
This commit fixes a bug in the Mem2Reg operation erasure order. Replacing the use-def based topological order with a dominance-based weak order ensures that no operation is removed before all its uses have been replaced. The order relation uses the topological order of blocks and block internal ordering to determine a deterministic operation order. Additionally, the reliance on the `DenseMap` key order was eliminated by switching to a `MapVector`, that gives a deterministic iteration order. Example: ``` %ptr = alloca ... ... %val0 = %load %ptr ... // LOAD0 store %val0 %ptr ... %val1 = load %ptr ... // LOAD1 ```` When promoting the slot backing %ptr, it can happen that the LOAD0 was cleaned before LOAD1. This results in all uses of LOAD0 being replaced by its reaching definition, before LOAD1's result is replaced by LOAD0's result. The subsequent erasure of LOAD0 can thus not succeed, as it has remaining usages.
1386 lines
55 KiB
C++
1386 lines
55 KiB
C++
//===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the translation between an MLIR LLVM dialect module and
|
|
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
|
|
|
|
#include "AttrKindDetail.h"
|
|
#include "DebugTranslation.h"
|
|
#include "LoopAnnotationTranslation.h"
|
|
#include "mlir/Dialect/DLTI/DLTI.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMInterfaces.h"
|
|
#include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
|
|
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
|
|
#include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
|
|
#include "mlir/IR/AttrTypeSubElements.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/BuiltinTypes.h"
|
|
#include "mlir/IR/RegionGraphTraits.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Support/LogicalResult.h"
|
|
#include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
|
|
#include "mlir/Target/LLVMIR/TypeToLLVM.h"
|
|
#include "mlir/Transforms/RegionUtils.h"
|
|
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/IntrinsicsNVPTX.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
#include <optional>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::LLVM;
|
|
using namespace mlir::LLVM::detail;
|
|
|
|
#include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
|
|
|
|
/// Translates the given data layout spec attribute to the LLVM IR data layout.
|
|
/// Only integer, float, pointer and endianness entries are currently supported.
|
|
static FailureOr<llvm::DataLayout>
|
|
translateDataLayout(DataLayoutSpecInterface attribute,
|
|
const DataLayout &dataLayout,
|
|
std::optional<Location> loc = std::nullopt) {
|
|
if (!loc)
|
|
loc = UnknownLoc::get(attribute.getContext());
|
|
|
|
// Translate the endianness attribute.
|
|
std::string llvmDataLayout;
|
|
llvm::raw_string_ostream layoutStream(llvmDataLayout);
|
|
for (DataLayoutEntryInterface entry : attribute.getEntries()) {
|
|
auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey());
|
|
if (!key)
|
|
continue;
|
|
if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
|
|
auto value = cast<StringAttr>(entry.getValue());
|
|
bool isLittleEndian =
|
|
value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
|
|
layoutStream << "-" << (isLittleEndian ? "e" : "E");
|
|
layoutStream.flush();
|
|
continue;
|
|
}
|
|
if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) {
|
|
auto value = cast<IntegerAttr>(entry.getValue());
|
|
uint64_t space = value.getValue().getZExtValue();
|
|
// Skip the default address space.
|
|
if (space == 0)
|
|
continue;
|
|
layoutStream << "-A" << space;
|
|
layoutStream.flush();
|
|
continue;
|
|
}
|
|
if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) {
|
|
auto value = cast<IntegerAttr>(entry.getValue());
|
|
uint64_t alignment = value.getValue().getZExtValue();
|
|
// Skip the default stack alignment.
|
|
if (alignment == 0)
|
|
continue;
|
|
layoutStream << "-S" << alignment;
|
|
layoutStream.flush();
|
|
continue;
|
|
}
|
|
emitError(*loc) << "unsupported data layout key " << key;
|
|
return failure();
|
|
}
|
|
|
|
// Go through the list of entries to check which types are explicitly
|
|
// specified in entries. Where possible, data layout queries are used instead
|
|
// of directly inspecting the entries.
|
|
for (DataLayoutEntryInterface entry : attribute.getEntries()) {
|
|
auto type = llvm::dyn_cast_if_present<Type>(entry.getKey());
|
|
if (!type)
|
|
continue;
|
|
// Data layout for the index type is irrelevant at this point.
|
|
if (isa<IndexType>(type))
|
|
continue;
|
|
layoutStream << "-";
|
|
LogicalResult result =
|
|
llvm::TypeSwitch<Type, LogicalResult>(type)
|
|
.Case<IntegerType, Float16Type, Float32Type, Float64Type,
|
|
Float80Type, Float128Type>([&](Type type) -> LogicalResult {
|
|
if (auto intType = dyn_cast<IntegerType>(type)) {
|
|
if (intType.getSignedness() != IntegerType::Signless)
|
|
return emitError(*loc)
|
|
<< "unsupported data layout for non-signless integer "
|
|
<< intType;
|
|
layoutStream << "i";
|
|
} else {
|
|
layoutStream << "f";
|
|
}
|
|
unsigned size = dataLayout.getTypeSizeInBits(type);
|
|
unsigned abi = dataLayout.getTypeABIAlignment(type) * 8u;
|
|
unsigned preferred =
|
|
dataLayout.getTypePreferredAlignment(type) * 8u;
|
|
layoutStream << size << ":" << abi;
|
|
if (abi != preferred)
|
|
layoutStream << ":" << preferred;
|
|
return success();
|
|
})
|
|
.Case([&](LLVMPointerType ptrType) {
|
|
layoutStream << "p" << ptrType.getAddressSpace() << ":";
|
|
unsigned size = dataLayout.getTypeSizeInBits(type);
|
|
unsigned abi = dataLayout.getTypeABIAlignment(type) * 8u;
|
|
unsigned preferred =
|
|
dataLayout.getTypePreferredAlignment(type) * 8u;
|
|
layoutStream << size << ":" << abi << ":" << preferred;
|
|
if (std::optional<unsigned> index = extractPointerSpecValue(
|
|
entry.getValue(), PtrDLEntryPos::Index))
|
|
layoutStream << ":" << *index;
|
|
return success();
|
|
})
|
|
.Default([loc](Type type) {
|
|
return emitError(*loc)
|
|
<< "unsupported type in data layout: " << type;
|
|
});
|
|
if (failed(result))
|
|
return failure();
|
|
}
|
|
layoutStream.flush();
|
|
StringRef layoutSpec(llvmDataLayout);
|
|
if (layoutSpec.startswith("-"))
|
|
layoutSpec = layoutSpec.drop_front();
|
|
|
|
return llvm::DataLayout(layoutSpec);
|
|
}
|
|
|
|
/// Builds a constant of a sequential LLVM type `type`, potentially containing
|
|
/// other sequential types recursively, from the individual constant values
|
|
/// provided in `constants`. `shape` contains the number of elements in nested
|
|
/// sequential types. Reports errors at `loc` and returns nullptr on error.
