llvm-project/clang/lib/AST/ByteCode/ByteCodeEmitter.cpp

262 lines
7.8 KiB
C++

//===--- ByteCodeEmitter.cpp - Instruction emitter for the VM ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ByteCodeEmitter.h"
#include "Context.h"
#include "Floating.h"
#include "IntegralAP.h"
#include "Opcode.h"
#include "Program.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclCXX.h"
#include <type_traits>
using namespace clang;
using namespace clang::interp;
void ByteCodeEmitter::compileFunc(const FunctionDecl *FuncDecl,
Function *Func) {
assert(FuncDecl);
assert(Func);
// Manually created functions that haven't been assigned proper
// parameters yet.
if (!FuncDecl->param_empty() && !FuncDecl->param_begin())
return;
if (!FuncDecl->isDefined())
return;
// Set up lambda captures.
if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl);
MD && isLambdaCallOperator(MD)) {
// Set up lambda capture to closure record field mapping.
const Record *R = P.getOrCreateRecord(MD->getParent());
assert(R);
llvm::DenseMap<const ValueDecl *, FieldDecl *> LC;
FieldDecl *LTC;
MD->getParent()->getCaptureFields(LC, LTC);
for (auto Cap : LC) {
unsigned Offset = R->getField(Cap.second)->Offset;
this->LambdaCaptures[Cap.first] = {
Offset, Cap.second->getType()->isReferenceType()};
}
if (LTC) {
QualType CaptureType = R->getField(LTC)->Decl->getType();
this->LambdaThisCapture = {R->getField(LTC)->Offset,
CaptureType->isPointerOrReferenceType()};
}
}
// Register parameters with their offset.
unsigned ParamIndex = 0;
unsigned Drop = Func->hasRVO() +
(Func->hasThisPointer() && !Func->isThisPointerExplicit());
for (auto ParamOffset : llvm::drop_begin(Func->ParamOffsets, Drop)) {
const ParmVarDecl *PD = FuncDecl->parameters()[ParamIndex];
OptPrimType T = Ctx.classify(PD->getType());
this->Params.insert({PD, {ParamOffset, T != std::nullopt}});
++ParamIndex;
}
Func->setDefined(true);
// Lambda static invokers are a special case that we emit custom code for.
bool IsEligibleForCompilation = Func->isLambdaStaticInvoker() ||
FuncDecl->isConstexpr() ||
FuncDecl->hasAttr<MSConstexprAttr>();
// Compile the function body.
if (!IsEligibleForCompilation || !visitFunc(FuncDecl)) {
Func->setIsFullyCompiled(true);
return;
}
// Create scopes from descriptors.
llvm::SmallVector<Scope, 2> Scopes;
for (auto &DS : Descriptors) {
Scopes.emplace_back(std::move(DS));
}
// Set the function's code.
Func->setCode(NextLocalOffset, std::move(Code), std::move(SrcMap),
std::move(Scopes), FuncDecl->hasBody());
Func->setIsFullyCompiled(true);
}
Scope::Local ByteCodeEmitter::createLocal(Descriptor *D) {
NextLocalOffset += sizeof(Block);
unsigned Location = NextLocalOffset;
NextLocalOffset += align(D->getAllocSize());
return {Location, D};
}
void ByteCodeEmitter::emitLabel(LabelTy Label) {
const size_t Target = Code.size();
LabelOffsets.insert({Label, Target});
if (auto It = LabelRelocs.find(Label); It != LabelRelocs.end()) {
for (unsigned Reloc : It->second) {
using namespace llvm::support;
// Rewrite the operand of all jumps to this label.
void *Location = Code.data() + Reloc - align(sizeof(int32_t));
assert(aligned(Location));
const int32_t Offset = Target - static_cast<int64_t>(Reloc);
endian::write<int32_t, llvm::endianness::native>(Location, Offset);
}
LabelRelocs.erase(It);
}
}
int32_t ByteCodeEmitter::getOffset(LabelTy Label) {
// Compute the PC offset which the jump is relative to.
const int64_t Position =
Code.size() + align(sizeof(Opcode)) + align(sizeof(int32_t));
assert(aligned(Position));
// If target is known, compute jump offset.
if (auto It = LabelOffsets.find(Label); It != LabelOffsets.end())
return It->second - Position;
// Otherwise, record relocation and return dummy offset.
