
In a later PR more shape_cast ops will appear. Specifically, broadcasts that just prepend ones become shape_cast ops (i.e. volume preserving broadcasts are canonicalized to shape_casts). This PR ensures that broadcast-like shape_cast ops fold at least as well as broadcast ops. This is done by modifying patterns that target broadcast ops, to target 'broadcast-like' ops. No new patterns are added, the patterns that exist are just made to match on shape_casts where appropriate. This PR also includes minor code simplifications: use `isBroadcastableTo` to simplify `ExtractOpFromBroadcast` and simplify how broadcast dims are detected in `foldExtractFromBroadcast`. These are NFC. --------- Co-authored-by: Andrzej Warzyński <andrzej.warzynski@gmail.com>
7366 lines
286 KiB
C++
7366 lines
286 KiB
C++
//===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements convenience types for working with super-vectorization
|
|
// operations, in particular super-vector loads and stores.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
|
|
#include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h"
|
|
#include "mlir/Dialect/Affine/IR/ValueBoundsOpInterfaceImpl.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Arith/Utils/Utils.h"
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/UB/IR/UBOps.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinAttributes.h"
|
|
#include "mlir/IR/BuiltinTypes.h"
|
|
#include "mlir/IR/DialectImplementation.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/IR/ValueRange.h"
|
|
#include "mlir/Interfaces/SubsetOpInterface.h"
|
|
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Transforms/InliningUtils.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/Casting.h"
|
|
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
|
|
#include "mlir/Dialect/Vector/IR/VectorDialect.cpp.inc"
|
|
// Pull in all enum type and utility function definitions.
|
|
#include "mlir/Dialect/Vector/IR/VectorEnums.cpp.inc"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::vector;
|
|
|
|
/// Helper enum to classify mask value.
|
|
enum class MaskFormat {
|
|
AllTrue = 0,
|
|
AllFalse = 1,
|
|
Unknown = 2,
|
|
};
|
|
|
|
/// Helper method to classify a mask value. Currently, the method
|
|
/// looks "under the hood" of a constant value with dense attributes
|
|
/// and a constant mask operation (since the client may be called at
|
|
/// various stages during progressive lowering).
|
|
static MaskFormat getMaskFormat(Value mask) {
|
|
if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
|
|
// Inspect constant dense values. We count up for bits that
|
|
// are set, count down for bits that are cleared, and bail
|
|
// when a mix is detected.
|
|
if (auto denseElts = llvm::dyn_cast<DenseIntElementsAttr>(c.getValue())) {
|
|
int64_t val = 0;
|
|
for (bool b : denseElts.getValues<bool>())
|
|
if (b && val >= 0)
|
|
val++;
|
|
else if (!b && val <= 0)
|
|
val--;
|
|
else
|
|
return MaskFormat::Unknown;
|
|
if (val > 0)
|
|
return MaskFormat::AllTrue;
|
|
if (val < 0)
|
|
return MaskFormat::AllFalse;
|
|
}
|
|
} else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
|
|
// Inspect constant mask index. If the index exceeds the
|
|
// dimension size, all bits are set. If the index is zero
|
|
// or less, no bits are set.
|
|
ArrayRef<int64_t> masks = m.getMaskDimSizes();
|
|
auto shape = m.getType().getShape();
|
|
bool allTrue = true;
|
|
bool allFalse = true;
|
|
for (auto [maskIdx, dimSize] : llvm::zip_equal(masks, shape)) {
|
|
if (maskIdx < dimSize)
|
|
allTrue = false;
|
|
if (maskIdx > 0)
|
|
allFalse = false;
|
|
}
|
|
if (allTrue)
|
|
return MaskFormat::AllTrue;
|
|
if (allFalse)
|
|
return MaskFormat::AllFalse;
|
|
} else if (auto m = mask.getDefiningOp<CreateMaskOp>()) {
|
|
// Finds all-false create_masks. An all-true create_mask requires all
|
|
// dims to be constants, so that'll be folded to a constant_mask, then
|
|
// detected in the constant_mask case.
|
|
auto maskOperands = m.getOperands();
|
|
for (Value operand : maskOperands) {
|
|
if (auto constantOp = operand.getDefiningOp<arith::ConstantOp>()) {
|
|
int64_t dimSize =
|
|
llvm::cast<IntegerAttr>(constantOp.getValue()).getInt();
|
|
if (dimSize <= 0)
|
|
return MaskFormat::AllFalse;
|
|
}
|
|
}
|
|
return MaskFormat::Unknown;
|
|
}
|
|
return MaskFormat::Unknown;
|
|
}
|
|
|
|
/// Default callback to build a region with a 'vector.yield' terminator with no
|
|
/// arguments.
|
|
void mlir::vector::buildTerminatedBody(OpBuilder &builder, Location loc) {
|
|
builder.create<vector::YieldOp>(loc);
|
|
}
|
|
|
|
// Helper for verifying combining kinds in contractions and reductions.
|
|
static bool isSupportedCombiningKind(CombiningKind combiningKind,
|
|
Type elementType) {
|
|
switch (combiningKind) {
|
|
case CombiningKind::ADD:
|
|
case CombiningKind::MUL:
|
|
return elementType.isIntOrIndexOrFloat();
|
|
case CombiningKind::MINUI:
|
|
case CombiningKind::MINSI:
|
|
case CombiningKind::MAXUI:
|
|
case CombiningKind::MAXSI:
|
|
case CombiningKind::AND:
|
|
case CombiningKind::OR:
|
|
case CombiningKind::XOR:
|
|
return elementType.isIntOrIndex();
|
|
case CombiningKind::MINNUMF:
|
|
case CombiningKind::MAXNUMF:
|
|
case CombiningKind::MINIMUMF:
|
|
case CombiningKind::MAXIMUMF:
|
|
return llvm::isa<FloatType>(elementType);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns the effective rank of the vector to read/write for Xfer Ops
|
|
///
|
|
/// When the element type of the shaped type is _a scalar_, this will simply
|
|
/// return the rank of the vector ( the result for xfer_read or the value to
|
|
/// store for xfer_write).
|
|
///
|
|
/// When the element type of the base shaped type is _a vector_, returns the
|
|
/// difference between the original vector type and the element type of the
|
|
/// shaped type.
|
|
///
|
|
/// EXAMPLE 1 (element type is _a scalar_):
|
|
/// - shapedType = tensor<10x20xf32>, vectorType = vector<2x4xf32>
|
|
/// - shapedType.getElementType() = f32 (rank 0)
|
|
/// - vectorType.getRank() = 2
|
|
/// - Result = 2 - 0 = 2
|
|
///
|
|
/// EXAMPLE 2 (element type is _a vector_):
|
|
/// - shapedType = tensor<10xvector<20xf32>>, vectorType = vector<20xf32>
|
|
/// - shapedType.getElementType() = vector<20xf32> (rank 1)
|
|
/// - vectorType.getRank() = 1
|
|
/// - Result = 1 - 1 = 0
|
|
///
|
|
/// This is used to determine the number of minor dimensions for identity maps
|
|
/// in vector transfer Ops.
|
|
static unsigned getEffectiveVectorRankForXferOp(ShapedType shapedType,
|
|
VectorType vectorType) {
|
|
unsigned elementVectorRank = 0;
|
|
VectorType elementVectorType =
|
|
llvm::dyn_cast<VectorType>(shapedType.getElementType());
|
|
if (elementVectorType)
|
|
elementVectorRank += elementVectorType.getRank();
|
|
return vectorType.getRank() - elementVectorRank;
|
|
}
|
|
|
|
AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
|
|
VectorType vectorType) {
|
|
// 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
|
|
// TODO: replace once we have 0-d vectors.
|
|
if (shapedType.getRank() == 0 &&
|
|
vectorType.getShape() == ArrayRef<int64_t>{1})
|
|
return AffineMap::get(
|
|
/*numDims=*/0, /*numSymbols=*/0,
|
|
getAffineConstantExpr(0, shapedType.getContext()));
|
|
return AffineMap::getMinorIdentityMap(
|
|
shapedType.getRank(),
|
|
getEffectiveVectorRankForXferOp(shapedType, vectorType),
|
|
shapedType.getContext());
|
|
}
|
|
|
|
/// Check if `write` is of a constant splat and the masked `read` is padded with
|
|
/// the same splat value -- meaning it could be the same value as the initial
|
|
/// constant splat.
|
|
static bool isSplatWriteConsistentWithMaskedRead(vector::TransferWriteOp write,
|
|
vector::TransferReadOp read) {
|
|
auto readMask = read.getMask();
|
|
auto writeMask = write.getMask();
|
|
// Check if the masks are consistent. The splat value could be the same if the
|
|
// read is masked (and padded with the splat value), and the write is unmasked
|
|
// or has the same mask. Note this does not allow the case where the write is
|
|
// masked and the read is unmasked, as then the read could be of more elements
|
|
// than the write (which may not be the same value).
|
|
bool couldBeSameSplat = readMask && (!writeMask || writeMask == readMask);
|
|
if (!couldBeSameSplat)
|
|
return false;
|
|
// Check for constant splat (as the source of the write).
|
|
DenseElementsAttr splatAttr;
|
|
if (!matchPattern(write.getVector(),
|
|
m_Constant<DenseElementsAttr>(&splatAttr)) ||
|
|
!splatAttr.isSplat()) {
|
|
return false;
|
|
}
|
|
// The padding of the read and the constant splat value must be the same.
|
|
Attribute padAttr;
|
|
if (!matchPattern(read.getPadding(), m_Constant(&padAttr)))
|
|
return false;
|
|
return padAttr == splatAttr.getSplatValue<Attribute>();
|
|
}
|
|
|
|
bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
|
|
vector::TransferReadOp read) {
|
|
return !defWrite.hasOutOfBoundsDim() &&
|
|
defWrite.getIndices() == read.getIndices() &&
|
|
defWrite.getVectorType() == read.getVectorType() &&
|
|
defWrite.getPermutationMap() == read.getPermutationMap() &&
|
|
((!defWrite.getMask() && !read.getMask()) ||
|
|
isSplatWriteConsistentWithMaskedRead(defWrite, read));
|
|
}
|
|
|
|
bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
|
|
vector::TransferWriteOp priorWrite) {
|
|
return priorWrite.getIndices() == write.getIndices() &&
|
|
priorWrite.getMask() == write.getMask() &&
|
|
priorWrite.getVectorType() == write.getVectorType() &&
|
|
priorWrite.getPermutationMap() == write.getPermutationMap();
|
|
}
|
|
|
|
bool mlir::vector::isDisjointTransferIndices(
|
|
VectorTransferOpInterface transferA, VectorTransferOpInterface transferB,
|
|
bool testDynamicValueUsingBounds) {
|
|
// For simplicity only look at transfer of same type.
|
|
if (transferA.getVectorType() != transferB.getVectorType())
|
|
return false;
|
|
unsigned rankOffset = transferA.getLeadingShapedRank();
|
|
for (unsigned i = 0, e = transferA.getIndices().size(); i < e; i++) {
|
|
Value indexA = transferA.getIndices()[i];
|
|
Value indexB = transferB.getIndices()[i];
|
|
std::optional<int64_t> cstIndexA = getConstantIntValue(indexA);
|
|
std::optional<int64_t> cstIndexB = getConstantIntValue(indexB);
|
|
|
|
if (i < rankOffset) {
|
|
// For leading dimensions, if we can prove that index are different we
|
|
// know we are accessing disjoint slices.
|
|
if (cstIndexA.has_value() && cstIndexB.has_value()) {
|
|
if (*cstIndexA != *cstIndexB)
|
|
return true;
|
|
continue;
|
|
}
|
|
if (testDynamicValueUsingBounds) {
|
|
// First try to see if we can fully compose and simplify the affine
|
|
// expression as a fast track.
|
|
FailureOr<uint64_t> delta =
|
|
affine::fullyComposeAndComputeConstantDelta(indexA, indexB);
|
|
if (succeeded(delta) && *delta != 0)
|
|
return true;
|
|
|
|
FailureOr<bool> testEqual =
|
|
ValueBoundsConstraintSet::areEqual(indexA, indexB);
|
|
if (succeeded(testEqual) && !testEqual.value())
|
|
return true;
|
|
}
|
|
} else {
|
|
// For this dimension, we slice a part of the memref we need to make sure
|
|
// the intervals accessed don't overlap.
|
|
int64_t vectorDim = transferA.getVectorType().getDimSize(i - rankOffset);
|
|
if (cstIndexA.has_value() && cstIndexB.has_value()) {
|
|
int64_t distance = std::abs(*cstIndexA - *cstIndexB);
|
|
if (distance >= vectorDim)
|
|
return true;
|
|
continue;
|
|
}
|
|
if (testDynamicValueUsingBounds) {
|
|
// First try to see if we can fully compose and simplify the affine
|
|
// expression as a fast track.
|
|
FailureOr<int64_t> delta =
|
|
affine::fullyComposeAndComputeConstantDelta(indexA, indexB);
|
|
if (succeeded(delta) && std::abs(*delta) >= vectorDim)
|
|
return true;
|
|
|
|
FailureOr<int64_t> computeDelta =
|
|
ValueBoundsConstraintSet::computeConstantDelta(indexA, indexB);
|
|
if (succeeded(computeDelta)) {
|
|
if (std::abs(computeDelta.value()) >= vectorDim)
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
|
|
VectorTransferOpInterface transferB,
|
|
bool testDynamicValueUsingBounds) {
|
|
if (transferA.getBase() != transferB.getBase())
|
|
return false;
|
|
return isDisjointTransferIndices(transferA, transferB,
|
|
testDynamicValueUsingBounds);
|
|
}
|
|
|
|
// Helper to iterate over n-D vector slice elements. Calculate the next
|
|
// `position` in the n-D vector of size `shape`, applying an offset `offsets`.
|
|
// Modifies the `position` in place. Returns a failure when `position` becomes
|
|
// the end position.
|
|
static LogicalResult incSlicePosition(MutableArrayRef<int64_t> position,
|
|
ArrayRef<int64_t> shape,
|
|
ArrayRef<int64_t> offsets) {
|
|
for (auto [posInDim, dimSize, offsetInDim] :
|
|
llvm::reverse(llvm::zip_equal(position, shape, offsets))) {
|
|
++posInDim;
|
|
if (posInDim < dimSize + offsetInDim)
|
|
return success();
|
|
|
|
// Carry the overflow to the next loop iteration.
|
|
posInDim = offsetInDim;
|
|
}
|
|
|
|
return failure();
|
|
}
|
|
|
|
/// Returns the integer numbers in `values`. `values` are expected to be
|
|
/// constant operations.
|
|
SmallVector<int64_t> vector::getAsIntegers(ArrayRef<Value> values) {
|
|
SmallVector<int64_t> ints;
|
|
llvm::transform(values, std::back_inserter(ints), [](Value value) {
|
|
auto constOp = value.getDefiningOp<arith::ConstantIndexOp>();
|
|
assert(constOp && "Unexpected non-constant index");
|
|
return constOp.value();
|
|
});
|
|
return ints;
|
|
}
|
|
|
|
/// Returns the integer numbers in `foldResults`. `foldResults` are expected to
|
|
/// be constant operations.
|
|
SmallVector<int64_t> vector::getAsIntegers(ArrayRef<OpFoldResult> foldResults) {
|
|
SmallVector<int64_t> ints;
|
|
llvm::transform(
|
|
foldResults, std::back_inserter(ints), [](OpFoldResult foldResult) {
|
|
assert(isa<Attribute>(foldResult) && "Unexpected non-constant index");
|
|
return cast<IntegerAttr>(cast<Attribute>(foldResult)).getInt();
|
|
});
|
|
return ints;
|
|
}
|
|
|
|
/// Convert `foldResults` into Values. Integer attributes are converted to
|
|
/// constant op.
|
|
SmallVector<Value> vector::getAsValues(OpBuilder &builder, Location loc,
|
|
ArrayRef<OpFoldResult> foldResults) {
|
|
SmallVector<Value> values;
|
|
llvm::transform(foldResults, std::back_inserter(values),
|
|
[&](OpFoldResult foldResult) {
|
|
if (auto attr = dyn_cast<Attribute>(foldResult))
|
|
return builder
|
|
.create<arith::ConstantIndexOp>(
|
|
loc, cast<IntegerAttr>(attr).getInt())
|
|
.getResult();
|
|
|
|
return cast<Value>(foldResult);
|
|
});
|
|
return values;
|
|
}
|
|
|
|
std::optional<int64_t> vector::getConstantVscaleMultiplier(Value value) {
|
|
if (value.getDefiningOp<vector::VectorScaleOp>())
|
|
return 1;
|
|
auto mul = value.getDefiningOp<arith::MulIOp>();
|
|
if (!mul)
|
|
return {};
|
|
auto lhs = mul.getLhs();
|
|
auto rhs = mul.getRhs();
|
|
if (lhs.getDefiningOp<vector::VectorScaleOp>())
|
|
return getConstantIntValue(rhs);
|
|
if (rhs.getDefiningOp<vector::VectorScaleOp>())
|
|
return getConstantIntValue(lhs);
|
|
return {};
|
|
}
|
|
|
|
/// Converts an IntegerAttr to have the specified type if needed.
|
|
/// This handles cases where constant attributes have a different type than the
|
|
/// target element type. If the input attribute is not an IntegerAttr or already
|
|
/// has the correct type, returns it unchanged.
|
|
static Attribute convertIntegerAttr(Attribute attr, Type expectedType) {
|
|
if (auto intAttr = mlir::dyn_cast<IntegerAttr>(attr)) {
|
|
if (intAttr.getType() != expectedType)
|
|
return IntegerAttr::get(expectedType, intAttr.getInt());
|
|
}
|
|
return attr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CombiningKindAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace mlir {
|
|
namespace vector {
|
|
namespace detail {
|
|
struct BitmaskEnumStorage : public AttributeStorage {
|
|
using KeyTy = uint64_t;
|
|
|
|
BitmaskEnumStorage(KeyTy val) : value(val) {}
|
|
|
|
bool operator==(const KeyTy &key) const { return value == key; }
|
|
|
|
static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
|
|
const KeyTy &key) {
|
|
return new (allocator.allocate<BitmaskEnumStorage>())
|
|
BitmaskEnumStorage(key);
|
|
}
|
|
|
|
KeyTy value = 0;
|
|
};
|
|
} // namespace detail
|
|
} // namespace vector
|
|
} // namespace mlir
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VectorDialect
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class defines the interface for handling inlining with vector dialect
|
|
/// operations.
|
|
struct VectorInlinerInterface : public DialectInlinerInterface {
|
|
using DialectInlinerInterface::DialectInlinerInterface;
|
|
|
|
/// All vector dialect ops can be inlined.
|
|
bool isLegalToInline(Operation *, Region *, bool, IRMapping &) const final {
|
|
return true;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void VectorDialect::initialize() {
|
|
addAttributes<
|
|
#define GET_ATTRDEF_LIST
|
|
#include "mlir/Dialect/Vector/IR/VectorAttributes.cpp.inc"
|
|
>();
|
|
|
|
addOperations<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
|
|
>();
|
|
|
|
addInterfaces<VectorInlinerInterface>();
|
|
|
|
declarePromisedInterfaces<bufferization::BufferizableOpInterface,
|
|
TransferReadOp, TransferWriteOp, GatherOp, MaskOp,
|
|
YieldOp>();
|
|
declarePromisedInterfaces<SubsetOpInterface, TransferReadOp,
|
|
TransferWriteOp>();
|
|
declarePromisedInterface<SubsetExtractionOpInterface, TransferReadOp>();
|
|
declarePromisedInterface<SubsetInsertionOpInterface, TransferWriteOp>();
|
|
declarePromisedInterface<ConvertToLLVMPatternInterface, VectorDialect>();
|
|
}
|
|
|
|
/// Materialize a single constant operation from a given attribute value with
|
|
/// the desired resultant type.
|
|
Operation *VectorDialect::materializeConstant(OpBuilder &builder,
|
|
Attribute value, Type type,
|
|
Location loc) {
|
|
if (isa<ub::PoisonAttrInterface>(value))
|
|
return value.getDialect().materializeConstant(builder, value, type, loc);
|
|
|
|
return arith::ConstantOp::materialize(builder, value, type, loc);
|
|
}
|
|
|
|
IntegerType vector::getVectorSubscriptType(Builder &builder) {
|
|
return builder.getIntegerType(64);
|
|
}
|
|
|
|
ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
|
|
ArrayRef<int64_t> values) {
|
|
return builder.getI64ArrayAttr(values);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MultiDimReductionOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void vector::MultiDimReductionOp::build(OpBuilder &builder,
|
|
OperationState &result, Value source,
|
|
Value acc, ArrayRef<bool> reductionMask,
|
|
CombiningKind kind) {
|
|
SmallVector<int64_t> reductionDims;
|
|
for (const auto &en : llvm::enumerate(reductionMask))
|
|
if (en.value())
|
|
reductionDims.push_back(en.index());
|
|
build(builder, result, kind, source, acc, reductionDims);
|
|
}
|
|
|
|
OpFoldResult MultiDimReductionOp::fold(FoldAdaptor adaptor) {
|
|
// Single parallel dim, this is a noop.
|
|
if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
|
|
return getSource();
|
|
return {};
|
|
}
|
|
|
|
std::optional<SmallVector<int64_t, 4>>
|
|
MultiDimReductionOp::getShapeForUnroll() {
|
|
return llvm::to_vector<4>(getSourceVectorType().getShape());
|
|
}
|
|
|
|
LogicalResult MultiDimReductionOp::verify() {
|
|
SmallVector<int64_t> targetShape;
|
|
SmallVector<bool> scalableDims;
|
|
Type inferredReturnType;
|
|
auto sourceScalableDims = getSourceVectorType().getScalableDims();
|
|
for (auto [dimIdx, dimSize] :
|
|
llvm::enumerate(getSourceVectorType().getShape()))
|
|
if (!llvm::any_of(getReductionDims(),
|
|
[dimIdx = dimIdx](int64_t reductionDimIdx) {
|
|
return reductionDimIdx == static_cast<int64_t>(dimIdx);
|
|
})) {
|
|
targetShape.push_back(dimSize);
|
|
scalableDims.push_back(sourceScalableDims[dimIdx]);
|
|
}
|
|
// TODO: update to also allow 0-d vectors when available.
|
|
if (targetShape.empty())
|
|
inferredReturnType = getSourceVectorType().getElementType();
|
|
else
|
|
inferredReturnType = VectorType::get(
|
|
targetShape, getSourceVectorType().getElementType(), scalableDims);
|
|
if (getType() != inferredReturnType)
|
|
return emitOpError() << "destination type " << getType()
|
|
<< " is incompatible with source type "
|
|
<< getSourceVectorType();
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Returns the mask type expected by this operation.
|
|
Type MultiDimReductionOp::getExpectedMaskType() {
|
|
auto vecType = getSourceVectorType();
|
|
return VectorType::get(vecType.getShape(),
|
|
IntegerType::get(vecType.getContext(), /*width=*/1),
|
|
vecType.getScalableDims());
|
|
}
|
|
|
|
namespace {
|
|
// Only unit dimensions that are being reduced are folded. If the dimension is
|
|
// unit, but not reduced, it is not folded, thereby keeping the output type the
|
|
// same. If not all dimensions which are reduced are of unit dimension, this
|
|
// transformation does nothing. This is just a generalization of
|
|
// ElideSingleElementReduction for ReduceOp.
|
|
struct ElideUnitDimsInMultiDimReduction
|
|
: public OpRewritePattern<MultiDimReductionOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(MultiDimReductionOp reductionOp,
|
|
PatternRewriter &rewriter) const override {
|
|
ArrayRef<int64_t> shape = reductionOp.getSourceVectorType().getShape();
|
|
for (const auto &dim : enumerate(shape)) {
|
|
if (reductionOp.isReducedDim(dim.index()) && dim.value() != 1)
|
|
return failure();
|
|
}
|
|
|
|
// Vector mask setup.
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
Operation *rootOp;
|
|
Value mask;
|
|
if (reductionOp.isMasked()) {
|
|
rewriter.setInsertionPoint(reductionOp.getMaskingOp());
|
|
rootOp = reductionOp.getMaskingOp();
|
|
mask = reductionOp.getMaskingOp().getMask();
|
|
} else {
|
|
rootOp = reductionOp;
|
|
}
|
|
|
|
Location loc = reductionOp.getLoc();
|
|
Value acc = reductionOp.getAcc();
|
|
Value cast;
|
|
if (auto dstVecType = dyn_cast<VectorType>(reductionOp.getDestType())) {
|
|
if (mask) {
|
|
VectorType newMaskType =
|
|
VectorType::get(dstVecType.getShape(), rewriter.getI1Type(),
|
|
dstVecType.getScalableDims());
|
|
mask = rewriter.create<vector::ShapeCastOp>(loc, newMaskType, mask);
|
|
}
|
|
cast = rewriter.create<vector::ShapeCastOp>(
|
|
loc, reductionOp.getDestType(), reductionOp.getSource());
|
|
} else {
|
|
// This means we are reducing all the dimensions, and all reduction
|
|
// dimensions are of size 1. So a simple extraction would do.
|
|
if (mask)
|
|
mask = rewriter.create<vector::ExtractOp>(loc, mask);
|
|
cast = rewriter.create<vector::ExtractOp>(loc, reductionOp.getSource());
|
|
}
|
|
|
|
Value result =
|
|
vector::makeArithReduction(rewriter, loc, reductionOp.getKind(), acc,
|
|
cast, /*fastmath=*/nullptr, mask);
|
|
rewriter.replaceOp(rootOp, result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void MultiDimReductionOp::getCanonicalizationPatterns(
|
|
RewritePatternSet &results, MLIRContext *context) {
|
|
results.add<ElideUnitDimsInMultiDimReduction>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ReductionOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
|
|
CombiningKind kind, Value vector,
|
|
arith::FastMathFlags fastMathFlags) {
|
|
build(builder, result, kind, vector, /*acc=*/Value(), fastMathFlags);
|
|
}
|
|
|
|
void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
|
|
CombiningKind kind, Value vector, Value acc,
|
|
arith::FastMathFlags fastMathFlags) {
|
|
build(builder, result,
|
|
llvm::cast<VectorType>(vector.getType()).getElementType(), kind, vector,
|
|
acc, fastMathFlags);
|
|
}
|
|
|
|
LogicalResult ReductionOp::verify() {
|
|
// Verify for 0-D and 1-D vector.
|
|
int64_t rank = getSourceVectorType().getRank();
|
|
if (rank > 1)
|
|
return emitOpError("unsupported reduction rank: ") << rank;
|
|
|
|
// Verify supported reduction kind.
|
|
Type eltType = getDest().getType();
|
|
if (!isSupportedCombiningKind(getKind(), eltType))
|
|
return emitOpError("unsupported reduction type '")
|
|
<< eltType << "' for kind '" << stringifyCombiningKind(getKind())
|
|
<< "'";
|
|
|
|
return success();
|
|
}
|
|
|
|
// MaskableOpInterface methods.
|
|
|
|
/// Returns the mask type expected by this operation.
|
|
Type ReductionOp::getExpectedMaskType() {
|
|
auto vecType = getSourceVectorType();
|
|
return VectorType::get(vecType.getShape(),
|
|
IntegerType::get(vecType.getContext(), /*width=*/1),
|
|
vecType.getScalableDims());
|
|
}
|
|
|
|
Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
|
|
OpBuilder &builder, Location loc,
|
|
Value vector) {
|
|
switch (op) {
|
|
case arith::AtomicRMWKind::addf:
|
|
case arith::AtomicRMWKind::addi:
|
|
return builder.create<vector::ReductionOp>(vector.getLoc(),
|
|
CombiningKind::ADD, vector);
|
|
case arith::AtomicRMWKind::mulf:
|
|
case arith::AtomicRMWKind::muli:
|
|
return builder.create<vector::ReductionOp>(vector.getLoc(),
|
|
CombiningKind::MUL, vector);
|
|
case arith::AtomicRMWKind::minimumf:
|
|
return builder.create<vector::ReductionOp>(vector.getLoc(),
|
|
CombiningKind::MINIMUMF, vector);
|
|
case arith::AtomicRMWKind::mins:
|
|
return builder.create<vector::ReductionOp>(vector.getLoc(),
|
|
CombiningKind::MINSI, vector);
|
|
case arith::AtomicRMWKind::minu:
|
|
return builder.create<vector::ReductionOp>(vector.getLoc(),
|
|
CombiningKind::MINUI, vector);
|
|
case arith::AtomicRMWKind::maximumf:
|
|
return builder.create<vector::ReductionOp>(vector.getLoc(),
|
|
CombiningKind::MAXIMUMF, vector);
|
|
case arith::AtomicRMWKind::maxs:
|
|
return builder.create<vector::ReductionOp>(vector.getLoc(),
|
|
CombiningKind::MAXSI, vector);
|
|
case arith::AtomicRMWKind::maxu:
|
|
return builder.create<vector::ReductionOp>(vector.getLoc(),
|
|
CombiningKind::MAXUI, vector);
|
|
case arith::AtomicRMWKind::andi:
|
|
return builder.create<vector::ReductionOp>(vector.getLoc(),
|
|
CombiningKind::AND, vector);
|
|
case arith::AtomicRMWKind::ori:
|
|
return builder.create<vector::ReductionOp>(vector.getLoc(),
|
|
CombiningKind::OR, vector);
|
|
// TODO: Add remaining reduction operations.
|
|
default:
|
|
(void)emitOptionalError(loc, "Reduction operation type not supported");
|
|
break;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
std::optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() {
|
|
return llvm::to_vector<4>(getSourceVectorType().getShape());
|
|
}
|
|
|
|
namespace {
|
|
struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ReductionOp reductionOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// Vector mask setup.