|
|
static llvm::Constant *
|
|
buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
|
|
ArrayRef<int64_t> shape, llvm::Type *type,
|
|
Location loc) {
|
|
if (shape.empty()) {
|
|
llvm::Constant *result = constants.front();
|
|
constants = constants.drop_front();
|
|
return result;
|
|
}
|
|
|
|
llvm::Type *elementType;
|
|
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
|
|
elementType = arrayTy->getElementType();
|
|
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
|
|
elementType = vectorTy->getElementType();
|
|
} else {
|
|
emitError(loc) << "expected sequential LLVM types wrapping a scalar";
|
|
return nullptr;
|
|
}
|
|
|
|
SmallVector<llvm::Constant *, 8> nested;
|
|
nested.reserve(shape.front());
|
|
for (int64_t i = 0; i < shape.front(); ++i) {
|
|
nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
|
|
elementType, loc));
|
|
if (!nested.back())
|
|
return nullptr;
|
|
}
|
|
|
|
if (shape.size() == 1 && type->isVectorTy())
|
|
return llvm::ConstantVector::get(nested);
|
|
return llvm::ConstantArray::get(
|
|
llvm::ArrayType::get(elementType, shape.front()), nested);
|
|
}
|
|
|
|
/// Returns the first non-sequential type nested in sequential types.
|
|
static llvm::Type *getInnermostElementType(llvm::Type *type) {
|
|
do {
|
|
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
|
|
type = arrayTy->getElementType();
|
|
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
|
|
type = vectorTy->getElementType();
|
|
} else {
|
|
return type;
|
|
}
|
|
} while (true);
|
|
}
|
|
|
|
/// Convert a dense elements attribute to an LLVM IR constant using its raw data
|
|
/// storage if possible. This supports elements attributes of tensor or vector
|
|
/// type and avoids constructing separate objects for individual values of the
|
|
/// innermost dimension. Constants for other dimensions are still constructed
|
|
/// recursively. Returns null if constructing from raw data is not supported for
|
|
/// this type, e.g., element type is not a power-of-two-sized primitive. Reports
|
|
/// other errors at `loc`.
|
|
static llvm::Constant *
|
|
convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
|
|
llvm::Type *llvmType,
|
|
const ModuleTranslation &moduleTranslation) {
|
|
if (!denseElementsAttr)
|
|
return nullptr;
|
|
|
|
llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
|
|
if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
|
|
return nullptr;
|
|
|
|
ShapedType type = denseElementsAttr.getType();
|
|
if (type.getNumElements() == 0)
|
|
return nullptr;
|
|
|
|
// Check that the raw data size matches what is expected for the scalar size.
|
|
// TODO: in theory, we could repack the data here to keep constructing from
|
|
// raw data.
|
|
// TODO: we may also need to consider endianness when cross-compiling to an
|
|
// architecture where it is different.
|
|
unsigned elementByteSize = denseElementsAttr.getRawData().size() /
|
|
denseElementsAttr.getNumElements();
|
|
if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits())
|
|
return nullptr;
|
|
|
|
// Compute the shape of all dimensions but the innermost. Note that the
|
|
// innermost dimension may be that of the vector element type.
|
|
bool hasVectorElementType = isa<VectorType>(type.getElementType());
|
|
unsigned numAggregates =
|
|
denseElementsAttr.getNumElements() /
|
|
(hasVectorElementType ? 1
|
|
: denseElementsAttr.getType().getShape().back());
|
|
ArrayRef<int64_t> outerShape = type.getShape();
|
|
if (!hasVectorElementType)
|
|
outerShape = outerShape.drop_back();
|
|
|
|
// Handle the case of vector splat, LLVM has special support for it.
|
|
if (denseElementsAttr.isSplat() &&
|
|
(isa<VectorType>(type) || hasVectorElementType)) {
|
|
llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
|
|
innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
|
|
moduleTranslation);
|
|
llvm::Constant *splatVector =
|
|
llvm::ConstantDataVector::getSplat(0, splatValue);
|
|
SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
|
|
ArrayRef<llvm::Constant *> constantsRef = constants;
|
|
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
|
|
}
|
|
if (denseElementsAttr.isSplat())
|
|
return nullptr;
|
|
|
|
// In case of non-splat, create a constructor for the innermost constant from
|
|
// a piece of raw data.
|
|
std::function<llvm::Constant *(StringRef)> buildCstData;
|
|
if (isa<TensorType>(type)) {
|
|
auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
|
|
if (vectorElementType && vectorElementType.getRank() == 1) {
|
|
buildCstData = [&](StringRef data) {
|
|
return llvm::ConstantDataVector::getRaw(
|
|
data, vectorElementType.getShape().back(), innermostLLVMType);
|
|
};
|
|
} else if (!vectorElementType) {
|
|
buildCstData = [&](StringRef data) {
|
|
return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
|
|
innermostLLVMType);
|
|
};
|
|
}
|
|
} else if (isa<VectorType>(type)) {
|
|
buildCstData = [&](StringRef data) {
|
|
return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
|
|
innermostLLVMType);
|
|
};
|
|
}
|
|
if (!buildCstData)
|
|
return nullptr;
|
|
|
|
// Create innermost constants and defer to the default constant creation
|
|
// mechanism for other dimensions.
|
|
SmallVector<llvm::Constant *> constants;
|
|
unsigned aggregateSize = denseElementsAttr.getType().getShape().back() *
|
|
(innermostLLVMType->getScalarSizeInBits() / 8);
|
|
constants.reserve(numAggregates);
|
|
for (unsigned i = 0; i < numAggregates; ++i) {
|
|
StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
|
|
aggregateSize);
|
|
constants.push_back(buildCstData(data));
|
|
}
|
|
|
|
ArrayRef<llvm::Constant *> constantsRef = constants;
|
|
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
|
|
}
|
|
|
|
/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
|
|
/// This currently supports integer, floating point, splat and dense element
|
|
/// attributes and combinations thereof. Also, an array attribute with two
|
|
/// elements is supported to represent a complex constant. In case of error,
|
|
/// report it to `loc` and return nullptr.
|
|
llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
|
|
llvm::Type *llvmType, Attribute attr, Location loc,
|
|
const ModuleTranslation &moduleTranslation) {
|
|
if (!attr)
|
|
return llvm::UndefValue::get(llvmType);
|
|
if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
|
|
auto arrayAttr = dyn_cast<ArrayAttr>(attr);
|
|
if (!arrayAttr || arrayAttr.size() != 2) {
|
|
emitError(loc, "expected struct type to be a complex number");
|
|
return nullptr;
|
|
}
|
|
llvm::Type *elementType = structType->getElementType(0);
|
|
llvm::Constant *real =
|
|
getLLVMConstant(elementType, arrayAttr[0], loc, moduleTranslation);
|
|
if (!real)
|
|
return nullptr;
|
|
llvm::Constant *imag =
|
|
getLLVMConstant(elementType, arrayAttr[1], loc, moduleTranslation);
|
|
if (!imag)
|
|
return nullptr;
|
|
return llvm::ConstantStruct::get(structType, {real, imag});
|
|
}
|
|
// For integer types, we allow a mismatch in sizes as the index type in
|
|
// MLIR might have a different size than the index type in the LLVM module.
