ALLOCATABLE"_err_en_US);
}
} else if (dummy.type.type().HasDeferredTypeParameter() !=
actualType.type().HasDeferredTypeParameter()) {
messages.Say(
"Dummy and actual arguments must defer the same type parameters when POINTER or ALLOCATABLE"_err_en_US);
}
}
}
// 15.5.2.8 -- coarray dummy arguments
if (dummy.type.corank() > 0) {
if (actualType.corank() == 0) {
messages.Say(
"Actual argument associated with coarray %s must be a coarray"_err_en_US,
dummyName);
}
if (dummyIsVolatile) {
if (!actualIsVolatile) {
messages.Say(
"non-VOLATILE coarray may not be associated with VOLATILE coarray %s"_err_en_US,
dummyName);
}
} else {
if (actualIsVolatile) {
messages.Say(
"VOLATILE coarray may not be associated with non-VOLATILE coarray %s"_err_en_US,
dummyName);
}
}
if (actualRank == dummy.type.Rank() && !actualIsContiguous) {
if (dummyIsContiguous) {
messages.Say(
"Actual argument associated with a CONTIGUOUS coarray %s must be simply contiguous"_err_en_US,
dummyName);
} else if (!dummyIsAssumedShape && !dummyIsAssumedRank) {
messages.Say(
"Actual argument associated with coarray %s (not assumed shape or rank) must be simply contiguous"_err_en_US,
dummyName);
}
}
}
// NULL(MOLD=) checking for non-intrinsic procedures
bool dummyIsOptional{
dummy.attrs.test(characteristics::DummyDataObject::Attr::Optional)};
bool actualIsNull{evaluate::IsNullPointer(actual)};
if (!intrinsic && !dummyIsPointer && !dummyIsOptional && actualIsNull) {
messages.Say(
"Actual argument associated with %s may not be null pointer %s"_err_en_US,
dummyName, actual.AsFortran());
}
}
static void CheckProcedureArg(evaluate::ActualArgument &arg,
const characteristics::Procedure &proc,
const characteristics::DummyProcedure &dummy, const std::string &dummyName,
evaluate::FoldingContext &context) {
parser::ContextualMessages &messages{context.messages()};
auto restorer{
messages.SetLocation(arg.sourceLocation().value_or(messages.at()))};
const characteristics::Procedure &interface { dummy.procedure.value() };
if (const auto *expr{arg.UnwrapExpr()}) {
bool dummyIsPointer{
dummy.attrs.test(characteristics::DummyProcedure::Attr::Pointer)};
const auto *argProcDesignator{
std::get_if<evaluate::ProcedureDesignator>(&expr->u)};
const auto *argProcSymbol{
argProcDesignator ? argProcDesignator->GetSymbol() : nullptr};
if (argProcSymbol) {
if (const auto *subp{
argProcSymbol->GetUltimate().detailsIf<SubprogramDetails>()}) {
if (subp->stmtFunction()) {
evaluate::SayWithDeclaration(messages, *argProcSymbol,
"Statement function '%s' may not be passed as an actual argument"_err_en_US,
argProcSymbol->name());
return;
}
} else if (argProcSymbol->has<ProcBindingDetails>()) {
evaluate::SayWithDeclaration(messages, *argProcSymbol,
"Procedure binding '%s' passed as an actual argument"_port_en_US,
argProcSymbol->name());
}
}
if (auto argChars{characteristics::DummyArgument::FromActual(
"actual argument", *expr, context)}) {
if (!argChars->IsTypelessIntrinsicDummy()) {
if (auto *argProc{
std::get_if<characteristics::DummyProcedure>(&argChars->u)}) {
characteristics::Procedure &argInterface{argProc->procedure.value()};
argInterface.attrs.reset(
characteristics::Procedure::Attr::NullPointer);
if (!argProcSymbol || argProcSymbol->attrs().test(Attr::INTRINSIC)) {
// It's ok to pass ELEMENTAL unrestricted intrinsic functions.