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
auto maskableOp =
|
|
cast<vector::MaskableOpInterface>(reductionOp.getOperation());
|
|
Operation *rootOp;
|
|
Value mask;
|
|
if (maskableOp.isMasked()) {
|
|
rewriter.setInsertionPoint(maskableOp.getMaskingOp());
|
|
rootOp = maskableOp.getMaskingOp();
|
|
mask = maskableOp.getMaskingOp().getMask();
|
|
} else {
|
|
rootOp = reductionOp;
|
|
}
|
|
|
|
auto vectorType = reductionOp.getSourceVectorType();
|
|
if (vectorType.getRank() != 0 && vectorType.getDimSize(0) != 1)
|
|
return failure();
|
|
|
|
Location loc = reductionOp.getLoc();
|
|
if (mask)
|
|
mask = rewriter.create<ExtractOp>(loc, mask);
|
|
Value result = rewriter.create<ExtractOp>(loc, reductionOp.getVector());
|
|
|
|
if (Value acc = reductionOp.getAcc())
|
|
result = vector::makeArithReduction(rewriter, loc, reductionOp.getKind(),
|
|
result, acc,
|
|
reductionOp.getFastmathAttr(), mask);
|
|
|
|
rewriter.replaceOp(rootOp, result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<ElideSingleElementReduction>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ContractionOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
|
|
Value lhs, Value rhs, Value acc,
|
|
ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
|
|
ArrayRef<IteratorType> iteratorTypes) {
|
|
result.addOperands({lhs, rhs, acc});
|
|
result.addTypes(acc.getType());
|
|
result.addAttribute(
|
|
getIndexingMapsAttrName(result.name),
|
|
builder.getAffineMapArrayAttr(
|
|
AffineMap::inferFromExprList(indexingExprs, builder.getContext())));
|
|
result.addAttribute(
|
|
getIteratorTypesAttrName(result.name),
|
|
builder.getArrayAttr(llvm::to_vector(llvm::map_range(
|
|
iteratorTypes, [&](IteratorType t) -> mlir::Attribute {
|
|
return IteratorTypeAttr::get(builder.getContext(), t);
|
|
}))));
|
|
}
|
|
|
|
void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
|
|
Value lhs, Value rhs, Value acc,
|
|
ArrayAttr indexingMaps,
|
|
ArrayAttr iteratorTypes) {
|
|
build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes,
|
|
ContractionOp::getDefaultKind());
|
|
}
|
|
|
|
void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
|
|
Value lhs, Value rhs, Value acc,
|
|
ArrayAttr indexingMaps,
|
|
ArrayAttr iteratorTypes, CombiningKind kind) {
|
|
result.addOperands({lhs, rhs, acc});
|
|
result.addTypes(acc.getType());
|
|
result.addAttribute(getIndexingMapsAttrName(result.name), indexingMaps);
|
|
result.addAttribute(getIteratorTypesAttrName(result.name), iteratorTypes);
|
|
result.addAttribute(getKindAttrName(result.name),
|
|
CombiningKindAttr::get(builder.getContext(), kind));
|
|
}
|
|
|
|
ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
OpAsmParser::UnresolvedOperand lhsInfo;
|
|
OpAsmParser::UnresolvedOperand rhsInfo;
|
|
OpAsmParser::UnresolvedOperand accInfo;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo;
|
|
SmallVector<Type, 2> types;
|
|
Type resultType;
|
|
auto loc = parser.getCurrentLocation();
|
|
DictionaryAttr dictAttr;
|
|
// TODO: Unify linalg op attribute parsing.
|
|
if (parser.parseAttribute(dictAttr) || parser.parseOperand(lhsInfo) ||
|
|
parser.parseComma() || parser.parseOperand(rhsInfo) ||
|
|
parser.parseComma() || parser.parseOperand(accInfo) ||
|
|
parser.parseTrailingOperandList(masksInfo) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseColonTypeList(types) ||
|
|
parser.parseKeywordType("into", resultType) ||
|
|
parser.resolveOperand(lhsInfo, types[0], result.operands) ||
|
|
parser.resolveOperand(rhsInfo, types[1], result.operands) ||
|
|
parser.resolveOperand(accInfo, resultType, result.operands) ||
|
|
parser.addTypeToList(resultType, result.types))
|
|
return failure();
|
|
result.attributes.append(dictAttr.getValue().begin(),
|
|
dictAttr.getValue().end());
|
|
|
|
// Convert array of string into an array of IteratyType enums. This is needed,
|
|
// because tests still use the old format when 'iterator_types' attribute is
|
|
// represented as an array of strings.
|
|
// TODO: Remove this conversion once tests are fixed.
|
|
auto iteratorTypes = dyn_cast_or_null<ArrayAttr>(
|
|
result.attributes.get(getIteratorTypesAttrName(result.name)));
|
|
if (!iteratorTypes) {
|
|
return parser.emitError(loc)
|
|
<< "expected " << getIteratorTypesAttrName(result.name)
|
|
<< " array attribute";
|
|
}
|
|
|
|
SmallVector<Attribute> iteratorTypeAttrs;
|
|
|
|
for (StringRef s : iteratorTypes.getAsValueRange<StringAttr>()) {
|
|
auto maybeIteratorType = symbolizeIteratorType(s);
|
|
if (!maybeIteratorType.has_value())
|
|
return parser.emitError(loc) << "unexpected iterator_type (" << s << ")";
|
|
|
|
iteratorTypeAttrs.push_back(
|
|
IteratorTypeAttr::get(parser.getContext(), maybeIteratorType.value()));
|
|
}
|
|
result.attributes.set(getIteratorTypesAttrName(result.name),
|
|
parser.getBuilder().getArrayAttr(iteratorTypeAttrs));
|
|
|
|
if (!result.attributes.get(getKindAttrName(result.name))) {
|
|
result.addAttribute(
|
|
getKindAttrName(result.name),
|
|
CombiningKindAttr::get(result.getContext(),
|
|
ContractionOp::getDefaultKind()));
|
|
}
|
|
if (masksInfo.empty())
|
|
return success();
|
|
if (masksInfo.size() != 2)
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"expected zero or exactly 2 vector mask operands");
|
|
auto lhsType = llvm::cast<VectorType>(types[0]);
|
|
auto rhsType = llvm::cast<VectorType>(types[1]);
|
|
auto maskElementType = parser.getBuilder().getI1Type();
|
|
std::array<VectorType, 2> maskTypes = {
|
|
VectorType::Builder(lhsType).setElementType(maskElementType),
|
|
VectorType::Builder(rhsType).setElementType(maskElementType)};
|
|
if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
void ContractionOp::print(OpAsmPrinter &p) {
|
|
// TODO: Unify printing code with linalg ops.
|
|
auto attrNames = getTraitAttrNames();
|
|
llvm::StringSet<> traitAttrsSet;
|
|
traitAttrsSet.insert_range(attrNames);
|
|
SmallVector<NamedAttribute, 8> attrs;
|
|
for (auto attr : (*this)->getAttrs()) {
|
|
if (attr.getName() == getIteratorTypesAttrName()) {
|
|
auto iteratorTypes =
|
|
llvm::cast<ArrayAttr>(attr.getValue())
|
|
.getAsValueRange<IteratorTypeAttr, IteratorType>();
|
|
// Convert IteratorType enums into the string representation. This is
|
|
// needed, because tests still use the old format when 'iterator_types'
|
|
// attribute is represented as an array of strings.
|
|
// TODO: Remove this conversion once tests are fixed.
|
|
SmallVector<Attribute> iteratorTypeNames = llvm::to_vector(
|
|
llvm::map_range(iteratorTypes, [&](IteratorType t) -> Attribute {
|
|
return StringAttr::get(getContext(), stringifyIteratorType(t));
|
|
}));
|
|
|
|
attrs.emplace_back(getIteratorTypesAttrName(),
|
|
ArrayAttr::get(getContext(), iteratorTypeNames));
|
|
} else if (traitAttrsSet.count(attr.getName().strref()) > 0)
|
|
attrs.push_back(attr);
|
|
}
|
|
|
|
auto dictAttr = DictionaryAttr::get(getContext(), attrs);
|
|
p << " " << dictAttr << " " << getLhs() << ", ";
|
|
p << getRhs() << ", " << getAcc();
|
|
|
|
p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
|
|
p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into "
|
|
<< getResultType();
|
|
}
|
|
|
|
static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
|
|
const std::vector<std::pair<int64_t, int64_t>> &map) {
|
|
for (auto &dimPair : map) {
|
|
if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
|
|
dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
|
|
lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static LogicalResult verifyOutputShape(
|
|
ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
|
|
Type resType,
|
|
const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
|
|
const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
|
|
DenseSet<int64_t> lhsContractingDimSet;
|
|
DenseSet<int64_t> rhsContractingDimSet;
|
|
for (auto &dimPair : contractingDimMap) {
|
|
lhsContractingDimSet.insert(dimPair.first);
|
|
rhsContractingDimSet.insert(dimPair.second);
|
|
}
|
|
DenseSet<int64_t> rhsBatchDimSet(llvm::from_range,
|
|
llvm::make_second_range(batchDimMap));
|
|
|
|
// Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
|
|
SmallVector<int64_t, 4> expectedResultDims;
|
|
for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
|
|
if (lhsContractingDimSet.count(i) > 0)
|
|
continue;
|
|
expectedResultDims.push_back(lhsType.getDimSize(i));
|
|
}
|
|
|
|
// Add free dimensions from 'rhsType' to 'expectedResultDims'.
|
|
for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
|
|
if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
|
|
continue;
|
|
expectedResultDims.push_back(rhsType.getDimSize(i));
|
|
}
|
|
|
|
// Verify 'expectedResultDims'.
|
|
if (expectedResultDims.empty()) {
|
|
// No batch or free dimension implies a scalar result.
|
|
if (llvm::isa<VectorType>(resType) || llvm::isa<VectorType>(accType))
|
|
return op.emitOpError("invalid accumulator/result vector shape");
|
|
} else {
|
|
// At least one batch or free dimension implies a vector result.
|
|
auto resVectorType = llvm::dyn_cast<VectorType>(resType);
|
|
auto accVectorType = llvm::dyn_cast<VectorType>(accType);
|
|
if (!resVectorType || !accVectorType)
|
|
return op.emitOpError("invalid accumulator/result vector shape");
|
|
|
|
// Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
|
|
// types fully define the result vector type. This assumes the affine maps
|
|
// are well-formed, which must have been verified already.
|
|
MLIRContext *ctx = op.getContext();
|
|
AffineMap lhsMap = op.getIndexingMapsArray()[0];
|
|
AffineMap rhsMap = op.getIndexingMapsArray()[1];
|
|
if (getUnusedDimsBitVector({lhsMap, rhsMap}).any())
|
|
return op.emitOpError(
|
|
"expected all dimensions to be either a LHS or a RHS dimension");
|
|
SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
|
|
for (auto pair :
|
|
{std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
|
|
VectorType v = pair.first;
|
|
auto map = pair.second;
|
|
for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
|
|
unsigned pos = map.getDimPosition(idx);
|
|
if (!extents[pos])
|
|
extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
|
|
}
|
|
}
|
|
if (!llvm::all_of(extents, [](AffineExpr e) { return e; }))
|
|
return op.emitOpError("expected all dimensions to get an extent as "
|
|
"either a LHS or a RHS dimension");
|
|
|
|
AffineMap resMap = op.getIndexingMapsArray()[2];
|
|
auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
|
|
/*symbolCount=*/0, extents, ctx);
|
|
// Compose the resMap with the extentsMap, which is a constant map.
|
|
AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
|
|
assert(llvm::all_of(expectedMap.getResults(),
|
|
llvm::IsaPred<AffineConstantExpr>) &&
|
|
"expected constant extent along all dimensions.");
|
|
// Extract the expected shape and build the type.
|
|
auto expectedShape = llvm::to_vector<4>(
|
|
llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
|
|
return cast<AffineConstantExpr>(e).getValue();
|
|
}));
|
|
auto expected =
|
|
VectorType::get(expectedShape, resVectorType.getElementType(),
|
|
resVectorType.getScalableDims());
|
|
if (resVectorType != expected || accVectorType != expected)
|
|
return op.emitOpError(
|
|
"invalid accumulator/result vector shape, expected: ")
|
|
<< expected;
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ContractionOp::verify() {
|
|
VectorType lhsType = getLhsType();
|
|
VectorType rhsType = getRhsType();
|
|
Type accType = getAccType();
|
|
Type resType = getResultType();
|
|
|
|
if (llvm::isa<IntegerType>(lhsType.getElementType())) {
|
|
if (!lhsType.getElementType().isSignlessInteger())
|
|
return emitOpError("only supports signless integer types");
|
|
}
|
|
|
|
// Verify that an indexing map was specified for each vector operand.
|
|
if (getIndexingMapsArray().size() != 3)
|
|
return emitOpError("expected an indexing map for each vector operand");
|
|
|
|
// Verify that each index map has 'numIterators' inputs, no symbols, and
|
|
// that the number of map outputs equals the rank of its associated
|
|
// vector operand.
|
|
unsigned numIterators = getIteratorTypes().getValue().size();
|
|
for (const auto &it : llvm::enumerate(getIndexingMapsArray())) {
|
|
auto index = it.index();
|
|
auto map = it.value();
|
|
if (map.getNumSymbols() != 0)
|
|
return emitOpError("expected indexing map ")
|
|
<< index << " to have no symbols";
|
|
auto vectorType = llvm::dyn_cast<VectorType>(getOperand(index).getType());
|
|
unsigned rank = vectorType ? vectorType.getShape().size() : 0;
|
|
// Verify that the map has the right number of inputs, outputs, and indices.
|
|
// This also correctly accounts for (..) -> () for rank-0 results.
|
|
if (map.getNumDims() != numIterators)
|
|
return emitOpError("expected indexing map ")
|
|
<< index << " to have " << numIterators << " number of inputs";
|
|
if (map.getNumResults() != rank)
|
|
return emitOpError("expected indexing map ")
|
|
<< index << " to have " << rank << " number of outputs";
|
|
if (!map.isProjectedPermutation())
|
|
return emitOpError("expected indexing map ")
|
|
<< index << " to be a projected permutation of its inputs";
|
|
}
|
|
|
|
auto contractingDimMap = getContractingDimMap();
|
|
auto batchDimMap = getBatchDimMap();
|
|
|
|
// Verify at least one contracting dimension pair was specified.
|
|
if (contractingDimMap.empty())
|
|
return emitOpError("expected at least one contracting dimension pair");
|
|
|
|
// Verify contracting dimension map was properly constructed.
|
|
if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
|
|
return emitOpError("invalid contracting dimension map");
|
|
|
|
// Verify batch dimension map was properly constructed.
|
|
if (!verifyDimMap(lhsType, rhsType, batchDimMap))
|
|
return emitOpError("invalid batch dimension map");
|
|
|
|
// Verify 'accType' and 'resType' shape.
|
|
if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
|
|
contractingDimMap, batchDimMap)))
|
|
return failure();
|
|
|
|
// Verify supported combining kind.
|
|
auto vectorType = llvm::dyn_cast<VectorType>(resType);
|
|
auto elementType = vectorType ? vectorType.getElementType() : resType;
|
|
if (!isSupportedCombiningKind(getKind(), elementType))
|
|
return emitOpError("unsupported contraction type");
|
|
|
|
// Delayed calling of IndexingMapOpInterface::verifyImpl.
|
|
return cast<IndexingMapOpInterface>(this->getOperation()).verifyImpl();
|
|
}
|
|
|
|
// MaskableOpInterface methods.
|
|
|
|
/// Returns the mask type expected by this operation. Mostly used for
|
|
/// verification purposes. It requires the operation to be vectorized."
|
|
Type ContractionOp::getExpectedMaskType() {
|
|
auto indexingMaps = this->getIndexingMapsArray();
|
|
AffineMap lhsIdxMap = indexingMaps[0];
|
|
AffineMap rhsIdxMap = indexingMaps[1];
|
|
VectorType lhsType = this->getLhsType();
|
|
VectorType rhsType = this->getRhsType();
|
|
|
|
unsigned numVecDims = lhsIdxMap.getNumDims();
|
|
SmallVector<int64_t> maskShape(numVecDims, ShapedType::kDynamic);
|
|
SmallVector<bool> maskShapeScalableDims(numVecDims, false);
|
|
|
|
// Using the information in the indexing maps, extract the size of each
|
|
// dimension in the vector.contract operation from the two input operands.
|
|
for (auto [dimIdx, dimSize] : llvm::enumerate(lhsType.getShape())) {
|
|
maskShape[lhsIdxMap.getDimPosition(dimIdx)] = dimSize;
|
|
maskShapeScalableDims[lhsIdxMap.getDimPosition(dimIdx)] =
|
|
lhsType.getScalableDims()[dimIdx];
|
|
}
|
|
for (auto [dimIdx, dimSize] : llvm::enumerate(rhsType.getShape())) {
|
|
maskShape[rhsIdxMap.getDimPosition(dimIdx)] = dimSize;
|
|
maskShapeScalableDims[rhsIdxMap.getDimPosition(dimIdx)] =
|
|
rhsType.getScalableDims()[dimIdx];
|
|
}
|
|
|
|
assert(ShapedType::isStaticShape(maskShape) &&
|
|
"Mask shape couldn't be computed");
|
|
|
|
return VectorType::get(maskShape,
|
|
IntegerType::get(lhsType.getContext(), /*width=*/1),
|
|
maskShapeScalableDims);
|
|
}
|
|
|
|
SmallVector<StringRef> ContractionOp::getTraitAttrNames() {
|
|
return SmallVector<StringRef>{getIndexingMapsAttrName(),
|
|
getIteratorTypesAttrName(), getKindAttrName()};
|
|
}
|
|
|
|
static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
|
|
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
|
|
if (targetExpr == map.getResult(i))
|
|
return i;
|
|
return -1;
|
|
}
|
|
|
|
static std::vector<std::pair<int64_t, int64_t>>
|
|
getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
|
|
IteratorType targetIteratorType, MLIRContext *context) {
|
|
std::vector<std::pair<int64_t, int64_t>> dimMap;
|
|
for (const auto &it : llvm::enumerate(iteratorTypes)) {
|
|
auto iteratorType = llvm::cast<IteratorTypeAttr>(it.value()).getValue();
|
|
if (iteratorType != targetIteratorType)
|
|
continue;
|
|
// Search lhs/rhs map results for 'targetExpr'.
|
|
auto targetExpr = getAffineDimExpr(it.index(), context);
|
|
int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
|
|
int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
|
|
if (lhsDim >= 0 && rhsDim >= 0)
|
|
dimMap.emplace_back(lhsDim, rhsDim);
|
|
}
|
|
return dimMap;
|
|
}
|
|
|
|
void ContractionOp::getIterationBounds(
|
|
SmallVectorImpl<int64_t> &iterationBounds) {
|
|
auto lhsShape = getLhsType().getShape();
|
|
auto resVectorType = llvm::dyn_cast<VectorType>(getResultType());
|
|
SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray());
|
|
for (const auto &it : llvm::enumerate(getIteratorTypes())) {
|
|
// Search lhs/rhs map results for 'targetExpr'.
|
|
auto targetExpr = getAffineDimExpr(it.index(), getContext());
|
|
auto iteratorType = llvm::cast<IteratorTypeAttr>(it.value()).getValue();
|
|
if (iteratorType == IteratorType::reduction) {
|
|
// Get reduction dim size from lhs shape (same size in rhsShape).
|
|
int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
|
|
assert(lhsDimIndex >= 0);
|
|
iterationBounds.push_back(lhsShape[lhsDimIndex]);
|
|
continue;
|
|
}
|
|
// Get parallel dimension size from result shape.
|
|
int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
|
|
assert(resDimIndex >= 0);
|
|
assert(resVectorType != nullptr);
|
|
iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
|
|
}
|
|
}
|
|
|
|
void ContractionOp::getIterationIndexMap(
|
|
std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
|
|
unsigned numMaps = getIndexingMapsArray().size();
|
|
iterationIndexMap.resize(numMaps);
|
|
for (const auto &it : llvm::enumerate(getIndexingMapsArray())) {
|
|
auto index = it.index();
|
|
auto map = it.value();
|
|
for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
|
|
auto dim = cast<AffineDimExpr>(map.getResult(i));
|
|
iterationIndexMap[index][dim.getPosition()] = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
|
|
SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray());
|
|
return getDimMap(indexingMaps, getIteratorTypes(), IteratorType::reduction,
|
|
getContext());
|
|
}
|
|
|
|
std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
|
|
SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray());
|
|
return getDimMap(indexingMaps, getIteratorTypes(), IteratorType::parallel,
|
|
getContext());
|
|
}
|
|
|
|
std::optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
|
|
SmallVector<int64_t, 4> shape;
|
|
getIterationBounds(shape);
|
|
return shape;
|
|
}
|
|
|
|
/// Return a fused vector::ContractionOp which represents a patterns such as:
|
|
///
|
|
/// ```mlir
|
|
/// %c0 = vector.constant 0: ...
|
|
/// %c = vector.contract %a, %b, %c0: ...
|
|
/// %e = add %c, %d: ...
|
|
/// ```
|
|
///
|
|
/// by:
|
|
///
|
|
/// ```mlir
|
|
/// %e = vector.contract %a, %b, %d: ...
|
|
/// ```
|
|
///
|
|
/// Return null if the canonicalization does not apply.
|
|
// TODO: This should be a folding of Add into Contract in core but while they
|
|
// live in different dialects, it is not possible without unnatural
|
|
// dependencies.
|
|
template <typename AddOpType>
|
|
struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
|
|
using OpRewritePattern<AddOpType>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(AddOpType addOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto canonicalize = [&](Value maybeContraction,
|
|
Value otherOperand) -> vector::ContractionOp {
|
|
vector::ContractionOp contractionOp =
|
|
dyn_cast_or_null<vector::ContractionOp>(
|
|
maybeContraction.getDefiningOp());
|
|
if (!contractionOp)
|
|
return vector::ContractionOp();
|
|
if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
|
|
contractionOp.getAcc().getDefiningOp())) {
|
|
if (maybeZero.getValue() ==
|
|
rewriter.getZeroAttr(contractionOp.getAcc().getType())) {
|
|
IRMapping bvm;
|
|
bvm.map(contractionOp.getAcc(), otherOperand);
|
|
auto newContraction =
|
|
cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
|
|
rewriter.replaceOp(addOp, newContraction.getResult());
|
|
return newContraction;
|
|
}
|
|
}
|
|
return vector::ContractionOp();
|
|
};
|
|
|
|
Value a = addOp->getOperand(0), b = addOp->getOperand(1);
|
|
vector::ContractionOp contract = canonicalize(a, b);
|
|
contract = contract ? contract : canonicalize(b, a);
|
|
return contract ? success() : failure();
|
|
}
|
|
};
|
|
|
|
void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<CanonicalizeContractAdd<arith::AddIOp>,
|
|
CanonicalizeContractAdd<arith::AddFOp>>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtractElementOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExtractElementOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
|
|
SetIntRangeFn setResultRanges) {
|
|
setResultRanges(getResult(), argRanges.front());
|
|
}
|
|
|
|
void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source) {
|
|
result.addOperands({source});
|
|
result.addTypes(llvm::cast<VectorType>(source.getType()).getElementType());
|
|
}
|
|
|
|
LogicalResult vector::ExtractElementOp::verify() {
|
|
VectorType vectorType = getSourceVectorType();
|
|
if (vectorType.getRank() == 0) {
|
|
if (getPosition())
|
|
return emitOpError("expected position to be empty with 0-D vector");
|
|
return success();
|
|
}
|
|
if (vectorType.getRank() != 1)
|
|
return emitOpError("unexpected >1 vector rank");
|
|
if (!getPosition())
|
|
return emitOpError("expected position for 1-D vector");
|
|
return success();
|
|
}
|
|
|
|
OpFoldResult vector::ExtractElementOp::fold(FoldAdaptor adaptor) {
|
|
// Skip the 0-D vector here now.
|
|
if (!adaptor.getPosition())
|
|
return {};
|
|
|
|
// Fold extractelement (splat X) -> X.
|
|
if (auto splat = getVector().getDefiningOp<vector::SplatOp>())
|
|
return splat.getInput();
|
|
|
|
// Fold extractelement(broadcast(X)) -> X.
|
|
if (auto broadcast = getVector().getDefiningOp<vector::BroadcastOp>())
|
|
if (!llvm::isa<VectorType>(broadcast.getSource().getType()))
|
|
return broadcast.getSource();
|
|
|
|
auto src = dyn_cast_or_null<DenseElementsAttr>(adaptor.getVector());
|
|
auto pos = dyn_cast_or_null<IntegerAttr>(adaptor.getPosition());
|
|
if (!pos || !src)
|
|
return {};
|
|
|
|
auto srcElements = src.getValues<Attribute>();
|
|
|
|
uint64_t posIdx = pos.getInt();
|
|
if (posIdx >= srcElements.size())
|
|
return {};
|
|
|
|
return srcElements[posIdx];
|
|
}
|
|
|
|
// Returns `true` if `index` is either within [0, maxIndex) or equal to
|
|
// `poisonValue`.
|
|
static bool isValidPositiveIndexOrPoison(int64_t index, int64_t poisonValue,
|
|
int64_t maxIndex) {
|
|
return index == poisonValue || (index >= 0 && index < maxIndex);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtractOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExtractOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
|
|
SetIntRangeFn setResultRanges) {
|
|
setResultRanges(getResult(), argRanges.front());
|
|
}
|
|
|
|
void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source) {
|
|
auto vectorTy = cast<VectorType>(source.getType());
|
|
build(builder, result, source, SmallVector<int64_t>(vectorTy.getRank(), 0));
|
|
}
|
|
|
|
void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source, int64_t position) {
|
|
build(builder, result, source, ArrayRef<int64_t>{position});
|
|
}
|
|
|
|
void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source, OpFoldResult position) {
|
|
build(builder, result, source, ArrayRef<OpFoldResult>{position});
|
|
}
|
|
|
|
void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source, ArrayRef<int64_t> position) {
|
|
build(builder, result, source, /*dynamic_position=*/ArrayRef<Value>(),
|
|
builder.getDenseI64ArrayAttr(position));
|
|
}
|
|
|
|
void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source, ArrayRef<OpFoldResult> position) {
|
|
SmallVector<int64_t> staticPos;
|
|
SmallVector<Value> dynamicPos;
|
|
dispatchIndexOpFoldResults(position, dynamicPos, staticPos);
|
|
build(builder, result, source, dynamicPos,
|
|
builder.getDenseI64ArrayAttr(staticPos));
|
|
}
|
|
|
|
LogicalResult
|
|
ExtractOp::inferReturnTypes(MLIRContext *, std::optional<Location>,
|
|
ExtractOp::Adaptor adaptor,
|
|
SmallVectorImpl<Type> &inferredReturnTypes) {
|
|
auto vectorType = llvm::cast<VectorType>(adaptor.getVector().getType());
|
|
if (static_cast<int64_t>(adaptor.getStaticPosition().size()) ==
|
|
vectorType.getRank()) {
|
|
inferredReturnTypes.push_back(vectorType.getElementType());
|
|
} else {
|
|
auto n = std::min<size_t>(adaptor.getStaticPosition().size(),
|
|
vectorType.getRank());
|
|
inferredReturnTypes.push_back(VectorType::get(
|
|
vectorType.getShape().drop_front(n), vectorType.getElementType(),
|
|
vectorType.getScalableDims().drop_front(n)));
|
|
}
|
|
return success();
|
|
}
|
|
|
|
bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
|
|
// Allow extracting 1-element vectors instead of scalars.
|
|
auto isCompatible = [](TypeRange l, TypeRange r) {
|
|
auto vectorType = llvm::dyn_cast<VectorType>(l.front());
|
|
return vectorType && vectorType.getShape().equals({1}) &&
|
|
vectorType.getElementType() == r.front();
|
|
};
|
|
if (l.size() == 1 && r.size() == 1 &&
|
|
(isCompatible(l, r) || isCompatible(r, l)))
|
|
return true;
|
|
return l == r;
|
|
}
|
|
|
|
LogicalResult vector::ExtractOp::verify() {
|
|
if (auto resTy = dyn_cast<VectorType>(getResult().getType()))
|
|
if (resTy.getRank() == 0)
|
|
return emitError(
|
|
"expected a scalar instead of a 0-d vector as the result type");
|
|
|
|
// Note: This check must come before getMixedPosition() to prevent a crash.
|
|
auto dynamicMarkersCount =
|
|
llvm::count_if(getStaticPosition(), ShapedType::isDynamic);
|
|
if (static_cast<size_t>(dynamicMarkersCount) != getDynamicPosition().size())
|
|
return emitOpError(
|
|
"mismatch between dynamic and static positions (kDynamic marker but no "
|
|
"corresponding dynamic position) -- this can only happen due to an "
|
|
"incorrect fold/rewrite");
|
|
auto position = getMixedPosition();
|
|
if (position.size() > static_cast<unsigned>(getSourceVectorType().getRank()))
|
|
return emitOpError(
|
|
"expected position attribute of rank no greater than vector rank");
|
|
for (auto [idx, pos] : llvm::enumerate(position)) {
|
|
if (auto attr = dyn_cast<Attribute>(pos)) {
|
|
int64_t constIdx = cast<IntegerAttr>(attr).getInt();
|
|
if (!isValidPositiveIndexOrPoison(
|
|
constIdx, kPoisonIndex, getSourceVectorType().getDimSize(idx))) {
|
|
return emitOpError("expected position attribute #")
|
|
<< (idx + 1)
|
|
<< " to be a non-negative integer smaller than the "
|
|
"corresponding vector dimension or poison (-1)";
|
|
}
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
template <typename IntType>
|
|
static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
|
|
return llvm::to_vector<4>(llvm::map_range(
|
|
arrayAttr.getAsRange<IntegerAttr>(),
|
|
[](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
|
|
}
|
|
|
|
/// Fold the result of chains of ExtractOp in place by simply concatenating the
|
|
/// positions.
|
|
static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
|
|
if (!extractOp.getVector().getDefiningOp<ExtractOp>())
|
|
return failure();
|
|
|
|
// TODO: Canonicalization for dynamic position not implemented yet.
|
|
if (extractOp.hasDynamicPosition())
|
|
return failure();
|
|
|
|
SmallVector<int64_t> globalPosition;
|
|
ExtractOp currentOp = extractOp;
|
|
ArrayRef<int64_t> extrPos = currentOp.getStaticPosition();
|
|
globalPosition.append(extrPos.rbegin(), extrPos.rend());
|
|
while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) {
|
|
currentOp = nextOp;
|
|
// TODO: Canonicalization for dynamic position not implemented yet.
|
|
if (currentOp.hasDynamicPosition())
|
|
return failure();
|
|
ArrayRef<int64_t> extrPos = currentOp.getStaticPosition();
|
|
globalPosition.append(extrPos.rbegin(), extrPos.rend());
|
|
}
|
|
extractOp.setOperand(0, currentOp.getVector());
|
|
// OpBuilder is only used as a helper to build an I64ArrayAttr.
|
|
OpBuilder b(extractOp.getContext());
|
|
std::reverse(globalPosition.begin(), globalPosition.end());
|
|
extractOp.setStaticPosition(globalPosition);
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
/// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
|
|
/// Walk back a chain of InsertOp/TransposeOp until we hit a match.
|
|
/// Compose TransposeOp permutations as we walk back.
|
|
/// This helper class keeps an updated extraction position `extractPosition`
|
|
/// with extra trailing sentinels.
|
|
/// The sentinels encode the internal transposition status of the result vector.
|
|
/// As we iterate, extractPosition is permuted and updated.
|
|
class ExtractFromInsertTransposeChainState {
|
|
public:
|
|
ExtractFromInsertTransposeChainState(ExtractOp e);
|
|
|
|
/// Iterate over producing insert and transpose ops until we find a fold.
|
|
Value fold();
|
|
|
|
private:
|
|
/// Return true if the vector at position `a` is contained within the vector
|
|
/// at position `b`. Under insert/extract semantics, this is the same as `a`
|
|
/// is a prefix of `b`.
|
|
template <typename ContainerA, typename ContainerB>
|
|
bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
|
|
return a.size() <= b.size() &&
|
|
std::equal(a.begin(), a.begin() + a.size(), b.begin());
|
|
}
|
|
|
|
/// Return true if the vector at position `a` intersects the vector at
|
|
/// position `b`. Under insert/extract semantics, this is the same as equality
|
|
/// of all entries of `a` that are >=0 with the corresponding entries of b.
|
|
/// Comparison is on the common prefix (i.e. zip).
|
|
template <typename ContainerA, typename ContainerB>
|
|
bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
|
|
for (auto [elemA, elemB] : llvm::zip(a, b)) {
|
|
if (elemA < 0 || elemB < 0)
|
|
continue;
|
|
if (elemA != elemB)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Folding is only possible in the absence of an internal permutation in the
|
|
/// result vector.
|
|
bool canFold() {
|
|
return (sentinels == ArrayRef(extractPosition).drop_front(extractedRank));
|
|
}
|
|
|
|
// Helper to get the next defining op of interest.
|
|
void updateStateForNextIteration(Value v) {
|
|
nextInsertOp = v.getDefiningOp<vector::InsertOp>();
|
|
nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
|
|
};
|
|
|
|
// Case 1. If we hit a transpose, just compose the map and iterate.
|
|
// Invariant: insert + transpose do not change rank, we can always compose.
|
|
LogicalResult handleTransposeOp();
|
|
|
|
// Case 2: the insert position matches extractPosition exactly, early return.
|
|
LogicalResult handleInsertOpWithMatchingPos(Value &res);
|
|
|
|
/// Case 3: if the insert position is a prefix of extractPosition, extract a
|
|
/// portion of the source of the insert.
|
|
/// Example:
|
|
/// ```
|
|
/// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
|
|
/// // extractPosition == [1, 2, 3]
|
|
/// %ext = vector.extract %ins[1, 0]: vector<5> from vector<3x4x5>
|
|
/// // can fold to vector.extract %source[0, 3]
|
|
/// %ext = vector.extract %source[3]: vector<6> from vector<5x6>
|
|
/// ```
|
|
/// To traverse through %source, we need to set the leading dims to 0 and
|
|
/// drop the extra leading dims.
|
|
/// This method updates the internal state.