|
|
if (auto intAttr = dyn_cast<IntegerAttr>(attr))
|
|
return llvm::ConstantInt::get(
|
|
llvmType,
|
|
intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
|
|
if (auto floatAttr = dyn_cast<FloatAttr>(attr)) {
|
|
const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics();
|
|
// Special case for 8-bit floats, which are represented by integers due to
|
|
// the lack of native fp8 types in LLVM at the moment. Additionally, handle
|
|
// targets (like AMDGPU) that don't implement bfloat and convert all bfloats
|
|
// to i16.
|
|
unsigned floatWidth = APFloat::getSizeInBits(sem);
|
|
if (llvmType->isIntegerTy(floatWidth))
|
|
return llvm::ConstantInt::get(llvmType,
|
|
floatAttr.getValue().bitcastToAPInt());
|
|
if (llvmType !=
|
|
llvm::Type::getFloatingPointTy(llvmType->getContext(),
|
|
floatAttr.getValue().getSemantics())) {
|
|
emitError(loc, "FloatAttr does not match expected type of the constant");
|
|
return nullptr;
|
|
}
|
|
return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
|
|
}
|
|
if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr))
|
|
return llvm::ConstantExpr::getBitCast(
|
|
moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
|
|
if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) {
|
|
llvm::Type *elementType;
|
|
uint64_t numElements;
|
|
bool isScalable = false;
|
|
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
|
|
elementType = arrayTy->getElementType();
|
|
numElements = arrayTy->getNumElements();
|
|
} else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
|
|
elementType = fVectorTy->getElementType();
|
|
numElements = fVectorTy->getNumElements();
|
|
} else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
|
|
elementType = sVectorTy->getElementType();
|
|
numElements = sVectorTy->getMinNumElements();
|
|
isScalable = true;
|
|
} else {
|
|
llvm_unreachable("unrecognized constant vector type");
|
|
}
|
|
// Splat value is a scalar. Extract it only if the element type is not
|
|
// another sequence type. The recursion terminates because each step removes
|
|
// one outer sequential type.
|
|
bool elementTypeSequential =
|
|
isa<llvm::ArrayType, llvm::VectorType>(elementType);
|
|
llvm::Constant *child = getLLVMConstant(
|
|
elementType,
|
|
elementTypeSequential ? splatAttr
|
|
: splatAttr.getSplatValue<Attribute>(),
|
|
loc, moduleTranslation);
|
|
if (!child)
|
|
return nullptr;
|
|
if (llvmType->isVectorTy())
|
|
return llvm::ConstantVector::getSplat(
|
|
llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
|
|
if (llvmType->isArrayTy()) {
|
|
auto *arrayType = llvm::ArrayType::get(elementType, numElements);
|
|
SmallVector<llvm::Constant *, 8> constants(numElements, child);
|
|
return llvm::ConstantArray::get(arrayType, constants);
|
|
}
|
|
}
|
|
|
|
// Try using raw elements data if possible.
|
|
if (llvm::Constant *result =
|
|
convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr),
|
|
llvmType, moduleTranslation)) {
|
|
return result;
|
|
}
|
|
|
|
// Fall back to element-by-element construction otherwise.
|
|
if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) {
|
|
assert(elementsAttr.getShapedType().hasStaticShape());
|
|
assert(!elementsAttr.getShapedType().getShape().empty() &&
|
|
"unexpected empty elements attribute shape");
|
|
|
|
SmallVector<llvm::Constant *, 8> constants;
|
|
constants.reserve(elementsAttr.getNumElements());
|
|
llvm::Type *innermostType = getInnermostElementType(llvmType);
|
|
for (auto n : elementsAttr.getValues<Attribute>()) {
|
|
constants.push_back(
|
|
getLLVMConstant(innermostType, n, loc, moduleTranslation));
|
|
if (!constants.back())
|
|
return nullptr;
|
|
}
|
|
ArrayRef<llvm::Constant *> constantsRef = constants;
|
|
llvm::Constant *result = buildSequentialConstant(
|
|
constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc);
|
|
assert(constantsRef.empty() && "did not consume all elemental constants");
|
|
return result;
|
|
}
|
|
|
|
if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
|
|
return llvm::ConstantDataArray::get(
|
|
moduleTranslation.getLLVMContext(),
|
|
ArrayRef<char>{stringAttr.getValue().data(),
|
|
stringAttr.getValue().size()});
|
|
}
|
|
emitError(loc, "unsupported constant value");
|
|
return nullptr;
|
|
}
|
|
|
|
ModuleTranslation::ModuleTranslation(Operation *module,
|
|
std::unique_ptr<llvm::Module> llvmModule)
|
|
: mlirModule(module), llvmModule(std::move(llvmModule)),
|
|
debugTranslation(
|
|
std::make_unique<DebugTranslation>(module, *this->llvmModule)),
|
|
loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>(
|
|
*this, *this->llvmModule)),
|
|
typeTranslator(this->llvmModule->getContext()),
|
|
iface(module->getContext()) {
|
|
assert(satisfiesLLVMModule(mlirModule) &&
|
|
"mlirModule should honor LLVM's module semantics.");
|
|
}
|
|
|
|
ModuleTranslation::~ModuleTranslation() {
|
|
if (ompBuilder)
|
|
ompBuilder->finalize();
|
|
}
|
|
|
|
void ModuleTranslation::forgetMapping(Region ®ion) {
|
|
SmallVector<Region *> toProcess;
|
|
toProcess.push_back(®ion);
|
|
while (!toProcess.empty()) {
|
|
Region *current = toProcess.pop_back_val();
|
|
for (Block &block : *current) {
|
|
blockMapping.erase(&block);
|
|
for (Value arg : block.getArguments())
|
|
valueMapping.erase(arg);
|
|
for (Operation &op : block) {
|
|
for (Value value : op.getResults())
|
|
valueMapping.erase(value);
|
|
if (op.hasSuccessors())
|
|
branchMapping.erase(&op);
|
|
if (isa<LLVM::GlobalOp>(op))
|
|
globalsMapping.erase(&op);
|
|
llvm::append_range(
|
|
toProcess,
|
|
llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Get the SSA value passed to the current block from the terminator operation
|
|
/// of its predecessor.
