llvm-project/mlir/lib/Dialect/SparseTensor/Transforms/SparseBufferRewriting.cpp
bixia1 abb05014f9 [mlir][sparse] Modify the pivot selection method for quick sort.
Previously, we choose the median of three values. We now choose the median of
five values when the number of values being sorted exceed a threshold
(currently 100). This is similar to std::sort.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D145534
2023-03-15 13:53:00 -07:00

1439 lines
58 KiB
C++

//===- SparseBufferRewriting.cpp - Sparse buffer rewriting rules ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements rewriting rules that are specific to sparse tensor
// primitives with memref operands.
//
//===----------------------------------------------------------------------===//
#include "CodegenUtils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Support/LLVM.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
//===---------------------------------------------------------------------===//
// Helper methods for the actual rewriting rules.
//===---------------------------------------------------------------------===//
static constexpr uint64_t loIdx = 0;
static constexpr uint64_t hiIdx = 1;
static constexpr uint64_t xStartIdx = 2;
static constexpr const char kPartitionFuncNamePrefix[] = "_sparse_partition_";
static constexpr const char kBinarySearchFuncNamePrefix[] =
"_sparse_binary_search_";
static constexpr const char kHybridQuickSortFuncNamePrefix[] =
"_sparse_hybrid_qsort_";
static constexpr const char kSortStableFuncNamePrefix[] =
"_sparse_sort_stable_";
static constexpr const char kShiftDownFuncNamePrefix[] = "_sparse_shift_down_";
static constexpr const char kHeapSortFuncNamePrefix[] = "_sparse_heap_sort_";
static constexpr const char kQuickSortFuncNamePrefix[] = "_sparse_qsort_";
using FuncGeneratorType = function_ref<void(
OpBuilder &, ModuleOp, func::FuncOp, uint64_t, uint64_t, bool, uint32_t)>;
/// Constructs a function name with this format to facilitate quick sort:
/// <namePrefix><nx>_<x type>_<y0 type>..._<yn type> for sort
/// <namePrefix><nx>_<x type>_coo_<ny>_<y0 type>..._<yn type> for sort_coo
static void getMangledSortHelperFuncName(llvm::raw_svector_ostream &nameOstream,
StringRef namePrefix, uint64_t nx,
uint64_t ny, bool isCoo,
ValueRange operands) {
nameOstream << namePrefix << nx << "_"
<< getMemRefType(operands[xStartIdx]).getElementType();
if (isCoo)
nameOstream << "_coo_" << ny;
uint64_t yBufferOffset = isCoo ? 1 : nx;
for (Value v : operands.drop_front(xStartIdx + yBufferOffset))
nameOstream << "_" << getMemRefType(v).getElementType();
}
/// Looks up a function that is appropriate for the given operands being
/// sorted, and creates such a function if it doesn't exist yet. The
/// parameters `nx` and `ny` tell the number of x and y values provided
/// by the buffer in xStartIdx, and `isCoo` indicates whether the instruction
/// being processed is a sparse_tensor.sort or sparse_tensor.sort_coo.
//
// All sorting function generators take (lo, hi, xs, ys) in `operands` as
// parameters for the sorting functions. Other parameters, such as the recursive
// call depth, are appended to the end of the parameter list as
// "trailing parameters".
static FlatSymbolRefAttr
getMangledSortHelperFunc(OpBuilder &builder, func::FuncOp insertPoint,
TypeRange resultTypes, StringRef namePrefix,
uint64_t nx, uint64_t ny, bool isCoo,
ValueRange operands, FuncGeneratorType createFunc,
uint32_t nTrailingP = 0) {
SmallString<32> nameBuffer;
llvm::raw_svector_ostream nameOstream(nameBuffer);
getMangledSortHelperFuncName(nameOstream, namePrefix, nx, ny, isCoo,
operands.drop_back(nTrailingP));
ModuleOp module = insertPoint->getParentOfType<ModuleOp>();
MLIRContext *context = module.getContext();
auto result = SymbolRefAttr::get(context, nameOstream.str());
auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());
if (!func) {
// Create the function.
OpBuilder::InsertionGuard insertionGuard(builder);
builder.setInsertionPoint(insertPoint);
Location loc = insertPoint.getLoc();
func = builder.create<func::FuncOp>(
loc, nameOstream.str(),
FunctionType::get(context, operands.getTypes(), resultTypes));
func.setPrivate();
createFunc(builder, module, func, nx, ny, isCoo, nTrailingP);
}
return result;
}
/// Creates a code block to process each pair of (xs[i], xs[j]) for sorting.
/// The code to process the value pairs is generated by `bodyBuilder`.
static void forEachIJPairInXs(
OpBuilder &builder, Location loc, ValueRange args, uint64_t nx, uint64_t ny,
bool isCoo, function_ref<void(uint64_t, Value, Value, Value)> bodyBuilder) {
Value iOffset, jOffset;
if (isCoo) {
Value cstep = constantIndex(builder, loc, nx + ny);
iOffset = builder.create<arith::MulIOp>(loc, args[0], cstep);
jOffset = builder.create<arith::MulIOp>(loc, args[1], cstep);
}
for (uint64_t k = 0; k < nx; k++) {
scf::IfOp ifOp;
Value i, j, buffer;
if (isCoo) {
Value ck = constantIndex(builder, loc, k);
i = builder.create<arith::AddIOp>(loc, ck, iOffset);
j = builder.create<arith::AddIOp>(loc, ck, jOffset);
buffer = args[xStartIdx];
} else {
i = args[0];
j = args[1];
buffer = args[xStartIdx + k];
}
bodyBuilder(k, i, j, buffer);
}
}
/// Creates a code block to process each pair of (xys[i], xys[j]) for sorting.
/// The code to process the value pairs is generated by `bodyBuilder`.
static void forEachIJPairInAllBuffers(
OpBuilder &builder, Location loc, ValueRange args, uint64_t nx, uint64_t ny,
bool isCoo, function_ref<void(uint64_t, Value, Value, Value)> bodyBuilder) {
// Create code for the first (nx + ny) buffers. When isCoo==true, these
// logical buffers are all from the xy buffer of the sort_coo operator.
forEachIJPairInXs(builder, loc, args, nx + ny, 0, isCoo, bodyBuilder);
uint64_t numHandledBuffers = isCoo ? 1 : nx + ny;
// Create code for the remaining buffers.
Value i = args[0];
Value j = args[1];
for (const auto &arg :
llvm::enumerate(args.drop_front(xStartIdx + numHandledBuffers))) {
bodyBuilder(arg.index() + nx + ny, i, j, arg.value());
}
}
/// Creates a code block for swapping the values in index i and j for all the
/// buffers.
//
// The generated IR corresponds to this C like algorithm:
// swap(x0[i], x0[j]);
// swap(x1[i], x1[j]);
// ...
// swap(xn[i], xn[j]);
// swap(y0[i], y0[j]);
// ...