|
|
LogicalResult handleInsertOpWithPrefixPos(Value &res);
|
|
|
|
/// Try to fold in place to extract(source, extractPosition) and return the
|
|
/// folded result. Return null if folding is not possible (e.g. due to an
|
|
/// internal transposition in the result).
|
|
Value tryToFoldExtractOpInPlace(Value source);
|
|
|
|
ExtractOp extractOp;
|
|
int64_t vectorRank;
|
|
int64_t extractedRank;
|
|
|
|
InsertOp nextInsertOp;
|
|
TransposeOp nextTransposeOp;
|
|
|
|
/// Sentinel values that encode the internal permutation status of the result.
|
|
/// They are set to (-1, ... , -k) at the beginning and appended to
|
|
/// `extractPosition`.
|
|
/// In the end, the tail of `extractPosition` must be exactly `sentinels` to
|
|
/// ensure that there is no internal transposition.
|
|
/// Internal transposition cannot be accounted for with a folding pattern.
|
|
// TODO: We could relax the internal transposition with an extra transposition
|
|
// operation in a future canonicalizer.
|
|
SmallVector<int64_t> sentinels;
|
|
SmallVector<int64_t> extractPosition;
|
|
};
|
|
} // namespace
|
|
|
|
ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
|
|
ExtractOp e)
|
|
: extractOp(e), vectorRank(extractOp.getSourceVectorType().getRank()),
|
|
extractedRank(extractOp.getNumIndices()) {
|
|
assert(vectorRank >= extractedRank && "Extracted position overflow");
|
|
sentinels.reserve(vectorRank - extractedRank);
|
|
for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
|
|
sentinels.push_back(-(i + 1));
|
|
extractPosition.assign(extractOp.getStaticPosition().begin(),
|
|
extractOp.getStaticPosition().end());
|
|
llvm::append_range(extractPosition, sentinels);
|
|
}
|
|
|
|
// Case 1. If we hit a transpose, just compose the map and iterate.
|
|
// Invariant: insert + transpose do not change rank, we can always compose.
|
|
LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
|
|
// TODO: Canonicalization for dynamic position not implemented yet.
|
|
if (extractOp.hasDynamicPosition())
|
|
return failure();
|
|
|
|
if (!nextTransposeOp)
|
|
return failure();
|
|
AffineMap m = inversePermutation(AffineMap::getPermutationMap(
|
|
nextTransposeOp.getPermutation(), extractOp.getContext()));
|
|
extractPosition = applyPermutationMap(m, ArrayRef(extractPosition));
|
|
return success();
|
|
}
|
|
|
|
// Case 2: the insert position matches extractPosition exactly, early return.
|
|
LogicalResult
|
|
ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
|
|
Value &res) {
|
|
// TODO: Canonicalization for dynamic position not implemented yet.
|
|
if (extractOp.hasDynamicPosition() || nextInsertOp.hasDynamicPosition())
|
|
return failure();
|
|
|
|
ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition();
|
|
if (insertedPos != llvm::ArrayRef(extractPosition).take_front(extractedRank))
|
|
return failure();
|
|
// Case 2.a. early-exit fold.
|
|
res = nextInsertOp.getValueToStore();
|
|
// Case 2.b. if internal transposition is present, canFold will be false.
|
|
return success(canFold());
|
|
}
|
|
|
|
/// Case 3: if inserted position is a prefix of extractPosition,
|
|
/// extract a portion of the source of the insertion.
|
|
/// This method updates the internal state.
|
|
LogicalResult
|
|
ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
|
|
// TODO: Canonicalization for dynamic position not implemented yet.
|
|
if (extractOp.hasDynamicPosition() || nextInsertOp.hasDynamicPosition())
|
|
return failure();
|
|
|
|
ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition();
|
|
if (!isContainedWithin(insertedPos, extractPosition))
|
|
return failure();
|
|
// Set leading dims to zero.
|
|
std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
|
|
// Drop extra leading dims.
|
|
extractPosition.erase(extractPosition.begin(),
|
|
extractPosition.begin() + insertedPos.size());
|
|
extractedRank = extractPosition.size() - sentinels.size();
|
|
// Case 3.a. early-exit fold (break and delegate to post-while path).
|
|
res = nextInsertOp.getValueToStore();
|
|
// Case 3.b. if internal transposition is present, canFold will be false.
|
|
return success();
|
|
}
|
|
|
|
/// Try to fold in place to extract(source, extractPosition) and return the
|
|
/// folded result. Return null if folding is not possible (e.g. due to an
|
|
/// internal transposition in the result).
|
|
Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
|
|
Value source) {
|
|
// TODO: Canonicalization for dynamic position not implemented yet.
|
|
if (extractOp.hasDynamicPosition())
|
|
return Value();
|
|
|
|
// If we can't fold (either internal transposition, or nothing to fold), bail.
|
|
bool nothingToFold = (source == extractOp.getVector());
|
|
if (nothingToFold || !canFold())
|
|
return Value();
|
|
|
|
// Otherwise, fold by updating the op inplace and return its result.
|
|
OpBuilder b(extractOp.getContext());
|
|
extractOp.setStaticPosition(
|
|
ArrayRef(extractPosition).take_front(extractedRank));
|
|
extractOp.getVectorMutable().assign(source);
|
|
return extractOp.getResult();
|
|
}
|
|
|
|
/// Iterate over producing insert and transpose ops until we find a fold.
|
|
Value ExtractFromInsertTransposeChainState::fold() {
|
|
// TODO: Canonicalization for dynamic position not implemented yet.
|
|
if (extractOp.hasDynamicPosition())
|
|
return Value();
|
|
|
|
Value valueToExtractFrom = extractOp.getVector();
|
|
updateStateForNextIteration(valueToExtractFrom);
|
|
while (nextInsertOp || nextTransposeOp) {
|
|
// Case 1. If we hit a transpose, just compose the map and iterate.
|
|
// Invariant: insert + transpose do not change rank, we can always compose.
|
|
if (succeeded(handleTransposeOp())) {
|
|
valueToExtractFrom = nextTransposeOp.getVector();
|
|
updateStateForNextIteration(valueToExtractFrom);
|
|
continue;
|
|
}
|
|
|
|
Value result;
|
|
// Case 2: the position match exactly.
|
|
if (succeeded(handleInsertOpWithMatchingPos(result)))
|
|
return result;
|
|
|
|
// Case 3: if the inserted position is a prefix of extractPosition, we can
|
|
// just extract a portion of the source of the insert.
|
|
if (succeeded(handleInsertOpWithPrefixPos(result)))
|
|
return tryToFoldExtractOpInPlace(result);
|
|
|
|
// Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
|
|
// values. This is a more difficult case and we bail.
|
|
ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition();
|
|
if (isContainedWithin(extractPosition, insertedPos) ||
|
|
intersectsWhereNonNegative(extractPosition, insertedPos))
|
|
return Value();
|
|
|
|
// Case 5: No intersection, we forward the extract to insertOp.dest().
|
|
valueToExtractFrom = nextInsertOp.getDest();
|
|
updateStateForNextIteration(valueToExtractFrom);
|
|
}
|
|
// If after all this we can fold, go for it.
|
|
return tryToFoldExtractOpInPlace(valueToExtractFrom);
|
|
}
|
|
|
|
/// Returns true if the operation has a 0-D vector type operand or result.
|
|
static bool hasZeroDimVectors(Operation *op) {
|
|
auto hasZeroDimVectorType = [](Type type) -> bool {
|
|
auto vecType = dyn_cast<VectorType>(type);
|
|
return vecType && vecType.getRank() == 0;
|
|
};
|
|
|
|
return llvm::any_of(op->getOperandTypes(), hasZeroDimVectorType) ||
|
|
llvm::any_of(op->getResultTypes(), hasZeroDimVectorType);
|
|
}
|
|
|
|
/// All BroadcastOps and SplatOps, as well as ShapeCastOps that only prepend
|
|
/// 1s, are considered to be 'broadcastlike'.
|
|
static bool isBroadcastLike(Operation *op) {
|
|
if (isa<BroadcastOp, SplatOp>(op))
|
|
return true;
|
|
|
|
auto shapeCast = dyn_cast<ShapeCastOp>(op);
|
|
if (!shapeCast)
|
|
return false;
|
|
|
|
// Check that shape_cast **only** prepends 1s, like (2,3) -> (1,1,2,3).
|
|
// Checking that the destination shape has a prefix of 1s is not sufficient,
|
|
// for example (2,3) -> (1,3,2) is not broadcastlike. A sufficient condition
|
|
// is that the source shape is a suffix of the destination shape.
|
|
VectorType srcType = shapeCast.getSourceVectorType();
|
|
ArrayRef<int64_t> srcShape = srcType.getShape();
|
|
uint64_t srcRank = srcType.getRank();
|
|
ArrayRef<int64_t> dstShape = shapeCast.getType().getShape();
|
|
return dstShape.size() >= srcRank && dstShape.take_back(srcRank) == srcShape;
|
|
}
|
|
|
|
/// Fold extract(broadcast(X)) to either extract(X) or just X.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// broadcast extract [1][2]
|
|
/// (3, 4) --------> (2, 3, 4) ----------------> (4)
|
|
///
|
|
/// becomes
|
|
/// extract [1]
|
|
/// (3,4) -------------------------------------> (4)
|
|
///
|
|
///
|
|
/// The variable names used in this implementation correspond to the above
|
|
/// shapes as,
|
|
///
|
|
/// - (3, 4) is `input` shape.
|
|
/// - (2, 3, 4) is `broadcast` shape.
|
|
/// - (4) is `extract` shape.
|
|
///
|
|
/// This folding is possible when the suffix of `input` shape is the same as
|
|
/// `extract` shape.
|
|
static Value foldExtractFromBroadcast(ExtractOp extractOp) {
|
|
|
|
Operation *defOp = extractOp.getVector().getDefiningOp();
|
|
if (!defOp || !isBroadcastLike(defOp))
|
|
return Value();
|
|
|
|
Value input = defOp->getOperand(0);
|
|
|
|
// Replace extract(broadcast(X)) with X
|
|
if (extractOp.getType() == input.getType())
|
|
return input;
|
|
|
|
// Get required types and ranks in the chain
|
|
// input -> broadcast -> extract
|
|
// (scalars are treated as rank-0).
|
|
auto inputType = llvm::dyn_cast<VectorType>(input.getType());
|
|
auto extractType = llvm::dyn_cast<VectorType>(extractOp.getType());
|
|
unsigned inputRank = inputType ? inputType.getRank() : 0;
|
|
unsigned broadcastRank = extractOp.getSourceVectorType().getRank();
|
|
unsigned extractRank = extractType ? extractType.getRank() : 0;
|
|
|
|
// Cannot do without the broadcast if overall the rank increases.
|
|
if (extractRank > inputRank)
|
|
return Value();
|
|
|
|
// The above condition guarantees that input is a vector.
|
|
assert(inputType && "input must be a vector type because of previous checks");
|
|
ArrayRef<int64_t> inputShape = inputType.getShape();
|
|
|
|
// In the case where there is a broadcast dimension in the suffix, it is not
|
|
// possible to replace extract(broadcast(X)) with extract(X). Example:
|
|
//
|
|
// broadcast extract
|
|
// (1) --------> (3,4) ------> (4)
|
|
if (extractType &&
|
|
extractType.getShape() != inputShape.take_back(extractRank))
|
|
return Value();
|
|
|
|
// Replace extract(broadcast(X)) with extract(X).
|
|
// First, determine the new extraction position.
|
|
unsigned deltaOverall = inputRank - extractRank;
|
|
unsigned deltaBroadcast = broadcastRank - inputRank;
|
|
SmallVector<OpFoldResult> oldPositions = extractOp.getMixedPosition();
|
|
SmallVector<OpFoldResult> newPositions(deltaOverall);
|
|
IntegerAttr zero = OpBuilder(extractOp.getContext()).getIndexAttr(0);
|
|
for (auto [i, size] : llvm::enumerate(inputShape.take_front(deltaOverall))) {
|
|
newPositions[i] = size == 1 ? zero : oldPositions[i + deltaBroadcast];
|
|
}
|
|
auto [staticPos, dynPos] = decomposeMixedValues(newPositions);
|
|
extractOp->setOperands(
|
|
llvm::to_vector(llvm::concat<Value>(ValueRange(input), dynPos)));
|
|
extractOp.setStaticPosition(staticPos);
|
|
return extractOp.getResult();
|
|
}
|
|
|
|
/// Fold extractOp coming from ShuffleOp.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// %shuffle = vector.shuffle %a, %b [0, 8, 7, 15]
|
|
/// : vector<8xf32>, vector<8xf32>
|
|
/// %extract = vector.extract %shuffle[3] : f32 from vector<4xf32>
|
|
/// ->
|
|
/// %extract = vector.extract %b[7] : f32 from vector<8xf32>
|
|
///
|
|
static Value foldExtractFromShuffle(ExtractOp extractOp) {
|
|
// Dynamic positions are not folded as the resulting code would be more
|
|
// complex than the input code.
|
|
if (extractOp.hasDynamicPosition())
|
|
return Value();
|
|
|
|
auto shuffleOp = extractOp.getVector().getDefiningOp<ShuffleOp>();
|
|
if (!shuffleOp)
|
|
return Value();
|
|
|
|
// TODO: 0-D or multi-dimensional vectors not supported yet.
|
|
if (shuffleOp.getResultVectorType().getRank() != 1)
|
|
return Value();
|
|
|
|
int64_t inputVecSize = shuffleOp.getV1().getType().getShape()[0];
|
|
auto shuffleMask = shuffleOp.getMask();
|
|
int64_t extractIdx = extractOp.getStaticPosition()[0];
|
|
int64_t shuffleIdx = shuffleMask[extractIdx];
|
|
|
|
// Find the shuffled vector to extract from based on the shuffle index.
|
|
if (shuffleIdx < inputVecSize) {
|
|
extractOp.setOperand(0, shuffleOp.getV1());
|
|
extractOp.setStaticPosition({shuffleIdx});
|
|
} else {
|
|
extractOp.setOperand(0, shuffleOp.getV2());
|
|
extractOp.setStaticPosition({shuffleIdx - inputVecSize});
|
|
}
|
|
|
|
return extractOp.getResult();
|
|
}
|
|
|
|
// Fold extractOp with source coming from ShapeCast op.
|
|
static Value foldExtractFromShapeCast(ExtractOp extractOp) {
|
|
// TODO: Canonicalization for dynamic position not implemented yet.
|
|
if (extractOp.hasDynamicPosition())
|
|
return Value();
|
|
|
|
auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>();
|
|
if (!shapeCastOp)
|
|
return Value();
|
|
|
|
// Get the nth dimension size starting from lowest dimension.
|
|
auto getDimReverse = [](VectorType type, int64_t n) {
|
|
return type.getShape().take_back(n + 1).front();
|
|
};
|
|
int64_t destinationRank =
|
|
llvm::isa<VectorType>(extractOp.getType())
|
|
? llvm::cast<VectorType>(extractOp.getType()).getRank()
|
|
: 0;
|
|
if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
|
|
return Value();
|
|
if (destinationRank > 0) {
|
|
auto destinationType =
|
|
llvm::cast<VectorType>(extractOp.getResult().getType());
|
|
for (int64_t i = 0; i < destinationRank; i++) {
|
|
// The lowest dimension of the destination must match the lowest
|
|
// dimension of the shapecast op source.
|
|
// TODO: This case could be support in a canonicalization pattern.
|
|
if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
|
|
getDimReverse(destinationType, i))
|
|
return Value();
|
|
}
|
|
}
|
|
// Extract the strides associated with the extract op vector source. Then use
|
|
// this to calculate a linearized position for the extract.
|
|
SmallVector<int64_t> extractedPos(extractOp.getStaticPosition());
|
|
std::reverse(extractedPos.begin(), extractedPos.end());
|
|
SmallVector<int64_t, 4> strides;
|
|
int64_t stride = 1;
|
|
for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
|
|
strides.push_back(stride);
|
|
stride *=
|
|
getDimReverse(extractOp.getSourceVectorType(), i + destinationRank);
|
|
}
|
|
|
|
int64_t position = linearize(extractedPos, strides);
|
|
// Then extract the strides associated to the shapeCast op vector source and
|
|
// delinearize the position using those strides.
|
|
SmallVector<int64_t, 4> newStrides;
|
|
int64_t numDimension =
|
|
shapeCastOp.getSourceVectorType().getRank() - destinationRank;
|
|
stride = 1;
|
|
for (int64_t i = 0; i < numDimension; i++) {
|
|
newStrides.push_back(stride);
|
|
stride *=
|
|
getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
|
|
}
|
|
std::reverse(newStrides.begin(), newStrides.end());
|
|
SmallVector<int64_t, 4> newPosition = delinearize(position, newStrides);
|
|
// OpBuilder is only used as a helper to build an I64ArrayAttr.
|
|
OpBuilder b(extractOp.getContext());
|
|
extractOp.setStaticPosition(newPosition);
|
|
extractOp.setOperand(0, shapeCastOp.getSource());
|
|
return extractOp.getResult();
|
|
}
|
|
|
|
/// Fold an ExtractOp from ExtractStridedSliceOp.
|
|
static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
|
|
// TODO: Canonicalization for dynamic position not implemented yet.
|
|
if (extractOp.hasDynamicPosition())
|
|
return Value();
|
|
|
|
auto extractStridedSliceOp =
|
|
extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>();
|
|
if (!extractStridedSliceOp)
|
|
return Value();
|
|
|
|
// 0-D vectors not supported.
|
|
assert(!hasZeroDimVectors(extractOp) && "0-D vectors not supported");
|
|
if (hasZeroDimVectors(extractStridedSliceOp))
|
|
return Value();
|
|
|
|
// Return if 'extractStridedSliceOp' has non-unit strides.
|
|
if (extractStridedSliceOp.hasNonUnitStrides())
|
|
return Value();
|
|
|
|
// Trim offsets for dimensions fully extracted.
|
|
auto sliceOffsets =
|
|
extractVector<int64_t>(extractStridedSliceOp.getOffsets());
|
|
while (!sliceOffsets.empty()) {
|
|
size_t lastOffset = sliceOffsets.size() - 1;
|
|
if (sliceOffsets.back() != 0 ||
|
|
extractStridedSliceOp.getType().getDimSize(lastOffset) !=
|
|
extractStridedSliceOp.getSourceVectorType().getDimSize(lastOffset))
|
|
break;
|
|
sliceOffsets.pop_back();
|
|
}
|
|
unsigned destinationRank = 0;
|
|
if (auto vecType = llvm::dyn_cast<VectorType>(extractOp.getType()))
|
|
destinationRank = vecType.getRank();
|
|
// The dimensions of the result need to be untouched by the
|
|
// extractStridedSlice op.
|
|
if (destinationRank > extractStridedSliceOp.getSourceVectorType().getRank() -
|
|
sliceOffsets.size())
|
|
return Value();
|
|
|
|
SmallVector<int64_t> extractedPos(extractOp.getStaticPosition());
|
|
assert(extractedPos.size() >= sliceOffsets.size());
|
|
for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
|
|
extractedPos[i] = extractedPos[i] + sliceOffsets[i];
|
|
extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector());
|
|
|
|
// OpBuilder is only used as a helper to build an I64ArrayAttr.
|
|
OpBuilder b(extractOp.getContext());
|
|
extractOp.setStaticPosition(extractedPos);
|
|
return extractOp.getResult();
|
|
}
|
|
|
|
/// Fold extract_op fed from a chain of insertStridedSlice ops.
|
|
static Value foldExtractStridedOpFromInsertChain(ExtractOp extractOp) {
|
|
// TODO: Canonicalization for dynamic position not implemented yet.
|
|
if (extractOp.hasDynamicPosition())
|
|
return Value();
|
|
|
|
int64_t destinationRank =
|
|
llvm::isa<VectorType>(extractOp.getType())
|
|
? llvm::cast<VectorType>(extractOp.getType()).getRank()
|
|
: 0;
|
|
auto insertOp = extractOp.getVector().getDefiningOp<InsertStridedSliceOp>();
|
|
if (!insertOp)
|
|
return Value();
|
|
|
|
// 0-D vectors not supported.
|
|
assert(!hasZeroDimVectors(extractOp) && "0-D vectors not supported");
|
|
if (hasZeroDimVectors(insertOp))
|
|
return Value();
|
|
|
|
while (insertOp) {
|
|
int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
|
|
insertOp.getSourceVectorType().getRank();
|
|
if (destinationRank > insertOp.getSourceVectorType().getRank())
|
|
return Value();
|
|
auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets());
|
|
ArrayRef<int64_t> extractOffsets = extractOp.getStaticPosition();
|
|
|
|
if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) {
|
|
return llvm::cast<IntegerAttr>(attr).getInt() != 1;
|
|
}))
|
|
return Value();
|
|
bool disjoint = false;
|
|
SmallVector<int64_t, 4> offsetDiffs;
|
|
for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
|
|
int64_t start = insertOffsets[dim];
|
|
int64_t size =
|
|
(dim < insertRankDiff)
|
|
? 1
|
|
: insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
|
|
int64_t end = start + size;
|
|
int64_t offset = extractOffsets[dim];
|
|
// Check if the start of the extract offset is in the interval inserted.
|
|
if (start <= offset && offset < end) {
|
|
if (dim >= insertRankDiff)
|
|
offsetDiffs.push_back(offset - start);
|
|
continue;
|
|
}
|
|
disjoint = true;
|
|
break;
|
|
}
|
|
// The extract element chunk overlap with the vector inserted.
|
|
if (!disjoint) {
|
|
// If any of the inner dimensions are only partially inserted we have a
|
|
// partial overlap.
|
|
int64_t srcRankDiff =
|
|
insertOp.getSourceVectorType().getRank() - destinationRank;
|
|
for (int64_t i = 0; i < destinationRank; i++) {
|
|
if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
|
|
insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
|
|
insertRankDiff))
|
|
return Value();
|
|
}
|
|
extractOp.getVectorMutable().assign(insertOp.getValueToStore());
|
|
// OpBuilder is only used as a helper to build an I64ArrayAttr.
|
|
OpBuilder b(extractOp.getContext());
|
|
extractOp.setStaticPosition(offsetDiffs);
|
|
return extractOp.getResult();
|
|
}
|
|
// If the chunk extracted is disjoint from the chunk inserted, keep
|
|
// looking in the insert chain.
|
|
insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
|
|
}
|
|
return Value();
|
|
}
|
|
|
|
/// Try to fold the extraction of a scalar from a vector defined by
|
|
/// vector.from_elements. E.g.:
|
|
///
|
|
/// %0 = vector.from_elements %a, %b : vector<2xf32>
|
|
/// %1 = vector.extract %0[0] : f32 from vector<2xf32>
|
|
/// ==> fold to %a
|
|
static Value foldScalarExtractFromFromElements(ExtractOp extractOp) {
|
|
// Dynamic extractions cannot be folded.
|
|
if (extractOp.hasDynamicPosition())
|
|
return {};
|
|
|
|
// Look for extract(from_elements).
|
|
auto fromElementsOp = extractOp.getVector().getDefiningOp<FromElementsOp>();
|
|
if (!fromElementsOp)
|
|
return {};
|
|
|
|
// Scalable vectors are not supported.
|
|
auto vecType = llvm::cast<VectorType>(fromElementsOp.getType());
|
|
if (vecType.isScalable())
|
|
return {};
|
|
|
|
// Only extractions of scalars are supported.
|
|
int64_t rank = vecType.getRank();
|
|
ArrayRef<int64_t> indices = extractOp.getStaticPosition();
|
|
if (extractOp.getType() != vecType.getElementType())
|
|
return {};
|
|
assert(static_cast<int64_t>(indices.size()) == rank &&
|
|
"unexpected number of indices");
|
|
|
|
// Compute flattened/linearized index and fold to operand.
|
|
int flatIndex = 0;
|
|
int stride = 1;
|
|
for (int i = rank - 1; i >= 0; --i) {
|
|
flatIndex += indices[i] * stride;
|
|
stride *= vecType.getDimSize(i);
|
|
}
|
|
return fromElementsOp.getElements()[flatIndex];
|
|
}
|
|
|
|
/// If the dynamic indices of `extractOp` or `insertOp` are in fact constants,
|
|
/// then fold it.
|
|
template <typename OpType, typename AdaptorType>
|
|
static Value extractInsertFoldConstantOp(OpType op, AdaptorType adaptor,
|
|
SmallVectorImpl<Value> &operands) {
|
|
std::vector<int64_t> staticPosition = op.getStaticPosition().vec();
|
|
OperandRange dynamicPosition = op.getDynamicPosition();
|
|
ArrayRef<Attribute> dynamicPositionAttr = adaptor.getDynamicPosition();
|
|
ArrayRef<int64_t> vectorShape;
|
|
if constexpr (std::is_same_v<OpType, ExtractOp>)
|
|
vectorShape = op.getSourceVectorType().getShape();
|
|
else
|
|
vectorShape = op.getDestVectorType().getShape();
|
|
|
|
// If the dynamic operands is empty, it is returned directly.
|
|
if (!dynamicPosition.size())
|
|
return {};
|
|
|
|
// `index` is used to iterate over the `dynamicPosition`.
|
|
unsigned index = 0;
|
|
|
|
// `opChange` is a flag. If it is true, it means to update `op` in place.
|
|
bool opChange = false;
|
|
for (unsigned i = 0, e = staticPosition.size(); i < e; ++i) {
|
|
if (ShapedType::isStatic(staticPosition[i]))
|
|
continue;
|
|
Attribute positionAttr = dynamicPositionAttr[index];
|
|
Value position = dynamicPosition[index++];
|
|
if (auto attr = mlir::dyn_cast_if_present<IntegerAttr>(positionAttr)) {
|
|
int64_t value = attr.getInt();
|
|
// Do not fold if the value is out of bounds (-1 signifies a poison
|
|
// value rather than OOB index).
|
|
if (value >= -1 && value < vectorShape[i]) {
|
|
staticPosition[i] = attr.getInt();
|
|
opChange = true;
|
|
continue;
|
|
}
|
|
}
|
|
operands.push_back(position);
|
|
}
|
|
|
|
if (opChange) {
|
|
op.setStaticPosition(staticPosition);
|
|
op.getOperation()->setOperands(operands);
|
|
// Return the original result to indicate an in-place folding happened.
|
|
return op.getResult();
|
|
}
|
|
return {};
|
|
}
|
|
|
|
/// Fold an insert or extract operation into an poison value when a poison index
|
|
/// is found at any dimension of the static position.
|
|
static Attribute foldPoisonIndexInsertExtractOp(MLIRContext *context,
|
|
ArrayRef<int64_t> staticPos,
|
|
int64_t poisonVal) {
|
|
if (!is_contained(staticPos, poisonVal))
|
|
return {};
|
|
|
|
return ub::PoisonAttr::get(context);
|
|
}
|
|
|
|
/// Fold a vector extract from is a poison source.
|
|
static Attribute foldPoisonSrcExtractOp(Attribute srcAttr) {
|
|
if (isa_and_nonnull<ub::PoisonAttr>(srcAttr))
|
|
return srcAttr;
|
|
|
|
return {};
|
|
}
|
|
|
|
/// Fold a vector extract extracting from a DenseElementsAttr.
|
|
static Attribute foldDenseElementsAttrSrcExtractOp(ExtractOp extractOp,
|
|
Attribute srcAttr) {
|
|
auto denseAttr = dyn_cast_if_present<DenseElementsAttr>(srcAttr);
|
|
if (!denseAttr) {
|
|
return {};
|
|
}
|
|
|
|
if (denseAttr.isSplat()) {
|
|
Attribute newAttr = denseAttr.getSplatValue<Attribute>();
|
|
if (auto vecDstType = dyn_cast<VectorType>(extractOp.getType()))
|
|
newAttr = DenseElementsAttr::get(vecDstType, newAttr);
|
|
return newAttr;
|
|
}
|
|
|
|
auto vecTy = cast<VectorType>(extractOp.getSourceVectorType());
|
|
if (vecTy.isScalable())
|
|
return {};
|
|
|
|
if (extractOp.hasDynamicPosition()) {
|
|
return {};
|
|
}
|
|
|
|
// Materializing subsets of a large constant array can generally lead to
|
|
// explosion in IR size because of different combination of subsets that
|
|
// can exist. However, vector.extract is a restricted form of subset
|
|
// extract where you can only extract non-overlapping (or the same) subset for
|
|
// a given rank of the subset. Because of this property, the IR size can only
|
|
// increase at most by `rank * size(array)` from a single constant array being
|
|
// extracted by multiple extracts.
|
|
|
|
// Calculate the linearized position of the continuous chunk of elements to
|
|
// extract.
|
|
SmallVector<int64_t> completePositions(vecTy.getRank(), 0);
|
|
copy(extractOp.getStaticPosition(), completePositions.begin());
|
|
int64_t startPos =
|
|
linearize(completePositions, computeStrides(vecTy.getShape()));
|
|
auto denseValuesBegin = denseAttr.value_begin<TypedAttr>() + startPos;
|
|
|
|
TypedAttr newAttr;
|
|
if (auto resVecTy = dyn_cast<VectorType>(extractOp.getType())) {
|
|
SmallVector<Attribute> elementValues(
|
|
denseValuesBegin, denseValuesBegin + resVecTy.getNumElements());
|
|
newAttr = DenseElementsAttr::get(resVecTy, elementValues);
|
|
} else {
|
|
newAttr = *denseValuesBegin;
|
|
}
|
|
|
|
return newAttr;
|
|
}
|
|
|
|
OpFoldResult ExtractOp::fold(FoldAdaptor adaptor) {
|
|
// Fold "vector.extract %v[] : vector<2x2xf32> from vector<2x2xf32>" to %v.
|
|
// Note: Do not fold "vector.extract %v[] : f32 from vector<f32>" (type
|
|
// mismatch).
|
|
if (getNumIndices() == 0 && getVector().getType() == getResult().getType())
|
|
return getVector();
|
|
if (auto res = foldPoisonSrcExtractOp(adaptor.getVector()))
|
|
return res;
|
|
// Fold `arith.constant` indices into the `vector.extract` operation.
|
|
// Do not stop here as this fold may enable subsequent folds that require
|
|
// constant indices.
|
|
SmallVector<Value> operands = {getVector()};
|
|
auto inplaceFolded = extractInsertFoldConstantOp(*this, adaptor, operands);
|
|
|
|
if (auto res = foldPoisonIndexInsertExtractOp(
|
|
getContext(), adaptor.getStaticPosition(), kPoisonIndex))
|
|
return res;
|
|
if (auto res = foldDenseElementsAttrSrcExtractOp(*this, adaptor.getVector()))
|
|
return res;
|
|
if (succeeded(foldExtractOpFromExtractChain(*this)))
|
|
return getResult();
|
|
if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
|
|
return res;
|
|
if (auto res = foldExtractFromBroadcast(*this))
|
|
return res;
|
|
if (auto res = foldExtractFromShuffle(*this))
|
|
return res;
|
|
if (auto res = foldExtractFromShapeCast(*this))
|
|
return res;
|
|
if (auto val = foldExtractFromExtractStrided(*this))
|
|
return val;
|
|
if (auto val = foldExtractStridedOpFromInsertChain(*this))
|
|
return val;
|
|
if (auto val = foldScalarExtractFromFromElements(*this))
|
|
return val;
|
|
|
|
return inplaceFolded;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
|
|
class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ExtractOp extractOp,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
Operation *defOp = extractOp.getVector().getDefiningOp();
|
|
VectorType outType = dyn_cast<VectorType>(extractOp.getType());
|
|
if (!defOp || !isBroadcastLike(defOp) || !outType)
|
|
return failure();
|
|
|
|
Value source = defOp->getOperand(0);
|
|
if (isBroadcastableTo(source.getType(), outType) !=
|
|
BroadcastableToResult::Success)
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<BroadcastOp>(extractOp, outType, source);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Pattern to rewrite a ExtractOp(CreateMask) -> CreateMask.