|
|
static Value getPHISourceValue(Block *current, Block *pred,
|
|
unsigned numArguments, unsigned index) {
|
|
Operation &terminator = *pred->getTerminator();
|
|
if (isa<LLVM::BrOp>(terminator))
|
|
return terminator.getOperand(index);
|
|
|
|
#ifndef NDEBUG
|
|
llvm::SmallPtrSet<Block *, 4> seenSuccessors;
|
|
for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
|
|
Block *successor = terminator.getSuccessor(i);
|
|
auto branch = cast<BranchOpInterface>(terminator);
|
|
SuccessorOperands successorOperands = branch.getSuccessorOperands(i);
|
|
assert(
|
|
(!seenSuccessors.contains(successor) || successorOperands.empty()) &&
|
|
"successors with arguments in LLVM branches must be different blocks");
|
|
seenSuccessors.insert(successor);
|
|
}
|
|
#endif
|
|
|
|
// For instructions that branch based on a condition value, we need to take
|
|
// the operands for the branch that was taken.
|
|
if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
|
|
// For conditional branches, we take the operands from either the "true" or
|
|
// the "false" branch.
|
|
return condBranchOp.getSuccessor(0) == current
|
|
? condBranchOp.getTrueDestOperands()[index]
|
|
: condBranchOp.getFalseDestOperands()[index];
|
|
}
|
|
|
|
if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
|
|
// For switches, we take the operands from either the default case, or from
|
|
// the case branch that was taken.
|
|
if (switchOp.getDefaultDestination() == current)
|
|
return switchOp.getDefaultOperands()[index];
|
|
for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
|
|
if (i.value() == current)
|
|
return switchOp.getCaseOperands(i.index())[index];
|
|
}
|
|
|
|
if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
|
|
return invokeOp.getNormalDest() == current
|
|
? invokeOp.getNormalDestOperands()[index]
|
|
: invokeOp.getUnwindDestOperands()[index];
|
|
}
|
|
|
|
llvm_unreachable(
|
|
"only branch, switch or invoke operations can be terminators "
|
|
"of a block that has successors");
|
|
}
|
|
|
|
/// Connect the PHI nodes to the results of preceding blocks.
|
|
void mlir::LLVM::detail::connectPHINodes(Region ®ion,
|
|
const ModuleTranslation &state) {
|
|
// Skip the first block, it cannot be branched to and its arguments correspond
|
|
// to the arguments of the LLVM function.
|
|
for (Block &bb : llvm::drop_begin(region)) {
|
|
llvm::BasicBlock *llvmBB = state.lookupBlock(&bb);
|
|
auto phis = llvmBB->phis();
|
|
auto numArguments = bb.getNumArguments();
|
|
assert(numArguments == std::distance(phis.begin(), phis.end()));
|
|
for (auto [index, phiNode] : llvm::enumerate(phis)) {
|
|
for (auto *pred : bb.getPredecessors()) {
|
|
// Find the LLVM IR block that contains the converted terminator
|
|
// instruction and use it in the PHI node. Note that this block is not
|
|
// necessarily the same as state.lookupBlock(pred), some operations
|
|
// (in particular, OpenMP operations using OpenMPIRBuilder) may have
|
|
// split the blocks.
|
|
llvm::Instruction *terminator =
|
|
state.lookupBranch(pred->getTerminator());
|
|
assert(terminator && "missing the mapping for a terminator");
|
|
phiNode.addIncoming(state.lookupValue(getPHISourceValue(
|
|
&bb, pred, numArguments, index)),
|
|
terminator->getParent());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
|
|
llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
|
|
ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
|
|
llvm::Module *module = builder.GetInsertBlock()->getModule();
|
|
llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
|
|
return builder.CreateCall(fn, args);
|
|
}
|
|
|
|
/// Given a single MLIR operation, create the corresponding LLVM IR operation
|
|
/// using the `builder`.
|
|
LogicalResult
|
|
ModuleTranslation::convertOperation(Operation &op,
|
|
llvm::IRBuilderBase &builder) {
|
|
const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
|
|
if (!opIface)
|
|
return op.emitError("cannot be converted to LLVM IR: missing "
|
|
"`LLVMTranslationDialectInterface` registration for "
|
|
"dialect for op: ")
|
|
<< op.getName();
|
|
|
|
if (failed(opIface->convertOperation(&op, builder, *this)))
|
|
return op.emitError("LLVM Translation failed for operation: ")
|
|
<< op.getName();
|
|
|
|
return convertDialectAttributes(&op);
|
|
}
|
|
|
|
/// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes
|
|
/// to define values corresponding to the MLIR block arguments. These nodes
|
|
/// are not connected to the source basic blocks, which may not exist yet. Uses
|
|
/// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
|
|
/// been created for `bb` and included in the block mapping. Inserts new
|
|
/// instructions at the end of the block and leaves `builder` in a state
|
|
/// suitable for further insertion into the end of the block.
|
|
LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
|
|
llvm::IRBuilderBase &builder) {
|
|
builder.SetInsertPoint(lookupBlock(&bb));
|
|
auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
|
|
|
|
// Before traversing operations, make block arguments available through
|
|
// value remapping and PHI nodes, but do not add incoming edges for the PHI
|
|
// nodes just yet: those values may be defined by this or following blocks.
|
|
// This step is omitted if "ignoreArguments" is set. The arguments of the
|
|
// first block have been already made available through the remapping of
|
|
// LLVM function arguments.
|
|
if (!ignoreArguments) {
|
|
auto predecessors = bb.getPredecessors();
|
|
unsigned numPredecessors =
|
|
std::distance(predecessors.begin(), predecessors.end());
|
|
for (auto arg : bb.getArguments()) {
|
|
auto wrappedType = arg.getType();
|
|
if (!isCompatibleType(wrappedType))
|
|
return emitError(bb.front().getLoc(),
|
|
"block argument does not have an LLVM type");
|
|
llvm::Type *type = convertType(wrappedType);
|
|
llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
|
|
mapValue(arg, phi);
|
|
}
|
|
}
|
|
|
|
// Traverse operations.
|
|
for (auto &op : bb) {
|
|
// Set the current debug location within the builder.
|
|
builder.SetCurrentDebugLocation(
|
|
debugTranslation->translateLoc(op.getLoc(), subprogram));
|
|
|
|
if (failed(convertOperation(op, builder)))
|
|
return failure();
|
|
|
|
// Set the branch weight metadata on the translated instruction.
|
|
if (auto iface = dyn_cast<BranchWeightOpInterface>(op))
|
|
setBranchWeightsMetadata(iface);
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
/// A helper method to get the single Block in an operation honoring LLVM's
|
|
/// module requirements.
|
|
static Block &getModuleBody(Operation *module) {
|
|
return module->getRegion(0).front();
|
|
}
|
|
|
|
/// A helper method to decide if a constant must not be set as a global variable
|
|
/// initializer. For an external linkage variable, the variable with an
|
|
/// initializer is considered externally visible and defined in this module, the
|
|
/// variable without an initializer is externally available and is defined
|
|
/// elsewhere.
|
|
static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
|
|
llvm::Constant *cst) {
|
|
return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
|
|
linkage == llvm::GlobalVariable::ExternalWeakLinkage;
|
|
}
|
|
|
|
/// Sets the runtime preemption specifier of `gv` to dso_local if
|
|
/// `dsoLocalRequested` is true, otherwise it is left unchanged.