// swap(yn[i], yn[j]);
static void createSwap(OpBuilder &builder, Location loc, ValueRange args,
uint64_t nx, uint64_t ny, bool isCoo) {
auto swapOnePair = [&](uint64_t unused, Value i, Value j, Value buffer) {
Value vi = builder.create<memref::LoadOp>(loc, buffer, i);
Value vj = builder.create<memref::LoadOp>(loc, buffer, j);
builder.create<memref::StoreOp>(loc, vj, buffer, i);
builder.create<memref::StoreOp>(loc, vi, buffer, j);
};
forEachIJPairInAllBuffers(builder, loc, args, nx, ny, isCoo, swapOnePair);
}
/// Creates code to compare all the (xs[i], xs[j]) pairs. The method to compare
/// each pair is create via `compareBuilder`.
static Value createInlinedCompareImplementation(
OpBuilder &builder, Location loc, ValueRange args, uint64_t nx, uint64_t ny,
bool isCoo,
function_ref<Value(OpBuilder &, Location, Value, Value, Value, bool, bool)>
compareBuilder) {
Value result;
auto bodyBuilder = [&](uint64_t k, Value i, Value j, Value buffer) {
bool isFirstDim = (k == 0);
bool isLastDim = (k == nx - 1);
Value val =
compareBuilder(builder, loc, i, j, buffer, isFirstDim, isLastDim);
if (isFirstDim) {
result = val;
} else if (!isLastDim) {
OpBuilder::InsertionGuard insertionGuard(builder);
auto ifOp = cast<scf::IfOp>(val.getDefiningOp());
builder.setInsertionPointAfter(ifOp);
builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
}
};
forEachIJPairInXs(builder, loc, args, nx, ny, isCoo, bodyBuilder);
builder.setInsertionPointAfterValue(result);
return result;
}
/// Generates code to compare whether x[i] is equal to x[j] and returns the
/// result of the comparison.
static Value createEqCompare(OpBuilder &builder, Location loc, Value i, Value j,
Value x, bool isFirstDim, bool isLastDim) {
Value vi = builder.create<memref::LoadOp>(loc, x, i);
Value vj = builder.create<memref::LoadOp>(loc, x, j);
Value res;
if (isLastDim) {
res = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, vi, vj);
// For 1D, we create a compare without any control flow. Otherwise, we
// create YieldOp to return the result in the nested if-stmt.
if (!isFirstDim)
builder.create<scf::YieldOp>(loc, res);
} else {
Value ne =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, vi, vj);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIntegerType(1),
ne, /*else=*/true);
// If (x[i] != x[j]).
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
Value f = constantI1(builder, loc, false);
builder.create<scf::YieldOp>(loc, f);
// If (x[i] == x[j]). Set up the insertion point for the nested if-stmt that
// checks the remaining dimensions.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
res = ifOp.getResult(0);
}
return res;
}
/// Creates code to compare whether xs[i] is equal to xs[j].
//
// The generate IR corresponds to this C like algorithm:
// if (x0[i] != x0[j])
// return false;
// else
// if (x1[i] != x1[j])
// return false;
// else if (x2[2] != x2[j]))
// and so on ...
static Value createInlinedEqCompare(OpBuilder &builder, Location loc,
ValueRange args, uint64_t nx, uint64_t ny,
bool isCoo, uint32_t nTrailingP = 0) {
// Compare functions don't use trailing parameters.
(void)nTrailingP;
assert(nTrailingP == 0);
return createInlinedCompareImplementation(builder, loc, args, nx, ny, isCoo,
createEqCompare);
}
/// Generates code to compare whether x[i] is less than x[j] and returns the
/// result of the comparison.
static Value createLessThanCompare(OpBuilder &builder, Location loc, Value i,
Value j, Value x, bool isFirstDim,
bool isLastDim) {
Value vi = builder.create<memref::LoadOp>(loc, x, i);
Value vj = builder.create<memref::LoadOp>(loc, x, j);
Value res;
if (isLastDim) {
res = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, vi, vj);
// For 1D, we create a compare without any control flow. Otherwise, we
// create YieldOp to return the result in the nested if-stmt.
if (!isFirstDim)
builder.create<scf::YieldOp>(loc, res);
} else {
Value ne =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, vi, vj);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIntegerType(1),
ne, /*else=*/true);
// If (x[i] != x[j]).
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
Value lt =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, vi, vj);
builder.create<scf::YieldOp>(loc, lt);
// If (x[i] == x[j]). Set up the insertion point for the nested if-stmt that
// checks the remaining dimensions.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
res = ifOp.getResult(0);
}
return res;
}
/// Creates code to compare whether xs[i] is less than xs[j].
//
// The generate IR corresponds to this C like algorithm:
// if (x0[i] != x0[j])
// return x0[i] < x0[j];
// else if (x1[j] != x1[i])
// return x1[i] < x1[j];
// else
// and so on ...
static Value createInlinedLessThan(OpBuilder &builder, Location loc,
ValueRange args, uint64_t nx, uint64_t ny,
bool isCoo, uint32_t nTrailingP = 0) {
// Compare functions don't use trailing parameters.
(void)nTrailingP;
assert(nTrailingP == 0);
return createInlinedCompareImplementation(builder, loc, args, nx, ny, isCoo,
createLessThanCompare);
}
/// Creates a function to use a binary search to find the insertion point for
/// inserting xs[hi] to the sorted values xs[lo..hi).
//
// The generate IR corresponds to this C like algorithm:
// p = hi
// while (lo < hi)
// mid = (lo + hi) >> 1
// if (xs[p] < xs[mid])
// hi = mid
// else
// lo = mid - 1
// return lo;
//
static void createBinarySearchFunc(OpBuilder &builder, ModuleOp module,
func::FuncOp func, uint64_t nx, uint64_t ny,
bool isCoo, uint32_t nTrailingP = 0) {
// Binary search doesn't use trailing parameters.
(void)nTrailingP;
assert(nTrailingP == 0);
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = func.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
Location loc = func.getLoc();
ValueRange args = entryBlock->getArguments();
Value p = args[hiIdx];
SmallVector<Type, 2> types(2, p.getType()); // Only two types.
scf::WhileOp whileOp = builder.create<scf::WhileOp>(
loc, types, SmallVector<Value, 2>{args[loIdx], args[hiIdx]});
// The before-region of the WhileOp.
Block *before =
builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc});
builder.setInsertionPointToEnd(before);
Value cond1 = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
before->getArgument(0),
before->getArgument(1));
builder.create<scf::ConditionOp>(loc, cond1, before->getArguments());
// The after-region of the WhileOp.
Block *after =
builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc});
builder.setInsertionPointToEnd(after);
Value lo = after->getArgument(0);
Value hi = after->getArgument(1);
// Compute mid = (lo + hi) >> 1.
Value c1 = constantIndex(builder, loc, 1);
Value mid = builder.create<arith::ShRUIOp>(
loc, builder.create<arith::AddIOp>(loc, lo, hi), c1);
Value midp1 = builder.create<arith::AddIOp>(loc, mid, c1);
// Compare xs[p] < xs[mid].