|
|
class ExtractOpFromCreateMask final : public OpRewritePattern<ExtractOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ExtractOp extractOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto createMaskOp =
|
|
extractOp.getVector().getDefiningOp<vector::CreateMaskOp>();
|
|
if (!createMaskOp)
|
|
return failure();
|
|
|
|
VectorType extractedMaskType =
|
|
llvm::dyn_cast<VectorType>(extractOp.getResult().getType());
|
|
|
|
if (!extractedMaskType)
|
|
return failure();
|
|
|
|
auto maskOperands = createMaskOp.getOperands();
|
|
ArrayRef<int64_t> extractOpPos = extractOp.getStaticPosition();
|
|
VectorType maskType = createMaskOp.getVectorType();
|
|
|
|
bool containsUnknownDims = false;
|
|
bool allFalse = getMaskFormat(createMaskOp) == MaskFormat::AllFalse;
|
|
|
|
for (size_t dimIdx = 0; !allFalse && dimIdx < extractOpPos.size();
|
|
dimIdx++) {
|
|
int64_t pos = extractOpPos[dimIdx];
|
|
Value operand = maskOperands[dimIdx];
|
|
auto constantOp = operand.getDefiningOp<arith::ConstantOp>();
|
|
if (!constantOp) {
|
|
// Bounds of this dim unknown.
|
|
containsUnknownDims = true;
|
|
continue;
|
|
}
|
|
|
|
int64_t createMaskBound =
|
|
llvm::cast<IntegerAttr>(constantOp.getValue()).getInt();
|
|
|
|
if (pos != ShapedType::kDynamic) {
|
|
// If any position is outside the range from the `create_mask`, then the
|
|
// extracted mask will be all-false.
|
|
allFalse |= pos >= createMaskBound;
|
|
} else if (createMaskBound < maskType.getDimSize(dimIdx)) {
|
|
// This dim is not all-true and since this is a dynamic index we don't
|
|
// know if the extraction is within the true or false region.
|
|
// Note: Zero dims have already handled via getMaskFormat().
|
|
containsUnknownDims = true;
|
|
}
|
|
}
|
|
|
|
if (allFalse) {
|
|
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
|
|
extractOp, DenseElementsAttr::get(extractedMaskType, false));
|
|
} else if (!containsUnknownDims) {
|
|
rewriter.replaceOpWithNewOp<vector::CreateMaskOp>(
|
|
extractOp, extractedMaskType,
|
|
maskOperands.drop_front(extractOpPos.size()));
|
|
} else {
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Folds extract(shape_cast(..)) into shape_cast when the total element count
|
|
// does not change.
|
|
LogicalResult foldExtractFromShapeCastToShapeCast(ExtractOp extractOp,
|
|
PatternRewriter &rewriter) {
|
|
auto castOp = extractOp.getVector().getDefiningOp<ShapeCastOp>();
|
|
if (!castOp)
|
|
return failure();
|
|
|
|
VectorType sourceType = castOp.getSourceVectorType();
|
|
auto targetType = dyn_cast<VectorType>(extractOp.getResult().getType());
|
|
if (!targetType)
|
|
return failure();
|
|
|
|
if (sourceType.getNumElements() != targetType.getNumElements())
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(extractOp, targetType,
|
|
castOp.getSource());
|
|
return success();
|
|
}
|
|
|
|
/// Try to canonicalize the extraction of a subvector from a vector defined by
|
|
/// vector.from_elements. E.g.:
|
|
///
|
|
/// %0 = vector.from_elements %a, %b, %a, %a : vector<2x2xf32>
|
|
/// %1 = vector.extract %0[0] : vector<2xf32> from vector<2x2xf32>
|
|
/// ==> canonicalize to vector.from_elements %a, %b : vector<2xf32>
|
|
LogicalResult foldExtractFromFromElements(ExtractOp extractOp,
|
|
PatternRewriter &rewriter) {
|
|
// Dynamic positions are not supported.
|
|
if (extractOp.hasDynamicPosition())
|
|
return failure();
|
|
|
|
// Scalar extracts are handled by the folder.
|
|
auto resultType = dyn_cast<VectorType>(extractOp.getType());
|
|
if (!resultType)
|
|
return failure();
|
|
|
|
// Look for extracts from a from_elements op.
|
|
auto fromElementsOp = extractOp.getVector().getDefiningOp<FromElementsOp>();
|
|
if (!fromElementsOp)
|
|
return failure();
|
|
VectorType inputType = fromElementsOp.getType();
|
|
|
|
// Scalable vectors are not supported.
|
|
if (resultType.isScalable() || inputType.isScalable())
|
|
return failure();
|
|
|
|
// Compute the position of first extracted element and flatten/linearize the
|
|
// position.
|
|
SmallVector<int64_t> firstElementPos =
|
|
llvm::to_vector(extractOp.getStaticPosition());
|
|
firstElementPos.append(/*NumInputs=*/resultType.getRank(), /*Elt=*/0);
|
|
int flatIndex = 0;
|
|
int stride = 1;
|
|
for (int64_t i = inputType.getRank() - 1; i >= 0; --i) {
|
|
flatIndex += firstElementPos[i] * stride;
|
|
stride *= inputType.getDimSize(i);
|
|
}
|
|
|
|
// Replace the op with a smaller from_elements op.
|
|
rewriter.replaceOpWithNewOp<FromElementsOp>(
|
|
extractOp, resultType,
|
|
fromElementsOp.getElements().slice(flatIndex,
|
|
resultType.getNumElements()));
|
|
return success();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<ExtractOpFromBroadcast, ExtractOpFromCreateMask>(context);
|
|
results.add(foldExtractFromShapeCastToShapeCast);
|
|
results.add(foldExtractFromFromElements);
|
|
}
|
|
|
|
static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
|
|
SmallVectorImpl<int64_t> &results) {
|
|
for (auto attr : arrayAttr)
|
|
results.push_back(llvm::cast<IntegerAttr>(attr).getInt());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FmaOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
std::optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
|
|
return llvm::to_vector<4>(getVectorType().getShape());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ToElementsOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if all the `operands` are defined by `defOp`.
|
|
/// Otherwise, returns false.
|
|
static bool haveSameDefiningOp(OperandRange operands, Operation *defOp) {
|
|
if (operands.empty())
|
|
return false;
|
|
|
|
return llvm::all_of(operands, [&](Value operand) {
|
|
Operation *currentDef = operand.getDefiningOp();
|
|
return currentDef == defOp;
|
|
});
|
|
}
|
|
|
|
/// Folds vector.to_elements(vector.from_elements(%e0, %e1, ...)) into
|
|
/// (%e0, %e1, ...). For example:
|
|
///
|
|
/// %0 = vector.from_elements %a, %b, %c : vector<3xf32>
|
|
/// %1:3 = vector.to_elements %0 : vector<3xf32>
|
|
/// user_op %1#0, %1#1, %1#2
|
|
///
|
|
/// becomes:
|
|
///
|
|
/// user_op %a, %b, %c
|
|
///
|
|
static LogicalResult
|
|
foldToElementsFromElements(ToElementsOp toElementsOp,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
auto fromElementsOp =
|
|
toElementsOp.getSource().getDefiningOp<FromElementsOp>();
|
|
if (!fromElementsOp)
|
|
return failure();
|
|
|
|
llvm::append_range(results, fromElementsOp.getElements());
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ToElementsOp::fold(FoldAdaptor adaptor,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
return foldToElementsFromElements(*this, results);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FromElementsOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Folds vector.from_elements(vector.to_elements(%vector)) into %vector.
|
|
///
|
|
/// Case #1: Input and output vectors are the same.
|
|
///
|
|
/// %0:3 = vector.to_elements %a : vector<3xf32>
|
|
/// %1 = vector.from_elements %0#0, %0#1, %0#2 : vector<3xf32>
|
|
/// user_op %1
|
|
///
|
|
/// becomes:
|
|
///
|
|
/// user_op %a
|
|
///
|
|
static OpFoldResult foldFromElementsToElements(FromElementsOp fromElementsOp) {
|
|
OperandRange fromElemsOperands = fromElementsOp.getElements();
|
|
if (fromElemsOperands.empty())
|
|
return {};
|
|
|
|
auto toElementsOp = fromElemsOperands[0].getDefiningOp<ToElementsOp>();
|
|
if (!toElementsOp)
|
|
return {};
|
|
|
|
if (!haveSameDefiningOp(fromElemsOperands, toElementsOp))
|
|
return {};
|
|
|
|
// Case #1: Input and output vectors are the same. Forward the input vector.
|
|
Value toElementsInput = toElementsOp.getSource();
|
|
if (fromElementsOp.getType() == toElementsInput.getType() &&
|
|
llvm::equal(fromElemsOperands, toElementsOp.getResults())) {
|
|
return toElementsInput;
|
|
}
|
|
|
|
// TODO: Support cases with different input and output shapes and different
|
|
// number of elements.
|
|
|
|
return {};
|
|
}
|
|
|
|
/// Fold vector.from_elements to a constant when all operands are constants.
|
|
/// Example:
|
|
/// %c1 = arith.constant 1 : i32
|
|
/// %c2 = arith.constant 2 : i32
|
|
/// %v = vector.from_elements %c1, %c2 : vector<2xi32>
|
|
/// =>
|
|
/// %v = arith.constant dense<[1, 2]> : vector<2xi32>
|
|
///
|
|
static OpFoldResult foldFromElementsToConstant(FromElementsOp fromElementsOp,
|
|
ArrayRef<Attribute> elements) {
|
|
if (llvm::any_of(elements, [](Attribute attr) { return !attr; }))
|
|
return {};
|
|
|
|
auto destVecType = fromElementsOp.getDest().getType();
|
|
auto destEltType = destVecType.getElementType();
|
|
// Constant attributes might have a different type than the return type.
|
|
// Convert them before creating the dense elements attribute.
|
|
auto convertedElements = llvm::map_to_vector(elements, [&](Attribute attr) {
|
|
return convertIntegerAttr(attr, destEltType);
|
|
});
|
|
|
|
return DenseElementsAttr::get(destVecType, convertedElements);
|
|
}
|
|
|
|
OpFoldResult FromElementsOp::fold(FoldAdaptor adaptor) {
|
|
if (auto res = foldFromElementsToElements(*this))
|
|
return res;
|
|
if (auto res = foldFromElementsToConstant(*this, adaptor.getElements()))
|
|
return res;
|
|
|
|
return {};
|
|
}
|
|
|
|
/// Rewrite a vector.from_elements into a vector.splat if all elements are the
|
|
/// same SSA value. E.g.:
|
|
///
|
|
/// %0 = vector.from_elements %a, %a, %a : vector<3xf32>
|
|
/// ==> rewrite to vector.splat %a : vector<3xf32>
|
|
static LogicalResult rewriteFromElementsAsSplat(FromElementsOp fromElementsOp,
|
|
PatternRewriter &rewriter) {
|
|
if (!llvm::all_equal(fromElementsOp.getElements()))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<SplatOp>(fromElementsOp, fromElementsOp.getType(),
|
|
fromElementsOp.getElements().front());
|
|
return success();
|
|
}
|
|
|
|
/// Rewrite from_elements on multiple scalar extracts as a shape_cast
|
|
/// on a single extract. Example:
|
|
/// %0 = vector.extract %source[0, 0] : i8 from vector<2x2xi8>
|
|
/// %1 = vector.extract %source[0, 1] : i8 from vector<2x2xi8>
|
|
/// %2 = vector.from_elements %0, %1 : vector<2xi8>
|
|
///
|
|
/// becomes
|
|
/// %1 = vector.extract %source[0] : vector<1x2xi8> from vector<2x2xi8>
|
|
/// %2 = vector.shape_cast %1 : vector<1x2xi8> to vector<2xi8>
|
|
///
|
|
/// The requirements for this to be valid are
|
|
///
|
|
/// i) The elements are extracted from the same vector (%source).
|
|
///
|
|
/// ii) The elements form a suffix of %source. Specifically, the number
|
|
/// of elements is the same as the product of the last N dimension sizes
|
|
/// of %source, for some N.
|
|
///
|
|
/// iii) The elements are extracted contiguously in ascending order.
|
|
|
|
class FromElementsToShapeCast : public OpRewritePattern<FromElementsOp> {
|
|
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(FromElementsOp fromElements,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
// Handled by `rewriteFromElementsAsSplat`
|
|
if (fromElements.getType().getNumElements() == 1)
|
|
return failure();
|
|
|
|
// The common source that all elements are extracted from, if one exists.
|
|
TypedValue<VectorType> source;
|
|
// The position of the combined extract operation, if one is created.
|
|
ArrayRef<int64_t> combinedPosition;
|
|
// The expected index of extraction of the current element in the loop, if
|
|
// elements are extracted contiguously in ascending order.
|
|
SmallVector<int64_t> expectedPosition;
|
|
|
|
for (auto [insertIndex, element] :
|
|
llvm::enumerate(fromElements.getElements())) {
|
|
|
|
// Check that the element is from a vector.extract operation.
|
|
auto extractOp =
|
|
dyn_cast_if_present<vector::ExtractOp>(element.getDefiningOp());
|
|
if (!extractOp) {
|
|
return rewriter.notifyMatchFailure(fromElements,
|
|
"element not from vector.extract");
|
|
}
|
|
|
|
// Check condition (i) by checking that all elements have the same source
|
|
// as the first element.
|
|
if (insertIndex == 0) {
|
|
source = extractOp.getVector();
|
|
} else if (extractOp.getVector() != source) {
|
|
return rewriter.notifyMatchFailure(fromElements,
|
|
"element from different vector");
|
|
}
|
|
|
|
ArrayRef<int64_t> position = extractOp.getStaticPosition();
|
|
int64_t rank = position.size();
|
|
assert(rank == source.getType().getRank() &&
|
|
"scalar extract must have full rank position");
|
|
|
|
// Check condition (ii) by checking that the position that the first
|
|
// element is extracted from has sufficient trailing 0s. For example, in
|
|
//
|
|
// %elm0 = vector.extract %source[1, 0, 0] : i8 from vector<2x3x4xi8>
|
|
// [...]
|
|
// %elms = vector.from_elements %elm0, [...] : vector<12xi8>
|
|
//
|
|
// The 2 trailing 0s in the position of extraction of %elm0 cover 3*4 = 12
|
|
// elements, which is the number of elements of %n, so this is valid.
|
|
if (insertIndex == 0) {
|
|
const int64_t numElms = fromElements.getType().getNumElements();
|
|
int64_t numSuffixElms = 1;
|
|
int64_t index = rank;
|
|
while (index > 0 && position[index - 1] == 0 &&
|
|
numSuffixElms < numElms) {
|
|
numSuffixElms *= source.getType().getDimSize(index - 1);
|
|
--index;
|
|
}
|
|
if (numSuffixElms != numElms) {
|
|
return rewriter.notifyMatchFailure(
|
|
fromElements, "elements do not form a suffix of source");
|
|
}
|
|
expectedPosition = llvm::to_vector(position);
|
|
combinedPosition = position.drop_back(rank - index);
|
|
}
|
|
|
|
// Check condition (iii).
|
|
else if (expectedPosition != position) {
|
|
return rewriter.notifyMatchFailure(
|
|
fromElements, "elements not in ascending order (static order)");
|
|
}
|
|
increment(expectedPosition, source.getType().getShape());
|
|
}
|
|
|
|
auto extracted = rewriter.createOrFold<vector::ExtractOp>(
|
|
fromElements.getLoc(), source, combinedPosition);
|
|
|
|
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(
|
|
fromElements, fromElements.getType(), extracted);
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Increments n-D `indices` by 1 starting from the innermost dimension.
|
|
static void increment(MutableArrayRef<int64_t> indices,
|
|
ArrayRef<int64_t> shape) {
|
|
for (int dim : llvm::reverse(llvm::seq<int>(0, indices.size()))) {
|
|
indices[dim] += 1;
|
|
if (indices[dim] < shape[dim])
|
|
break;
|
|
indices[dim] = 0;
|
|
}
|
|
}
|
|
};
|
|
|
|
void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add(rewriteFromElementsAsSplat);
|
|
results.add<FromElementsToShapeCast>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BroadcastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void BroadcastOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
|
|
SetIntRangeFn setResultRanges) {
|
|
setResultRanges(getResult(), argRanges.front());
|
|
}
|
|
|
|
std::optional<SmallVector<int64_t, 4>> BroadcastOp::getShapeForUnroll() {
|
|
return llvm::to_vector<4>(getResultVectorType().getShape());
|
|
}
|
|
|
|
/// Return the dimensions of the result vector that were formerly ones in the
|
|
/// source tensor and thus correspond to "dim-1" broadcasting.
|
|
static llvm::SetVector<int64_t>
|
|
computeBroadcastedUnitDims(ArrayRef<int64_t> srcShape,
|
|
ArrayRef<int64_t> dstShape) {
|
|
int64_t rankDiff = dstShape.size() - srcShape.size();
|
|
int64_t dstDim = rankDiff;
|
|
llvm::SetVector<int64_t> res;
|
|
for (auto [s1, s2] :
|
|
llvm::zip_equal(srcShape, dstShape.drop_front(rankDiff))) {
|
|
if (s1 != s2) {
|
|
assert(s1 == 1 && "expected \"dim-1\" broadcasting");
|
|
res.insert(dstDim);
|
|
}
|
|
++dstDim;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
llvm::SetVector<int64_t> BroadcastOp::computeBroadcastedUnitDims() {
|
|
// Scalar broadcast is without any unit dim broadcast.
|
|
auto srcVectorType = llvm::dyn_cast<VectorType>(getSourceType());
|
|
if (!srcVectorType)
|
|
return {};
|
|
return ::computeBroadcastedUnitDims(srcVectorType.getShape(),
|
|
getResultVectorType().getShape());
|
|
}
|
|
|
|
/// Broadcast `value` to a vector of `dstShape`, knowing that exactly the
|
|
/// `broadcastedDims` dimensions in the dstShape are broadcasted.
|
|
/// This requires (and asserts) that the broadcast is free of "dim-1"
|
|
/// broadcasting.
|
|
/// Since vector.broadcast only allows expanding leading dimensions, an extra
|
|
/// vector.transpose may be inserted to make the broadcast possible.
|
|
/// `value`, `dstShape` and `broadcastedDims` must be properly specified or
|
|
/// the helper will assert. This means:
|
|
/// 1. `dstShape` must not be empty.
|
|
/// 2. `broadcastedDims` must be confined to [0 .. rank(value.getVectorType)]
|
|
/// 2. `dstShape` trimmed of the dimensions specified in `broadcastedDims`
|
|
// must match the `value` shape.
|
|
Value BroadcastOp::createOrFoldBroadcastOp(
|
|
OpBuilder &b, Value value, ArrayRef<int64_t> dstShape,
|
|
const llvm::SetVector<int64_t> &broadcastedDims) {
|
|
assert(!dstShape.empty() && "unexpected empty dst shape");
|
|
|
|
// Well-formedness check.
|
|
SmallVector<int64_t> checkShape;
|
|
for (int i = 0, e = dstShape.size(); i < e; ++i) {
|
|
if (broadcastedDims.contains(i))
|
|
continue;
|
|
checkShape.push_back(dstShape[i]);
|
|
}
|
|
assert(broadcastedDims.size() == dstShape.size() - checkShape.size() &&
|
|
"ill-formed broadcastedDims contains values not confined to "
|
|
"destVectorShape");
|
|
|
|
Location loc = value.getLoc();
|
|
Type elementType = getElementTypeOrSelf(value.getType());
|
|
VectorType srcVectorType = llvm::dyn_cast<VectorType>(value.getType());
|
|
VectorType dstVectorType = VectorType::get(dstShape, elementType);
|
|
|
|
// Step 2. If scalar -> dstShape broadcast, just do it.
|
|
if (!srcVectorType) {
|
|
assert(checkShape.empty() &&
|
|
"ill-formed createOrFoldBroadcastOp arguments");
|
|
return b.createOrFold<vector::BroadcastOp>(loc, dstVectorType, value);
|
|
}
|
|
|
|
assert(srcVectorType.getShape().equals(checkShape) &&
|
|
"ill-formed createOrFoldBroadcastOp arguments");
|
|
|
|
// Step 3. Since vector.broadcast only allows creating leading dims,
|
|
// vector -> dstShape broadcast may require a transpose.
|
|
// Traverse the dims in order and construct:
|
|
// 1. The leading entries of the broadcastShape that is guaranteed to be
|
|
// achievable by a simple broadcast.
|
|
// 2. The induced permutation for the subsequent vector.transpose that will
|
|
// bring us from `broadcastShape` back to he desired `dstShape`.
|
|
// If the induced permutation is not the identity, create a vector.transpose.
|
|
SmallVector<int64_t> broadcastShape, permutation(dstShape.size(), -1);
|
|
broadcastShape.reserve(dstShape.size());
|
|
// Consider the example:
|
|
// srcShape = 2x4
|
|
// dstShape = 1x2x3x4x5
|
|
// broadcastedDims = [0, 2, 4]
|
|
//
|
|
// We want to build:
|
|
// broadcastShape = 1x3x5x2x4
|
|
// permutation = [0, 2, 4, 1, 3]
|
|
// ---V--- -----V-----
|
|
// leading broadcast part src shape part
|
|
//
|
|
// Note that the trailing dims of broadcastShape are exactly the srcShape
|
|
// by construction.
|
|
// nextSrcShapeDim is used to keep track of where in the permutation the
|
|
// "src shape part" occurs.
|
|
int64_t nextSrcShapeDim = broadcastedDims.size();
|
|
for (int64_t i = 0, e = dstShape.size(); i < e; ++i) {
|
|
if (broadcastedDims.contains(i)) {
|
|
// 3.a. For each dim in the dst shape, if it is a broadcasted dim,
|
|
// bring it to the head of the broadcastShape.
|
|
// It will need to be permuted back from `broadcastShape.size() - 1` into
|
|
// position `i`.
|
|
broadcastShape.push_back(dstShape[i]);
|
|
permutation[i] = broadcastShape.size() - 1;
|
|
} else {
|
|
// 3.b. Otherwise, the dim is not broadcasted, it comes from the src
|
|
// shape and needs to be permuted into position `i`.
|
|
// Don't touch `broadcastShape` here, the whole srcShape will be
|
|
// appended after.
|
|
permutation[i] = nextSrcShapeDim++;
|
|
}
|
|
}
|
|
// 3.c. Append the srcShape.
|
|
llvm::append_range(broadcastShape, srcVectorType.getShape());
|
|
|
|
// Ensure there are no "dim-1" broadcasts.
|
|
assert(::computeBroadcastedUnitDims(srcVectorType.getShape(), broadcastShape)
|
|
.empty() &&
|
|
"unexpected \"dim-1\" broadcast");
|
|
|
|
VectorType broadcastType = VectorType::get(broadcastShape, elementType);
|
|
assert(vector::isBroadcastableTo(value.getType(), broadcastType) ==
|
|
vector::BroadcastableToResult::Success &&
|
|
"must be broadcastable");
|
|
Value res = b.createOrFold<vector::BroadcastOp>(loc, broadcastType, value);
|
|
// Step 4. If we find any dimension that indeed needs to be permuted,
|
|
// immediately return a new vector.transpose.
|
|
for (int64_t i = 0, e = permutation.size(); i < e; ++i)
|
|
if (permutation[i] != i)
|
|
return b.createOrFold<vector::TransposeOp>(loc, res, permutation);
|
|
// Otherwise return res.
|
|
return res;
|
|
}
|
|
|
|
BroadcastableToResult mlir::vector::isBroadcastableTo(
|
|
Type srcType, VectorType dstVectorType,
|
|
std::pair<VectorDim, VectorDim> *mismatchingDims) {
|
|
// Broadcast scalar to vector of the same element type.
|
|
if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
|
|
getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
|
|
return BroadcastableToResult::Success;
|
|
// From now on, only vectors broadcast.
|
|
VectorType srcVectorType = llvm::dyn_cast<VectorType>(srcType);
|
|
if (!srcVectorType)
|
|
return BroadcastableToResult::SourceTypeNotAVector;
|
|
|
|
int64_t srcRank = srcVectorType.getRank();
|
|
int64_t dstRank = dstVectorType.getRank();
|
|
if (srcRank > dstRank)
|
|
return BroadcastableToResult::SourceRankHigher;
|
|
// Source has an exact match or singleton value for all trailing dimensions
|
|
// (all leading dimensions are simply duplicated).
|
|
int64_t lead = dstRank - srcRank;
|
|
for (int64_t dimIdx = 0; dimIdx < srcRank; ++dimIdx) {
|
|
// Have mismatching dims (in the sense of vector.broadcast semantics) been
|
|
// encountered?
|
|
bool foundMismatchingDims = false;
|
|
|
|
// Check fixed-width dims.
|
|
int64_t srcDim = srcVectorType.getDimSize(dimIdx);
|
|
int64_t dstDim = dstVectorType.getDimSize(lead + dimIdx);
|
|
if (srcDim != 1 && srcDim != dstDim)
|
|
foundMismatchingDims = true;
|
|
|
|
// Check scalable flags.
|
|
bool srcDimScalableFlag = srcVectorType.getScalableDims()[dimIdx];
|
|
bool dstDimScalableFlag = dstVectorType.getScalableDims()[lead + dimIdx];
|
|
if ((srcDim == 1 && srcDimScalableFlag && dstDim != 1) ||
|
|
// 1 -> [N] is fine, everything else should be rejected when mixing
|
|
// fixed-width and scalable dims
|
|
(srcDimScalableFlag != dstDimScalableFlag &&
|
|
(srcDim != 1 || srcDimScalableFlag)))
|
|
foundMismatchingDims = true;
|
|
|
|
if (foundMismatchingDims) {
|
|
if (mismatchingDims != nullptr) {
|
|
mismatchingDims->first.dim = srcDim;
|
|
mismatchingDims->first.isScalable = srcDimScalableFlag;
|
|
|
|
mismatchingDims->second.dim = dstDim;
|
|
mismatchingDims->second.isScalable = dstDimScalableFlag;
|
|
}
|
|
return BroadcastableToResult::DimensionMismatch;
|
|
}
|
|
}
|
|
|
|
return BroadcastableToResult::Success;
|
|
}
|
|
|
|
LogicalResult BroadcastOp::verify() {
|
|
std::pair<VectorDim, VectorDim> mismatchingDims;
|
|
BroadcastableToResult res = isBroadcastableTo(
|
|
getSourceType(), getResultVectorType(), &mismatchingDims);
|
|
if (res == BroadcastableToResult::Success)
|
|
return success();
|
|
if (res == BroadcastableToResult::SourceRankHigher)
|
|
return emitOpError("source rank higher than destination rank");
|
|
if (res == BroadcastableToResult::DimensionMismatch) {
|
|
return emitOpError("dimension mismatch (")
|
|
<< (mismatchingDims.first.isScalable ? "[" : "")
|
|
<< mismatchingDims.first.dim
|
|
<< (mismatchingDims.first.isScalable ? "]" : "") << " vs. "
|
|
<< (mismatchingDims.second.isScalable ? "[" : "")
|
|
<< mismatchingDims.second.dim
|
|
<< (mismatchingDims.second.isScalable ? "]" : "") << ")";
|
|
}
|
|
if (res == BroadcastableToResult::SourceTypeNotAVector)
|
|
return emitOpError("source type is not a vector");
|
|
llvm_unreachable("unexpected vector.broadcast op error");
|
|
}
|
|
|
|
OpFoldResult BroadcastOp::fold(FoldAdaptor adaptor) {
|
|
if (getSourceType() == getResultVectorType())
|
|
return getSource();
|
|
if (!adaptor.getSource())
|
|
return {};
|
|
auto vectorType = getResultVectorType();
|
|
if (auto attr = llvm::dyn_cast<IntegerAttr>(adaptor.getSource())) {
|
|
if (vectorType.getElementType() != attr.getType())
|
|
return {};
|
|
return DenseElementsAttr::get(vectorType, attr);
|
|
}
|
|
if (auto attr = llvm::dyn_cast<FloatAttr>(adaptor.getSource())) {
|
|
if (vectorType.getElementType() != attr.getType())
|
|
return {};
|
|
return DenseElementsAttr::get(vectorType, attr);
|
|
}
|
|
if (auto attr = llvm::dyn_cast<SplatElementsAttr>(adaptor.getSource()))
|
|
return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
|
|
if (llvm::dyn_cast<ub::PoisonAttr>(adaptor.getSource()))
|
|
return ub::PoisonAttr::get(getContext());
|
|
return {};
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Fold broadcast1(broadcast2(x)) into broadcast1(x).
|
|
struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>();
|
|
if (!srcBroadcast)
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<BroadcastOp>(broadcastOp,
|
|
broadcastOp.getResultVectorType(),
|
|
srcBroadcast.getSource());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
// BroadcastToShapeCast is not a default canonicalization, it is opt-in by
|
|
// calling `populateCastAwayVectorLeadingOneDimPatterns`
|
|
results.add<BroadcastFolder>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ShuffleOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult ShuffleOp::verify() {
|
|
VectorType resultType = getResultVectorType();
|
|
VectorType v1Type = getV1VectorType();
|
|
VectorType v2Type = getV2VectorType();
|
|
// Verify ranks.
|
|
int64_t resRank = resultType.getRank();
|
|
int64_t v1Rank = v1Type.getRank();
|
|
int64_t v2Rank = v2Type.getRank();
|
|
bool wellFormed0DCase = v1Rank == 0 && v2Rank == 0 && resRank == 1;
|
|
bool wellFormedNDCase = v1Rank == resRank && v2Rank == resRank;
|
|
if (!wellFormed0DCase && !wellFormedNDCase)
|
|
return emitOpError("rank mismatch");
|
|
|
|
// Verify all but leading dimension sizes.
|
|
for (int64_t r = 1; r < v1Rank; ++r) {
|
|
int64_t resDim = resultType.getDimSize(r);
|
|
int64_t v1Dim = v1Type.getDimSize(r);
|
|
int64_t v2Dim = v2Type.getDimSize(r);
|
|
if (resDim != v1Dim || v1Dim != v2Dim)
|
|
return emitOpError("dimension mismatch");
|
|
}
|
|
// Verify mask length.
|
|
ArrayRef<int64_t> mask = getMask();
|
|
int64_t maskLength = mask.size();
|
|
if (maskLength <= 0)
|
|
return emitOpError("invalid mask length");
|
|
if (maskLength != resultType.getDimSize(0))
|
|
return emitOpError("mask length mismatch");
|
|
// Verify all indices.
|
|
int64_t indexSize = (v1Type.getRank() == 0 ? 1 : v1Type.getDimSize(0)) +
|
|
(v2Type.getRank() == 0 ? 1 : v2Type.getDimSize(0));
|
|
for (auto [idx, maskPos] : llvm::enumerate(mask)) {
|
|
if (!isValidPositiveIndexOrPoison(maskPos, kPoisonIndex, indexSize))
|
|
return emitOpError("mask index #") << (idx + 1) << " out of range";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult
|
|
ShuffleOp::inferReturnTypes(MLIRContext *, std::optional<Location>,
|
|
ShuffleOp::Adaptor adaptor,
|
|
SmallVectorImpl<Type> &inferredReturnTypes) {
|
|
auto v1Type = llvm::cast<VectorType>(adaptor.getV1().getType());
|
|
auto v1Rank = v1Type.getRank();
|
|
// Construct resulting type: leading dimension matches mask
|
|
// length, all trailing dimensions match the operands.
|
|
SmallVector<int64_t, 4> shape;
|
|
shape.reserve(v1Rank);
|
|
shape.push_back(std::max<size_t>(1, adaptor.getMask().size()));
|
|
// In the 0-D case there is no trailing shape to append.
|
|
if (v1Rank > 0)
|
|
llvm::append_range(shape, v1Type.getShape().drop_front());
|
|
inferredReturnTypes.push_back(
|
|
VectorType::get(shape, v1Type.getElementType()));
|
|
return success();
|
|
}
|
|
|
|
template <typename T>
|
|
static bool isStepIndexArray(ArrayRef<T> idxArr, uint64_t begin, size_t width) {
|
|
T expected = begin;
|
|
return idxArr.size() == width && llvm::all_of(idxArr, [&expected](T value) {
|
|
return value == expected++;
|
|
});
|
|
}
|
|
|
|
OpFoldResult vector::ShuffleOp::fold(FoldAdaptor adaptor) {
|
|
auto v1Type = getV1VectorType();
|
|
auto v2Type = getV2VectorType();
|
|
|
|
assert(!v1Type.isScalable() && !v2Type.isScalable() &&
|
|
"Vector shuffle does not support scalable vectors");
|
|
|
|
// For consistency: 0-D shuffle return type is 1-D, this cannot be a folding
|
|
// but must be a canonicalization into a vector.broadcast.