|
|
static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
|
|
llvm::GlobalValue *gv) {
|
|
if (dsoLocalRequested)
|
|
gv->setDSOLocal(true);
|
|
}
|
|
|
|
/// Create named global variables that correspond to llvm.mlir.global
|
|
/// definitions. Convert llvm.global_ctors and global_dtors ops.
|
|
LogicalResult ModuleTranslation::convertGlobals() {
|
|
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
|
|
llvm::Type *type = convertType(op.getType());
|
|
llvm::Constant *cst = nullptr;
|
|
if (op.getValueOrNull()) {
|
|
// String attributes are treated separately because they cannot appear as
|
|
// in-function constants and are thus not supported by getLLVMConstant.
|
|
if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) {
|
|
cst = llvm::ConstantDataArray::getString(
|
|
llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
|
|
type = cst->getType();
|
|
} else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
|
|
*this))) {
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
auto linkage = convertLinkageToLLVM(op.getLinkage());
|
|
auto addrSpace = op.getAddrSpace();
|
|
|
|
// LLVM IR requires constant with linkage other than external or weak
|
|
// external to have initializers. If MLIR does not provide an initializer,
|
|
// default to undef.
|
|
bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
|
|
if (!dropInitializer && !cst)
|
|
cst = llvm::UndefValue::get(type);
|
|
else if (dropInitializer && cst)
|
|
cst = nullptr;
|
|
|
|
auto *var = new llvm::GlobalVariable(
|
|
*llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
|
|
/*InsertBefore=*/nullptr,
|
|
op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel
|
|
: llvm::GlobalValue::NotThreadLocal,
|
|
addrSpace);
|
|
|
|
if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) {
|
|
auto selectorOp = cast<ComdatSelectorOp>(
|
|
SymbolTable::lookupNearestSymbolFrom(op, *comdat));
|
|
var->setComdat(comdatMapping.lookup(selectorOp));
|
|
}
|
|
|
|
if (op.getUnnamedAddr().has_value())
|
|
var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
|
|
|
|
if (op.getSection().has_value())
|
|
var->setSection(*op.getSection());
|
|
|
|
addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
|
|
|
|
std::optional<uint64_t> alignment = op.getAlignment();
|
|
if (alignment.has_value())
|
|
var->setAlignment(llvm::MaybeAlign(alignment.value()));
|
|
|
|
var->setVisibility(convertVisibilityToLLVM(op.getVisibility_()));
|
|
|
|
globalsMapping.try_emplace(op, var);
|
|
}
|
|
|
|
// Convert global variable bodies. This is done after all global variables
|
|
// have been created in LLVM IR because a global body may refer to another
|
|
// global or itself. So all global variables need to be mapped first.
|
|
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
|
|
if (Block *initializer = op.getInitializerBlock()) {
|
|
llvm::IRBuilder<> builder(llvmModule->getContext());
|
|
for (auto &op : initializer->without_terminator()) {
|
|
if (failed(convertOperation(op, builder)) ||
|
|
!isa<llvm::Constant>(lookupValue(op.getResult(0))))
|
|
return emitError(op.getLoc(), "unemittable constant value");
|
|
}
|
|
ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
|
|
llvm::Constant *cst =
|
|
cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
|
|
auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
|
|
if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
|
|
global->setInitializer(cst);
|
|
}
|
|
}
|
|
|
|
// Convert llvm.mlir.global_ctors and dtors.
|
|
for (Operation &op : getModuleBody(mlirModule)) {
|
|
auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
|
|
auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
|
|
if (!ctorOp && !dtorOp)
|
|
continue;
|
|
auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
|
|
: llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
|
|
auto appendGlobalFn =
|
|
ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
|
|
for (auto symbolAndPriority : range) {
|
|
llvm::Function *f = lookupFunction(
|
|
cast<FlatSymbolRefAttr>(std::get<0>(symbolAndPriority)).getValue());
|
|
appendGlobalFn(*llvmModule, f,
|
|
cast<IntegerAttr>(std::get<1>(symbolAndPriority)).getInt(),
|
|
/*Data=*/nullptr);
|
|
}
|
|
}
|
|
|
|
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>())
|
|
if (failed(convertDialectAttributes(op)))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Attempts to add an attribute identified by `key`, optionally with the given
|
|
/// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
|
|
/// attribute has a kind known to LLVM IR, create the attribute of this kind,
|
|
/// otherwise keep it as a string attribute. Performs additional checks for
|
|
/// attributes known to have or not have a value in order to avoid assertions
|
|
/// inside LLVM upon construction.
|
|
static LogicalResult checkedAddLLVMFnAttribute(Location loc,
|
|
llvm::Function *llvmFunc,
|
|
StringRef key,
|
|
StringRef value = StringRef()) {
|
|
auto kind = llvm::Attribute::getAttrKindFromName(key);
|
|
if (kind == llvm::Attribute::None) {
|
|
llvmFunc->addFnAttr(key, value);
|
|
return success();
|
|
}
|
|
|
|
if (llvm::Attribute::isIntAttrKind(kind)) {
|
|
if (value.empty())
|
|
return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
|
|
|
|
int64_t result;
|
|
if (!value.getAsInteger(/*Radix=*/0, result))
|
|
llvmFunc->addFnAttr(
|
|
llvm::Attribute::get(llvmFunc->getContext(), kind, result));
|
|
else
|
|
llvmFunc->addFnAttr(key, value);
|
|
return success();
|
|
}
|
|
|
|
if (!value.empty())
|
|
return emitError(loc) << "LLVM attribute '" << key
|
|
<< "' does not expect a value, found '" << value
|
|
<< "'";
|
|
|
|
llvmFunc->addFnAttr(kind);
|
|
return success();
|
|
}
|
|
|
|
/// Attaches the attributes listed in the given array attribute to `llvmFunc`.
|
|
/// Reports error to `loc` if any and returns immediately. Expects `attributes`
|
|
/// to be an array attribute containing either string attributes, treated as
|
|
/// value-less LLVM attributes, or array attributes containing two string
|
|
/// attributes, with the first string being the name of the corresponding LLVM
|
|
/// attribute and the second string beings its value. Note that even integer
|
|
/// attributes are expected to have their values expressed as strings.
|
|
static LogicalResult
|
|
forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes,
|
|
llvm::Function *llvmFunc) {
|
|
if (!attributes)
|
|
return success();
|
|
|
|
for (Attribute attr : *attributes) {
|
|
if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
|
|
if (failed(
|
|
checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
|
|
return failure();
|
|
continue;
|
|
}
|
|
|
|
auto arrayAttr = dyn_cast<ArrayAttr>(attr);
|
|
if (!arrayAttr || arrayAttr.size() != 2)
|
|
return emitError(loc)
|
|
<< "expected 'passthrough' to contain string or array attributes";
|
|
|
|
auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]);
|
|
auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]);
|
|
if (!keyAttr || !valueAttr)
|
|
return emitError(loc)
|
|
<< "expected arrays within 'passthrough' to contain two strings";
|
|
|
|
if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
|
|
valueAttr.getValue())))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
|
|
// Clear the block, branch value mappings, they are only relevant within one
|
|
// function.