SmallVector<Value> compareOperands{p, mid};
uint64_t numXBuffers = isCoo ? 1 : nx;
compareOperands.append(args.begin() + xStartIdx,
args.begin() + xStartIdx + numXBuffers);
Value cond2 =
createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
// Update lo and hi for the WhileOp as follows:
// if (xs[p] < xs[mid]))
// hi = mid;
// else
// lo = mid + 1;
Value newLo = builder.create<arith::SelectOp>(loc, cond2, lo, midp1);
Value newHi = builder.create<arith::SelectOp>(loc, cond2, mid, hi);
builder.create<scf::YieldOp>(loc, ValueRange{newLo, newHi});
builder.setInsertionPointAfter(whileOp);
builder.create<func::ReturnOp>(loc, whileOp.getResult(0));
}
/// Creates code to advance i in a loop based on xs[p] as follows:
/// while (xs[i] < xs[p]) i += step (step > 0)
/// or
/// while (xs[i] > xs[p]) i += step (step < 0)
/// The routine returns i as well as a boolean value to indicate whether
/// xs[i] == xs[p].
static std::pair<Value, Value>
createScanLoop(OpBuilder &builder, ModuleOp module, func::FuncOp func,
ValueRange xs, Value i, Value p, uint64_t nx, uint64_t ny,
bool isCoo, int step) {
Location loc = func.getLoc();
scf::WhileOp whileOp =
builder.create<scf::WhileOp>(loc, TypeRange{i.getType()}, ValueRange{i});
Block *before =
builder.createBlock(&whileOp.getBefore(), {}, {i.getType()}, {loc});
builder.setInsertionPointToEnd(before);
SmallVector<Value> compareOperands;
if (step > 0) {
compareOperands.push_back(before->getArgument(0));
compareOperands.push_back(p);
} else {
assert(step < 0);
compareOperands.push_back(p);
compareOperands.push_back(before->getArgument(0));
}
compareOperands.append(xs.begin(), xs.end());
Value cond =
createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
Block *after =
builder.createBlock(&whileOp.getAfter(), {}, {i.getType()}, {loc});
builder.setInsertionPointToEnd(after);
Value cs = constantIndex(builder, loc, step);
i = builder.create<arith::AddIOp>(loc, after->getArgument(0), cs);
builder.create<scf::YieldOp>(loc, ValueRange{i});
i = whileOp.getResult(0);
builder.setInsertionPointAfter(whileOp);
compareOperands[0] = i;
compareOperands[1] = p;
Value compareEq =
createInlinedEqCompare(builder, loc, compareOperands, nx, ny, isCoo);
return std::make_pair(whileOp.getResult(0), compareEq);
}
/// Creates and returns an IfOp to compare two elements and swap the elements
/// if compareFunc(data[b], data[a]) returns true. The new insertion point is
/// right after the swap instructions.
static scf::IfOp createCompareThenSwap(OpBuilder &builder, Location loc,
uint64_t nx, uint64_t ny, bool isCoo,
SmallVectorImpl<Value> &swapOperands,
SmallVectorImpl<Value> &compareOperands,
Value a, Value b) {
// Compare(data[b], data[a]).
compareOperands[0] = b;
compareOperands[1] = a;
Value cond =
createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, cond, /*else=*/false);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
swapOperands[0] = b;
swapOperands[1] = a;
createSwap(builder, loc, swapOperands, nx, ny, isCoo);
return ifOp;
}
/// Creates code to insert the 3rd element to a list of two sorted elements.
static void createInsert3rd(OpBuilder &builder, Location loc, uint64_t nx,
uint64_t ny, bool isCoo,
SmallVectorImpl<Value> &swapOperands,
SmallVectorImpl<Value> &compareOperands, Value v0,
Value v1, Value v2) {
scf::IfOp ifOp = createCompareThenSwap(builder, loc, nx, ny, isCoo,
swapOperands, compareOperands, v1, v2);
createCompareThenSwap(builder, loc, nx, ny, isCoo, swapOperands,
compareOperands, v0, v1);
builder.setInsertionPointAfter(ifOp);
}
/// Creates code to sort 3 elements.
static void createSort3(OpBuilder &builder, Location loc, uint64_t nx,
uint64_t ny, bool isCoo,
SmallVectorImpl<Value> &swapOperands,
SmallVectorImpl<Value> &compareOperands, Value v0,
Value v1, Value v2) {
// Sort the first 2 elements.
scf::IfOp ifOp1 = createCompareThenSwap(
builder, loc, nx, ny, isCoo, swapOperands, compareOperands, v0, v1);
builder.setInsertionPointAfter(ifOp1);
// Insert the 3th element.
createInsert3rd(builder, loc, nx, ny, isCoo, swapOperands, compareOperands,
v0, v1, v2);
}
/// Creates code to sort 5 elements.
static void createSort5(OpBuilder &builder, Location loc, uint64_t nx,
uint64_t ny, bool isCoo,
SmallVectorImpl<Value> &swapOperands,
SmallVectorImpl<Value> &compareOperands, Value v0,
Value v1, Value v2, Value v3, Value v4) {
// Sort the first 3 elements.
createSort3(builder, loc, nx, ny, isCoo, swapOperands, compareOperands, v0,
v1, v2);
auto insert4th = [&]() {
scf::IfOp ifOp = createCompareThenSwap(
builder, loc, nx, ny, isCoo, swapOperands, compareOperands, v2, v3);
createInsert3rd(builder, loc, nx, ny, isCoo, swapOperands, compareOperands,
v0, v1, v2);
builder.setInsertionPointAfter(ifOp);
};
// Insert the 4th element.
insert4th();
// Insert the 5th element.
scf::IfOp ifOp = createCompareThenSwap(builder, loc, nx, ny, isCoo,
swapOperands, compareOperands, v3, v4);
insert4th();
builder.setInsertionPointAfter(ifOp);
}
/// Creates a code block to swap the values in indices lo, mi, and hi so that
/// data[lo], data[mi] and data[hi] are sorted in non-decreasing values. When
/// the number of values in range [lo, hi) is more than a threshold, we also
/// include the middle of [lo, mi) and [mi, hi) and sort a total of five values.
static void createChoosePivot(OpBuilder &builder, ModuleOp module,
func::FuncOp func, uint64_t nx, uint64_t ny,
bool isCoo, Value lo, Value hi, Value mi,
ValueRange args) {
SmallVector<Value> compareOperands{mi, lo};
uint64_t numXBuffers = isCoo ? 1 : nx;
compareOperands.append(args.begin() + xStartIdx,
args.begin() + xStartIdx + numXBuffers);
SmallVector<Value> swapOperands{mi, lo};
swapOperands.append(args.begin() + xStartIdx, args.end());
Location loc = func.getLoc();
Value c1 = constantIndex(builder, loc, 1);
Value hiP1 = builder.create<arith::AddIOp>(loc, hi, c1);
Value len = builder.create<arith::SubIOp>(loc, hiP1, lo);
Value lenThreshold = constantIndex(builder, loc, 1000);
Value lenCond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
len, lenThreshold);
scf::IfOp lenIf = builder.create<scf::IfOp>(loc, lenCond, /*else=*/true);
// When len < 1000, choose pivot from median of 3 values.
builder.setInsertionPointToStart(&lenIf.getThenRegion().front());
createSort3(builder, loc, nx, ny, isCoo, swapOperands, compareOperands, lo,
mi, hi);
// When len >= 1000, choose pivot from median of 5 values.
builder.setInsertionPointToStart(&lenIf.getElseRegion().front());
Value miP1 = builder.create<arith::AddIOp>(loc, hi, c1);
Value a = builder.create<arith::AddIOp>(loc, lo, miP1);
// Value a is the middle between [loc, mi].
a = builder.create<arith::ShRUIOp>(loc, a, c1);
Value b = builder.create<arith::AddIOp>(loc, mi, hiP1);
// Value b is the middle between [mi, hi].
b = builder.create<arith::ShRUIOp>(loc, b, c1);
createSort5(builder, loc, nx, ny, isCoo, swapOperands, compareOperands, lo, a,
mi, b, hi);
builder.setInsertionPointAfter(lenIf);
}
/// Creates a function to perform quick sort partition on the values in the
/// range of index [lo, hi), assuming lo < hi.