argInterface.attrs.reset(
characteristics::Procedure::Attr::Elemental);
} else if (argInterface.attrs.test(
characteristics::Procedure::Attr::Elemental)) {
if (argProcSymbol) { // C1533
evaluate::SayWithDeclaration(messages, *argProcSymbol,
"Non-intrinsic ELEMENTAL procedure '%s' may not be passed as an actual argument"_err_en_US,
argProcSymbol->name());
return; // avoid piling on with checks below
} else {
argInterface.attrs.reset(
characteristics::Procedure::Attr::NullPointer);
}
}
if (interface.HasExplicitInterface()) {
std::string whyNot;
if (!interface.IsCompatibleWith(argInterface, &whyNot)) {
// 15.5.2.9(1): Explicit interfaces must match
if (argInterface.HasExplicitInterface()) {
messages.Say(
"Actual procedure argument has interface incompatible with %s: %s"_err_en_US,
dummyName, whyNot);
return;
} else if (proc.IsPure()) {
messages.Say(
"Actual procedure argument for %s of a PURE procedure must have an explicit interface"_err_en_US,
dummyName);
} else {
messages.Say(
"Actual procedure argument has an implicit interface "
"which is not known to be compatible with %s which has an "
"explicit interface"_warn_en_US,
dummyName);
}
}
} else { // 15.5.2.9(2,3)
if (interface.IsSubroutine() && argInterface.IsFunction()) {
messages.Say(
"Actual argument associated with procedure %s is a function but must be a subroutine"_err_en_US,
dummyName);
} else if (interface.IsFunction()) {
if (argInterface.IsFunction()) {
if (!interface.functionResult->IsCompatibleWith(
*argInterface.functionResult)) {
messages.Say(
"Actual argument function associated with procedure %s has incompatible result type"_err_en_US,
dummyName);
}
} else if (argInterface.IsSubroutine()) {
messages.Say(
"Actual argument associated with procedure %s is a subroutine but must be a function"_err_en_US,
dummyName);
}
}
}
} else {
messages.Say(
"Actual argument associated with procedure %s is not a procedure"_err_en_US,
dummyName);
}
} else if (IsNullPointer(*expr)) {
if (!dummyIsPointer &&
!dummy.attrs.test(
characteristics::DummyProcedure::Attr::Optional)) {
messages.Say(
"Actual argument associated with procedure %s is a null pointer"_err_en_US,
dummyName);
}
} else {
messages.Say(
"Actual argument associated with procedure %s is typeless"_err_en_US,
dummyName);
}
}
if (dummyIsPointer && dummy.intent != common::Intent::In) {
const Symbol *last{GetLastSymbol(*expr)};
if (last && IsProcedurePointer(*last)) {
if (dummy.intent != common::Intent::Default &&
IsIntentIn(last->GetUltimate())) { // 19.6.8
messages.Say(
"Actual argument associated with procedure pointer %s may not be INTENT(IN)"_err_en_US,
dummyName);
}
} else if (!(dummy.intent == common::Intent::Default &&
IsNullProcedurePointer(*expr))) {
// 15.5.2.9(5) -- dummy procedure POINTER
// Interface compatibility has already been checked above
messages.Say(
"Actual argument associated with procedure pointer %s must be a POINTER unless INTENT(IN)"_err_en_US,
dummyName);
}
}
} else {
messages.Say(
"Assumed-type argument may not be forwarded as procedure %s"_err_en_US,
dummyName);
}
}
// Allow BOZ literal actual arguments when they can be converted to a known
// dummy argument type
static void ConvertBOZLiteralArg(
evaluate::ActualArgument &arg, const evaluate::DynamicType &type) {
if (auto *expr{arg.UnwrapExpr()}) {
if (IsBOZLiteral(*expr)) {
if (auto converted{evaluate::ConvertToType(type, SomeExpr{*expr})}) {
arg = std::move(*converted);
}
}
}
}
static void CheckExplicitInterfaceArg(evaluate::ActualArgument &arg,
const characteristics::DummyArgument &dummy,
const characteristics::Procedure &proc, evaluate::FoldingContext &context,
const Scope *scope, const evaluate::SpecificIntrinsic *intrinsic,
bool allowActualArgumentConversions) {
auto &messages{context.messages()};
std::string dummyName{"dummy argument"};
if (!dummy.name.empty()) {
dummyName += " '"s + parser::ToLowerCaseLetters(dummy.name) + "='";
}
auto restorer{
messages.SetLocation(arg.sourceLocation().value_or(messages.at()))};
auto checkActualArgForLabel = [&](evaluate::ActualArgument &arg) {
if (arg.isAlternateReturn()) {
messages.Say(
"Alternate return label '%d' cannot be associated with %s"_err_en_US,
arg.GetLabel(), dummyName);