|
|
blockMapping.clear();
|
|
valueMapping.clear();
|
|
branchMapping.clear();
|
|
llvm::Function *llvmFunc = lookupFunction(func.getName());
|
|
|
|
// Translate the debug information for this function.
|
|
debugTranslation->translate(func, *llvmFunc);
|
|
|
|
// Add function arguments to the value remapping table.
|
|
for (auto [mlirArg, llvmArg] :
|
|
llvm::zip(func.getArguments(), llvmFunc->args()))
|
|
mapValue(mlirArg, &llvmArg);
|
|
|
|
// Check the personality and set it.
|
|
if (func.getPersonality()) {
|
|
llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
|
|
if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
|
|
func.getLoc(), *this))
|
|
llvmFunc->setPersonalityFn(pfunc);
|
|
}
|
|
|
|
if (std::optional<StringRef> section = func.getSection())
|
|
llvmFunc->setSection(*section);
|
|
|
|
if (func.getArmStreaming())
|
|
llvmFunc->addFnAttr("aarch64_pstate_sm_enabled");
|
|
else if (func.getArmLocallyStreaming())
|
|
llvmFunc->addFnAttr("aarch64_pstate_sm_body");
|
|
|
|
if (auto attr = func.getVscaleRange())
|
|
llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
|
|
getLLVMContext(), attr->getMinRange().getInt(),
|
|
attr->getMaxRange().getInt()));
|
|
|
|
// First, create all blocks so we can jump to them.
|
|
llvm::LLVMContext &llvmContext = llvmFunc->getContext();
|
|
for (auto &bb : func) {
|
|
auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
|
|
llvmBB->insertInto(llvmFunc);
|
|
mapBlock(&bb, llvmBB);
|
|
}
|
|
|
|
// Then, convert blocks one by one in topological order to ensure defs are
|
|
// converted before uses.
|
|
auto blocks = getTopologicallySortedBlocks(func.getBody());
|
|
for (Block *bb : blocks) {
|
|
llvm::IRBuilder<> builder(llvmContext);
|
|
if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
|
|
return failure();
|
|
}
|
|
|
|
// After all blocks have been traversed and values mapped, connect the PHI
|
|
// nodes to the results of preceding blocks.
|
|
detail::connectPHINodes(func.getBody(), *this);
|
|
|
|
// Finally, convert dialect attributes attached to the function.
|
|
return convertDialectAttributes(func);
|
|
}
|
|
|
|
LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) {
|
|
for (NamedAttribute attribute : op->getDialectAttrs())
|
|
if (failed(iface.amendOperation(op, attribute, *this)))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
/// Converts the function attributes from LLVMFuncOp and attaches them to the
|
|
/// llvm::Function.
|
|
static void convertFunctionAttributes(LLVMFuncOp func,
|
|
llvm::Function *llvmFunc) {
|
|
if (!func.getMemory())
|
|
return;
|
|
|
|
MemoryEffectsAttr memEffects = func.getMemoryAttr();
|
|
|
|
// Add memory effects incrementally.
|
|
llvm::MemoryEffects newMemEffects =
|
|
llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem,
|
|
convertModRefInfoToLLVM(memEffects.getArgMem()));
|
|
newMemEffects |= llvm::MemoryEffects(
|
|
llvm::MemoryEffects::Location::InaccessibleMem,
|
|
convertModRefInfoToLLVM(memEffects.getInaccessibleMem()));
|
|
newMemEffects |=
|
|
llvm::MemoryEffects(llvm::MemoryEffects::Location::Other,
|
|
convertModRefInfoToLLVM(memEffects.getOther()));
|
|
llvmFunc->setMemoryEffects(newMemEffects);
|
|
}
|
|
|
|
llvm::AttrBuilder
|
|
ModuleTranslation::convertParameterAttrs(DictionaryAttr paramAttrs) {
|
|
llvm::AttrBuilder attrBuilder(llvmModule->getContext());
|
|
|
|
for (auto [llvmKind, mlirName] : getAttrKindToNameMapping()) {
|
|
Attribute attr = paramAttrs.get(mlirName);
|
|
// Skip attributes that are not present.
|
|
if (!attr)
|
|
continue;
|
|
|
|
// NOTE: C++17 does not support capturing structured bindings.
|
|
llvm::Attribute::AttrKind llvmKindCap = llvmKind;
|
|
|
|
llvm::TypeSwitch<Attribute>(attr)
|
|
.Case<TypeAttr>([&](auto typeAttr) {
|
|
attrBuilder.addTypeAttr(llvmKindCap,
|
|
convertType(typeAttr.getValue()));
|
|
})
|
|
.Case<IntegerAttr>([&](auto intAttr) {
|
|
attrBuilder.addRawIntAttr(llvmKindCap, intAttr.getInt());
|
|
})
|
|
.Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKindCap); });
|
|
}
|
|
|
|
return attrBuilder;
|
|
}
|
|
|
|
LogicalResult ModuleTranslation::convertFunctionSignatures() {
|
|
// Declare all functions first because there may be function calls that form a
|
|
// call graph with cycles, or global initializers that reference functions.
|
|
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
|
|
llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
|
|
function.getName(),
|
|
cast<llvm::FunctionType>(convertType(function.getFunctionType())));
|
|
llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
|
|
llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
|
|
llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv()));
|
|
mapFunction(function.getName(), llvmFunc);
|
|
addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
|
|
|
|
// Convert function attributes.
|
|
convertFunctionAttributes(function, llvmFunc);
|
|
|
|
// Convert function_entry_count attribute to metadata.
|
|
if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount())
|
|
llvmFunc->setEntryCount(entryCount.value());
|
|
|
|
// Convert result attributes.
|
|
if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) {
|
|
DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]);
|
|
llvmFunc->addRetAttrs(convertParameterAttrs(resultAttrs));
|
|
}
|
|
|
|
// Convert argument attributes.
|
|
for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) {
|
|
if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) {
|
|
llvm::AttrBuilder attrBuilder = convertParameterAttrs(argAttrs);
|
|
llvmArg.addAttrs(attrBuilder);
|
|
}
|
|
}
|
|
|
|
// Forward the pass-through attributes to LLVM.
|
|
if (failed(forwardPassthroughAttributes(
|
|
function.getLoc(), function.getPassthrough(), llvmFunc)))
|
|
return failure();
|
|
|
|
// Convert visibility attribute.
|
|
llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_()));
|
|
|
|
// Convert the comdat attribute.