//
// The generated IR corresponds to this C like algorithm:
// int partition(lo, hi, xs) {
// p = (lo+hi)/2 // pivot index
// i = lo
// j = hi-1
// while (i < j) do {
// while (xs[i] < xs[p]) i ++;
// i_eq = (xs[i] == xs[p]);
// while (xs[j] > xs[p]) j --;
// j_eq = (xs[j] == xs[p]);
// if (i < j) {
// swap(xs[i], xs[j])
// if (i == p) {
// p = j;
// } else if (j == p) {
// p = i;
// }
// if (i_eq && j_eq) {
// ++i;
// --j;
// }
// }
// }
// return p
// }
static void createPartitionFunc(OpBuilder &builder, ModuleOp module,
func::FuncOp func, uint64_t nx, uint64_t ny,
bool isCoo, uint32_t nTrailingP = 0) {
// Quick sort partition doesn't use trailing parameters.
(void)nTrailingP;
assert(nTrailingP == 0);
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = func.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
Location loc = func.getLoc();
ValueRange args = entryBlock->getArguments();
Value lo = args[loIdx];
Value hi = args[hiIdx];
Value sum = builder.create<arith::AddIOp>(loc, lo, hi);
Value c1 = constantIndex(builder, loc, 1);
Value p = builder.create<arith::ShRUIOp>(loc, sum, c1);
Value i = lo;
Value j = builder.create<arith::SubIOp>(loc, hi, c1);
createChoosePivot(builder, module, func, nx, ny, isCoo, i, j, p, args);
SmallVector<Value, 3> operands{i, j, p}; // Exactly three values.
SmallVector<Type, 3> types{i.getType(), j.getType(), p.getType()};
scf::WhileOp whileOp = builder.create<scf::WhileOp>(loc, types, operands);
// The before-region of the WhileOp.
Block *before =
builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc, loc});
builder.setInsertionPointToEnd(before);
Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
before->getArgument(0),
before->getArgument(1));
builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
// The after-region of the WhileOp.
Block *after =
builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc, loc});
builder.setInsertionPointToEnd(after);
i = after->getArgument(0);
j = after->getArgument(1);
p = after->getArgument(2);
uint64_t numXBuffers = isCoo ? 1 : nx;
auto [iresult, iCompareEq] =
createScanLoop(builder, module, func, args.slice(xStartIdx, numXBuffers),
i, p, nx, ny, isCoo, 1);
i = iresult;
auto [jresult, jCompareEq] =
createScanLoop(builder, module, func, args.slice(xStartIdx, numXBuffers),
j, p, nx, ny, isCoo, -1);
j = jresult;
// If i < j:
cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, i, j);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
SmallVector<Value> swapOperands{i, j};
swapOperands.append(args.begin() + xStartIdx, args.end());
createSwap(builder, loc, swapOperands, nx, ny, isCoo);
// If the pivot is moved, update p with the new pivot.
Value icond =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, i, p);
scf::IfOp ifOpI = builder.create<scf::IfOp>(loc, TypeRange{p.getType()},
icond, /*else=*/true);
builder.setInsertionPointToStart(&ifOpI.getThenRegion().front());
builder.create<scf::YieldOp>(loc, ValueRange{j});
builder.setInsertionPointToStart(&ifOpI.getElseRegion().front());
Value jcond =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, j, p);
scf::IfOp ifOpJ = builder.create<scf::IfOp>(loc, TypeRange{p.getType()},
jcond, /*else=*/true);
builder.setInsertionPointToStart(&ifOpJ.getThenRegion().front());
builder.create<scf::YieldOp>(loc, ValueRange{i});
builder.setInsertionPointToStart(&ifOpJ.getElseRegion().front());
builder.create<scf::YieldOp>(loc, ValueRange{p});
builder.setInsertionPointAfter(ifOpJ);
builder.create<scf::YieldOp>(loc, ifOpJ.getResults());
builder.setInsertionPointAfter(ifOpI);
Value compareEqIJ =
builder.create<arith::AndIOp>(loc, iCompareEq, jCompareEq);
scf::IfOp ifOp2 = builder.create<scf::IfOp>(
loc, TypeRange{i.getType(), j.getType()}, compareEqIJ, /*else=*/true);
builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
Value i2 = builder.create<arith::AddIOp>(loc, i, c1);
Value j2 = builder.create<arith::SubIOp>(loc, j, c1);
builder.create<scf::YieldOp>(loc, ValueRange{i2, j2});
builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
builder.create<scf::YieldOp>(loc, ValueRange{i, j});
builder.setInsertionPointAfter(ifOp2);
builder.create<scf::YieldOp>(
loc,
ValueRange{ifOp2.getResult(0), ifOp2.getResult(1), ifOpI.getResult(0)});
// False branch for if i < j:
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, ValueRange{i, j, p});
// Return for the whileOp.
builder.setInsertionPointAfter(ifOp);
builder.create<scf::YieldOp>(loc, ifOp.getResults());
// Return for the function.
builder.setInsertionPointAfter(whileOp);
builder.create<func::ReturnOp>(loc, whileOp.getResult(2));
}
/// Computes (n-2)/n, assuming n has index type.
static Value createSubTwoDividedByTwo(OpBuilder &builder, Location loc,
Value n) {
Value i2 = constantIndex(builder, loc, 2);
Value res = builder.create<arith::SubIOp>(loc, n, i2);
Value i1 = constantIndex(builder, loc, 1);
return builder.create<arith::ShRUIOp>(loc, res, i1);
}
/// Creates a function to heapify the subtree with root `start` within the full
/// binary tree in the range of index [first, first + n).
//
// The generated IR corresponds to this C like algorithm:
// void shiftDown(first, start, n, data) {
// if (n >= 2) {
// child = start - first
// if ((n-2)/2 >= child) {
// // Left child exists.
// child = child * 2 + 1 // Initialize the bigger child to left child.
// childIndex = child + first
// if (child+1 < n && data[childIndex] < data[childIndex+1])
// // Right child exits and is bigger.
// childIndex++; child++;
// // Shift data[start] down to where it belongs in the subtree.
// while (data[start] < data[childIndex) {
// swap(data[start], data[childIndex])
// start = childIndex
// if ((n - 2)/2 >= child) {
// // Left child exists.