return true;
} else {
return false;
}
};
common::visit(
common::visitors{
[&](const characteristics::DummyDataObject &object) {
if (!checkActualArgForLabel(arg)) {
ConvertBOZLiteralArg(arg, object.type.type());
if (auto *expr{arg.UnwrapExpr()}) {
if (auto type{characteristics::TypeAndShape::Characterize(
*expr, context)}) {
arg.set_dummyIntent(object.intent);
bool isElemental{
object.type.Rank() == 0 && proc.IsElemental()};
CheckExplicitDataArg(object, dummyName, *expr, *type,
isElemental, context, scope, intrinsic,
allowActualArgumentConversions);
} else if (object.type.type().IsTypelessIntrinsicArgument() &&
IsBOZLiteral(*expr)) {
// ok
} else if (object.type.type().IsTypelessIntrinsicArgument() &&
evaluate::IsNullObjectPointer(*expr)) {
// ok, ASSOCIATED(NULL())
} else if ((object.attrs.test(characteristics::DummyDataObject::
Attr::Pointer) ||
object.attrs.test(characteristics::
DummyDataObject::Attr::Optional)) &&
evaluate::IsNullObjectPointer(*expr)) {
// ok, FOO(NULL())
} else if (object.attrs.test(characteristics::DummyDataObject::
Attr::Allocatable) &&
evaluate::IsNullPointer(*expr)) {
// Unsupported extension that more or less naturally falls
// out of other Fortran implementations that pass separate
// base address and descriptor address physical arguments
messages.Say(
"Null actual argument '%s' may not be associated with allocatable %s"_err_en_US,
expr->AsFortran(), dummyName);
} else {
messages.Say(
"Actual argument '%s' associated with %s is not a variable or typed expression"_err_en_US,
expr->AsFortran(), dummyName);
}
} else {
const Symbol &assumed{DEREF(arg.GetAssumedTypeDummy())};
if (!object.type.type().IsAssumedType()) {
messages.Say(
"Assumed-type '%s' may be associated only with an assumed-type %s"_err_en_US,
assumed.name(), dummyName);
} else if (object.type.attrs().test(evaluate::characteristics::
TypeAndShape::Attr::AssumedRank) &&
!IsAssumedShape(assumed) &&
!evaluate::IsAssumedRank(assumed)) {
messages.Say( // C711
"Assumed-type '%s' must be either assumed shape or assumed rank to be associated with assumed rank %s"_err_en_US,
assumed.name(), dummyName);
}
}
}
},
[&](const characteristics::DummyProcedure &dummy) {
if (!checkActualArgForLabel(arg)) {
CheckProcedureArg(arg, proc, dummy, dummyName, context);
}
},
[&](const characteristics::AlternateReturn &) {
// All semantic checking is done elsewhere
},
},
dummy.u);
}
static void RearrangeArguments(const characteristics::Procedure &proc,
evaluate::ActualArguments &actuals, parser::ContextualMessages &messages) {
CHECK(proc.HasExplicitInterface());
if (actuals.size() < proc.dummyArguments.size()) {
actuals.resize(proc.dummyArguments.size());
} else if (actuals.size() > proc.dummyArguments.size()) {
messages.Say(
"Too many actual arguments (%zd) passed to procedure that expects only %zd"_err_en_US,
actuals.size(), proc.dummyArguments.size());
}
std::map<std::string, evaluate::ActualArgument> kwArgs;
for (auto &x : actuals) {
if (x && x->keyword()) {
auto emplaced{
kwArgs.try_emplace(x->keyword()->ToString(), std::move(*x))};
if (!emplaced.second) {
messages.Say(*x->keyword(),
"Argument keyword '%s=' appears on more than one effective argument in this procedure reference"_err_en_US,
*x->keyword());
}
x.reset();
}
}
if (!kwArgs.empty()) {
int index{0};
for (const auto &dummy : proc.dummyArguments) {
if (!dummy.name.empty()) {
auto iter{kwArgs.find(dummy.name)};
if (iter != kwArgs.end()) {
evaluate::ActualArgument &x{iter->second};
if (actuals[index]) {
messages.Say(*x.keyword(),
"Keyword argument '%s=' has already been specified positionally (#%d) in this procedure reference"_err_en_US,
*x.keyword(), index + 1);
} else {
actuals[index] = std::move(x);
}
kwArgs.erase(iter);
}
}
++index;
}
for (auto &bad : kwArgs) {
evaluate::ActualArgument &x{bad.second};
messages.Say(*x.keyword(),
"Argument keyword '%s=' is not recognized for this procedure reference"_err_en_US,
*x.keyword());
}
}
}
// 15.8.1(3) -- In a reference to an elemental procedure, if any argument is an
// array, each actual argument that corresponds to an INTENT(OUT) or
// INTENT(INOUT) dummy argument shall be an array. The actual argument to an
// ELEMENTAL procedure must conform.