|
|
if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) {
|
|
auto selectorOp = cast<ComdatSelectorOp>(
|
|
SymbolTable::lookupNearestSymbolFrom(function, *comdat));
|
|
llvmFunc->setComdat(comdatMapping.lookup(selectorOp));
|
|
}
|
|
|
|
if (auto gc = function.getGarbageCollector())
|
|
llvmFunc->setGC(gc->str());
|
|
|
|
if (auto unnamedAddr = function.getUnnamedAddr())
|
|
llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr));
|
|
|
|
if (auto alignment = function.getAlignment())
|
|
llvmFunc->setAlignment(llvm::MaybeAlign(*alignment));
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ModuleTranslation::convertFunctions() {
|
|
// Convert functions.
|
|
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
|
|
// Do not convert external functions, but do process dialect attributes
|
|
// attached to them.
|
|
if (function.isExternal()) {
|
|
if (failed(convertDialectAttributes(function)))
|
|
return failure();
|
|
continue;
|
|
}
|
|
|
|
if (failed(convertOneFunction(function)))
|
|
return failure();
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ModuleTranslation::convertComdats() {
|
|
for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) {
|
|
for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) {
|
|
llvm::Module *module = getLLVMModule();
|
|
if (module->getComdatSymbolTable().contains(selectorOp.getSymName()))
|
|
return emitError(selectorOp.getLoc())
|
|
<< "comdat selection symbols must be unique even in different "
|
|
"comdat regions";
|
|
llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName());
|
|
comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat()));
|
|
comdatMapping.try_emplace(selectorOp, comdat);
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op,
|
|
llvm::Instruction *inst) {
|
|
if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op))
|
|
inst->setMetadata(llvm::LLVMContext::MD_access_group, node);
|
|
}
|
|
|
|
llvm::MDNode *
|
|
ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) {
|
|
auto [scopeIt, scopeInserted] =
|
|
aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr);
|
|
if (!scopeInserted)
|
|
return scopeIt->second;
|
|
llvm::LLVMContext &ctx = llvmModule->getContext();
|
|
// Convert the domain metadata node if necessary.
|
|
auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace(
|
|
aliasScopeAttr.getDomain(), nullptr);
|
|
if (insertedDomain) {
|
|
llvm::SmallVector<llvm::Metadata *, 2> operands;
|
|
// Placeholder for self-reference.
|
|
operands.push_back({});
|
|
if (StringAttr description = aliasScopeAttr.getDomain().getDescription())
|
|
operands.push_back(llvm::MDString::get(ctx, description));
|
|
domainIt->second = llvm::MDNode::get(ctx, operands);
|
|
// Self-reference for uniqueness.
|
|
domainIt->second->replaceOperandWith(0, domainIt->second);
|
|
}
|
|
// Convert the scope metadata node.
|
|
assert(domainIt->second && "Scope's domain should already be valid");
|
|
llvm::SmallVector<llvm::Metadata *, 3> operands;
|
|
// Placeholder for self-reference.
|
|
operands.push_back({});
|
|
operands.push_back(domainIt->second);
|
|
if (StringAttr description = aliasScopeAttr.getDescription())
|
|
operands.push_back(llvm::MDString::get(ctx, description));
|
|
scopeIt->second = llvm::MDNode::get(ctx, operands);
|
|
// Self-reference for uniqueness.
|
|
scopeIt->second->replaceOperandWith(0, scopeIt->second);
|
|
return scopeIt->second;
|
|
}
|
|
|
|
llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes(
|
|
ArrayRef<AliasScopeAttr> aliasScopeAttrs) {
|
|
SmallVector<llvm::Metadata *> nodes;
|
|
nodes.reserve(aliasScopeAttrs.size());
|
|
for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs)
|
|
nodes.push_back(getOrCreateAliasScope(aliasScopeAttr));
|
|
return llvm::MDNode::get(getLLVMContext(), nodes);
|
|
}
|
|
|
|
void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op,
|
|
llvm::Instruction *inst) {
|
|
auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) {
|
|
if (!aliasScopeAttrs || aliasScopeAttrs.empty())
|
|
return;
|
|
llvm::MDNode *node = getOrCreateAliasScopes(
|
|
llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>()));
|
|
inst->setMetadata(kind, node);
|
|
};
|
|
|
|
populateScopeMetadata(op.getAliasScopesOrNull(),
|
|
llvm::LLVMContext::MD_alias_scope);
|
|
populateScopeMetadata(op.getNoAliasScopesOrNull(),
|
|
llvm::LLVMContext::MD_noalias);
|
|
}
|
|
|
|
llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const {
|
|
return tbaaMetadataMapping.lookup(tbaaAttr);
|
|
}
|
|
|
|
void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op,
|
|
llvm::Instruction *inst) {
|
|
ArrayAttr tagRefs = op.getTBAATagsOrNull();
|
|
if (!tagRefs || tagRefs.empty())
|
|
return;
|
|
|
|
// LLVM IR currently does not support attaching more than one TBAA access tag
|
|
// to a memory accessing instruction. It may be useful to support this in
|
|
// future, but for the time being just ignore the metadata if MLIR operation
|
|
// has multiple access tags.
|
|
if (tagRefs.size() > 1) {
|
|
op.emitWarning() << "TBAA access tags were not translated, because LLVM "
|
|
"IR only supports a single tag per instruction";
|
|
return;
|
|
}
|
|
|
|
llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0]));
|
|
inst->setMetadata(llvm::LLVMContext::MD_tbaa, node);
|
|
}
|
|
|
|
void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) {
|
|
DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull();
|
|
if (!weightsAttr)
|
|
return;
|
|
|
|
llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op);
|
|
assert(inst && "expected the operation to have a mapping to an instruction");
|
|
SmallVector<uint32_t> weights(weightsAttr.asArrayRef());
|
|
inst->setMetadata(
|
|
llvm::LLVMContext::MD_prof,
|
|
llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights));
|
|
}
|
|
|
|
LogicalResult ModuleTranslation::createTBAAMetadata() {
|
|
llvm::LLVMContext &ctx = llvmModule->getContext();
|
|
llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64);
|
|
|
|
// Walk the entire module and create all metadata nodes for the TBAA
|
|
// attributes. The code below relies on two invariants of the
|
|
// `AttrTypeWalker`:
|
|
// 1. Attributes are visited in post-order: Since the attributes create a DAG,
|
|
// this ensures that any lookups into `tbaaMetadataMapping` for child
|
|
// attributes succeed.
|
|
// 2. Attributes are only ever visited once: This way we don't leak any
|
|
// LLVM metadata instances.