// child = 2*child + 1
// childIndex = child + 1
// if (child + 1) < n && data[childIndex] < data[childIndex+1]
// childIndex++; child++;
// }
// }
// }
// }
// }
//
static void createShiftDownFunc(OpBuilder &builder, ModuleOp module,
func::FuncOp func, uint64_t nx, uint64_t ny,
bool isCoo, uint32_t nTrailingP) {
// The value n is passed in as a trailing parameter.
assert(nTrailingP == 1);
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = func.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
Location loc = func.getLoc();
Value n = entryBlock->getArguments().back();
ValueRange args = entryBlock->getArguments().drop_back();
Value first = args[loIdx];
Value start = args[hiIdx];
// If (n >= 2).
Value c2 = constantIndex(builder, loc, 2);
Value condN =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::uge, n, c2);
scf::IfOp ifN = builder.create<scf::IfOp>(loc, condN, /*else=*/false);
builder.setInsertionPointToStart(&ifN.getThenRegion().front());
Value child = builder.create<arith::SubIOp>(loc, start, first);
// If ((n-2)/2 >= child).
Value t = createSubTwoDividedByTwo(builder, loc, n);
Value condNc =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::uge, t, child);
scf::IfOp ifNc = builder.create<scf::IfOp>(loc, condNc, /*else=*/false);
builder.setInsertionPointToStart(&ifNc.getThenRegion().front());
Value c1 = constantIndex(builder, loc, 1);
SmallVector<Value> compareOperands{start, start};
uint64_t numXBuffers = isCoo ? 1 : nx;
compareOperands.append(args.begin() + xStartIdx,
args.begin() + xStartIdx + numXBuffers);
// Generate code to inspect the children of 'r' and return the larger child
// as follows:
// child = r * 2 + 1 // Left child.
// childIndex = child + first
// if (child+1 < n && data[childIndex] < data[childIndex+1])
// childIndex ++; child ++ // Right child is bigger.
auto getLargerChild = [&](Value r) -> std::pair<Value, Value> {
Value lChild = builder.create<arith::ShLIOp>(loc, r, c1);
lChild = builder.create<arith::AddIOp>(loc, lChild, c1);
Value lChildIdx = builder.create<arith::AddIOp>(loc, lChild, first);
Value rChild = builder.create<arith::AddIOp>(loc, lChild, c1);
Value cond1 = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
rChild, n);
SmallVector<Type, 2> ifTypes(2, r.getType());
scf::IfOp if1 =
builder.create<scf::IfOp>(loc, ifTypes, cond1, /*else=*/true);
builder.setInsertionPointToStart(&if1.getThenRegion().front());
Value rChildIdx = builder.create<arith::AddIOp>(loc, rChild, first);
// Compare data[left] < data[right].
compareOperands[0] = lChildIdx;
compareOperands[1] = rChildIdx;
Value cond2 =
createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
scf::IfOp if2 =
builder.create<scf::IfOp>(loc, ifTypes, cond2, /*else=*/true);
builder.setInsertionPointToStart(&if2.getThenRegion().front());
builder.create<scf::YieldOp>(loc, ValueRange{rChild, rChildIdx});
builder.setInsertionPointToStart(&if2.getElseRegion().front());
builder.create<scf::YieldOp>(loc, ValueRange{lChild, lChildIdx});
builder.setInsertionPointAfter(if2);
builder.create<scf::YieldOp>(loc, if2.getResults());
builder.setInsertionPointToStart(&if1.getElseRegion().front());
builder.create<scf::YieldOp>(loc, ValueRange{lChild, lChildIdx});
builder.setInsertionPointAfter(if1);
return std::make_pair(if1.getResult(0), if1.getResult(1));
};
Value childIdx;
std::tie(child, childIdx) = getLargerChild(child);
// While (data[start] < data[childIndex]).
SmallVector<Type, 3> types(3, child.getType());
scf::WhileOp whileOp = builder.create<scf::WhileOp>(
loc, types, SmallVector<Value, 2>{start, child, childIdx});
// The before-region of the WhileOp.
SmallVector<Location, 3> locs(3, loc);
Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
builder.setInsertionPointToEnd(before);
start = before->getArgument(0);
childIdx = before->getArgument(2);
compareOperands[0] = start;
compareOperands[1] = childIdx;
Value cond =
createInlinedLessThan(builder, loc, compareOperands, nx, ny, isCoo);
builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
// The after-region of the WhileOp.
Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);
start = after->getArgument(0);
child = after->getArgument(1);
childIdx = after->getArgument(2);
SmallVector<Value> swapOperands{start, childIdx};
swapOperands.append(args.begin() + xStartIdx, args.end());
createSwap(builder, loc, swapOperands, nx, ny, isCoo);
start = childIdx;
Value cond2 =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::uge, t, child);
scf::IfOp if2 = builder.create<scf::IfOp>(
loc, TypeRange{child.getType(), child.getType()}, cond2, /*else=*/true);
builder.setInsertionPointToStart(&if2.getThenRegion().front());
auto [newChild, newChildIdx] = getLargerChild(child);
builder.create<scf::YieldOp>(loc, ValueRange{newChild, newChildIdx});
builder.setInsertionPointToStart(&if2.getElseRegion().front());
builder.create<scf::YieldOp>(loc, ValueRange{child, childIdx});
builder.setInsertionPointAfter(if2);
builder.create<scf::YieldOp>(
loc, ValueRange{start, if2.getResult(0), if2.getResult(1)});
builder.setInsertionPointAfter(ifN);
builder.create<func::ReturnOp>(loc);
}
/// Creates a function to perform heap sort on the values in the range of index
/// [lo, hi) with the assumption hi - lo >= 2.
//
// The generate IR corresponds to this C like algorithm:
// void heapSort(lo, hi, data) {
// n = hi - lo
// for i = (n-2)/2 downto 0
// shiftDown(lo, lo+i, n)
//
// for l = n downto 2
// swap(lo, lo+l-1)
// shiftdown(lo, lo, l-1)
// }
static void createHeapSortFunc(OpBuilder &builder, ModuleOp module,
func::FuncOp func, uint64_t nx, uint64_t ny,
bool isCoo, uint32_t nTrailingP) {
// Heap sort function doesn't have trailing parameters.
(void)nTrailingP;
assert(nTrailingP == 0);
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = func.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
Location loc = func.getLoc();
ValueRange args = entryBlock->getArguments();
Value lo = args[loIdx];
Value hi = args[hiIdx];
Value n = builder.create<arith::SubIOp>(loc, hi, lo);
// For i = (n-2)/2 downto 0.