LabelRelocs[Label].push_back(Position);
return 0ull;
}
/// Helper to write bytecode and bail out if 32-bit offsets become invalid.
/// Pointers will be automatically marshalled as 32-bit IDs.
template <typename T>
static void emit(Program &P, llvm::SmallVectorImpl<std::byte> &Code,
const T &Val, bool &Success) {
size_t ValPos = Code.size();
size_t Size;
if constexpr (std::is_pointer_v<T>)
Size = align(sizeof(uint32_t));
else
Size = align(sizeof(T));
if (ValPos + Size > std::numeric_limits<unsigned>::max()) {
Success = false;
return;
}
// Access must be aligned!
assert(aligned(ValPos));
assert(aligned(ValPos + Size));
Code.resize_for_overwrite(ValPos + Size);
if constexpr (!std::is_pointer_v<T>) {
new (Code.data() + ValPos) T(Val);
} else {
uint32_t ID = P.getOrCreateNativePointer(Val);
new (Code.data() + ValPos) uint32_t(ID);
}
}
/// Emits a serializable value. These usually (potentially) contain
/// heap-allocated memory and aren't trivially copyable.
template <typename T>
static void emitSerialized(llvm::SmallVectorImpl<std::byte> &Code, const T &Val,
bool &Success) {
size_t ValPos = Code.size();
size_t Size = align(Val.bytesToSerialize());
if (ValPos + Size > std::numeric_limits<unsigned>::max()) {
Success = false;
return;
}
// Access must be aligned!
assert(aligned(ValPos));
assert(aligned(ValPos + Size));
Code.resize_for_overwrite(ValPos + Size);
Val.serialize(Code.data() + ValPos);
}
template <>
void emit(Program &P, llvm::SmallVectorImpl<std::byte> &Code,
const Floating &Val, bool &Success) {
emitSerialized(Code, Val, Success);
}
template <>
void emit(Program &P, llvm::SmallVectorImpl<std::byte> &Code,
const IntegralAP<false> &Val, bool &Success) {
emitSerialized(Code, Val, Success);
}
template <>
void emit(Program &P, llvm::SmallVectorImpl<std::byte> &Code,
const IntegralAP<true> &Val, bool &Success) {
emitSerialized(Code, Val, Success);
}
template <>
void emit(Program &P, llvm::SmallVectorImpl<std::byte> &Code,
const FixedPoint &Val, bool &Success) {
emitSerialized(Code, Val, Success);
}
template <typename... Tys>
bool ByteCodeEmitter::emitOp(Opcode Op, const Tys &...Args,
const SourceInfo &SI) {
bool Success = true;
// The opcode is followed by arguments. The source info is
// attached to the address after the opcode.
emit(P, Code, Op, Success);
if (LocOverride)
SrcMap.emplace_back(Code.size(), *LocOverride);
else if (SI)
SrcMap.emplace_back(Code.size(), SI);
(..., emit(P, Code, Args, Success));
return Success;
}
bool ByteCodeEmitter::jumpTrue(const LabelTy &Label) {
return emitJt(getOffset(Label), SourceInfo{});
}
bool ByteCodeEmitter::jumpFalse(const LabelTy &Label) {
return emitJf(getOffset(Label), SourceInfo{});
}
bool ByteCodeEmitter::jump(const LabelTy &Label) {
return emitJmp(getOffset(Label), SourceInfo{});
}
bool ByteCodeEmitter::fallthrough(const LabelTy &Label) {
emitLabel(Label);
return true;
}
bool ByteCodeEmitter::speculate(const CallExpr *E, const LabelTy &EndLabel) {
const Expr *Arg = E->getArg(0);
PrimType T = Ctx.classify(Arg->getType()).value_or(PT_Ptr);
if (!this->emitBCP(getOffset(EndLabel), T, E))
return false;
if (!this->visit(Arg))
return false;
return true;
}
//===----------------------------------------------------------------------===//
// Opcode emitters
//===----------------------------------------------------------------------===//
#define GET_LINK_IMPL
#include "Opcodes.inc"
#undef GET_LINK_IMPL