|
|
if (v1Type.getRank() == 0)
|
|
return {};
|
|
|
|
// Fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1.
|
|
auto mask = getMask();
|
|
if (isStepIndexArray(mask, 0, v1Type.getDimSize(0)))
|
|
return getV1();
|
|
// Fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2.
|
|
if (isStepIndexArray(mask, v1Type.getDimSize(0), v2Type.getDimSize(0)))
|
|
return getV2();
|
|
|
|
Attribute v1Attr = adaptor.getV1(), v2Attr = adaptor.getV2();
|
|
if (!v1Attr || !v2Attr)
|
|
return {};
|
|
|
|
// Fold shuffle poison, poison -> poison.
|
|
bool isV1Poison = isa<ub::PoisonAttr>(v1Attr);
|
|
bool isV2Poison = isa<ub::PoisonAttr>(v2Attr);
|
|
if (isV1Poison && isV2Poison)
|
|
return ub::PoisonAttr::get(getContext());
|
|
|
|
// Only support 1-D for now to avoid complicated n-D DenseElementsAttr
|
|
// manipulation.
|
|
if (v1Type.getRank() != 1)
|
|
return {};
|
|
|
|
// Poison input attributes need special handling as they are not
|
|
// DenseElementsAttr. If an index is poison, we select the first element of
|
|
// the first non-poison input.
|
|
SmallVector<Attribute> v1Elements, v2Elements;
|
|
Attribute poisonElement;
|
|
if (!isV2Poison) {
|
|
v2Elements =
|
|
to_vector(cast<DenseElementsAttr>(v2Attr).getValues<Attribute>());
|
|
poisonElement = v2Elements[0];
|
|
}
|
|
if (!isV1Poison) {
|
|
v1Elements =
|
|
to_vector(cast<DenseElementsAttr>(v1Attr).getValues<Attribute>());
|
|
poisonElement = v1Elements[0];
|
|
}
|
|
|
|
SmallVector<Attribute> results;
|
|
int64_t v1Size = v1Type.getDimSize(0);
|
|
for (int64_t maskIdx : mask) {
|
|
Attribute indexedElm;
|
|
// TODO: Return a partial poison vector when supported by the UB dialect.
|
|
if (maskIdx == ShuffleOp::kPoisonIndex) {
|
|
indexedElm = poisonElement;
|
|
} else {
|
|
if (maskIdx < v1Size)
|
|
indexedElm = isV1Poison ? poisonElement : v1Elements[maskIdx];
|
|
else
|
|
indexedElm = isV2Poison ? poisonElement : v2Elements[maskIdx - v1Size];
|
|
}
|
|
|
|
results.push_back(indexedElm);
|
|
}
|
|
|
|
return DenseElementsAttr::get(getResultVectorType(), results);
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Pattern to rewrite a 0-D shuffle with [0] or [1] mask returning a 1-D vector
|
|
// to a broadcast.
|
|
struct Canonicalize0DShuffleOp : public OpRewritePattern<ShuffleOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ShuffleOp shuffleOp,
|
|
PatternRewriter &rewriter) const override {
|
|
VectorType v1VectorType = shuffleOp.getV1VectorType();
|
|
ArrayRef<int64_t> mask = shuffleOp.getMask();
|
|
if (v1VectorType.getRank() > 0)
|
|
return failure();
|
|
if (mask.size() != 1)
|
|
return failure();
|
|
VectorType resType = VectorType::Builder(v1VectorType).setShape({1});
|
|
if (mask[0] == 0)
|
|
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(shuffleOp, resType,
|
|
shuffleOp.getV1());
|
|
else
|
|
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(shuffleOp, resType,
|
|
shuffleOp.getV2());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Pattern to rewrite a ShuffleOp(SplatOp, SplatOp) to SplatOp.
|
|
class ShuffleSplat final : public OpRewritePattern<ShuffleOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ShuffleOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto v1Splat = op.getV1().getDefiningOp<SplatOp>();
|
|
auto v2Splat = op.getV2().getDefiningOp<SplatOp>();
|
|
|
|
if (!v1Splat || !v2Splat)
|
|
return failure();
|
|
|
|
if (v1Splat.getInput() != v2Splat.getInput())
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), v1Splat.getInput());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Pattern to rewrite a fixed-size interleave via vector.shuffle to
|
|
/// vector.interleave.
|
|
class ShuffleInterleave : public OpRewritePattern<ShuffleOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ShuffleOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
VectorType resultType = op.getResultVectorType();
|
|
if (resultType.isScalable())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "ShuffleOp can't represent a scalable interleave");
|
|
|
|
if (resultType.getRank() != 1)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "ShuffleOp can't represent an n-D interleave");
|
|
|
|
VectorType sourceType = op.getV1VectorType();
|
|
if (sourceType != op.getV2VectorType() ||
|
|
sourceType.getNumElements() * 2 != resultType.getNumElements()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "ShuffleOp types don't match an interleave");
|
|
}
|
|
|
|
ArrayRef<int64_t> shuffleMask = op.getMask();
|
|
int64_t resultVectorSize = resultType.getNumElements();
|
|
for (int i = 0, e = resultVectorSize / 2; i < e; ++i) {
|
|
int64_t maskValueA = shuffleMask[i * 2];
|
|
int64_t maskValueB = shuffleMask[(i * 2) + 1];
|
|
if (maskValueA != i || maskValueB != (resultVectorSize / 2) + i)
|
|
return rewriter.notifyMatchFailure(op,
|
|
"ShuffleOp mask not interleaving");
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<InterleaveOp>(op, op.getV1(), op.getV2());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void ShuffleOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<ShuffleSplat, ShuffleInterleave, Canonicalize0DShuffleOp>(
|
|
context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertElementOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void InsertElementOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
|
|
SetIntRangeFn setResultRanges) {
|
|
setResultRanges(getResult(), argRanges[0].rangeUnion(argRanges[1]));
|
|
}
|
|
|
|
void InsertElementOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source, Value dest) {
|
|
build(builder, result, source, dest, {});
|
|
}
|
|
|
|
LogicalResult InsertElementOp::verify() {
|
|
auto dstVectorType = getDestVectorType();
|
|
if (dstVectorType.getRank() == 0) {
|
|
if (getPosition())
|
|
return emitOpError("expected position to be empty with 0-D vector");
|
|
return success();
|
|
}
|
|
if (dstVectorType.getRank() != 1)
|
|
return emitOpError("unexpected >1 vector rank");
|
|
if (!getPosition())
|
|
return emitOpError("expected position for 1-D vector");
|
|
return success();
|
|
}
|
|
|
|
OpFoldResult vector::InsertElementOp::fold(FoldAdaptor adaptor) {
|
|
// Skip the 0-D vector here.
|
|
if (!adaptor.getPosition())
|
|
return {};
|
|
|
|
auto src = dyn_cast_or_null<TypedAttr>(adaptor.getSource());
|
|
auto dst = dyn_cast_or_null<DenseElementsAttr>(adaptor.getDest());
|
|
auto pos = dyn_cast_or_null<IntegerAttr>(adaptor.getPosition());
|
|
if (!src || !dst || !pos)
|
|
return {};
|
|
|
|
if (src.getType() != getDestVectorType().getElementType())
|
|
return {};
|
|
|
|
auto dstElements = dst.getValues<Attribute>();
|
|
|
|
SmallVector<Attribute> results(dstElements);
|
|
|
|
uint64_t posIdx = pos.getInt();
|
|
if (posIdx >= results.size())
|
|
return {};
|
|
results[posIdx] = src;
|
|
|
|
return DenseElementsAttr::get(getDestVectorType(), results);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void vector::InsertOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
|
|
SetIntRangeFn setResultRanges) {
|
|
setResultRanges(getResult(), argRanges[0].rangeUnion(argRanges[1]));
|
|
}
|
|
|
|
void vector::InsertOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source, Value dest) {
|
|
auto vectorTy = cast<VectorType>(dest.getType());
|
|
build(builder, result, source, dest,
|
|
SmallVector<int64_t>(vectorTy.getRank(), 0));
|
|
}
|
|
|
|
void vector::InsertOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source, Value dest, int64_t position) {
|
|
build(builder, result, source, dest, ArrayRef<int64_t>{position});
|
|
}
|
|
|
|
void vector::InsertOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source, Value dest, OpFoldResult position) {
|
|
build(builder, result, source, dest, ArrayRef<OpFoldResult>{position});
|
|
}
|
|
|
|
void vector::InsertOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source, Value dest,
|
|
ArrayRef<int64_t> position) {
|
|
SmallVector<OpFoldResult> posVals;
|
|
posVals.reserve(position.size());
|
|
llvm::transform(position, std::back_inserter(posVals),
|
|
[&](int64_t pos) { return builder.getI64IntegerAttr(pos); });
|
|
build(builder, result, source, dest, posVals);
|
|
}
|
|
|
|
void vector::InsertOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source, Value dest,
|
|
ArrayRef<OpFoldResult> position) {
|
|
SmallVector<int64_t> staticPos;
|
|
SmallVector<Value> dynamicPos;
|
|
dispatchIndexOpFoldResults(position, dynamicPos, staticPos);
|
|
build(builder, result, source, dest, dynamicPos,
|
|
builder.getDenseI64ArrayAttr(staticPos));
|
|
}
|
|
|
|
LogicalResult InsertOp::verify() {
|
|
if (auto srcTy = dyn_cast<VectorType>(getValueToStoreType()))
|
|
if (srcTy.getRank() == 0)
|
|
return emitError(
|
|
"expected a scalar instead of a 0-d vector as the source operand");
|
|
|
|
SmallVector<OpFoldResult> position = getMixedPosition();
|
|
auto destVectorType = getDestVectorType();
|
|
if (position.size() > static_cast<unsigned>(destVectorType.getRank()))
|
|
return emitOpError(
|
|
"expected position attribute of rank no greater than dest vector rank");
|
|
auto srcVectorType = llvm::dyn_cast<VectorType>(getValueToStoreType());
|
|
if (srcVectorType &&
|
|
(static_cast<unsigned>(srcVectorType.getRank()) + position.size() !=
|
|
static_cast<unsigned>(destVectorType.getRank())))
|
|
return emitOpError("expected position attribute rank + source rank to "
|
|
"match dest vector rank");
|
|
if (!srcVectorType &&
|
|
(position.size() != static_cast<unsigned>(destVectorType.getRank())))
|
|
return emitOpError(
|
|
"expected position attribute rank to match the dest vector rank");
|
|
for (auto [idx, pos] : llvm::enumerate(position)) {
|
|
if (auto attr = dyn_cast<Attribute>(pos)) {
|
|
int64_t constIdx = cast<IntegerAttr>(attr).getInt();
|
|
if (!isValidPositiveIndexOrPoison(constIdx, kPoisonIndex,
|
|
destVectorType.getDimSize(idx))) {
|
|
return emitOpError("expected position attribute #")
|
|
<< (idx + 1)
|
|
<< " to be a non-negative integer smaller than the "
|
|
"corresponding "
|
|
"dest vector dimension";
|
|
}
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
|
|
// If insertOp is only inserting unit dimensions it can be transformed to a
|
|
// broadcast.
|
|
class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(InsertOp insertOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto srcVecType =
|
|
llvm::dyn_cast<VectorType>(insertOp.getValueToStoreType());
|
|
if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
|
|
srcVecType.getNumElements())
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<BroadcastOp>(
|
|
insertOp, insertOp.getDestVectorType(), insertOp.getValueToStore());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Pattern to rewrite a InsertOp(SplatOp, SplatOp) to SplatOp.
|
|
class InsertSplatToSplat final : public OpRewritePattern<InsertOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(InsertOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto srcSplat = op.getValueToStore().getDefiningOp<SplatOp>();
|
|
auto dstSplat = op.getDest().getDefiningOp<SplatOp>();
|
|
|
|
if (!srcSplat || !dstSplat)
|
|
return failure();
|
|
|
|
if (srcSplat.getInput() != dstSplat.getInput())
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), srcSplat.getInput());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
static Attribute
|
|
foldDenseElementsAttrDestInsertOp(InsertOp insertOp, Attribute srcAttr,
|
|
Attribute dstAttr,
|
|
int64_t maxVectorSizeFoldThreshold) {
|
|
if (insertOp.hasDynamicPosition())
|
|
return {};
|
|
|
|
auto denseDst = llvm::dyn_cast_if_present<DenseElementsAttr>(dstAttr);
|
|
if (!denseDst)
|
|
return {};
|
|
|
|
if (!srcAttr) {
|
|
return {};
|
|
}
|
|
|
|
VectorType destTy = insertOp.getDestVectorType();
|
|
if (destTy.isScalable())
|
|
return {};
|
|
|
|
// Make sure we do not create too many large constants.
|
|
if (destTy.getNumElements() > maxVectorSizeFoldThreshold &&
|
|
!insertOp->hasOneUse())
|
|
return {};
|
|
|
|
// Calculate the linearized position of the continuous chunk of elements to
|
|
// insert.
|
|
llvm::SmallVector<int64_t> completePositions(destTy.getRank(), 0);
|
|
copy(insertOp.getStaticPosition(), completePositions.begin());
|
|
int64_t insertBeginPosition =
|
|
linearize(completePositions, computeStrides(destTy.getShape()));
|
|
|
|
SmallVector<Attribute> insertedValues;
|
|
Type destEltType = destTy.getElementType();
|
|
|
|
/// Converts the expected type to an IntegerAttr if there's
|
|
/// a mismatch.
|
|
if (auto denseSource = llvm::dyn_cast<DenseElementsAttr>(srcAttr)) {
|
|
for (auto value : denseSource.getValues<Attribute>())
|
|
insertedValues.push_back(convertIntegerAttr(value, destEltType));
|
|
} else {
|
|
insertedValues.push_back(convertIntegerAttr(srcAttr, destEltType));
|
|
}
|
|
|
|
auto allValues = llvm::to_vector(denseDst.getValues<Attribute>());
|
|
copy(insertedValues, allValues.begin() + insertBeginPosition);
|
|
auto newAttr = DenseElementsAttr::get(destTy, allValues);
|
|
|
|
return newAttr;
|
|
}
|
|
|
|
/// Folder to replace the `dest` operand of the insert op with the root dest of
|
|
/// the insert op use chain.
|
|
static Value foldInsertUseChain(InsertOp insertOp) {
|
|
auto destInsert = insertOp.getDest().getDefiningOp<InsertOp>();
|
|
if (!destInsert)
|
|
return {};
|
|
|
|
if (insertOp.getMixedPosition() != destInsert.getMixedPosition())
|
|
return {};
|
|
|
|
insertOp.setOperand(1, destInsert.getDest());
|
|
return insertOp.getResult();
|
|
}
|
|
|
|
void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<InsertToBroadcast, BroadcastFolder, InsertSplatToSplat>(context);
|
|
}
|
|
|
|
OpFoldResult InsertOp::fold(FoldAdaptor adaptor) {
|
|
// Do not create constants with more than `vectorSizeFoldThreashold` elements,
|
|
// unless the source vector constant has a single use.
|
|
constexpr int64_t vectorSizeFoldThreshold = 256;
|
|
// Fold "vector.insert %v, %dest [] : vector<2x2xf32> from vector<2x2xf32>" to
|
|
// %v. Note: Do not fold "vector.insert %v, %dest [] : f32 into vector<f32>"
|
|
// (type mismatch).
|
|
if (getNumIndices() == 0 && getValueToStoreType() == getType())
|
|
return getValueToStore();
|
|
// Fold `arith.constant` indices into the `vector.insert` operation.
|
|
// Do not stop here as this fold may enable subsequent folds that require
|
|
// constant indices.
|
|
SmallVector<Value> operands = {getValueToStore(), getDest()};
|
|
auto inplaceFolded = extractInsertFoldConstantOp(*this, adaptor, operands);
|
|
|
|
if (auto res = foldInsertUseChain(*this))
|
|
return res;
|
|
if (auto res = foldPoisonIndexInsertExtractOp(
|
|
getContext(), adaptor.getStaticPosition(), kPoisonIndex))
|
|
return res;
|
|
if (auto res = foldDenseElementsAttrDestInsertOp(
|
|
*this, adaptor.getValueToStore(), adaptor.getDest(),
|
|
vectorSizeFoldThreshold)) {
|
|
return res;
|
|
}
|
|
|
|
return inplaceFolded;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertStridedSliceOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source, Value dest,
|
|
ArrayRef<int64_t> offsets,
|
|
ArrayRef<int64_t> strides) {
|
|
result.addOperands({source, dest});
|
|
auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
|
|
auto stridesAttr = getVectorSubscriptAttr(builder, strides);
|
|
result.addTypes(dest.getType());
|
|
result.addAttribute(InsertStridedSliceOp::getOffsetsAttrName(result.name),
|
|
offsetsAttr);
|
|
result.addAttribute(InsertStridedSliceOp::getStridesAttrName(result.name),
|
|
stridesAttr);
|
|
}
|
|
|
|
// TODO: Should be moved to Tablegen ConfinedAttr attributes.
|
|
template <typename OpType>
|
|
static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
|
|
ArrayAttr arrayAttr,
|
|
ArrayRef<int64_t> shape,
|
|
StringRef attrName) {
|
|
if (arrayAttr.size() > shape.size())
|
|
return op.emitOpError("expected ")
|
|
<< attrName << " attribute of rank no greater than vector rank";
|
|
return success();
|
|
}
|
|
|
|
// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
|
|
// interval. If `halfOpen` is true then the admissible interval is [min, max).
|
|
// Otherwise, the admissible interval is [min, max].
|
|
template <typename OpType>
|
|
static LogicalResult
|
|
isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
|
|
int64_t max, StringRef attrName,
|
|
bool halfOpen = true) {
|
|
for (auto attr : arrayAttr) {
|
|
auto val = llvm::cast<IntegerAttr>(attr).getInt();
|
|
auto upper = max;
|
|
if (!halfOpen)
|
|
upper += 1;
|
|
if (val < min || val >= upper)
|
|
return op.emitOpError("expected ") << attrName << " to be confined to ["
|
|
<< min << ", " << upper << ")";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
|
|
// interval. If `halfOpen` is true then the admissible interval is [min, max).
|
|
// Otherwise, the admissible interval is [min, max].
|
|
template <typename OpType>
|
|
static LogicalResult
|
|
isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
|
|
ArrayRef<int64_t> shape, StringRef attrName,
|
|
bool halfOpen = true, int64_t min = 0) {
|
|
for (auto [index, attrDimPair] :
|
|
llvm::enumerate(llvm::zip_first(arrayAttr, shape))) {
|
|
int64_t val = llvm::cast<IntegerAttr>(std::get<0>(attrDimPair)).getInt();
|
|
int64_t max = std::get<1>(attrDimPair);
|
|
if (!halfOpen)
|
|
max += 1;
|
|
if (val < min || val >= max)
|
|
return op.emitOpError("expected ")
|
|
<< attrName << " dimension " << index << " to be confined to ["
|
|
<< min << ", " << max << ")";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
// Returns true if, for all indices i = 0..shape.size()-1, val is in the
|
|
// [min, max} interval:
|
|
// val = `arrayAttr1[i]` + `arrayAttr2[i]`,
|
|
// If `halfOpen` is true then the admissible interval is [min, max). Otherwise,
|
|
// the admissible interval is [min, max].
|
|
template <typename OpType>
|
|
static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
|
|
OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
|
|
ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
|
|
bool halfOpen = true, int64_t min = 1) {
|
|
assert(arrayAttr1.size() <= shape.size());
|
|
assert(arrayAttr2.size() <= shape.size());
|
|
for (auto [index, it] :
|
|
llvm::enumerate(llvm::zip(arrayAttr1, arrayAttr2, shape))) {
|
|
auto val1 = llvm::cast<IntegerAttr>(std::get<0>(it)).getInt();
|
|
auto val2 = llvm::cast<IntegerAttr>(std::get<1>(it)).getInt();
|
|
int64_t max = std::get<2>(it);
|
|
if (!halfOpen)
|
|
max += 1;
|
|
if (val1 + val2 < 0 || val1 + val2 >= max)
|
|
return op.emitOpError("expected sum(")
|
|
<< attrName1 << ", " << attrName2 << ") dimension " << index
|
|
<< " to be confined to [" << min << ", " << max << ")";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
|
|
MLIRContext *context) {
|
|
auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
|
|
return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
|
|
});
|
|
return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
|
|
}
|
|
|
|
LogicalResult InsertStridedSliceOp::verify() {
|
|
auto sourceVectorType = getSourceVectorType();
|
|
auto destVectorType = getDestVectorType();
|
|
auto offsets = getOffsetsAttr();
|
|
auto strides = getStridesAttr();
|
|
if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
|
|
return emitOpError(
|
|
"expected offsets of same size as destination vector rank");
|
|
if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
|
|
return emitOpError("expected strides of same size as source vector rank");
|
|
if (sourceVectorType.getRank() > destVectorType.getRank())
|
|
return emitOpError(
|
|
"expected source rank to be no greater than destination rank");
|
|
|
|
auto sourceShape = sourceVectorType.getShape();
|
|
auto destShape = destVectorType.getShape();
|
|
SmallVector<int64_t, 4> sourceShapeAsDestShape(
|
|
destShape.size() - sourceShape.size(), 0);
|
|
sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
|
|
auto offName = InsertStridedSliceOp::getOffsetsAttrName();
|
|
auto stridesName = InsertStridedSliceOp::getStridesAttrName();
|
|
if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
|
|
offName)) ||
|
|
failed(isIntegerArrayAttrConfinedToRange(*this, strides, /*min=*/1,
|
|
/*max=*/1, stridesName,
|
|
/*halfOpen=*/false)) ||
|
|
failed(isSumOfIntegerArrayAttrConfinedToShape(
|
|
*this, offsets,
|
|
makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
|
|
offName, "source vector shape",
|
|
/*halfOpen=*/false, /*min=*/1)))
|
|
return failure();
|
|
|
|
unsigned rankDiff = destShape.size() - sourceShape.size();
|
|
for (unsigned idx = 0; idx < sourceShape.size(); ++idx) {
|
|
if (sourceVectorType.getScalableDims()[idx] !=
|
|
destVectorType.getScalableDims()[idx + rankDiff]) {
|
|
return emitOpError("mismatching scalable flags (at source vector idx=")
|
|
<< idx << ")";
|
|
}
|
|
if (sourceVectorType.getScalableDims()[idx]) {
|
|
auto sourceSize = sourceShape[idx];
|
|
auto destSize = destShape[idx + rankDiff];
|
|
if (sourceSize != destSize) {
|
|
return emitOpError("expected size at idx=")
|
|
<< idx
|
|
<< (" to match the corresponding base size from the input "
|
|
"vector (")
|
|
<< sourceSize << (" vs ") << destSize << (")");
|
|
}
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
/// Pattern to rewrite an InsertStridedSliceOp(SplatOp(X):src_type,
|
|
/// SplatOp(X):dst_type) to SplatOp(X):dst_type.
|
|
class FoldInsertStridedSliceSplat final
|
|
: public OpRewritePattern<InsertStridedSliceOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto srcSplatOp =
|
|
insertStridedSliceOp.getValueToStore().getDefiningOp<vector::SplatOp>();
|
|
auto destSplatOp =
|
|
insertStridedSliceOp.getDest().getDefiningOp<vector::SplatOp>();
|
|
|
|
if (!srcSplatOp || !destSplatOp)
|
|
return failure();
|
|
|
|
if (srcSplatOp.getInput() != destSplatOp.getInput())
|
|
return failure();
|
|
|
|
rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Pattern to rewrite an InsertStridedSliceOp(ExtractStridedSliceOp(dst), dst)
|
|
/// to dst.
|
|
class FoldInsertStridedSliceOfExtract final
|
|
: public OpRewritePattern<InsertStridedSliceOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto extractStridedSliceOp =
|
|
insertStridedSliceOp.getValueToStore()
|
|
.getDefiningOp<vector::ExtractStridedSliceOp>();
|
|
|
|
if (!extractStridedSliceOp)
|
|
return failure();
|
|
|
|
if (extractStridedSliceOp.getOperand() != insertStridedSliceOp.getDest())
|
|
return failure();
|
|
|
|
// Check if have the same strides and offsets.
|
|
if (extractStridedSliceOp.getStrides() !=
|
|
insertStridedSliceOp.getStrides() ||
|
|
extractStridedSliceOp.getOffsets() != insertStridedSliceOp.getOffsets())
|
|
return failure();
|
|
|
|
rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Pattern to rewrite an InsertStridedSliceOp(ConstantOp into ConstantOp) ->
|
|
// ConstantOp.
|
|
class InsertStridedSliceConstantFolder final
|
|
: public OpRewritePattern<InsertStridedSliceOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
// Do not create constants with more than `vectorSizeFoldThreashold` elements,
|
|
// unless the source vector constant has a single use.
|
|
static constexpr int64_t vectorSizeFoldThreshold = 256;
|
|
|
|
LogicalResult matchAndRewrite(InsertStridedSliceOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// Return if 'InsertOp' operand is not defined by a compatible vector
|
|
// ConstantOp.
|
|
TypedValue<VectorType> destVector = op.getDest();
|
|
Attribute vectorDestCst;
|
|
if (!matchPattern(destVector, m_Constant(&vectorDestCst)))
|
|
return failure();
|
|
|
|
VectorType destTy = destVector.getType();
|
|
if (destTy.isScalable())
|
|
return failure();
|
|
|
|
// Make sure we do not create too many large constants.
|
|
if (destTy.getNumElements() > vectorSizeFoldThreshold &&
|
|
!destVector.hasOneUse())
|
|
return failure();
|
|
|
|
TypedValue<VectorType> sourceValue = op.getValueToStore();
|
|
Attribute sourceCst;
|
|
if (!matchPattern(sourceValue, m_Constant(&sourceCst)))
|
|
return failure();
|
|
|
|
// TODO: Support poison.
|
|
if (isa<ub::PoisonAttr>(vectorDestCst) || isa<ub::PoisonAttr>(sourceCst))
|
|
return failure();
|
|
|
|
// TODO: Handle non-unit strides when they become available.
|
|
if (op.hasNonUnitStrides())
|
|
return failure();
|
|
|
|
VectorType sliceVecTy = sourceValue.getType();
|
|
ArrayRef<int64_t> sliceShape = sliceVecTy.getShape();
|
|
int64_t rankDifference = destTy.getRank() - sliceVecTy.getRank();
|
|
SmallVector<int64_t, 4> offsets = getI64SubArray(op.getOffsets());
|
|
SmallVector<int64_t, 4> destStrides = computeStrides(destTy.getShape());
|
|
|
|
// Calcualte the destination element indices by enumerating all slice
|
|
// positions within the destination and linearizing them. The enumeration
|
|
// order is lexicographic which yields a sequence of monotonically
|
|
// increasing linearized position indices.
|
|
// Because the destination may have higher dimensionality then the slice,
|
|
// we keep track of two overlapping sets of positions and offsets.
|
|
auto denseDest = llvm::cast<DenseElementsAttr>(vectorDestCst);
|
|
auto denseSlice = llvm::cast<DenseElementsAttr>(sourceCst);
|
|
auto sliceValuesIt = denseSlice.value_begin<Attribute>();
|
|
auto newValues = llvm::to_vector(denseDest.getValues<Attribute>());
|
|
SmallVector<int64_t> currDestPosition(offsets.begin(), offsets.end());
|
|
MutableArrayRef<int64_t> currSlicePosition(
|
|
currDestPosition.begin() + rankDifference, currDestPosition.end());
|
|
ArrayRef<int64_t> sliceOffsets(offsets.begin() + rankDifference,
|
|
offsets.end());
|
|
do {
|
|
int64_t linearizedPosition = linearize(currDestPosition, destStrides);
|
|
assert(linearizedPosition < destTy.getNumElements() && "Invalid index");
|
|
assert(sliceValuesIt != denseSlice.value_end<Attribute>() &&
|
|
"Invalid slice element");
|
|
newValues[linearizedPosition] = *sliceValuesIt;
|
|
++sliceValuesIt;
|
|
} while (succeeded(
|
|
incSlicePosition(currSlicePosition, sliceShape, sliceOffsets)));
|
|
|
|
auto newAttr = DenseElementsAttr::get(destTy, newValues);
|
|
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, newAttr);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void vector::InsertStridedSliceOp::getCanonicalizationPatterns(
|
|
RewritePatternSet &results, MLIRContext *context) {
|
|
results.add<FoldInsertStridedSliceSplat, FoldInsertStridedSliceOfExtract,
|
|
InsertStridedSliceConstantFolder>(context);
|
|
}
|
|
|
|
OpFoldResult InsertStridedSliceOp::fold(FoldAdaptor adaptor) {
|
|
if (getSourceVectorType() == getDestVectorType())
|
|
return getValueToStore();
|
|
return {};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OuterProductOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Build an op without mask, use the type of `acc` as the return type.
|
|
void OuterProductOp::build(OpBuilder &builder, OperationState &result,
|
|
Value lhs, Value rhs, Value acc) {
|
|
result.addOperands({lhs, rhs, acc});
|
|
result.addTypes(acc.getType());
|
|
}
|
|
|
|
void OuterProductOp::print(OpAsmPrinter &p) {
|
|
p << " " << getLhs() << ", " << getRhs();
|
|
if (getAcc()) {
|
|
p << ", " << getAcc();
|
|
p.printOptionalAttrDict((*this)->getAttrs());
|
|
}
|
|
p << " : " << getLhs().getType() << ", " << getRhs().getType();
|
|
}
|
|
|
|
ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo;
|
|
Type tLHS, tRHS;
|
|
if (parser.parseOperandList(operandsInfo) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseColonType(tLHS) || parser.parseComma() ||
|
|
parser.parseType(tRHS))
|
|
return failure();
|
|
if (operandsInfo.size() < 2)
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"expected at least 2 operands");
|
|
VectorType vLHS = llvm::dyn_cast<VectorType>(tLHS);
|
|
VectorType vRHS = llvm::dyn_cast<VectorType>(tRHS);
|
|
if (!vLHS)
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"expected vector type for operand #1");
|
|
|
|
VectorType resType;
|
|
if (vRHS) {
|
|
SmallVector<bool> scalableDimsRes{vLHS.getScalableDims()[0],
|
|
vRHS.getScalableDims()[0]};
|
|
resType = VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
|
|
vLHS.getElementType(), scalableDimsRes);
|
|
} else {
|
|
// Scalar RHS operand
|
|
SmallVector<bool> scalableDimsRes{vLHS.getScalableDims()[0]};
|
|
resType = VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType(),
|
|
scalableDimsRes);
|
|
}
|
|
|
|
if (!result.attributes.get(OuterProductOp::getKindAttrName(result.name))) {
|
|
result.attributes.append(
|
|
OuterProductOp::getKindAttrName(result.name),
|
|
CombiningKindAttr::get(result.getContext(),
|
|
OuterProductOp::getDefaultKind()));
|
|
}
|
|
|
|
return failure(
|
|
parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
|
|
parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
|
|
(operandsInfo.size() > 2 &&
|
|
parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
|
|
parser.addTypeToList(resType, result.types));
|
|
}
|
|
|
|
LogicalResult OuterProductOp::verify() {
|
|
Type tRHS = getOperandTypeRHS();
|
|
VectorType vLHS = getOperandVectorTypeLHS(),
|
|
vRHS = llvm::dyn_cast<VectorType>(tRHS),
|
|
vACC = getOperandVectorTypeACC(), vRES = getResultVectorType();
|
|
|
|
if (vLHS.getRank() != 1)
|
|
return emitOpError("expected 1-d vector for operand #1");
|
|
|
|
if (vRHS) {
|
|
// Proper OUTER operation.