Value c0 = constantIndex(builder, loc, 0);
Value c1 = constantIndex(builder, loc, 1);
Value s = createSubTwoDividedByTwo(builder, loc, n);
Value up = builder.create<arith::AddIOp>(loc, s, c1);
scf::ForOp forI = builder.create<scf::ForOp>(loc, c0, up, c1);
builder.setInsertionPointToStart(forI.getBody());
Value i = builder.create<arith::SubIOp>(loc, s, forI.getInductionVar());
Value lopi = builder.create<arith::AddIOp>(loc, lo, i);
SmallVector<Value> shiftDownOperands = {lo, lopi};
shiftDownOperands.append(args.begin() + xStartIdx, args.end());
shiftDownOperands.push_back(n);
FlatSymbolRefAttr shiftDownFunc = getMangledSortHelperFunc(
builder, func, TypeRange(), kShiftDownFuncNamePrefix, nx, ny, isCoo,
shiftDownOperands, createShiftDownFunc, /*nTrailingP=*/1);
builder.create<func::CallOp>(loc, shiftDownFunc, TypeRange(),
shiftDownOperands);
builder.setInsertionPointAfter(forI);
// For l = n downto 2.
up = builder.create<arith::SubIOp>(loc, n, c1);
scf::ForOp forL = builder.create<scf::ForOp>(loc, c0, up, c1);
builder.setInsertionPointToStart(forL.getBody());
Value l = builder.create<arith::SubIOp>(loc, n, forL.getInductionVar());
Value loplm1 = builder.create<arith::AddIOp>(loc, lo, l);
loplm1 = builder.create<arith::SubIOp>(loc, loplm1, c1);
SmallVector<Value> swapOperands{lo, loplm1};
swapOperands.append(args.begin() + xStartIdx, args.end());
createSwap(builder, loc, swapOperands, nx, ny, isCoo);
shiftDownOperands[1] = lo;
shiftDownOperands[shiftDownOperands.size() - 1] =
builder.create<arith::SubIOp>(loc, l, c1);
builder.create<func::CallOp>(loc, shiftDownFunc, TypeRange(),
shiftDownOperands);
builder.setInsertionPointAfter(forL);
builder.create<func::ReturnOp>(loc);
}
/// A helper for generating code to perform quick sort. It partitions [lo, hi),
/// recursively calls quick sort to process the smaller partition and returns
/// the bigger partition to be processed by the enclosed while-loop.
static std::pair<Value, Value>
createQuickSort(OpBuilder &builder, ModuleOp module, func::FuncOp func,
ValueRange args, uint64_t nx, uint64_t ny, bool isCoo,
uint32_t nTrailingP) {
MLIRContext *context = module.getContext();
Location loc = func.getLoc();
Value lo = args[loIdx];
Value hi = args[hiIdx];
FlatSymbolRefAttr partitionFunc = getMangledSortHelperFunc(
builder, func, {IndexType::get(context)}, kPartitionFuncNamePrefix, nx,
ny, isCoo, args.drop_back(nTrailingP), createPartitionFunc);
Value p = builder
.create<func::CallOp>(loc, partitionFunc,
TypeRange{IndexType::get(context)},
args.drop_back(nTrailingP))
.getResult(0);
Value pP1 =
builder.create<arith::AddIOp>(loc, p, constantIndex(builder, loc, 1));
Value lenLow = builder.create<arith::SubIOp>(loc, p, lo);
Value lenHigh = builder.create<arith::SubIOp>(loc, hi, p);
Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule,
lenLow, lenHigh);
SmallVector<Type, 2> types(2, lo.getType()); // Only two types.
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
Value c0 = constantIndex(builder, loc, 0);
auto mayRecursion = [&](Value low, Value high, Value len) {
Value cond =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ne, len, c0);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, cond, /*else=*/false);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
SmallVector<Value> operands{low, high};
operands.append(args.begin() + xStartIdx, args.end());
builder.create<func::CallOp>(loc, func, operands);
builder.setInsertionPointAfter(ifOp);
};
// Recursively call quickSort to process the smaller partition and return
// the bigger partition to be processed by the enclosed while-loop.
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
mayRecursion(lo, p, lenLow);
builder.create<scf::YieldOp>(loc, ValueRange{pP1, hi});
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
mayRecursion(pP1, hi, lenHigh);
builder.create<scf::YieldOp>(loc, ValueRange{lo, p});
builder.setInsertionPointAfter(ifOp);
return std::make_pair(ifOp.getResult(0), ifOp.getResult(1));
}
/// Creates a function to perform insertion sort on the values in the range of
/// index [lo, hi).
//
// The generate IR corresponds to this C like algorithm:
// void insertionSort(lo, hi, data) {
// for (i = lo+1; i < hi; i++) {
// d = data[i];
// p = binarySearch(lo, i-1, data)
// for (j = 0; j > i - p; j++)
// data[i-j] = data[i-j-1]
// data[p] = d
// }
// }
static void createSortStableFunc(OpBuilder &builder, ModuleOp module,
func::FuncOp func, uint64_t nx, uint64_t ny,
bool isCoo, uint32_t nTrailingP) {
// Stable sort function doesn't use trailing parameters.
(void)nTrailingP;
assert(nTrailingP == 0);
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = func.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
MLIRContext *context = module.getContext();
Location loc = func.getLoc();
ValueRange args = entryBlock->getArguments();
Value c1 = constantIndex(builder, loc, 1);
Value lo = args[loIdx];
Value hi = args[hiIdx];
Value lop1 = builder.create<arith::AddIOp>(loc, lo, c1);
// Start the outer for-stmt with induction variable i.
scf::ForOp forOpI = builder.create<scf::ForOp>(loc, lop1, hi, c1);
builder.setInsertionPointToStart(forOpI.getBody());
Value i = forOpI.getInductionVar();
// Binary search to find the insertion point p.
SmallVector<Value> operands{lo, i};
operands.append(args.begin() + xStartIdx, args.end());
FlatSymbolRefAttr searchFunc = getMangledSortHelperFunc(
builder, func, {IndexType::get(context)}, kBinarySearchFuncNamePrefix, nx,
ny, isCoo, operands, createBinarySearchFunc);
Value p = builder
.create<func::CallOp>(loc, searchFunc, TypeRange{c1.getType()},
operands)
.getResult(0);
// Move the value at data[i] to a temporary location.
operands[0] = operands[1] = i;
SmallVector<Value> d;
forEachIJPairInAllBuffers(
builder, loc, operands, nx, ny, isCoo,
[&](uint64_t unused, Value i, Value unused2, Value buffer) {
d.push_back(builder.create<memref::LoadOp>(loc, buffer, i));
});
// Start the inner for-stmt with induction variable j, for moving data[p..i)
// to data[p+1..i+1).
Value imp = builder.create<arith::SubIOp>(loc, i, p);
Value c0 = constantIndex(builder, loc, 0);
scf::ForOp forOpJ = builder.create<scf::ForOp>(loc, c0, imp, c1);
builder.setInsertionPointToStart(forOpJ.getBody());
Value j = forOpJ.getInductionVar();
Value imj = builder.create<arith::SubIOp>(loc, i, j);
operands[1] = imj;
operands[0] = builder.create<arith::SubIOp>(loc, imj, c1);
forEachIJPairInAllBuffers(
builder, loc, operands, nx, ny, isCoo,
[&](uint64_t unused, Value imjm1, Value imj, Value buffer) {
Value t = builder.create<memref::LoadOp>(loc, buffer, imjm1);
builder.create<memref::StoreOp>(loc, t, buffer, imj);
});
// Store the value at data[i] to data[p].
builder.setInsertionPointAfter(forOpJ);
operands[0] = operands[1] = p;
forEachIJPairInAllBuffers(
builder, loc, operands, nx, ny, isCoo,
[&](uint64_t k, Value p, Value usused, Value buffer) {
builder.create<memref::StoreOp>(loc, d[k], buffer, p);
});
builder.setInsertionPointAfter(forOpI);
builder.create<func::ReturnOp>(loc);
}
/// Creates a function to perform quick sort or a hybrid quick sort on the
/// values in the range of index [lo, hi).