|
|
AttrTypeWalker walker;
|
|
walker.addWalk([&](TBAARootAttr root) {
|
|
tbaaMetadataMapping.insert(
|
|
{root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))});
|
|
});
|
|
|
|
walker.addWalk([&](TBAATypeDescriptorAttr descriptor) {
|
|
SmallVector<llvm::Metadata *> operands;
|
|
operands.push_back(llvm::MDString::get(ctx, descriptor.getId()));
|
|
for (TBAAMemberAttr member : descriptor.getMembers()) {
|
|
operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc()));
|
|
operands.push_back(llvm::ConstantAsMetadata::get(
|
|
llvm::ConstantInt::get(offsetTy, member.getOffset())));
|
|
}
|
|
|
|
tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)});
|
|
});
|
|
|
|
walker.addWalk([&](TBAATagAttr tag) {
|
|
SmallVector<llvm::Metadata *> operands;
|
|
|
|
operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType()));
|
|
operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType()));
|
|
|
|
operands.push_back(llvm::ConstantAsMetadata::get(
|
|
llvm::ConstantInt::get(offsetTy, tag.getOffset())));
|
|
if (tag.getConstant())
|
|
operands.push_back(
|
|
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1)));
|
|
|
|
tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)});
|
|
});
|
|
|
|
mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) {
|
|
if (auto attr = analysisOpInterface.getTBAATagsOrNull())
|
|
walker.walk(attr);
|
|
});
|
|
|
|
return success();
|
|
}
|
|
|
|
void ModuleTranslation::setLoopMetadata(Operation *op,
|
|
llvm::Instruction *inst) {
|
|
LoopAnnotationAttr attr =
|
|
TypeSwitch<Operation *, LoopAnnotationAttr>(op)
|
|
.Case<LLVM::BrOp, LLVM::CondBrOp>(
|
|
[](auto branchOp) { return branchOp.getLoopAnnotationAttr(); });
|
|
if (!attr)
|
|
return;
|
|
llvm::MDNode *loopMD =
|
|
loopAnnotationTranslation->translateLoopAnnotation(attr, op);
|
|
inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD);
|
|
}
|
|
|
|
llvm::Type *ModuleTranslation::convertType(Type type) {
|
|
return typeTranslator.translateType(type);
|
|
}
|
|
|
|
/// A helper to look up remapped operands in the value remapping table.
|
|
SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
|
|
SmallVector<llvm::Value *> remapped;
|
|
remapped.reserve(values.size());
|
|
for (Value v : values)
|
|
remapped.push_back(lookupValue(v));
|
|
return remapped;
|
|
}
|
|
|
|
llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() {
|
|
if (!ompBuilder) {
|
|
ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
|
|
ompBuilder->initialize();
|
|
|
|
// Flags represented as top-level OpenMP dialect attributes are set in
|
|
// `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set
|
|
// the default configuration.
|
|
ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig(
|
|
/* IsTargetDevice = */ false, /* IsGPU = */ false,
|
|
/* OpenMPOffloadMandatory = */ false,
|
|
/* HasRequiresReverseOffload = */ false,
|
|
/* HasRequiresUnifiedAddress = */ false,
|
|
/* HasRequiresUnifiedSharedMemory = */ false,
|
|
/* HasRequiresDynamicAllocators = */ false));
|
|
}
|
|
return ompBuilder.get();
|
|
}
|
|
|
|
llvm::DILocation *ModuleTranslation::translateLoc(Location loc,
|
|
llvm::DILocalScope *scope) {
|
|
return debugTranslation->translateLoc(loc, scope);
|
|
}
|
|
|
|
llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) {
|
|
return debugTranslation->translate(attr);
|
|
}
|
|
|
|
llvm::NamedMDNode *
|
|
ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
|
|
return llvmModule->getOrInsertNamedMetadata(name);
|
|
}
|
|
|
|
void ModuleTranslation::StackFrame::anchor() {}
|
|
|
|
static std::unique_ptr<llvm::Module>
|
|
prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
|
|
StringRef name) {
|
|
m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
|
|
auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
|
|
if (auto dataLayoutAttr =
|
|
m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
|
|
llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue());
|
|
} else {
|
|
FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
|
|
if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
|
|
if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
|
|
llvmDataLayout =
|
|
translateDataLayout(spec, DataLayout(iface), m->getLoc());
|
|
}
|
|
} else if (auto mod = dyn_cast<ModuleOp>(m)) {
|
|
if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
|
|
llvmDataLayout =
|
|
translateDataLayout(spec, DataLayout(mod), m->getLoc());
|
|
}
|
|
}
|
|
if (failed(llvmDataLayout))
|
|
return nullptr;
|
|
llvmModule->setDataLayout(*llvmDataLayout);
|
|
}
|
|
if (auto targetTripleAttr =
|
|
m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
|
|
llvmModule->setTargetTriple(cast<StringAttr>(targetTripleAttr).getValue());
|
|
|
|
// Inject declarations for `malloc` and `free` functions that can be used in
|
|
// memref allocation/deallocation coming from standard ops lowering.
|
|
llvm::IRBuilder<> builder(llvmContext);
|
|
llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
|
|
builder.getInt64Ty());
|
|
llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
|
|
builder.getInt8PtrTy());
|
|
|
|
return llvmModule;
|
|
}
|
|
|
|
std::unique_ptr<llvm::Module>
|
|
mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
|
|
StringRef name) {
|
|
if (!satisfiesLLVMModule(module)) {
|
|
module->emitOpError("can not be translated to an LLVMIR module");
|
|
return nullptr;
|
|
}
|
|
|
|
std::unique_ptr<llvm::Module> llvmModule =
|
|
prepareLLVMModule(module, llvmContext, name);
|
|
if (!llvmModule)
|
|
return nullptr;
|
|
|
|
LLVM::ensureDistinctSuccessors(module);
|
|
|
|
ModuleTranslation translator(module, std::move(llvmModule));
|
|
llvm::IRBuilder<> llvmBuilder(llvmContext);
|
|
|
|
// Convert module before functions and operations inside, so dialect
|
|
// attributes can be used to change dialect-specific global configurations via
|
|
// `amendOperation()`. These configurations can then influence the translation
|
|
// of operations afterwards.
|
|
if (failed(translator.convertOperation(*module, llvmBuilder)))
|
|
return nullptr;
|
|
|
|
if (failed(translator.convertComdats()))
|
|
return nullptr;
|
|
if (failed(translator.convertFunctionSignatures()))
|
|
return nullptr;
|
|
if (failed(translator.convertGlobals()))
|
|
return nullptr;
|
|
if (failed(translator.createTBAAMetadata()))
|
|
return nullptr;
|
|
|
|
// Convert other top-level operations if possible.
|
|
for (Operation &o : getModuleBody(module).getOperations()) {
|
|
if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
|
|
LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) &&
|
|
!o.hasTrait<OpTrait::IsTerminator>() &&
|
|
failed(translator.convertOperation(o, llvmBuilder))) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Operations in function bodies with symbolic references must be converted
|
|
// after the top-level operations they refer to are declared, so we do it
|
|
// last.
|
|
if (failed(translator.convertFunctions()))
|
|
return nullptr;
|
|
|
|
if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
|
|
return nullptr;
|
|
|
|
return std::move(translator.llvmModule);
|
|
}
|