static bool CheckElementalConformance(parser::ContextualMessages &messages,
const characteristics::Procedure &proc, evaluate::ActualArguments &actuals,
evaluate::FoldingContext &context) {
std::optional<evaluate::Shape> shape;
std::string shapeName;
int index{0};
bool hasArrayArg{false};
for (const auto &arg : actuals) {
if (arg && !arg->isAlternateReturn() && arg->Rank() > 0) {
hasArrayArg = true;
break;
}
}
for (const auto &arg : actuals) {
const auto &dummy{proc.dummyArguments.at(index++)};
if (arg) {
if (const auto *expr{arg->UnwrapExpr()}) {
if (auto argShape{evaluate::GetShape(context, *expr)}) {
if (GetRank(*argShape) > 0) {
std::string argName{"actual argument ("s + expr->AsFortran() +
") corresponding to dummy argument #" + std::to_string(index) +
" ('" + dummy.name + "')"};
if (shape) {
auto tristate{evaluate::CheckConformance(messages, *shape,
*argShape, evaluate::CheckConformanceFlags::None,
shapeName.c_str(), argName.c_str())};
if (tristate && !*tristate) {
return false;
}
} else {
shape = std::move(argShape);
shapeName = argName;
}
} else if ((dummy.GetIntent() == common::Intent::Out ||
dummy.GetIntent() == common::Intent::InOut) &&
hasArrayArg) {
messages.Say(
"In an elemental procedure reference with at least one array argument, actual argument %s that corresponds to an INTENT(OUT) or INTENT(INOUT) dummy argument must be an array"_err_en_US,
expr->AsFortran());
}
}
}
}
}
return true;
}
// ASSOCIATED (16.9.16)
static void CheckAssociated(evaluate::ActualArguments &arguments,
evaluate::FoldingContext &context, const Scope *scope) {
bool ok{true};
if (arguments.size() < 2) {
return;
}
if (const auto &pointerArg{arguments[0]}) {
if (const auto *pointerExpr{pointerArg->UnwrapExpr()}) {
const Symbol *pointerSymbol{GetLastSymbol(*pointerExpr)};
if (pointerSymbol && !IsPointer(*pointerSymbol)) {
evaluate::AttachDeclaration(
context.messages().Say(pointerArg->sourceLocation(),
"POINTER= argument of ASSOCIATED() must be a POINTER"_err_en_US),
*pointerSymbol);
return;
}
if (const auto &targetArg{arguments[1]}) {
// The standard requires that the POINTER= argument be a valid LHS for
// a pointer assignment when the TARGET= argument is present. This,
// perhaps unintentionally, excludes function results, including NULL(),
// from being used there, as well as INTENT(IN) dummy pointers.