//
//
// When nTrailingP == 0, the generated IR corresponds to this C like algorithm:
// void quickSort(lo, hi, data) {
// while (lo + 1 < hi) {
// p = partition(low, high, data);
// if (len(lo, p) < len(p+1, hi)) {
// quickSort(lo, p, data);
// lo = p+1;
// } else {
// quickSort(p + 1, hi, data);
// hi = p;
// }
// }
// }
//
// When nTrailingP == 1, the generated IR corresponds to this C like algorithm:
// void hybridQuickSort(lo, hi, data, depthLimit) {
// while (lo + 1 < hi) {
// len = hi - lo;
// if (len <= limit) {
// insertionSort(lo, hi, data);
// } else {
// depthLimit --;
// if (depthLimit <= 0) {
// heapSort(lo, hi, data);
// } else {
// p = partition(low, high, data);
// if (len(lo, p) < len(p+1, hi)) {
// quickSort(lo, p, data, depthLimit);
// lo = p+1;
// } else {
// quickSort(p + 1, hi, data, depthLimit);
// hi = p;
// }
// }
// }
// }
// }
//
static void createQuickSortFunc(OpBuilder &builder, ModuleOp module,
func::FuncOp func, uint64_t nx, uint64_t ny,
bool isCoo, uint32_t nTrailingP) {
assert(nTrailingP == 1 || nTrailingP == 0);
bool isHybrid = (nTrailingP == 1);
OpBuilder::InsertionGuard insertionGuard(builder);
Block *entryBlock = func.addEntryBlock();
builder.setInsertionPointToStart(entryBlock);
Location loc = func.getLoc();
SmallVector<Value> args;
args.append(entryBlock->getArguments().begin(),
entryBlock->getArguments().end());
Value lo = args[loIdx];
Value hi = args[hiIdx];
SmallVector<Type, 2> types(2, lo.getType()); // Only two types.
scf::WhileOp whileOp =
builder.create<scf::WhileOp>(loc, types, SmallVector<Value, 2>{lo, hi});
// The before-region of the WhileOp.
Block *before =
builder.createBlock(&whileOp.getBefore(), {}, types, {loc, loc});
builder.setInsertionPointToEnd(before);
lo = before->getArgument(0);
hi = before->getArgument(1);
Value loP1 =
builder.create<arith::AddIOp>(loc, lo, constantIndex(builder, loc, 1));
Value needSort =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, loP1, hi);
builder.create<scf::ConditionOp>(loc, needSort, before->getArguments());
// The after-region of the WhileOp.
Block *after =
builder.createBlock(&whileOp.getAfter(), {}, types, {loc, loc});
builder.setInsertionPointToEnd(after);
lo = after->getArgument(0);
hi = after->getArgument(1);
args[0] = lo;
args[1] = hi;
if (isHybrid) {
Value len = builder.create<arith::SubIOp>(loc, hi, lo);
Value lenLimit = constantIndex(builder, loc, 30);
Value lenCond = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ule, len, lenLimit);
scf::IfOp lenIf =
builder.create<scf::IfOp>(loc, types, lenCond, /*else=*/true);
// When len <= limit.
builder.setInsertionPointToStart(&lenIf.getThenRegion().front());
FlatSymbolRefAttr insertionSortFunc = getMangledSortHelperFunc(
builder, func, TypeRange(), kSortStableFuncNamePrefix, nx, ny, isCoo,
ValueRange(args).drop_back(nTrailingP), createSortStableFunc);
builder.create<func::CallOp>(loc, insertionSortFunc, TypeRange(),
ValueRange(args).drop_back(nTrailingP));
builder.create<scf::YieldOp>(loc, ValueRange{lo, lo});
// When len > limit.
builder.setInsertionPointToStart(&lenIf.getElseRegion().front());
Value depthLimit = args.back();
depthLimit = builder.create<arith::SubIOp>(loc, depthLimit,
constantI64(builder, loc, 1));
Value depthCond =
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule,
depthLimit, constantI64(builder, loc, 0));
scf::IfOp depthIf =
builder.create<scf::IfOp>(loc, types, depthCond, /*else=*/true);
// When depth exceeds limit.
builder.setInsertionPointToStart(&depthIf.getThenRegion().front());
FlatSymbolRefAttr heapSortFunc = getMangledSortHelperFunc(
builder, func, TypeRange(), kHeapSortFuncNamePrefix, nx, ny, isCoo,
ValueRange(args).drop_back(nTrailingP), createHeapSortFunc);
builder.create<func::CallOp>(loc, heapSortFunc, TypeRange(),
ValueRange(args).drop_back(nTrailingP));
builder.create<scf::YieldOp>(loc, ValueRange{lo, lo});
// When depth doesn't exceed limit.
builder.setInsertionPointToStart(&depthIf.getElseRegion().front());
args.back() = depthLimit;
std::tie(lo, hi) =
createQuickSort(builder, module, func, args, nx, ny, isCoo, nTrailingP);
builder.create<scf::YieldOp>(loc, ValueRange{lo, hi});
builder.setInsertionPointAfter(depthIf);
lo = depthIf.getResult(0);
hi = depthIf.getResult(1);
builder.create<scf::YieldOp>(loc, ValueRange{lo, hi});
builder.setInsertionPointAfter(lenIf);
lo = lenIf.getResult(0);
hi = lenIf.getResult(1);
} else {
std::tie(lo, hi) =
createQuickSort(builder, module, func, args, nx, ny, isCoo, nTrailingP);
}
// New [lo, hi) for the next while-loop iteration.
builder.create<scf::YieldOp>(loc, ValueRange{lo, hi});
// After the while-loop.
builder.setInsertionPointAfter(whileOp);
builder.create<func::ReturnOp>(loc);
}
/// Implements the rewriting for operator sort and sort_coo.
template <typename OpTy>
LogicalResult matchAndRewriteSortOp(OpTy op, ValueRange xys, uint64_t nx,
uint64_t ny, bool isCoo,
PatternRewriter &rewriter) {
Location loc = op.getLoc();
SmallVector<Value> operands{constantIndex(rewriter, loc, 0), op.getN()};
// Convert `values` to have dynamic shape and append them to `operands`.
for (Value v : xys) {
auto mtp = getMemRefType(v);
if (!mtp.isDynamicDim(0)) {
auto newMtp =
MemRefType::get({ShapedType::kDynamic}, mtp.getElementType());
v = rewriter.create<memref::CastOp>(loc, newMtp, v);
}
operands.push_back(v);
}
auto insertPoint = op->template getParentOfType<func::FuncOp>();
if (!insertPoint)
return failure();
SmallString<32> funcName;
FuncGeneratorType funcGenerator;
uint32_t nTrailingP = 0;
switch (op.getAlgorithm()) {
case SparseTensorSortKind::HybridQuickSort: {
funcName = kHybridQuickSortFuncNamePrefix;
funcGenerator = createQuickSortFunc;
nTrailingP = 1;
// As a heuristics, set depthLimit = 2 * log2(n).