|
|
if (vRHS.getRank() != 1)
|
|
return emitOpError("expected 1-d vector for operand #2");
|
|
if (vRES.getRank() != 2)
|
|
return emitOpError("expected 2-d vector result");
|
|
if (vLHS.getDimSize(0) != vRES.getDimSize(0))
|
|
return emitOpError("expected #1 operand dim to match result dim #1");
|
|
if (vRHS.getDimSize(0) != vRES.getDimSize(1))
|
|
return emitOpError("expected #2 operand dim to match result dim #2");
|
|
if (vLHS.isScalable() && !vRHS.isScalable()) {
|
|
// This restriction reflects what's currently supported in terms of
|
|
// scalable vectors. However, we could relax this if there's a use case.
|
|
return emitOpError(
|
|
"expected either both or only #2 operand dim to be scalable");
|
|
}
|
|
} else {
|
|
// An AXPY operation.
|
|
if (vRES.getRank() != 1)
|
|
return emitOpError("expected 1-d vector result");
|
|
if (vLHS.getDimSize(0) != vRES.getDimSize(0))
|
|
return emitOpError("expected #1 operand dim to match result dim #1");
|
|
}
|
|
|
|
if (vACC && vACC != vRES)
|
|
return emitOpError("expected operand #3 of same type as result type");
|
|
|
|
// Verify supported combining kind.
|
|
if (!isSupportedCombiningKind(getKind(), vRES.getElementType()))
|
|
return emitOpError("unsupported outerproduct type");
|
|
|
|
return success();
|
|
}
|
|
|
|
// MaskableOpInterface methods.
|
|
|
|
/// Returns the mask type expected by this operation. Mostly used for
|
|
/// verification purposes. It requires the operation to be vectorized."
|
|
Type OuterProductOp::getExpectedMaskType() {
|
|
auto vecType = this->getResultVectorType();
|
|
return VectorType::get(vecType.getShape(),
|
|
IntegerType::get(vecType.getContext(), /*width=*/1),
|
|
vecType.getScalableDims());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtractStridedSliceOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Inference works as follows:
|
|
// 1. Add 'sizes' from prefix of dims in 'offsets'.
|
|
// 2. Add sizes from 'vectorType' for remaining dims.
|
|
// Scalable flags are inherited from 'vectorType'.
|
|
static Type inferStridedSliceOpResultType(VectorType vectorType,
|
|
ArrayAttr offsets, ArrayAttr sizes,
|
|
ArrayAttr strides) {
|
|
assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
|
|
SmallVector<int64_t, 4> shape;
|
|
shape.reserve(vectorType.getRank());
|
|
unsigned idx = 0;
|
|
for (unsigned e = offsets.size(); idx < e; ++idx)
|
|
shape.push_back(llvm::cast<IntegerAttr>(sizes[idx]).getInt());
|
|
for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
|
|
shape.push_back(vectorType.getShape()[idx]);
|
|
|
|
return VectorType::get(shape, vectorType.getElementType(),
|
|
vectorType.getScalableDims());
|
|
}
|
|
|
|
void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source, ArrayRef<int64_t> offsets,
|
|
ArrayRef<int64_t> sizes,
|
|
ArrayRef<int64_t> strides) {
|
|
result.addOperands(source);
|
|
auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
|
|
auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
|
|
auto stridesAttr = getVectorSubscriptAttr(builder, strides);
|
|
result.addTypes(
|
|
inferStridedSliceOpResultType(llvm::cast<VectorType>(source.getType()),
|
|
offsetsAttr, sizesAttr, stridesAttr));
|
|
result.addAttribute(ExtractStridedSliceOp::getOffsetsAttrName(result.name),
|
|
offsetsAttr);
|
|
result.addAttribute(ExtractStridedSliceOp::getSizesAttrName(result.name),
|
|
sizesAttr);
|
|
result.addAttribute(ExtractStridedSliceOp::getStridesAttrName(result.name),
|
|
stridesAttr);
|
|
}
|
|
|
|
LogicalResult ExtractStridedSliceOp::verify() {
|
|
auto type = getSourceVectorType();
|
|
auto offsets = getOffsetsAttr();
|
|
auto sizes = getSizesAttr();
|
|
auto strides = getStridesAttr();
|
|
if (offsets.size() != sizes.size() || offsets.size() != strides.size())
|
|
return emitOpError(
|
|
"expected offsets, sizes and strides attributes of same size");
|
|
|
|
auto shape = type.getShape();
|
|
auto offName = getOffsetsAttrName();
|
|
auto sizesName = getSizesAttrName();
|
|
auto stridesName = getStridesAttrName();
|
|
if (failed(
|
|
isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
|
|
failed(
|
|
isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
|
|
failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
|
|
stridesName)) ||
|
|
failed(
|
|
isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
|
|
failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
|
|
/*halfOpen=*/false,
|
|
/*min=*/1)) ||
|
|
failed(isIntegerArrayAttrConfinedToRange(*this, strides, /*min=*/1,
|
|
/*max=*/1, stridesName,
|
|
/*halfOpen=*/false)) ||
|
|
failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes,
|
|
shape, offName, sizesName,
|
|
/*halfOpen=*/false)))
|
|
return failure();
|
|
|
|
auto resultType = inferStridedSliceOpResultType(getSourceVectorType(),
|
|
offsets, sizes, strides);
|
|
if (getResult().getType() != resultType)
|
|
return emitOpError("expected result type to be ") << resultType;
|
|
|
|
for (unsigned idx = 0; idx < sizes.size(); ++idx) {
|
|
if (type.getScalableDims()[idx]) {
|
|
auto inputDim = type.getShape()[idx];
|
|
auto inputSize = llvm::cast<IntegerAttr>(sizes[idx]).getInt();
|
|
if (inputDim != inputSize)
|
|
return emitOpError("expected size at idx=")
|
|
<< idx
|
|
<< (" to match the corresponding base size from the input "
|
|
"vector (")
|
|
<< inputSize << (" vs ") << inputDim << (")");
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
// When the source of ExtractStrided comes from a chain of InsertStrided ops try
|
|
// to use the source of the InsertStrided ops if we can detect that the
|
|
// extracted vector is a subset of one of the vector inserted.
|
|
static LogicalResult
|
|
foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
|
|
// Helper to extract integer out of ArrayAttr.
|
|
auto getElement = [](ArrayAttr array, int idx) {
|
|
return llvm::cast<IntegerAttr>(array[idx]).getInt();
|
|
};
|
|
ArrayAttr extractOffsets = op.getOffsets();
|
|
ArrayAttr extractStrides = op.getStrides();
|
|
ArrayAttr extractSizes = op.getSizes();
|
|
auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
|
|
while (insertOp) {
|
|
if (op.getSourceVectorType().getRank() !=
|
|
insertOp.getSourceVectorType().getRank())
|
|
return failure();
|
|
ArrayAttr insertOffsets = insertOp.getOffsets();
|
|
ArrayAttr insertStrides = insertOp.getStrides();
|
|
// If the rank of extract is greater than the rank of insert, we are likely
|
|
// extracting a partial chunk of the vector inserted.
|
|
if (extractOffsets.size() > insertOffsets.size())
|
|
return failure();
|
|
bool patialoverlap = false;
|
|
bool disjoint = false;
|
|
SmallVector<int64_t, 4> offsetDiffs;
|
|
for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
|
|
if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
|
|
return failure();
|
|
int64_t start = getElement(insertOffsets, dim);
|
|
int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
|
|
int64_t offset = getElement(extractOffsets, dim);
|
|
int64_t size = getElement(extractSizes, dim);
|
|
// Check if the start of the extract offset is in the interval inserted.
|
|
if (start <= offset && offset < end) {
|
|
// If the extract interval overlaps but is not fully included we may
|
|
// have a partial overlap that will prevent any folding.
|
|
if (offset + size > end)
|
|
patialoverlap = true;
|
|
offsetDiffs.push_back(offset - start);
|
|
continue;
|
|
}
|
|
disjoint = true;
|
|
break;
|
|
}
|
|
// The extract element chunk is a subset of the insert element.
|
|
if (!disjoint && !patialoverlap) {
|
|
op.setOperand(insertOp.getValueToStore());
|
|
// OpBuilder is only used as a helper to build an I64ArrayAttr.
|
|
OpBuilder b(op.getContext());
|
|
op.setOffsetsAttr(b.getI64ArrayAttr(offsetDiffs));
|
|
return success();
|
|
}
|
|
// If the chunk extracted is disjoint from the chunk inserted, keep looking
|
|
// in the insert chain.
|
|
if (disjoint)
|
|
insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
|
|
else {
|
|
// The extracted vector partially overlap the inserted vector, we cannot
|
|
// fold.
|
|
return failure();
|
|
}
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
// ExtractStridedSliceOp(non-splat ConstantOp) -> ConstantOp.
|
|
static OpFoldResult
|
|
foldExtractStridedSliceNonSplatConstant(ExtractStridedSliceOp op,
|
|
Attribute foldInput) {
|
|
|
|
auto dense = llvm::dyn_cast_if_present<DenseElementsAttr>(foldInput);
|
|
if (!dense)
|
|
return {};
|
|
|
|
// TODO: Handle non-unit strides when they become available.
|
|
if (op.hasNonUnitStrides())
|
|
return {};
|
|
|
|
VectorType sourceVecTy = op.getSourceVectorType();
|
|
ArrayRef<int64_t> sourceShape = sourceVecTy.getShape();
|
|
SmallVector<int64_t, 4> sourceStrides = computeStrides(sourceShape);
|
|
|
|
VectorType sliceVecTy = op.getType();
|
|
ArrayRef<int64_t> sliceShape = sliceVecTy.getShape();
|
|
int64_t rank = sliceVecTy.getRank();
|
|
|
|
// Expand offsets and sizes to match the vector rank.
|
|
SmallVector<int64_t, 4> offsets(rank, 0);
|
|
copy(getI64SubArray(op.getOffsets()), offsets.begin());
|
|
|
|
SmallVector<int64_t, 4> sizes(sourceShape);
|
|
copy(getI64SubArray(op.getSizes()), sizes.begin());
|
|
|
|
// Calculate the slice elements by enumerating all slice positions and
|
|
// linearizing them. The enumeration order is lexicographic which yields a
|
|
// sequence of monotonically increasing linearized position indices.
|
|
const auto denseValuesBegin = dense.value_begin<Attribute>();
|
|
SmallVector<Attribute> sliceValues;
|
|
sliceValues.reserve(sliceVecTy.getNumElements());
|
|
SmallVector<int64_t> currSlicePosition(offsets.begin(), offsets.end());
|
|
do {
|
|
int64_t linearizedPosition = linearize(currSlicePosition, sourceStrides);
|
|
assert(linearizedPosition < sourceVecTy.getNumElements() &&
|
|
"Invalid index");
|
|
sliceValues.push_back(*(denseValuesBegin + linearizedPosition));
|
|
} while (succeeded(incSlicePosition(currSlicePosition, sliceShape, offsets)));
|
|
|
|
assert(static_cast<int64_t>(sliceValues.size()) ==
|
|
sliceVecTy.getNumElements() &&
|
|
"Invalid number of slice elements");
|
|
return DenseElementsAttr::get(sliceVecTy, sliceValues);
|
|
}
|
|
|
|
OpFoldResult ExtractStridedSliceOp::fold(FoldAdaptor adaptor) {
|
|
if (getSourceVectorType() == getResult().getType())
|
|
return getVector();
|
|
if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
|
|
return getResult();
|
|
|
|
// ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
|
|
if (auto splat =
|
|
llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getVector()))
|
|
DenseElementsAttr::get(getType(), splat.getSplatValue<Attribute>());
|
|
|
|
// ExtractStridedSliceOp(non-splat ConstantOp) -> ConstantOp.
|
|
return foldExtractStridedSliceNonSplatConstant(*this, adaptor.getVector());
|
|
}
|
|
|
|
void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
|
|
populateFromInt64AttrArray(getOffsets(), results);
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Pattern to rewrite an ExtractStridedSliceOp(CreateMaskOp) to
|
|
// CreateMaskOp.
|
|
//
|
|
// Example:
|
|
//
|
|
// %mask = vector.create_mask %ub : vector<16xi1>
|
|
// %slice = vector.extract_strided_slice [%offset] [8] [1]
|
|
//
|
|
// to
|
|
//
|
|
// %new_ub = arith.subi %ub, %offset
|
|
// %mask = vector.create_mask %new_ub : vector<8xi1>
|
|
class StridedSliceCreateMaskFolder final
|
|
: public OpRewritePattern<ExtractStridedSliceOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
public:
|
|
LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = extractStridedSliceOp.getLoc();
|
|
// Return if 'extractStridedSliceOp' operand is not defined by a
|
|
// CreateMaskOp.
|
|
auto createMaskOp =
|
|
extractStridedSliceOp.getVector().getDefiningOp<CreateMaskOp>();
|
|
if (!createMaskOp)
|
|
return failure();
|
|
// Return if 'extractStridedSliceOp' has non-unit strides.
|
|
if (extractStridedSliceOp.hasNonUnitStrides())
|
|
return failure();
|
|
// Gather constant mask dimension sizes.
|
|
SmallVector<Value> maskDimSizes(createMaskOp.getOperands());
|
|
// Gather strided slice offsets and sizes.
|
|
SmallVector<int64_t> sliceOffsets;
|
|
populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
|
|
sliceOffsets);
|
|
SmallVector<int64_t> sliceSizes;
|
|
populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
|
|
|
|
// Compute slice of vector mask region.
|
|
SmallVector<Value> sliceMaskDimSizes;
|
|
sliceMaskDimSizes.reserve(maskDimSizes.size());
|
|
// sliceOffsets.size() <= maskDimSizes.size(), so we use llvm::zip and
|
|
// only iterate on the leading dim sizes. The tail accounts for the
|
|
// remaining dim sizes.
|
|
for (auto [maskDimSize, sliceOffset, sliceSize] :
|
|
llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
|
|
// No need to clamp on min/max values, because create_mask has clamping
|
|
// semantics, i.e. the sliceMaskDimSize is allowed to be negative or
|
|
// greater than the vector dim size.
|
|
IntegerAttr offsetAttr =
|
|
rewriter.getIntegerAttr(maskDimSize.getType(), sliceOffset);
|
|
Value offset = rewriter.create<arith::ConstantOp>(loc, offsetAttr);
|
|
Value sliceMaskDimSize =
|
|
rewriter.create<arith::SubIOp>(loc, maskDimSize, offset);
|
|
sliceMaskDimSizes.push_back(sliceMaskDimSize);
|
|
}
|
|
// Add unchanged dimensions.
|
|
llvm::append_range(
|
|
sliceMaskDimSizes,
|
|
llvm::drop_begin(maskDimSizes, sliceMaskDimSizes.size()));
|
|
// Replace 'extractStridedSliceOp' with CreateMaskOp with sliced mask
|
|
// region.
|
|
rewriter.replaceOpWithNewOp<CreateMaskOp>(
|
|
extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
|
|
sliceMaskDimSizes);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
|
|
// ConstantMaskOp.
|
|
class StridedSliceConstantMaskFolder final
|
|
: public OpRewritePattern<ExtractStridedSliceOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// Return if 'extractStridedSliceOp' operand is not defined by a
|
|
// ConstantMaskOp.
|
|
auto *defOp = extractStridedSliceOp.getVector().getDefiningOp();
|
|
auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
|
|
if (!constantMaskOp)
|
|
return failure();
|
|
// Return if 'extractStridedSliceOp' has non-unit strides.
|
|
if (extractStridedSliceOp.hasNonUnitStrides())
|
|
return failure();
|
|
// Gather constant mask dimension sizes.
|
|
ArrayRef<int64_t> maskDimSizes = constantMaskOp.getMaskDimSizes();
|
|
// Gather strided slice offsets and sizes.
|
|
SmallVector<int64_t> sliceOffsets;
|
|
populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
|
|
sliceOffsets);
|
|
SmallVector<int64_t> sliceSizes;
|
|
populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
|
|
|
|
// Compute slice of vector mask region.
|
|
SmallVector<int64_t> sliceMaskDimSizes;
|
|
sliceMaskDimSizes.reserve(maskDimSizes.size());
|
|
for (auto [maskDimSize, sliceOffset, sliceSize] :
|
|
llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
|
|
int64_t sliceMaskDimSize = std::max(
|
|
static_cast<int64_t>(0),
|
|
std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
|
|
sliceMaskDimSizes.push_back(sliceMaskDimSize);
|
|
}
|
|
// Add unchanged dimensions.
|
|
if (sliceMaskDimSizes.size() < maskDimSizes.size())
|
|
for (size_t i = sliceMaskDimSizes.size(); i < maskDimSizes.size(); ++i)
|
|
sliceMaskDimSizes.push_back(maskDimSizes[i]);
|
|
// If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
|
|
// region is a conjunction of mask dim intervals).
|
|
if (llvm::is_contained(sliceMaskDimSizes, 0))
|
|
sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
|
|
|
|
// Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
|
|
// region.
|
|
rewriter.replaceOpWithNewOp<ConstantMaskOp>(
|
|
extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
|
|
sliceMaskDimSizes);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
|
|
// BroadcastOp(ExtractStrideSliceOp).
|
|
class StridedSliceBroadcast final
|
|
: public OpRewritePattern<ExtractStridedSliceOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto broadcast = op.getVector().getDefiningOp<BroadcastOp>();
|
|
if (!broadcast)
|
|
return failure();
|
|
auto srcVecType =
|
|
llvm::dyn_cast<VectorType>(broadcast.getSource().getType());
|
|
unsigned srcRank = srcVecType ? srcVecType.getRank() : 0;
|
|
auto dstVecType = llvm::cast<VectorType>(op.getType());
|
|
unsigned dstRank = dstVecType.getRank();
|
|
unsigned rankDiff = dstRank - srcRank;
|
|
// Source dimensions can be broadcasted (1 -> n with n > 1) or sliced
|
|
// (n -> m with n > m). If they are originally both broadcasted *and*
|
|
// sliced, this can be simplified to just broadcasting.
|
|
bool needsSlice = false;
|
|
for (unsigned i = 0; i < srcRank; i++) {
|
|
if (srcVecType.getDimSize(i) != 1 &&
|
|
srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
|
|
needsSlice = true;
|
|
break;
|
|
}
|
|
}
|
|
Value source = broadcast.getSource();
|
|
if (needsSlice) {
|
|
SmallVector<int64_t> offsets =
|
|
getI64SubArray(op.getOffsets(), /*dropFront=*/rankDiff);
|
|
SmallVector<int64_t> sizes =
|
|
getI64SubArray(op.getSizes(), /*dropFront=*/rankDiff);
|
|
for (unsigned i = 0; i < srcRank; i++) {
|
|
if (srcVecType.getDimSize(i) == 1) {
|
|
// In case this dimension was broadcasted *and* sliced, the offset
|
|
// and size need to be updated now that there is no broadcast before
|
|
// the slice.
|
|
offsets[i] = 0;
|
|
sizes[i] = 1;
|
|
}
|
|
}
|
|
source = rewriter.create<ExtractStridedSliceOp>(
|
|
op->getLoc(), source, offsets, sizes,
|
|
getI64SubArray(op.getStrides(), /*dropFront=*/rankDiff));
|
|
}
|
|
rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
|
|
class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto splat = op.getVector().getDefiningOp<SplatOp>();
|
|
if (!splat)
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Pattern to rewrite simple cases of N-D extract_strided_slice, where the
|
|
/// slice is contiguous, into extract and shape_cast.
|
|
///
|
|
/// Example:
|
|
/// Before:
|
|
/// %1 = vector.extract_strided_slice %arg0 {
|
|
/// offsets = [0, 0, 0, 0, 0],
|
|
/// sizes = [1, 1, 1, 1, 8],
|
|
/// strides = [1, 1, 1, 1, 1]
|
|
/// } : vector<8x1x1x2x8xi8> to vector<1x1x1x1x8xi8>
|
|
/// After:
|
|
/// %0 = vector.extract %arg0[0, 0, 0, 0]
|
|
/// : vector<8xi8> from vector<8x1x1x2x8xi8>
|
|
/// %1 = vector.shape_cast %0
|
|
/// : vector<8xi8> to vector<1x1x1x1x8xi8>
|
|
///
|
|
class ContiguousExtractStridedSliceToExtract final
|
|
: public OpRewritePattern<ExtractStridedSliceOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
if (op.hasNonUnitStrides())
|
|
return failure();
|
|
Value source = op.getOperand();
|
|
auto sourceType = cast<VectorType>(source.getType());
|
|
if (sourceType.isScalable() || sourceType.getRank() == 0)
|
|
return failure();
|
|
|
|
// Compute the number of offsets to pass to ExtractOp::build. That is the
|
|
// difference between the source rank and the desired slice rank. We walk
|
|
// the dimensions from innermost out, and stop when the next slice dimension
|
|
// is not full-size.
|
|
SmallVector<int64_t> sizes = getI64SubArray(op.getSizes());
|
|
int numOffsets;
|
|
for (numOffsets = sizes.size(); numOffsets > 0; --numOffsets) {
|
|
if (sizes[numOffsets - 1] != sourceType.getDimSize(numOffsets - 1))
|
|
break;
|
|
}
|
|
|
|
// If the created extract op would have no offsets, then this whole
|
|
// extract_strided_slice is the identity and should have been handled by
|
|
// other canonicalizations.
|
|
if (numOffsets == 0)
|
|
return failure();
|
|
|
|
// If not even the inner-most dimension is full-size, this op can't be
|
|
// rewritten as an ExtractOp.
|
|
if (numOffsets == sourceType.getRank() &&
|
|
static_cast<int>(sizes.size()) == sourceType.getRank())
|
|
return failure();
|
|
|
|
// The outer dimensions must have unit size.
|
|
for (int i = 0; i < numOffsets; ++i) {
|
|
if (sizes[i] != 1)
|
|
return failure();
|
|
}
|
|
|
|
// Avoid generating slices that have leading unit dimensions. The shape_cast
|
|
// op that we create below would take bad generic fallback patterns
|
|
// (ShapeCastOpRewritePattern).
|
|
while (numOffsets < static_cast<int>(sizes.size()) - 1 &&
|
|
sizes[numOffsets] == 1) {
|
|
++numOffsets;
|
|
}
|
|
|
|
SmallVector<int64_t> offsets = getI64SubArray(op.getOffsets());
|
|
auto extractOffsets = ArrayRef(offsets).take_front(numOffsets);
|
|
Value extract = rewriter.create<vector::ExtractOp>(op->getLoc(), source,
|
|
extractOffsets);
|
|
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, op.getType(), extract);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void ExtractStridedSliceOp::getCanonicalizationPatterns(
|
|
RewritePatternSet &results, MLIRContext *context) {
|
|
// Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
|
|
// ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
|
|
results.add<StridedSliceCreateMaskFolder, StridedSliceConstantMaskFolder,
|
|
StridedSliceBroadcast, StridedSliceSplat,
|
|
ContiguousExtractStridedSliceToExtract>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TransferReadOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
|
|
void TransferReadOp::build(OpBuilder &builder, OperationState &result,
|
|
VectorType vectorType, Value source,
|
|
ValueRange indices, std::optional<Value> padding,
|
|
AffineMapAttr permutationMapAttr,
|
|
/*optional*/ ArrayAttr inBoundsAttr) {
|
|
|
|
Type elemType = llvm::cast<ShapedType>(source.getType()).getElementType();
|
|
if (!padding)
|
|
padding = builder.create<ub::PoisonOp>(result.location, elemType);
|
|
build(builder, result, vectorType, source, indices, permutationMapAttr,
|
|
*padding, /*mask=*/Value(), inBoundsAttr);
|
|
}
|
|
|
|
/// 2. Builder that sets padding to zero an empty mask (variant without attrs).
|
|
void TransferReadOp::build(OpBuilder &builder, OperationState &result,
|
|
VectorType vectorType, Value source,
|
|
ValueRange indices, std::optional<Value> padding,
|
|
AffineMap permutationMap,
|
|
std::optional<ArrayRef<bool>> inBounds) {
|
|
auto permutationMapAttr = AffineMapAttr::get(permutationMap);
|
|
auto inBoundsAttr = (inBounds && !inBounds.value().empty())
|
|
? builder.getBoolArrayAttr(inBounds.value())
|
|
: builder.getBoolArrayAttr(
|
|
SmallVector<bool>(vectorType.getRank(), false));
|
|
Type elemType = llvm::cast<ShapedType>(source.getType()).getElementType();
|
|
if (!padding)
|
|
padding = builder.create<ub::PoisonOp>(result.location, elemType);
|
|
build(builder, result, vectorType, source, indices, *padding,
|
|
permutationMapAttr, inBoundsAttr);
|
|
}
|
|
|
|
/// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
|
|
void TransferReadOp::build(OpBuilder &builder, OperationState &result,
|
|
VectorType vectorType, Value source,
|
|
ValueRange indices, std::optional<Value> padding,
|
|
std::optional<ArrayRef<bool>> inBounds) {
|
|
AffineMap permutationMap = getTransferMinorIdentityMap(
|
|
llvm::cast<ShapedType>(source.getType()), vectorType);
|
|
auto permutationMapAttr = AffineMapAttr::get(permutationMap);
|
|
auto inBoundsAttr = (inBounds && !inBounds.value().empty())
|
|
? builder.getBoolArrayAttr(inBounds.value())
|
|
: builder.getBoolArrayAttr(
|
|
SmallVector<bool>(vectorType.getRank(), false));
|
|
Type elemType = llvm::cast<ShapedType>(source.getType()).getElementType();
|
|
if (!padding)
|
|
padding = builder.create<ub::PoisonOp>(result.location, elemType);
|
|
build(builder, result, vectorType, source, indices, permutationMapAttr,
|
|
*padding,
|
|
/*mask=*/Value(), inBoundsAttr);
|
|
}
|
|
|
|
template <typename EmitFun>
|
|
static LogicalResult verifyPermutationMap(AffineMap permutationMap,
|
|
EmitFun emitOpError) {
|
|
SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
|
|
for (auto expr : permutationMap.getResults()) {
|
|
auto dim = dyn_cast<AffineDimExpr>(expr);
|
|
auto zero = dyn_cast<AffineConstantExpr>(expr);
|
|
if (zero) {
|
|
if (zero.getValue() != 0) {
|
|
return emitOpError(
|
|
"requires a projected permutation_map (at most one dim or the zero "
|
|
"constant can appear in each result)");
|
|
}
|
|
continue;
|
|
}
|
|
if (!dim) {
|
|
return emitOpError("requires a projected permutation_map (at most one "
|
|
"dim or the zero constant can appear in each result)");
|
|
}
|
|
if (seen[dim.getPosition()]) {
|
|
return emitOpError(
|
|
"requires a permutation_map that is a permutation (found one dim "
|
|
"used more than once)");
|
|
}
|
|
seen[dim.getPosition()] = true;
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult
|
|
verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
|
|
VectorType vectorType, VectorType maskType,
|
|
VectorType inferredMaskType, AffineMap permutationMap,
|
|
ArrayAttr inBounds) {
|
|
if (op->hasAttr("masked")) {
|
|
return op->emitOpError("masked attribute has been removed. "
|
|
"Use in_bounds instead.");
|
|
}
|
|
|
|
if (!llvm::isa<MemRefType, RankedTensorType>(shapedType))
|
|
return op->emitOpError(
|
|
"requires source to be a memref or ranked tensor type");
|
|
|
|
auto elementType = shapedType.getElementType();
|
|
DataLayout dataLayout = DataLayout::closest(op);
|
|
if (auto vectorElementType = llvm::dyn_cast<VectorType>(elementType)) {
|
|
// Memref or tensor has vector element type.
|
|
unsigned sourceVecSize =
|
|
dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
|
|
vectorElementType.getShape().back();
|
|
unsigned resultVecSize =
|
|
dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
|
|
vectorType.getShape().back();
|
|
if (resultVecSize % sourceVecSize != 0)
|
|
return op->emitOpError(
|
|
"requires the bitwidth of the minor 1-D vector to be an integral "
|
|
"multiple of the bitwidth of the minor 1-D vector of the source");
|
|
|
|
unsigned sourceVecEltRank = vectorElementType.getRank();
|
|
unsigned resultVecRank = vectorType.getRank();
|
|
if (sourceVecEltRank > resultVecRank)
|
|
return op->emitOpError(
|
|
"requires source vector element and vector result ranks to match.");
|
|
unsigned rankOffset = resultVecRank - sourceVecEltRank;
|
|
// Check that permutation map results match 'rankOffset' of vector type.
|
|
if (permutationMap.getNumResults() != rankOffset)
|
|
return op->emitOpError("requires a permutation_map with result dims of "
|
|
"the same rank as the vector type");
|
|
|
|
if (maskType)
|
|
return op->emitOpError("does not support masks with vector element type");
|
|
} else {
|
|
// Memref or tensor has scalar element type.
|
|
unsigned minorSize =
|
|
vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
|
|
unsigned resultVecSize =
|
|
dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
|
|
if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
|
|
return op->emitOpError(
|
|
"requires the bitwidth of the minor 1-D vector to be an integral "
|
|
"multiple of the bitwidth of the source element type");
|
|
|
|
// Check that permutation map results match rank of vector type.
|
|
if (permutationMap.getNumResults() != vectorType.getRank())
|
|
return op->emitOpError("requires a permutation_map with result dims of "
|
|
"the same rank as the vector type");
|
|
}
|
|
|
|
if (permutationMap.getNumSymbols() != 0)
|
|
return op->emitOpError("requires permutation_map without symbols");
|
|
|
|
if (permutationMap.getNumInputs() != shapedType.getRank())
|
|
return op->emitOpError("requires a permutation_map with input dims of the "
|
|
"same rank as the source type");
|
|
|
|
if (maskType && maskType != inferredMaskType)
|
|
return op->emitOpError("inferred mask type (")
|
|
<< inferredMaskType << ") and mask operand type (" << maskType
|
|
<< ") don't match";
|
|
|
|
if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
|
|
return op->emitOpError("expects the in_bounds attr of same rank "
|
|
"as permutation_map results: ")
|
|
<< AffineMapAttr::get(permutationMap)
|
|
<< " vs inBounds of size: " << inBounds.size();
|
|
|
|
return success();
|
|
}
|
|
|
|
static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
|
|
SmallVector<StringRef, 3> elidedAttrs;
|
|
elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
|
|
if (op.getPermutationMap().isMinorIdentity())
|
|
elidedAttrs.push_back(op.getPermutationMapAttrName());
|
|
// Elide in_bounds attribute if all dims are out-of-bounds.
|
|
if (llvm::none_of(op.getInBoundsValues(), [](bool b) { return b; }))
|
|
elidedAttrs.push_back(op.getInBoundsAttrName());
|
|
p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
|
|
}
|
|
|
|
void TransferReadOp::print(OpAsmPrinter &p) {
|
|
p << " " << getBase() << "[" << getIndices() << "], " << getPadding();
|
|
if (getMask())
|
|
p << ", " << getMask();
|
|
printTransferAttrs(p, *this);
|
|
p << " : " << getShapedType() << ", " << getVectorType();
|
|
}
|
|
|
|
VectorType mlir::vector::inferTransferOpMaskType(VectorType vecType,
|
|
AffineMap permMap) {
|
|
auto i1Type = IntegerType::get(permMap.getContext(), 1);
|
|
AffineMap invPermMap = inversePermutation(compressUnusedDims(permMap));
|
|
assert(invPermMap && "Inversed permutation map couldn't be computed");
|
|
SmallVector<int64_t, 8> maskShape = invPermMap.compose(vecType.getShape());
|
|
|
|
// The MaskOp specification doesn't support 0-D vectors at the moment. Turn a
|
|
// 0-D mask into a single-element 1-D mask.