// Allow this usage as a benign extension with a portability warning.
if (!evaluate::ExtractDataRef(*pointerExpr) &&
!evaluate::IsProcedurePointer(*pointerExpr)) {
context.messages().Say(pointerArg->sourceLocation(),
"POINTER= argument of ASSOCIATED() should be a pointer"_port_en_US);
} else if (scope) {
if (auto whyNot{WhyNotDefinable(pointerArg->sourceLocation().value_or(
context.messages().at()),
*scope,
DefinabilityFlags{DefinabilityFlag::PointerDefinition},
*pointerExpr)}) {
if (auto *msg{context.messages().Say(pointerArg->sourceLocation(),
"POINTER= argument of ASSOCIATED() would not be a valid left-hand side of a pointer assignment statement"_port_en_US)}) {
msg->Attach(std::move(*whyNot));
}
}
}
const auto *targetExpr{targetArg->UnwrapExpr()};
if (targetExpr && pointerSymbol) {
std::optional<characteristics::Procedure> pointerProc, targetProc;
const auto *targetProcDesignator{
evaluate::UnwrapExpr<evaluate::ProcedureDesignator>(*targetExpr)};
const Symbol *targetSymbol{GetLastSymbol(*targetExpr)};
bool isCall{false};
std::string targetName;
if (const auto *targetProcRef{// target is a function call
std::get_if<evaluate::ProcedureRef>(&targetExpr->u)}) {
if (auto targetRefedChars{characteristics::Procedure::Characterize(
*targetProcRef, context)}) {
targetProc = *targetRefedChars;
targetName = targetProcRef->proc().GetName() + "()";
isCall = true;
}
} else if (targetProcDesignator) {
targetProc = characteristics::Procedure::Characterize(
*targetProcDesignator, context);
targetName = targetProcDesignator->GetName();
} else if (targetSymbol) {
if (IsProcedure(*targetSymbol)) {
// proc that's not a call
targetProc = characteristics::Procedure::Characterize(
*targetSymbol, context);
}
targetName = targetSymbol->name().ToString();
}
if (pointerSymbol && IsProcedure(*pointerSymbol)) {
pointerProc = characteristics::Procedure::Characterize(
*pointerSymbol, context);
}
if (pointerProc) {
if (targetProc) {
// procedure pointer and procedure target
std::string whyNot;
const evaluate::SpecificIntrinsic *specificIntrinsic{nullptr};
if (targetProcDesignator) {
specificIntrinsic =
targetProcDesignator->GetSpecificIntrinsic();
}
if (std::optional<parser::MessageFixedText> msg{
CheckProcCompatibility(isCall, pointerProc, &*targetProc,
specificIntrinsic, whyNot)}) {
msg->set_severity(parser::Severity::Warning);
evaluate::AttachDeclaration(
context.messages().Say(std::move(*msg),
"pointer '" + pointerSymbol->name().ToString() + "'",
targetName, whyNot),
*pointerSymbol);
}
} else if (!IsNullProcedurePointer(*targetExpr)) {
// procedure pointer and object target
evaluate::AttachDeclaration(
context.messages().Say(
"POINTER= argument '%s' is a procedure pointer but the TARGET= argument '%s' is not a procedure or procedure pointer"_err_en_US,
pointerSymbol->name(), targetName),
*pointerSymbol);
}
} else if (targetProc) {
// object pointer and procedure target
evaluate::AttachDeclaration(
context.messages().Say(
"POINTER= argument '%s' is an object pointer but the TARGET= argument '%s' is a procedure designator"_err_en_US,
pointerSymbol->name(), targetName),
*pointerSymbol);
} else if (targetSymbol) {
// object pointer and target
SymbolVector symbols{GetSymbolVector(*targetExpr)};
CHECK(!symbols.empty());
if (!evaluate::GetLastTarget(symbols)) {
parser::Message *msg{context.messages().Say(
targetArg->sourceLocation(),
"TARGET= argument '%s' must have either the POINTER or the TARGET attribute"_err_en_US,
targetExpr->AsFortran())};
for (SymbolRef ref : symbols) {
msg = evaluate::AttachDeclaration(msg, *ref);
}
} else if (HasVectorSubscript(*targetExpr) ||
ExtractCoarrayRef(*targetExpr)) {