Value lo = operands[loIdx];
Value hi = operands[hiIdx];
Value len = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getI64Type(),
rewriter.create<arith::SubIOp>(loc, hi, lo));
Value depthLimit = rewriter.create<arith::SubIOp>(
loc, constantI64(rewriter, loc, 64),
rewriter.create<math::CountLeadingZerosOp>(loc, len));
operands.push_back(depthLimit);
break;
}
case SparseTensorSortKind::QuickSort:
funcName = kQuickSortFuncNamePrefix;
funcGenerator = createQuickSortFunc;
break;
case SparseTensorSortKind::InsertionSortStable:
funcName = kSortStableFuncNamePrefix;
funcGenerator = createSortStableFunc;
break;
case SparseTensorSortKind::HeapSort:
funcName = kHeapSortFuncNamePrefix;
funcGenerator = createHeapSortFunc;
break;
}
FlatSymbolRefAttr func =
getMangledSortHelperFunc(rewriter, insertPoint, TypeRange(), funcName, nx,
ny, isCoo, operands, funcGenerator, nTrailingP);
rewriter.replaceOpWithNewOp<func::CallOp>(op, func, TypeRange(), operands);
return success();
}
//===---------------------------------------------------------------------===//
// The actual sparse buffer rewriting rules.
//===---------------------------------------------------------------------===//
namespace {
/// Sparse rewriting rule for the push_back operator.
struct PushBackRewriter : OpRewritePattern<PushBackOp> {
public:
using OpRewritePattern<PushBackOp>::OpRewritePattern;
PushBackRewriter(MLIRContext *context, bool enableInit)
: OpRewritePattern(context), enableBufferInitialization(enableInit) {}
LogicalResult matchAndRewrite(PushBackOp op,
PatternRewriter &rewriter) const override {
// Rewrite push_back(buffer, value, n) to:
// new_size = size(buffer) + n
// if (new_size > capacity(buffer))
// while new_size > new_capacity
// new_capacity = new_capacity*2
// new_buffer = realloc(buffer, new_capacity)
// buffer = new_buffer
// subBuffer = subviewof(buffer)
// linalg.fill subBuffer value
//
// size(buffer) += n
//
// The capacity check is skipped when the attribute inbounds is presented.
Location loc = op->getLoc();
Value c0 = constantIndex(rewriter, loc, 0);
Value buffer = op.getInBuffer();
Value capacity = rewriter.create<memref::DimOp>(loc, buffer, c0);
Value size = op.getCurSize();
Value value = op.getValue();
Value n = op.getN() ? op.getN() : constantIndex(rewriter, loc, 1);
Value newSize = rewriter.create<arith::AddIOp>(loc, size, n);
auto nValue = dyn_cast_or_null<arith::ConstantIndexOp>(n.getDefiningOp());
bool nIsOne = (nValue && nValue.value() == 1);
if (!op.getInbounds()) {
Value cond = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ugt, newSize, capacity);
Value c2 = constantIndex(rewriter, loc, 2);
auto bufferType =
MemRefType::get({ShapedType::kDynamic}, value.getType());
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, bufferType, cond,
/*else=*/true);
// True branch.
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
if (nIsOne) {
capacity = rewriter.create<arith::MulIOp>(loc, capacity, c2);
} else {
// Use a do-while loop to calculate the new capacity as follows:
// do { new_capacity *= 2 } while (size > new_capacity)
scf::WhileOp whileOp =
rewriter.create<scf::WhileOp>(loc, capacity.getType(), capacity);
// The before-region of the WhileOp.
Block *before = rewriter.createBlock(&whileOp.getBefore(), {},
{capacity.getType()}, {loc});
rewriter.setInsertionPointToEnd(before);
capacity =
rewriter.create<arith::MulIOp>(loc, before->getArgument(0), c2);
cond = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ugt,
newSize, capacity);
rewriter.create<scf::ConditionOp>(loc, cond, ValueRange{capacity});
// The after-region of the WhileOp.
Block *after = rewriter.createBlock(&whileOp.getAfter(), {},
{capacity.getType()}, {loc});
rewriter.setInsertionPointToEnd(after);
rewriter.create<scf::YieldOp>(loc, after->getArguments());
rewriter.setInsertionPointAfter(whileOp);
capacity = whileOp.getResult(0);
}
Value newBuffer =
rewriter.create<memref::ReallocOp>(loc, bufferType, buffer, capacity);
if (enableBufferInitialization) {
Value fillSize = rewriter.create<arith::SubIOp>(loc, capacity, newSize);
Value fillValue = constantZero(rewriter, loc, value.getType());
Value subBuffer = rewriter.create<memref::SubViewOp>(
loc, newBuffer, /*offset=*/ValueRange{newSize},
/*size=*/ValueRange{fillSize},
/*step=*/ValueRange{constantIndex(rewriter, loc, 1)});
rewriter.create<linalg::FillOp>(loc, fillValue, subBuffer);
}
rewriter.create<scf::YieldOp>(loc, newBuffer);
// False branch.
rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
rewriter.create<scf::YieldOp>(loc, buffer);
// Prepare for adding the value to the end of the buffer.
rewriter.setInsertionPointAfter(ifOp);
buffer = ifOp.getResult(0);
}
// Add the value to the end of the buffer.
if (nIsOne) {
rewriter.create<memref::StoreOp>(loc, value, buffer, size);
} else {
Value subBuffer = rewriter.create<memref::SubViewOp>(
loc, buffer, /*offset=*/ValueRange{size}, /*size=*/ValueRange{n},
/*step=*/ValueRange{constantIndex(rewriter, loc, 1)});
rewriter.create<linalg::FillOp>(loc, value, subBuffer);
}
// Update the buffer size.
rewriter.replaceOp(op, {buffer, newSize});
return success();
}
private:
bool enableBufferInitialization;
};
/// Sparse rewriting rule for the sort operator.
struct SortRewriter : public OpRewritePattern<SortOp> {
public:
using OpRewritePattern<SortOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SortOp op,
PatternRewriter &rewriter) const override {
SmallVector<Value> xys(op.getXs());
xys.append(op.getYs().begin(), op.getYs().end());
return matchAndRewriteSortOp(op, xys, op.getXs().size(), /*ny=*/0,
/*isCoo=*/false, rewriter);
}
};
/// Sparse rewriting rule for the sort_coo operator.
struct SortCooRewriter : public OpRewritePattern<SortCooOp> {
public:
using OpRewritePattern<SortCooOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SortCooOp op,
PatternRewriter &rewriter) const override {
SmallVector<Value> xys;
xys.push_back(op.getXy());
xys.append(op.getYs().begin(), op.getYs().end());
uint64_t nx = 1;
if (auto nxAttr = op.getNxAttr())
nx = nxAttr.getInt();
uint64_t ny = 0;
if (auto nyAttr = op.getNyAttr())
ny = nyAttr.getInt();
return matchAndRewriteSortOp(op, xys, nx, ny,
/*isCoo=*/true, rewriter);
}
};
} // namespace
//===---------------------------------------------------------------------===//
// Methods that add patterns described in this file to a pattern list.
//===---------------------------------------------------------------------===//
void mlir::populateSparseBufferRewriting(RewritePatternSet &patterns,
bool enableBufferInitialization) {
patterns.add<PushBackRewriter>(patterns.getContext(),
enableBufferInitialization);
patterns.add<SortRewriter, SortCooRewriter>(patterns.getContext());
}