|
|
if (maskShape.empty())
|
|
maskShape.push_back(1);
|
|
|
|
SmallVector<bool> scalableDims =
|
|
applyPermutationMap(invPermMap, vecType.getScalableDims());
|
|
|
|
return VectorType::get(maskShape, i1Type, scalableDims);
|
|
}
|
|
|
|
ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
auto &builder = parser.getBuilder();
|
|
SMLoc typesLoc;
|
|
OpAsmParser::UnresolvedOperand sourceInfo;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
|
|
OpAsmParser::UnresolvedOperand paddingInfo;
|
|
SmallVector<Type, 2> types;
|
|
OpAsmParser::UnresolvedOperand maskInfo;
|
|
// Parsing with support for paddingValue.
|
|
if (parser.parseOperand(sourceInfo) ||
|
|
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
|
|
parser.parseComma() || parser.parseOperand(paddingInfo))
|
|
return failure();
|
|
ParseResult hasMask = parser.parseOptionalComma();
|
|
if (hasMask.succeeded()) {
|
|
if (parser.parseOperand(maskInfo))
|
|
return failure();
|
|
}
|
|
if (parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
|
|
return failure();
|
|
if (types.size() != 2)
|
|
return parser.emitError(typesLoc, "requires two types");
|
|
auto indexType = builder.getIndexType();
|
|
auto shapedType = llvm::dyn_cast<ShapedType>(types[0]);
|
|
if (!shapedType || !llvm::isa<MemRefType, RankedTensorType>(shapedType))
|
|
return parser.emitError(typesLoc, "requires memref or ranked tensor type");
|
|
VectorType vectorType = llvm::dyn_cast<VectorType>(types[1]);
|
|
if (!vectorType)
|
|
return parser.emitError(typesLoc, "requires vector type");
|
|
auto permMapAttrName = TransferReadOp::getPermutationMapAttrName(result.name);
|
|
Attribute permMapAttr = result.attributes.get(permMapAttrName);
|
|
AffineMap permMap;
|
|
if (!permMapAttr) {
|
|
if (shapedType.getRank() <
|
|
getEffectiveVectorRankForXferOp(shapedType, vectorType))
|
|
return parser.emitError(typesLoc,
|
|
"expected a custom permutation_map when "
|
|
"rank(source) != rank(destination)");
|
|
permMap = getTransferMinorIdentityMap(shapedType, vectorType);
|
|
result.attributes.set(permMapAttrName, AffineMapAttr::get(permMap));
|
|
} else {
|
|
permMap = llvm::cast<AffineMapAttr>(permMapAttr).getValue();
|
|
}
|
|
auto inBoundsAttrName = TransferReadOp::getInBoundsAttrName(result.name);
|
|
Attribute inBoundsAttr = result.attributes.get(inBoundsAttrName);
|
|
if (!inBoundsAttr) {
|
|
result.addAttribute(inBoundsAttrName,
|
|
builder.getBoolArrayAttr(
|
|
SmallVector<bool>(permMap.getNumResults(), false)));
|
|
}
|
|
if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
|
|
parser.resolveOperands(indexInfo, indexType, result.operands) ||
|
|
parser.resolveOperand(paddingInfo, shapedType.getElementType(),
|
|
result.operands))
|
|
return failure();
|
|
if (hasMask.succeeded()) {
|
|
if (llvm::dyn_cast<VectorType>(shapedType.getElementType()))
|
|
return parser.emitError(
|
|
maskInfo.location, "does not support masks with vector element type");
|
|
if (vectorType.getRank() != permMap.getNumResults()) {
|
|
return parser.emitError(typesLoc,
|
|
"expected the same rank for the vector and the "
|
|
"results of the permutation map");
|
|
}
|
|
// Instead of adding the mask type as an op type, compute it based on the
|
|
// vector type and the permutation map (to keep the type signature small).
|
|
auto maskType = inferTransferOpMaskType(vectorType, permMap);
|
|
if (parser.resolveOperand(maskInfo, maskType, result.operands))
|
|
return failure();
|
|
}
|
|
result.addAttribute(TransferReadOp::getOperandSegmentSizeAttr(),
|
|
builder.getDenseI32ArrayAttr(
|
|
{1, static_cast<int32_t>(indexInfo.size()), 1,
|
|
static_cast<int32_t>(hasMask.succeeded())}));
|
|
return parser.addTypeToList(vectorType, result.types);
|
|
}
|
|
|
|
LogicalResult TransferReadOp::verify() {
|
|
// Consistency of elemental types in source and vector.
|
|
ShapedType shapedType = getShapedType();
|
|
VectorType vectorType = getVectorType();
|
|
VectorType maskType = getMaskType();
|
|
auto paddingType = getPadding().getType();
|
|
auto permutationMap = getPermutationMap();
|
|
VectorType inferredMaskType =
|
|
maskType ? inferTransferOpMaskType(vectorType, permutationMap)
|
|
: VectorType();
|
|
auto sourceElementType = shapedType.getElementType();
|
|
|
|
if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank())
|
|
return emitOpError("requires ") << shapedType.getRank() << " indices";
|
|
|
|
if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
|
|
shapedType, vectorType, maskType,
|
|
inferredMaskType, permutationMap, getInBounds())))
|
|
return failure();
|
|
|
|
if (auto sourceVectorElementType =
|
|
llvm::dyn_cast<VectorType>(sourceElementType)) {
|
|
// Source has vector element type.
|
|
// Check that 'sourceVectorElementType' and 'paddingType' types match.
|
|
if (sourceVectorElementType != paddingType)
|
|
return emitOpError(
|
|
"requires source element type and padding type to match.");
|
|
|
|
} else {
|
|
// Check that 'paddingType' is valid to store in a vector type.
|
|
if (!VectorType::isValidElementType(paddingType))
|
|
return emitOpError("requires valid padding vector elemental type");
|
|
|
|
// Check that padding type and vector element types match.
|
|
if (paddingType != sourceElementType)
|
|
return emitOpError(
|
|
"requires formal padding and source of the same elemental type");
|
|
}
|
|
|
|
return verifyPermutationMap(permutationMap,
|
|
[&](Twine t) { return emitOpError(t); });
|
|
}
|
|
|
|
// MaskableOpInterface methods.
|
|
|
|
/// Returns the mask type expected by this operation. Mostly used for
|
|
/// verification purposes. It requires the operation to be vectorized."
|
|
Type TransferReadOp::getExpectedMaskType() {
|
|
return inferTransferOpMaskType(getVectorType(), getPermutationMap());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TransferReadOp: VectorTransferOpInterface methods.
|
|
//===----------------------------------------------------------------------===//
|
|
VectorType TransferReadOp::getVectorType() {
|
|
return cast<VectorType>(getVector().getType());
|
|
}
|
|
|
|
template <typename TransferOp>
|
|
static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
|
|
// TODO: support more aggressive createOrFold on:
|
|
// op.getIndices()[indicesIdx] + vectorType < dim(op.getSource(), indicesIdx)
|
|
if (op.getShapedType().isDynamicDim(indicesIdx))
|
|
return false;
|
|
Value index = op.getIndices()[indicesIdx];
|
|
std::optional<int64_t> cstOp = getConstantIntValue(index);
|
|
if (!cstOp.has_value())
|
|
return false;
|
|
|
|
int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
|
|
int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
|
|
|
|
return cstOp.value() + vectorSize <= sourceSize;
|
|
}
|
|
|
|
template <typename TransferOp>
|
|
static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
|
|
// TODO: support 0-d corner case.
|
|
// TODO: Be less conservative.
|
|
if (op.getTransferRank() == 0)
|
|
return failure();
|
|
AffineMap permutationMap = op.getPermutationMap();
|
|
bool changed = false;
|
|
SmallVector<bool, 4> newInBounds;
|
|
newInBounds.reserve(op.getTransferRank());
|
|
// Idxs of non-bcast dims - used when analysing bcast dims.
|
|
SmallVector<unsigned> nonBcastDims;
|
|
|
|
// 1. Process non-broadcast dims
|
|
for (unsigned i = 0; i < op.getTransferRank(); ++i) {
|
|
// 1.1. Already marked as in-bounds, nothing to see here.
|
|
if (op.isDimInBounds(i)) {
|
|
newInBounds.push_back(true);
|
|
continue;
|
|
}
|
|
// 1.2. Currently out-of-bounds, check whether we can statically determine
|
|
// it is inBounds.
|
|
bool inBounds = false;
|
|
auto dimExpr = dyn_cast<AffineDimExpr>(permutationMap.getResult(i));
|
|
if (dimExpr) {
|
|
inBounds = isInBounds(op, /*resultIdx=*/i,
|
|
/*indicesIdx=*/dimExpr.getPosition());
|
|
nonBcastDims.push_back(i);
|
|
}
|
|
|
|
newInBounds.push_back(inBounds);
|
|
// We commit the pattern if it is "more inbounds".
|
|
changed |= inBounds;
|
|
}
|
|
|
|
// 2. Handle broadcast dims
|
|
// If all non-broadcast dims are "in bounds", then all bcast dims should be
|
|
// "in bounds" as well.
|
|
bool allNonBcastDimsInBounds = llvm::all_of(
|
|
nonBcastDims, [&newInBounds](unsigned idx) { return newInBounds[idx]; });
|
|
if (allNonBcastDimsInBounds) {
|
|
for (size_t idx : permutationMap.getBroadcastDims()) {
|
|
changed |= !newInBounds[idx];
|
|
newInBounds[idx] = true;
|
|
}
|
|
}
|
|
|
|
if (!changed)
|
|
return failure();
|
|
// OpBuilder is only used as a helper to build an I64ArrayAttr.
|
|
OpBuilder b(op.getContext());
|
|
op.setInBoundsAttr(b.getBoolArrayAttr(newInBounds));
|
|
return success();
|
|
}
|
|
|
|
template <typename TransferOp>
|
|
static LogicalResult foldTransferFullMask(TransferOp op) {
|
|
auto mask = op.getMask();
|
|
if (!mask)
|
|
return failure();
|
|
|
|
if (getMaskFormat(mask) != MaskFormat::AllTrue)
|
|
return failure();
|
|
|
|
op.getMaskMutable().clear();
|
|
return success();
|
|
}
|
|
|
|
/// ```
|
|
/// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
|
|
/// : vector<1x4xf32>, tensor<4x4xf32>
|
|
/// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
|
|
/// : tensor<4x4xf32>, vector<1x4xf32>
|
|
/// ```
|
|
/// -> Folds into
|
|
/// ```
|
|
/// %v0
|
|
/// ```
|
|
static Value foldRAW(TransferReadOp readOp) {
|
|
if (!llvm::isa<RankedTensorType>(readOp.getShapedType()))
|
|
return {};
|
|
auto defWrite = readOp.getBase().getDefiningOp<vector::TransferWriteOp>();
|
|
while (defWrite) {
|
|
if (checkSameValueRAW(defWrite, readOp))
|
|
return defWrite.getVector();
|
|
if (!isDisjointTransferIndices(
|
|
cast<VectorTransferOpInterface>(defWrite.getOperation()),
|
|
cast<VectorTransferOpInterface>(readOp.getOperation())))
|
|
break;
|
|
defWrite = defWrite.getBase().getDefiningOp<vector::TransferWriteOp>();
|
|
}
|
|
return {};
|
|
}
|
|
|
|
OpFoldResult TransferReadOp::fold(FoldAdaptor) {
|
|
if (Value vec = foldRAW(*this))
|
|
return vec;
|
|
/// transfer_read(memrefcast) -> transfer_read
|
|
if (succeeded(foldTransferInBoundsAttribute(*this)))
|
|
return getResult();
|
|
if (succeeded(foldTransferFullMask(*this)))
|
|
return getResult();
|
|
if (succeeded(memref::foldMemRefCast(*this)))
|
|
return getResult();
|
|
if (succeeded(tensor::foldTensorCast(*this)))
|
|
return getResult();
|
|
return OpFoldResult();
|
|
}
|
|
|
|
std::optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
|
|
return llvm::to_vector<4>(getVectorType().getShape());
|
|
}
|
|
|
|
void TransferReadOp::getEffects(
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
|
|
&effects) {
|
|
if (llvm::isa<MemRefType>(getShapedType()))
|
|
effects.emplace_back(MemoryEffects::Read::get(), &getBaseMutable(),
|
|
SideEffects::DefaultResource::get());
|
|
}
|
|
|
|
Speculation::Speculatability TransferReadOp::getSpeculatability() {
|
|
if (hasPureTensorSemantics())
|
|
return Speculation::Speculatable;
|
|
return Speculation::NotSpeculatable;
|
|
}
|
|
|
|
namespace {
|
|
/// Store to load forwarding for transfer operations with permuation maps.
|
|
/// Even if the permutation maps are different we can still propagate the store
|
|
/// into the load if the size of the dimensions read and written match. Then we
|
|
/// can replace the transfer_read + transfer_write by vector.broadcast and
|
|
/// vector.transpose.
|
|
/// Example:
|
|
/// ```
|
|
/// %w0 = vector.transfer_write %v0, %arg0[%c0, %c0, %c0]
|
|
/// {in_bounds = [true, true],
|
|
/// permutation_map = affine_map<(d0, d1, d2) -> (d2, d1)>} :
|
|
/// vector<4x1xf32>, tensor<4x4x4xf32>
|
|
/// %r = vector.transfer_read %w0[%c0, %c0, %c0], %cf0
|
|
/// {in_bounds = [true, true, true, true],
|
|
/// permutation_map = affine_map<(d0, d1, d2) -> (d1, 0, d2, 0)>} :
|
|
/// tensor<4x4x4xf32>, vector<1x100x4x5xf32>
|
|
/// ```
|
|
/// To:
|
|
/// ```
|
|
/// %0 = vector.broadcast %arg1 : vector<4x1xf32> to vector<100x5x4x1xf32>
|
|
/// %r = vector.transpose %0, [3, 0, 2, 1] :
|
|
/// vector<100x5x4x1xf32> to vector<1x100x4x5xf32>
|
|
/// ```
|
|
struct TransferReadAfterWriteToBroadcast
|
|
: public OpRewritePattern<TransferReadOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(TransferReadOp readOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto defWrite = readOp.getBase().getDefiningOp<vector::TransferWriteOp>();
|
|
if (!defWrite)
|
|
return failure();
|
|
// Bail if we need an alias analysis.
|
|
if (!readOp.hasPureTensorSemantics() || !defWrite.hasPureTensorSemantics())
|
|
return failure();
|
|
// Bail if we need a bounds analysis.
|
|
if (readOp.hasOutOfBoundsDim() || defWrite.hasOutOfBoundsDim())
|
|
return failure();
|
|
// TODO: If the written transfer chunk is a superset of the read transfer
|
|
// chunk we could do an extract_strided_slice.
|
|
if (readOp.getTransferChunkAccessed() !=
|
|
defWrite.getTransferChunkAccessed())
|
|
return failure();
|
|
// TODO: Support cases where a dim is explicitly written but implicitly
|
|
// read (i.e., a unit dim that is rank reduced).
|
|
if (getUnusedDimsBitVector({readOp.getPermutationMap()}) !=
|
|
getUnusedDimsBitVector({defWrite.getPermutationMap()}))
|
|
return failure();
|
|
// This pattern should only catch the broadcast case, the non-broadcast case
|
|
// should be done separately to keep application conditions clean and
|
|
// separate.
|
|
AffineMap readMap = compressUnusedDims(readOp.getPermutationMap());
|
|
AffineMap writeMap = compressUnusedDims(defWrite.getPermutationMap());
|
|
bool bcast = !readMap.getBroadcastDims().empty() ||
|
|
!writeMap.getBroadcastDims().empty();
|
|
if (!bcast)
|
|
return failure();
|
|
// At this point, we know we have a bcast.
|
|
// Bail in the masked case (too complex atm and needed to properly account
|
|
// for padding).
|
|
if (readOp.getMask() || defWrite.getMask())
|
|
return failure();
|
|
// If indices are not the same a shift may be required, bail.
|
|
if (readOp.getIndices() != defWrite.getIndices())
|
|
return failure();
|
|
|
|
Value vec = defWrite.getVector();
|
|
// TODO: loop through the chain of transfer_write if we can prove that they
|
|
// don't overlap with the transfer_read. This requires improving
|
|
// `isDisjointTransferIndices` helper.
|
|
AffineMap map = readMap.compose(writeMap);
|
|
if (map.getNumResults() == 0)
|
|
return failure();
|
|
// Calculate the permutation to apply to go from the vector stored to the
|
|
// vector read.
|
|
SmallVector<unsigned> permutation;
|
|
if (!map.isPermutationOfMinorIdentityWithBroadcasting(permutation))
|
|
return failure();
|
|
|
|
Location loc = readOp.getLoc();
|
|
// Calculate the broadcast shape by applying the reverse permutation to the
|
|
// final shape we want.
|
|
ArrayRef<int64_t> destShape = readOp.getVectorType().getShape();
|
|
SmallVector<int64_t> broadcastShape(destShape.size());
|
|
SmallVector<bool> broadcastScalableFlags(destShape.size());
|
|
for (const auto &pos : llvm::enumerate(permutation)) {
|
|
broadcastShape[pos.value()] = destShape[pos.index()];
|
|
broadcastScalableFlags[pos.value()] =
|
|
readOp.getVectorType().getScalableDims()[pos.index()];
|
|
}
|
|
VectorType broadcastedType = VectorType::get(
|
|
broadcastShape, defWrite.getVectorType().getElementType(),
|
|
broadcastScalableFlags);
|
|
vec = rewriter.create<vector::BroadcastOp>(loc, broadcastedType, vec);
|
|
SmallVector<int64_t> transposePerm(permutation.begin(), permutation.end());
|
|
rewriter.replaceOpWithNewOp<vector::TransposeOp>(readOp, vec,
|
|
transposePerm);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<TransferReadAfterWriteToBroadcast>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TransferWriteOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// 1. Builder with type inference.
|
|
void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
|
|
Value vector, Value dest, ValueRange indices,
|
|
AffineMapAttr permutationMapAttr,
|
|
/*optional*/ Value mask,
|
|
/*optional*/ ArrayAttr inBoundsAttr) {
|
|
Type resultType = llvm::dyn_cast<RankedTensorType>(dest.getType());
|
|
build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
|
|
mask, inBoundsAttr);
|
|
}
|
|
|
|
/// 2. Builder with type inference that sets an empty mask (variant with attrs).
|
|
void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
|
|
Value vector, Value dest, ValueRange indices,
|
|
AffineMapAttr permutationMapAttr,
|
|
/*optional*/ ArrayAttr inBoundsAttr) {
|
|
build(builder, result, vector, dest, indices, permutationMapAttr,
|
|
/*mask=*/Value(), inBoundsAttr);
|
|
}
|
|
|
|
/// 3. Builder with type inference that sets an empty mask (variant without
|
|
/// attrs)
|
|
void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
|
|
Value vector, Value dest, ValueRange indices,
|
|
AffineMap permutationMap,
|
|
std::optional<ArrayRef<bool>> inBounds) {
|
|
auto permutationMapAttr = AffineMapAttr::get(permutationMap);
|
|
auto inBoundsAttr =
|
|
(inBounds && !inBounds.value().empty())
|
|
? builder.getBoolArrayAttr(inBounds.value())
|
|
: builder.getBoolArrayAttr(SmallVector<bool>(
|
|
llvm::cast<VectorType>(vector.getType()).getRank(), false));
|
|
build(builder, result, vector, dest, indices, permutationMapAttr,
|
|
/*mask=*/Value(), inBoundsAttr);
|
|
}
|
|
|
|
/// 4. Builder with type inference that sets an empty mask and sets permutation
|
|
/// map to 'getMinorIdentityMap'.
|
|
void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
|
|
Value vector, Value dest, ValueRange indices,
|
|
std::optional<ArrayRef<bool>> inBounds) {
|
|
auto vectorType = llvm::cast<VectorType>(vector.getType());
|
|
AffineMap permutationMap = getTransferMinorIdentityMap(
|
|
llvm::cast<ShapedType>(dest.getType()), vectorType);
|
|
build(builder, result, vector, dest, indices, permutationMap, inBounds);
|
|
}
|
|
|
|
ParseResult TransferWriteOp::parse(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
auto &builder = parser.getBuilder();
|
|
SMLoc typesLoc;
|
|
OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo;
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
|
|
SmallVector<Type, 2> types;
|
|
OpAsmParser::UnresolvedOperand maskInfo;
|
|
if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
|
|
parser.parseOperand(sourceInfo) ||
|
|
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
|
|
return failure();
|
|
ParseResult hasMask = parser.parseOptionalComma();
|
|
if (hasMask.succeeded() && parser.parseOperand(maskInfo))
|
|
return failure();
|
|
if (parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
|
|
return failure();
|
|
if (types.size() != 2)
|
|
return parser.emitError(typesLoc, "requires two types");
|
|
auto indexType = builder.getIndexType();
|
|
VectorType vectorType = llvm::dyn_cast<VectorType>(types[0]);
|
|
if (!vectorType)
|
|
return parser.emitError(typesLoc, "requires vector type");
|
|
ShapedType shapedType = llvm::dyn_cast<ShapedType>(types[1]);
|
|
if (!shapedType || !llvm::isa<MemRefType, RankedTensorType>(shapedType))
|
|
return parser.emitError(typesLoc, "requires memref or ranked tensor type");
|
|
auto permMapAttrName =
|
|
TransferWriteOp::getPermutationMapAttrName(result.name);
|
|
auto permMapAttr = result.attributes.get(permMapAttrName);
|
|
AffineMap permMap;
|
|
if (!permMapAttr) {
|
|
if (shapedType.getRank() <
|
|
getEffectiveVectorRankForXferOp(shapedType, vectorType))
|
|
return parser.emitError(typesLoc,
|
|
"expected a custom permutation_map when "
|
|
"rank(source) != rank(destination)");
|
|
permMap = getTransferMinorIdentityMap(shapedType, vectorType);
|
|
result.attributes.set(permMapAttrName, AffineMapAttr::get(permMap));
|
|
} else {
|
|
permMap = llvm::cast<AffineMapAttr>(permMapAttr).getValue();
|
|
}
|
|
auto inBoundsAttrName = TransferWriteOp::getInBoundsAttrName(result.name);
|
|
Attribute inBoundsAttr = result.attributes.get(inBoundsAttrName);
|
|
if (!inBoundsAttr) {
|
|
result.addAttribute(inBoundsAttrName,
|
|
builder.getBoolArrayAttr(
|
|
SmallVector<bool>(permMap.getNumResults(), false)));
|
|
}
|
|
if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
|
|
parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
|
|
parser.resolveOperands(indexInfo, indexType, result.operands))
|
|
return failure();
|
|
if (hasMask.succeeded()) {
|
|
if (llvm::dyn_cast<VectorType>(shapedType.getElementType()))
|
|
return parser.emitError(
|
|
maskInfo.location, "does not support masks with vector element type");
|
|
if (vectorType.getRank() != permMap.getNumResults()) {
|
|
return parser.emitError(typesLoc,
|
|
"expected the same rank for the vector and the "
|
|
"results of the permutation map");
|
|
}
|
|
auto maskType = inferTransferOpMaskType(vectorType, permMap);
|
|
if (parser.resolveOperand(maskInfo, maskType, result.operands))
|
|
return failure();
|
|
}
|
|
result.addAttribute(TransferWriteOp::getOperandSegmentSizeAttr(),
|
|
builder.getDenseI32ArrayAttr(
|
|
{1, 1, static_cast<int32_t>(indexInfo.size()),
|
|
static_cast<int32_t>(hasMask.succeeded())}));
|
|
return failure(llvm::isa<RankedTensorType>(shapedType) &&
|
|
parser.addTypeToList(shapedType, result.types));
|
|
}
|
|
|
|
void TransferWriteOp::print(OpAsmPrinter &p) {
|
|
p << " " << getVector() << ", " << getBase() << "[" << getIndices() << "]";
|
|
if (getMask())
|
|
p << ", " << getMask();
|
|
printTransferAttrs(p, *this);
|
|
p << " : " << getVectorType() << ", " << getShapedType();
|
|
}
|
|
|
|
LogicalResult TransferWriteOp::verify() {
|
|
// Consistency of elemental types in shape and vector.
|
|
ShapedType shapedType = getShapedType();
|
|
VectorType vectorType = getVectorType();
|
|
VectorType maskType = getMaskType();
|
|
auto permutationMap = getPermutationMap();
|
|
VectorType inferredMaskType =
|
|
maskType ? inferTransferOpMaskType(vectorType, permutationMap)
|
|
: VectorType();
|
|
|
|
if (llvm::size(getIndices()) != shapedType.getRank())
|
|
return emitOpError("requires ") << shapedType.getRank() << " indices";
|
|
|
|
// We do not allow broadcast dimensions on TransferWriteOps for the moment,
|
|
// as the semantics is unclear. This can be revisited later if necessary.
|
|
if (hasBroadcastDim())
|
|
return emitOpError("should not have broadcast dimensions");
|
|
|
|
if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
|
|
shapedType, vectorType, maskType,
|
|
inferredMaskType, permutationMap, getInBounds())))
|
|
return failure();
|
|
|
|
return verifyPermutationMap(permutationMap,
|
|
[&](Twine t) { return emitOpError(t); });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TransferWriteOp: MaskableOpInterface methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns the mask type expected by this operation. Mostly used for
|
|
/// verification purposes.
|
|
Type TransferWriteOp::getExpectedMaskType() {
|
|
return inferTransferOpMaskType(getVectorType(), getPermutationMap());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TransferWriteOp: VectorTransferOpInterface methods.
|
|
//===----------------------------------------------------------------------===//
|
|
Value TransferWriteOp::getVector() { return getOperand(0); }
|
|
VectorType TransferWriteOp::getVectorType() {
|
|
return cast<VectorType>(getValueToStore().getType());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TransferWriteOp: fold methods.
|
|
//===----------------------------------------------------------------------===//
|
|
/// Fold:
|
|
/// ```
|
|
/// %t1 = ...
|
|
/// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
|
|
/// tensor<static_sizesxf32>, vector<static_sizesxf32>
|
|
/// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
|
|
/// vector<static_sizesxf32>, tensor<static_sizesxf32>
|
|
/// ```
|
|
///
|
|
/// into:
|
|
///
|
|
/// ```
|
|
/// %t0
|
|
/// ```
|
|
///
|
|
/// The producer of t1 may or may not be DCE'd depending on whether it is a
|
|
/// block argument or has side effects.
|
|
static LogicalResult foldReadInitWrite(TransferWriteOp write,
|
|
ArrayRef<Attribute>,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
// TODO: support 0-d corner case.
|
|
if (write.getTransferRank() == 0)
|
|
return failure();
|
|
auto rankedTensorType =
|
|
llvm::dyn_cast<RankedTensorType>(write.getBase().getType());
|
|
// If not operating on tensors, bail.
|
|
if (!rankedTensorType)
|
|
return failure();
|
|
// If no read, bail.
|
|
auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
|
|
if (!read)
|
|
return failure();
|
|
// TODO: support 0-d corner case.
|
|
if (read.getTransferRank() == 0)
|
|
return failure();
|
|
// For now, only accept minor identity. Future: composition is minor identity.
|
|
if (!read.getPermutationMap().isMinorIdentity() ||
|
|
!write.getPermutationMap().isMinorIdentity())
|
|
return failure();
|
|
// Bail on mismatching ranks.
|
|
if (read.getTransferRank() != write.getTransferRank())
|
|
return failure();
|
|
// Bail on potential out-of-bounds accesses.
|
|
if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
|
|
return failure();
|
|
// Tensor types must be the same.
|
|
if (read.getBase().getType() != rankedTensorType)
|
|
return failure();
|
|
// Vector types must be the same.
|
|
if (read.getVectorType() != write.getVectorType())
|
|
return failure();
|
|
// Vector and Tensor shapes must match.
|
|
if (read.getVectorType().getShape() != rankedTensorType.getShape())
|
|
return failure();
|
|
// If any index is nonzero.
|
|
auto isNotConstantZero = [](Value v) {
|
|
auto cstOp = getConstantIntValue(v);
|
|
return !cstOp.has_value() || cstOp.value() != 0;
|
|
};
|
|
if (llvm::any_of(read.getIndices(), isNotConstantZero) ||
|
|
llvm::any_of(write.getIndices(), isNotConstantZero))
|
|
return failure();
|
|
// Success.
|
|
results.push_back(read.getBase());
|
|
return success();
|
|
}
|
|
|
|
static bool checkSameValueWAR(vector::TransferReadOp read,
|
|
vector::TransferWriteOp write) {
|
|
return read.getBase() == write.getBase() &&
|
|
read.getIndices() == write.getIndices() &&
|
|
read.getPermutationMap() == write.getPermutationMap() &&
|
|
read.getVectorType() == write.getVectorType() && !read.getMask() &&
|
|
!write.getMask();
|
|
}
|
|
/// Fold transfer_write write after read:
|
|
/// ```
|
|
/// %t0 = ...
|
|
/// %v = vector.transfer_read %t0[%c0...] :
|
|
/// tensor<static_sizesxf32>, vector<static_sizesxf32>
|
|
/// %t1 = vector.transfer_write %v, %t0[%c0...] :
|
|
/// vector<static_sizesxf32>, tensor<static_sizesxf32>
|
|
/// ```
|
|
///
|
|
/// into:
|
|
///
|
|
/// ```
|
|
/// %t0
|
|
/// ```
|
|
static LogicalResult foldWAR(TransferWriteOp write,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
if (!llvm::isa<RankedTensorType>(write.getBase().getType()))
|
|
return failure();
|
|
auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
|
|
if (!read)
|
|
return failure();
|
|
|
|
if (!checkSameValueWAR(read, write))
|
|
return failure();
|
|
results.push_back(read.getBase());
|
|
return success();
|
|
}
|
|
|
|
LogicalResult TransferWriteOp::fold(FoldAdaptor adaptor,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
if (succeeded(foldReadInitWrite(*this, adaptor.getOperands(), results)))
|
|
return success();
|
|
if (succeeded(foldWAR(*this, results)))
|
|
return success();
|
|
if (succeeded(foldTransferInBoundsAttribute(*this)))
|
|
return success();
|
|
if (succeeded(foldTransferFullMask(*this)))
|
|
return success();
|
|
return memref::foldMemRefCast(*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TransferWriteOp: other methods.
|
|
//===----------------------------------------------------------------------===//
|
|
std::optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
|
|
return llvm::to_vector<4>(getVectorType().getShape());
|
|
}
|
|
|
|
void TransferWriteOp::getEffects(
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
|
|
&effects) {
|
|
if (llvm::isa<MemRefType>(getShapedType()))
|
|
effects.emplace_back(MemoryEffects::Write::get(), &getBaseMutable(),
|
|
SideEffects::DefaultResource::get());
|
|
}
|
|
|
|
Speculation::Speculatability TransferWriteOp::getSpeculatability() {
|
|
if (hasPureTensorSemantics())
|
|
return Speculation::Speculatable;
|
|
return Speculation::NotSpeculatable;
|
|
}
|
|
|
|
namespace {
|
|
/// Remove dead transfer write from the SSA chain so that it an be eliminated by
|
|
/// DCE
|
|
/// ```
|
|
/// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
|
|
/// : vector<1x4xf32>, tensor<4x4xf32>
|
|
/// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
|
|
/// : vector<1x4xf32>, tensor<4x4xf32>
|
|
/// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
|
|
/// : vector<1x4xf32>, tensor<4x4xf32>
|
|
/// ```
|
|
///
|
|
/// into:
|
|
///
|
|
/// ```
|
|
/// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
|
|
/// : vector<1x4xf32>, tensor<4x4xf32>
|
|
/// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
|
|
/// : vector<1x4xf32>, tensor<4x4xf32>
|
|
/// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
|
|
/// : vector<1x4xf32>, tensor<4x4xf32>
|
|
/// ```
|
|
///
|
|
/// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
|
|
/// any other uses.