context.messages().Say(targetArg->sourceLocation(),
"TARGET= argument '%s' may not have a vector subscript or coindexing"_err_en_US,
targetExpr->AsFortran());
}
if (const auto pointerType{pointerArg->GetType()}) {
if (const auto targetType{targetArg->GetType()}) {
ok = pointerType->IsTkCompatibleWith(*targetType);
}
}
}
}
}
}
} else {
// No arguments to ASSOCIATED()
ok = false;
}
if (!ok) {
context.messages().Say(
"Arguments of ASSOCIATED() must be a POINTER and an optional valid target"_err_en_US);
}
}
static void CheckSpecificIntrinsic(evaluate::ActualArguments &arguments,
evaluate::FoldingContext &context, const Scope *scope,
const evaluate::SpecificIntrinsic &intrinsic) {
if (intrinsic.name == "associated") {
CheckAssociated(arguments, context, scope);
}
}
static parser::Messages CheckExplicitInterface(
const characteristics::Procedure &proc, evaluate::ActualArguments &actuals,
const evaluate::FoldingContext &context, const Scope *scope,
const evaluate::SpecificIntrinsic *intrinsic,
bool allowActualArgumentConversions) {
parser::Messages buffer;
parser::ContextualMessages messages{context.messages().at(), &buffer};
RearrangeArguments(proc, actuals, messages);
evaluate::FoldingContext localContext{context, messages};
if (!buffer.empty()) {
return buffer;
}
int index{0};
for (auto &actual : actuals) {
const auto &dummy{proc.dummyArguments.at(index++)};
if (actual) {
CheckExplicitInterfaceArg(*actual, dummy, proc, localContext, scope,
intrinsic, allowActualArgumentConversions);
} else if (!dummy.IsOptional()) {
if (dummy.name.empty()) {
messages.Say(
"Dummy argument #%d is not OPTIONAL and is not associated with "
"an actual argument in this procedure reference"_err_en_US,
index);
} else {
messages.Say("Dummy argument '%s=' (#%d) is not OPTIONAL and is not "
"associated with an actual argument in this procedure "
"reference"_err_en_US,
dummy.name, index);
}
}
}
if (proc.IsElemental() && !buffer.AnyFatalError()) {
CheckElementalConformance(messages, proc, actuals, localContext);
}
if (intrinsic) {
CheckSpecificIntrinsic(actuals, localContext, scope, *intrinsic);
}
return buffer;
}
bool CheckInterfaceForGeneric(const characteristics::Procedure &proc,
evaluate::ActualArguments &actuals, const evaluate::FoldingContext &context,
bool allowActualArgumentConversions) {
return proc.HasExplicitInterface() &&
!CheckExplicitInterface(proc, actuals, context, nullptr, nullptr,
allowActualArgumentConversions)
.AnyFatalError();
}
bool CheckArguments(const characteristics::Procedure &proc,
evaluate::ActualArguments &actuals, evaluate::FoldingContext &context,
const Scope &scope, bool treatingExternalAsImplicit,
const evaluate::SpecificIntrinsic *intrinsic) {
bool explicitInterface{proc.HasExplicitInterface()};
parser::ContextualMessages &messages{context.messages()};
if (!explicitInterface || treatingExternalAsImplicit) {
parser::Messages buffer;
{
auto restorer{messages.SetMessages(buffer)};
for (auto &actual : actuals) {
if (actual) {
CheckImplicitInterfaceArg(*actual, messages, context);
}
}
}
if (!buffer.empty()) {
if (auto *msgs{messages.messages()}) {
msgs->Annex(std::move(buffer));
}
return false; // don't pile on
}
}
if (explicitInterface) {
auto buffer{CheckExplicitInterface(
proc, actuals, context, &scope, intrinsic, true)};
if (!buffer.empty()) {
if (treatingExternalAsImplicit && !buffer.empty()) {
if (auto *msg{messages.Say(
"If the procedure's interface were explicit, this reference would be in error"_warn_en_US)}) {
buffer.AttachTo(*msg, parser::Severity::Because);
}
}
if (auto *msgs{messages.messages()}) {
msgs->Annex(std::move(buffer));
}
return false;
}
}
return true;
}
} // namespace Fortran::semantics