|
|
class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(TransferWriteOp writeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!llvm::isa<RankedTensorType>(writeOp.getShapedType()))
|
|
return failure();
|
|
vector::TransferWriteOp writeToModify = writeOp;
|
|
|
|
auto defWrite = writeOp.getBase().getDefiningOp<vector::TransferWriteOp>();
|
|
while (defWrite) {
|
|
if (checkSameValueWAW(writeOp, defWrite)) {
|
|
rewriter.modifyOpInPlace(writeToModify, [&]() {
|
|
writeToModify.getBaseMutable().assign(defWrite.getBase());
|
|
});
|
|
return success();
|
|
}
|
|
if (!isDisjointTransferIndices(
|
|
cast<VectorTransferOpInterface>(defWrite.getOperation()),
|
|
cast<VectorTransferOpInterface>(writeOp.getOperation())))
|
|
break;
|
|
// If the previous write op doesn't have any other use we an safely look
|
|
// at the previous store to see if it can be removed.
|
|
if (!defWrite->hasOneUse())
|
|
break;
|
|
writeToModify = defWrite;
|
|
defWrite = defWrite.getBase().getDefiningOp<vector::TransferWriteOp>();
|
|
}
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
/// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to
|
|
/// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is
|
|
/// overwritten and inserted into another tensor. After this rewrite, the
|
|
/// operations bufferize in-place since all of them work on the same slice.
|
|
///
|
|
/// For example:
|
|
/// ```mlir
|
|
/// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0]
|
|
/// : vector<8x16xf32>, tensor<8x16xf32>
|
|
/// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1]
|
|
/// : tensor<8x16xf32> to tensor<?x?xf32>
|
|
/// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
|
|
/// : tensor<?x?xf32> into tensor<27x37xf32>
|
|
/// ```
|
|
/// folds to
|
|
/// ```mlir
|
|
/// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
|
|
/// : tensor<27x37xf32> to tensor<?x?xf32>
|
|
/// %1 = vector.transfer_write %vec, %0[%c0, %c0]
|
|
/// : vector<8x16xf32>, tensor<?x?xf32>
|
|
/// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
|
|
/// : tensor<?x?xf32> into tensor<27x37xf32>
|
|
/// ```
|
|
struct SwapExtractSliceOfTransferWrite
|
|
: public OpRewritePattern<tensor::InsertSliceOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!insertOp.hasUnitStride())
|
|
return failure();
|
|
auto extractOp =
|
|
insertOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
|
|
if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse())
|
|
return failure();
|
|
auto transferOp = extractOp.getSource().getDefiningOp<TransferWriteOp>();
|
|
if (!transferOp || !transferOp->hasOneUse())
|
|
return failure();
|
|
|
|
// Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is
|
|
// rank-reducing.
|
|
if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) {
|
|
return rewriter.notifyMatchFailure(insertOp,
|
|
"use-def chain is rank-reducing");
|
|
}
|
|
|
|
// Fail if tensor::ExtractSliceOp has non-zero offset.
|
|
if (!extractOp.hasZeroOffset()) {
|
|
return rewriter.notifyMatchFailure(insertOp,
|
|
"ExtractSliceOp has non-zero offset");
|
|
}
|
|
|
|
// Fail if tensor::TransferWriteOp has non-zero offset.
|
|
if (!llvm::all_of(transferOp.getIndices(), [](Value value) {
|
|
return getConstantIntValue(value) == static_cast<int64_t>(0);
|
|
})) {
|
|
return rewriter.notifyMatchFailure(insertOp,
|
|
"TranferWriteOp has non-zero offset");
|
|
}
|
|
|
|
// Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ.
|
|
if (insertOp.getMixedSizes().size() != extractOp.getMixedSizes().size()) {
|
|
return rewriter.notifyMatchFailure(
|
|
insertOp, "InsertSliceOp and ExtractSliceOp ranks differ");
|
|
}
|
|
|
|
for (auto [insertSize, extractSize] :
|
|
llvm::zip_equal(insertOp.getMixedSizes(), extractOp.getMixedSizes())) {
|
|
if (!isEqualConstantIntOrValue(insertSize, extractSize)) {
|
|
return rewriter.notifyMatchFailure(
|
|
insertOp, "InsertSliceOp and ExtractSliceOp sizes differ");
|
|
}
|
|
}
|
|
|
|
// Fail if the vector::TransferWriteOp may not overwrite the full tensor.
|
|
assert(transferOp.getVectorType().hasStaticShape() &&
|
|
"expected vector to have a static shape");
|
|
ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape();
|
|
SmallVector<int64_t> resultShape = applyPermutationMap(
|
|
transferOp.getPermutationMap(), transferOp.getShapedType().getShape());
|
|
if (transferOp.getMask() || !vectorShape.equals(resultShape)) {
|
|
return rewriter.notifyMatchFailure(
|
|
insertOp, "TransferWriteOp may not write the full tensor.");
|
|
}
|
|
|
|
// Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp.
|
|
// Set all in_bounds to false and let the folder infer them.
|
|
SmallVector<bool> newInBounds(vectorShape.size(), false);
|
|
auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>(
|
|
extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(),
|
|
insertOp.getMixedOffsets(), insertOp.getMixedSizes(),
|
|
insertOp.getMixedStrides());
|
|
auto newTransferWriteOp = rewriter.create<TransferWriteOp>(
|
|
transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(),
|
|
transferOp.getIndices(), transferOp.getPermutationMapAttr(),
|
|
rewriter.getBoolArrayAttr(newInBounds));
|
|
rewriter.modifyOpInPlace(insertOp, [&]() {
|
|
insertOp.getSourceMutable().assign(newTransferWriteOp.getResult());
|
|
});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<FoldWaw, SwapExtractSliceOfTransferWrite>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoadOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
|
|
VectorType vecTy,
|
|
MemRefType memRefTy) {
|
|
// If rank==0 or size==1 it's equivalent to scalar load/store, so we don't
|
|
// need any strides limitations.
|
|
if (!vecTy.isScalable() &&
|
|
(vecTy.getRank() == 0 || vecTy.getNumElements() == 1))
|
|
return success();
|
|
|
|
if (!memRefTy.isLastDimUnitStride())
|
|
return op->emitOpError("most minor memref dim must have unit stride");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult vector::LoadOp::verify() {
|
|
VectorType resVecTy = getVectorType();
|
|
MemRefType memRefTy = getMemRefType();
|
|
|
|
if (failed(verifyLoadStoreMemRefLayout(*this, resVecTy, memRefTy)))
|
|
return failure();
|
|
|
|
if (memRefTy.getRank() < resVecTy.getRank())
|
|
return emitOpError(
|
|
"destination memref has lower rank than the result vector");
|
|
|
|
// Checks for vector memrefs.
|
|
Type memElemTy = memRefTy.getElementType();
|
|
if (auto memVecTy = llvm::dyn_cast<VectorType>(memElemTy)) {
|
|
if (memVecTy != resVecTy)
|
|
return emitOpError("base memref and result vector types should match");
|
|
memElemTy = memVecTy.getElementType();
|
|
}
|
|
|
|
if (resVecTy.getElementType() != memElemTy)
|
|
return emitOpError("base and result element types should match");
|
|
if (llvm::size(getIndices()) != memRefTy.getRank())
|
|
return emitOpError("requires ") << memRefTy.getRank() << " indices";
|
|
return success();
|
|
}
|
|
|
|
OpFoldResult LoadOp::fold(FoldAdaptor) {
|
|
if (succeeded(memref::foldMemRefCast(*this)))
|
|
return getResult();
|
|
return OpFoldResult();
|
|
}
|
|
|
|
std::optional<SmallVector<int64_t, 4>> LoadOp::getShapeForUnroll() {
|
|
return llvm::to_vector<4>(getVectorType().getShape());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StoreOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult vector::StoreOp::verify() {
|
|
VectorType valueVecTy = getVectorType();
|
|
MemRefType memRefTy = getMemRefType();
|
|
|
|
if (failed(verifyLoadStoreMemRefLayout(*this, valueVecTy, memRefTy)))
|
|
return failure();
|
|
|
|
if (memRefTy.getRank() < valueVecTy.getRank())
|
|
return emitOpError("source memref has lower rank than the vector to store");
|
|
|
|
// Checks for vector memrefs.
|
|
Type memElemTy = memRefTy.getElementType();
|
|
if (auto memVecTy = llvm::dyn_cast<VectorType>(memElemTy)) {
|
|
if (memVecTy != valueVecTy)
|
|
return emitOpError(
|
|
"base memref and valueToStore vector types should match");
|
|
memElemTy = memVecTy.getElementType();
|
|
}
|
|
|
|
if (valueVecTy.getElementType() != memElemTy)
|
|
return emitOpError("base and valueToStore element type should match");
|
|
if (llvm::size(getIndices()) != memRefTy.getRank())
|
|
return emitOpError("requires ") << memRefTy.getRank() << " indices";
|
|
return success();
|
|
}
|
|
|
|
LogicalResult StoreOp::fold(FoldAdaptor adaptor,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
return memref::foldMemRefCast(*this);
|
|
}
|
|
|
|
std::optional<SmallVector<int64_t, 4>> StoreOp::getShapeForUnroll() {
|
|
return llvm::to_vector<4>(getVectorType().getShape());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MaskedLoadOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult MaskedLoadOp::verify() {
|
|
VectorType maskVType = getMaskVectorType();
|
|
VectorType passVType = getPassThruVectorType();
|
|
VectorType resVType = getVectorType();
|
|
MemRefType memType = getMemRefType();
|
|
|
|
if (resVType.getElementType() != memType.getElementType())
|
|
return emitOpError("base and result element type should match");
|
|
if (llvm::size(getIndices()) != memType.getRank())
|
|
return emitOpError("requires ") << memType.getRank() << " indices";
|
|
if (resVType.getShape() != maskVType.getShape())
|
|
return emitOpError("expected result shape to match mask shape");
|
|
if (resVType != passVType)
|
|
return emitOpError("expected pass_thru of same type as result type");
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(MaskedLoadOp load,
|
|
PatternRewriter &rewriter) const override {
|
|
switch (getMaskFormat(load.getMask())) {
|
|
case MaskFormat::AllTrue:
|
|
rewriter.replaceOpWithNewOp<vector::LoadOp>(
|
|
load, load.getType(), load.getBase(), load.getIndices());
|
|
return success();
|
|
case MaskFormat::AllFalse:
|
|
rewriter.replaceOp(load, load.getPassThru());
|
|
return success();
|
|
case MaskFormat::Unknown:
|
|
return failure();
|
|
}
|
|
llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<MaskedLoadFolder>(context);
|
|
}
|
|
|
|
OpFoldResult MaskedLoadOp::fold(FoldAdaptor) {
|
|
if (succeeded(memref::foldMemRefCast(*this)))
|
|
return getResult();
|
|
return OpFoldResult();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MaskedStoreOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult MaskedStoreOp::verify() {
|
|
VectorType maskVType = getMaskVectorType();
|
|
VectorType valueVType = getVectorType();
|
|
MemRefType memType = getMemRefType();
|
|
|
|
if (valueVType.getElementType() != memType.getElementType())
|
|
return emitOpError("base and valueToStore element type should match");
|
|
if (llvm::size(getIndices()) != memType.getRank())
|
|
return emitOpError("requires ") << memType.getRank() << " indices";
|
|
if (valueVType.getShape() != maskVType.getShape())
|
|
return emitOpError("expected valueToStore shape to match mask shape");
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(MaskedStoreOp store,
|
|
PatternRewriter &rewriter) const override {
|
|
switch (getMaskFormat(store.getMask())) {
|
|
case MaskFormat::AllTrue:
|
|
rewriter.replaceOpWithNewOp<vector::StoreOp>(
|
|
store, store.getValueToStore(), store.getBase(), store.getIndices());
|
|
return success();
|
|
case MaskFormat::AllFalse:
|
|
rewriter.eraseOp(store);
|
|
return success();
|
|
case MaskFormat::Unknown:
|
|
return failure();
|
|
}
|
|
llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<MaskedStoreFolder>(context);
|
|
}
|
|
|
|
LogicalResult MaskedStoreOp::fold(FoldAdaptor adaptor,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
return memref::foldMemRefCast(*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GatherOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult GatherOp::verify() {
|
|
VectorType indVType = getIndexVectorType();
|
|
VectorType maskVType = getMaskVectorType();
|
|
VectorType resVType = getVectorType();
|
|
ShapedType baseType = getBaseType();
|
|
|
|
if (!llvm::isa<MemRefType, RankedTensorType>(baseType))
|
|
return emitOpError("requires base to be a memref or ranked tensor type");
|
|
|
|
if (resVType.getElementType() != baseType.getElementType())
|
|
return emitOpError("base and result element type should match");
|
|
if (llvm::size(getIndices()) != baseType.getRank())
|
|
return emitOpError("requires ") << baseType.getRank() << " indices";
|
|
if (resVType.getShape() != indVType.getShape())
|
|
return emitOpError("expected result dim to match indices dim");
|
|
if (resVType.getShape() != maskVType.getShape())
|
|
return emitOpError("expected result dim to match mask dim");
|
|
if (resVType != getPassThruVectorType())
|
|
return emitOpError("expected pass_thru of same type as result type");
|
|
return success();
|
|
}
|
|
|
|
// MaskableOpInterface methods.
|
|
|
|
/// Returns the mask type expected by this operation. Mostly used for
|
|
/// verification purposes. It requires the operation to be vectorized."
|
|
Type GatherOp::getExpectedMaskType() {
|
|
auto vecType = this->getIndexVectorType();
|
|
return VectorType::get(vecType.getShape(),
|
|
IntegerType::get(vecType.getContext(), /*width=*/1),
|
|
vecType.getScalableDims());
|
|
}
|
|
|
|
std::optional<SmallVector<int64_t, 4>> GatherOp::getShapeForUnroll() {
|
|
return llvm::to_vector<4>(getVectorType().getShape());
|
|
}
|
|
|
|
/// Cheeck if `indexVec` is constant 1D vec of consecutive values [0, 1, 2, ...]
|
|
static LogicalResult isZeroBasedContiguousSeq(Value indexVec) {
|
|
auto vecType = dyn_cast<VectorType>(indexVec.getType());
|
|
if (!vecType || vecType.getRank() != 1 || vecType.isScalable())
|
|
return failure();
|
|
|
|
if (indexVec.getDefiningOp<StepOp>())
|
|
return success();
|
|
|
|
DenseIntElementsAttr elements;
|
|
if (!matchPattern(indexVec, m_Constant(&elements)))
|
|
return failure();
|
|
|
|
return success(
|
|
llvm::equal(elements, llvm::seq<int64_t>(0, vecType.getNumElements())));
|
|
}
|
|
|
|
namespace {
|
|
class GatherFolder final : public OpRewritePattern<GatherOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(GatherOp gather,
|
|
PatternRewriter &rewriter) const override {
|
|
switch (getMaskFormat(gather.getMask())) {
|
|
case MaskFormat::AllTrue:
|
|
return failure(); // no unmasked equivalent
|
|
case MaskFormat::AllFalse:
|
|
rewriter.replaceOp(gather, gather.getPassThru());
|
|
return success();
|
|
case MaskFormat::Unknown:
|
|
return failure();
|
|
}
|
|
llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
|
|
}
|
|
};
|
|
|
|
/// Fold gathers with consecutive offsets [0, 1, 2, ...] into contiguous
|
|
/// maskedload. Only 1D fixed vectors are supported for now.
|
|
class FoldContiguousGather final : public OpRewritePattern<GatherOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(GatherOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!isa<MemRefType>(op.getBase().getType()))
|
|
return rewriter.notifyMatchFailure(op, "base must be of memref type");
|
|
|
|
if (failed(isZeroBasedContiguousSeq(op.getIndexVec())))
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<MaskedLoadOp>(op, op.getType(), op.getBase(),
|
|
op.getIndices(), op.getMask(),
|
|
op.getPassThru());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<GatherFolder, FoldContiguousGather>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ScatterOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult ScatterOp::verify() {
|
|
VectorType indVType = getIndexVectorType();
|
|
VectorType maskVType = getMaskVectorType();
|
|
VectorType valueVType = getVectorType();
|
|
MemRefType memType = getMemRefType();
|
|
|
|
if (valueVType.getElementType() != memType.getElementType())
|
|
return emitOpError("base and valueToStore element type should match");
|
|
if (llvm::size(getIndices()) != memType.getRank())
|
|
return emitOpError("requires ") << memType.getRank() << " indices";
|
|
if (valueVType.getShape() != indVType.getShape())
|
|
return emitOpError("expected valueToStore dim to match indices dim");
|
|
if (valueVType.getShape() != maskVType.getShape())
|
|
return emitOpError("expected valueToStore dim to match mask dim");
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
class ScatterFolder final : public OpRewritePattern<ScatterOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(ScatterOp scatter,
|
|
PatternRewriter &rewriter) const override {
|
|
switch (getMaskFormat(scatter.getMask())) {
|
|
case MaskFormat::AllTrue:
|
|
return failure(); // no unmasked equivalent
|
|
case MaskFormat::AllFalse:
|
|
rewriter.eraseOp(scatter);
|
|
return success();
|
|
case MaskFormat::Unknown:
|
|
return failure();
|
|
}
|
|
llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
|
|
}
|
|
};
|
|
|
|
/// Fold scatters with consecutive offsets [0, 1, 2, ...] into contiguous
|
|
/// maskedstore. Only 1D fixed vectors are supported for now.
|
|
class FoldContiguousScatter final : public OpRewritePattern<ScatterOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(ScatterOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
if (failed(isZeroBasedContiguousSeq(op.getIndexVec())))
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<MaskedStoreOp>(
|
|
op, op.getBase(), op.getIndices(), op.getMask(), op.getValueToStore());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<ScatterFolder, FoldContiguousScatter>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExpandLoadOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult ExpandLoadOp::verify() {
|
|
VectorType maskVType = getMaskVectorType();
|
|
VectorType passVType = getPassThruVectorType();
|
|
VectorType resVType = getVectorType();
|
|
MemRefType memType = getMemRefType();
|
|
|
|
if (resVType.getElementType() != memType.getElementType())
|
|
return emitOpError("base and result element type should match");
|
|
if (llvm::size(getIndices()) != memType.getRank())
|
|
return emitOpError("requires ") << memType.getRank() << " indices";
|
|
if (resVType.getDimSize(0) != maskVType.getDimSize(0))
|
|
return emitOpError("expected result dim to match mask dim");
|
|
if (resVType != passVType)
|
|
return emitOpError("expected pass_thru of same type as result type");
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(ExpandLoadOp expand,
|
|
PatternRewriter &rewriter) const override {
|
|
switch (getMaskFormat(expand.getMask())) {
|
|
case MaskFormat::AllTrue:
|
|
rewriter.replaceOpWithNewOp<vector::LoadOp>(
|
|
expand, expand.getType(), expand.getBase(), expand.getIndices());
|
|
return success();
|
|
case MaskFormat::AllFalse:
|
|
rewriter.replaceOp(expand, expand.getPassThru());
|
|
return success();
|
|
case MaskFormat::Unknown:
|
|
return failure();
|
|
}
|
|
llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<ExpandLoadFolder>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CompressStoreOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult CompressStoreOp::verify() {
|
|
VectorType maskVType = getMaskVectorType();
|
|
VectorType valueVType = getVectorType();
|
|
MemRefType memType = getMemRefType();
|
|
|
|
if (valueVType.getElementType() != memType.getElementType())
|
|
return emitOpError("base and valueToStore element type should match");
|
|
if (llvm::size(getIndices()) != memType.getRank())
|
|
return emitOpError("requires ") << memType.getRank() << " indices";
|
|
if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
|
|
return emitOpError("expected valueToStore dim to match mask dim");
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(CompressStoreOp compress,
|
|
PatternRewriter &rewriter) const override {
|
|
switch (getMaskFormat(compress.getMask())) {
|
|
case MaskFormat::AllTrue:
|
|
rewriter.replaceOpWithNewOp<vector::StoreOp>(
|
|
compress, compress.getValueToStore(), compress.getBase(),
|
|
compress.getIndices());
|
|
return success();
|
|
case MaskFormat::AllFalse:
|
|
rewriter.eraseOp(compress);
|
|
return success();
|
|
case MaskFormat::Unknown:
|
|
return failure();
|
|
}
|
|
llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<CompressStoreFolder>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ShapeCastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ShapeCastOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
|
|
SetIntRangeFn setResultRanges) {
|
|
setResultRanges(getResult(), argRanges.front());
|
|
}
|
|
|
|
LogicalResult ShapeCastOp::verify() {
|
|
|
|
VectorType sourceType = getSourceVectorType();
|
|
VectorType resultType = getResultVectorType();
|
|
|
|
// Check that element type is preserved
|
|
if (sourceType.getElementType() != resultType.getElementType())
|
|
return emitOpError("has different source and result element types");
|
|
|
|
// Check that number of elements is preserved
|
|
int64_t sourceNElms = sourceType.getNumElements();
|
|
int64_t resultNElms = resultType.getNumElements();
|
|
if (sourceNElms != resultNElms) {
|
|
return emitOpError() << "has different number of elements at source ("
|
|
<< sourceNElms << ") and result (" << resultNElms
|
|
<< ")";
|
|
}
|
|
|
|
// Check that (non-)scalability is preserved
|
|
int64_t sourceNScalableDims = sourceType.getNumScalableDims();
|
|
int64_t resultNScalableDims = resultType.getNumScalableDims();
|
|
if (sourceNScalableDims != resultNScalableDims)
|
|
return emitOpError() << "has different number of scalable dims at source ("
|
|
<< sourceNScalableDims << ") and result ("
|
|
<< resultNScalableDims << ")";
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Return true if `transpose` does not permute a pair of non-unit dims.
|
|
/// By `order preserving` we mean that the flattened versions of the input and
|
|
/// output vectors are (numerically) identical. In other words `transpose` is
|
|
/// effectively a shape cast.
|
|
static bool isOrderPreserving(TransposeOp transpose) {
|
|
ArrayRef<int64_t> permutation = transpose.getPermutation();
|
|
VectorType sourceType = transpose.getSourceVectorType();
|
|
ArrayRef<int64_t> inShape = sourceType.getShape();
|
|
ArrayRef<bool> inDimIsScalable = sourceType.getScalableDims();
|
|
auto isNonScalableUnitDim = [&](int64_t dim) {
|
|
return inShape[dim] == 1 && !inDimIsScalable[dim];
|
|
};
|
|
int64_t current = 0;
|
|
for (auto p : permutation) {
|
|
if (!isNonScalableUnitDim(p)) {
|
|
if (p < current) {
|
|
return false;
|
|
}
|
|
current = p;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
OpFoldResult ShapeCastOp::fold(FoldAdaptor adaptor) {
|
|
|
|
VectorType resultType = getType();
|
|
|
|
// No-op shape cast.
|
|
if (getSource().getType() == resultType)
|
|
return getSource();
|
|
|
|
// shape_cast(shape_cast(x)) -> shape_cast(x)
|
|
if (auto precedingShapeCast = getSource().getDefiningOp<ShapeCastOp>()) {
|
|
setOperand(precedingShapeCast.getSource());
|
|
return getResult();
|
|
}
|
|
|
|
// shape_cast(transpose(x)) -> shape_cast(x)
|
|
if (auto transpose = getSource().getDefiningOp<TransposeOp>()) {
|
|
if (isOrderPreserving(transpose)) {
|
|
setOperand(transpose.getVector());
|
|
return getResult();
|
|
}
|
|
return {};
|
|
}
|
|
|
|
// Y = shape_cast(broadcast(X))
|
|
// -> X, if X and Y have same type
|
|
if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) {
|
|
if (bcastOp.getSourceType() == resultType)
|
|
return bcastOp.getSource();
|
|
}
|
|
|
|
// shape_cast(constant) -> constant
|
|
if (auto splatAttr =
|
|
llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getSource()))
|
|
return splatAttr.reshape(getType());
|
|
|
|
// shape_cast(poison) -> poison
|
|
if (llvm::dyn_cast_if_present<ub::PoisonAttr>(adaptor.getSource())) {
|
|
return ub::PoisonAttr::get(getContext());
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Helper function that computes a new vector type based on the input vector
|
|
/// type by removing the trailing one dims:
|
|
///
|
|
/// vector<4x1x1xi1> --> vector<4x1xi1>
|
|
///
|
|
static VectorType trimTrailingOneDims(VectorType oldType) {
|
|
ArrayRef<int64_t> oldShape = oldType.getShape();
|
|
ArrayRef<int64_t> newShape = oldShape;
|
|
|
|
ArrayRef<bool> oldScalableDims = oldType.getScalableDims();
|
|
ArrayRef<bool> newScalableDims = oldScalableDims;
|
|
|
|
while (!newShape.empty() && newShape.back() == 1 && !newScalableDims.back()) {
|
|
newShape = newShape.drop_back(1);
|
|
newScalableDims = newScalableDims.drop_back(1);
|
|
}
|
|
|
|
// Make sure we have at least 1 dimension.
|
|
// TODO: Add support for 0-D vectors.
|
|
if (newShape.empty()) {
|
|
newShape = oldShape.take_back();
|
|
newScalableDims = oldScalableDims.take_back();
|
|
}
|
|
|
|
return VectorType::get(newShape, oldType.getElementType(), newScalableDims);
|
|
}
|
|
|
|
/// Folds qualifying shape_cast(create_mask) into a new create_mask
|
|
///
|
|
/// Looks at `vector.shape_cast` Ops that simply "drop" the trailing unit
|
|
/// dimension. If the input vector comes from `vector.create_mask` for which
|
|
/// the corresponding mask input value is 1 (e.g. `%c1` below), then it is safe
|
|
/// to fold shape_cast into create_mask.
|
|
///
|
|
/// BEFORE:
|
|
/// %1 = vector.create_mask %c1, %dim, %c1, %c1 : vector<1x[4]x1x1xi1>
|
|
/// %2 = vector.shape_cast %1 : vector<1x[4]x1x1xi1> to vector<1x[4]xi1>
|
|
/// AFTER:
|
|
/// %0 = vector.create_mask %c1, %dim : vector<1x[4]xi1>
|
|
class ShapeCastCreateMaskFolderTrailingOneDim final
|
|
: public OpRewritePattern<ShapeCastOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ShapeCastOp shapeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
Value shapeOpSrc = shapeOp->getOperand(0);
|
|
auto createMaskOp = shapeOpSrc.getDefiningOp<vector::CreateMaskOp>();
|
|
auto constantMaskOp = shapeOpSrc.getDefiningOp<vector::ConstantMaskOp>();
|
|
if (!createMaskOp && !constantMaskOp)
|
|
return failure();
|
|
|
|
VectorType shapeOpResTy = shapeOp.getResultVectorType();
|
|
VectorType shapeOpSrcTy = shapeOp.getSourceVectorType();
|
|
|
|
VectorType newVecType = trimTrailingOneDims(shapeOpSrcTy);
|
|
if (newVecType != shapeOpResTy)
|
|
return failure();
|
|
|
|
auto numDimsToDrop =
|
|
shapeOpSrcTy.getShape().size() - shapeOpResTy.getShape().size();
|
|
|
|
// No unit dims to drop
|
|
if (!numDimsToDrop)
|
|
return failure();
|
|
|
|
if (createMaskOp) {
|
|
auto maskOperands = createMaskOp.getOperands();
|
|
auto numMaskOperands = maskOperands.size();
|
|
|
|
// Check every mask dim size to see whether it can be dropped
|
|
for (size_t i = numMaskOperands - 1; i >= numMaskOperands - numDimsToDrop;
|
|
--i) {
|
|
auto constant = maskOperands[i].getDefiningOp<arith::ConstantIndexOp>();
|
|
if (!constant || (constant.value() != 1))
|
|
return failure();
|
|
}
|
|
SmallVector<Value> newMaskOperands =
|
|
maskOperands.drop_back(numDimsToDrop);
|
|
|
|
rewriter.replaceOpWithNewOp<vector::CreateMaskOp>(shapeOp, shapeOpResTy,
|
|
newMaskOperands);
|
|
return success();
|
|
}
|
|
|
|
if (constantMaskOp) {
|
|
auto maskDimSizes = constantMaskOp.getMaskDimSizes();
|
|
auto numMaskOperands = maskDimSizes.size();
|
|
|
|
// Check every mask dim size to see whether it can be dropped
|
|
for (size_t i = numMaskOperands - 1; i >= numMaskOperands - numDimsToDrop;
|
|
--i) {
|
|
if (maskDimSizes[i] != 1)
|
|
return failure();
|
|
}
|
|
|
|
auto newMaskOperands = maskDimSizes.drop_back(numDimsToDrop);
|
|
rewriter.replaceOpWithNewOp<vector::ConstantMaskOp>(shapeOp, shapeOpResTy,
|
|
newMaskOperands);
|
|
return success();
|
|
}
|
|
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
/// Pattern to rewrite Y = ShapeCast(Broadcast(X)) as either
|
|
/// i) Y = ShapeCast(X), or
|
|
/// ii) Y = Broadcast(X)
|
|
/// If both (i) and (ii) are possible, (i) is chosen.
|
|
class ShapeCastBroadcastFolder final : public OpRewritePattern<ShapeCastOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto broadcastOp =
|
|
shapeCastOp.getSource().getDefiningOp<vector::BroadcastOp>();
|
|
if (!broadcastOp)
|
|
return failure();
|
|
|
|
auto srcVectorType = dyn_cast<VectorType>(broadcastOp.getSourceType());
|
|
bool srcIsScalar = !srcVectorType;
|
|
|
|
// Replace Y = ShapeCast(Broadcast(X)) with Y = ShapeCast(X).
|
|
// Example:
|
|
// %0 = vector.broadcast %in : vector<3x4xf32> to vector<1x3x4xf32>
|
|
// %1 = vector.shape_cast %0 : vector<1x3x4xf32> to vector<12xf32>
|
|
// to
|
|
// %1 = vector.shape_cast %in : vector<3x4xf32> to vector<12xf32>
|
|
if (srcVectorType) {
|
|
if (srcVectorType.getNumElements() ==
|
|
shapeCastOp.getResultVectorType().getNumElements()) {
|
|
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(
|
|
shapeCastOp, shapeCastOp.getResultVectorType(),
|
|
broadcastOp.getSource());
|
|
return success();
|
|
}
|
|
}
|
|
|
|
// Replace Y = ShapeCast(Broadcast(X)) with Y = Broadcast(X)
|
|
// Example
|
|
// %0 = vector.broadcast %in : vector<3xf32> to vector<2x4x3xf32>
|
|
// %1 = vector.shape_cast %0 : vector<2x4x3xf32> to vector<8x3xf32>
|
|
// to
|
|
// %1 = vector.broadcast %in : vector<3xf32> to vector<8x3xf32>
|
|
VectorType dstVectorType = shapeCastOp.getResultVectorType();
|
|
if (srcIsScalar || isBroadcastableTo(srcVectorType, dstVectorType) ==
|
|
BroadcastableToResult::Success) {
|
|
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
|
|
shapeCastOp, dstVectorType, broadcastOp.getSource());
|
|
return success();
|
|
}
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results
|
|
.add<ShapeCastCreateMaskFolderTrailingOneDim, ShapeCastBroadcastFolder>(
|
|
context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VectorBitCastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult BitCastOp::verify() {
|
|
auto sourceVectorType = getSourceVectorType();
|
|
auto resultVectorType = getResultVectorType();
|
|
|
|
for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
|
|
if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
|
|
return emitOpError("dimension size mismatch at: ") << i;
|
|
}
|
|
|
|
DataLayout dataLayout = DataLayout::closest(*this);
|
|
auto sourceElementBits =
|
|
dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
|
|
auto resultElementBits =
|
|
dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
|
|
|
|
if (sourceVectorType.getRank() == 0) {
|
|
if (sourceElementBits != resultElementBits)
|
|
return emitOpError("source/result bitwidth of the 0-D vector element "
|
|
"types must be equal");
|
|
} else if (sourceElementBits * sourceVectorType.getShape().back() !=
|
|
resultElementBits * resultVectorType.getShape().back()) {
|
|
return emitOpError(
|
|
"source/result bitwidth of the minor 1-D vectors must be equal");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
OpFoldResult BitCastOp::fold(FoldAdaptor adaptor) {
|
|
// Nop cast.
|
|
if (getSource().getType() == getResult().getType())
|
|
return getSource();
|
|
|
|
// Canceling bitcasts.
|
|
if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) {
|
|
if (getResult().getType() == otherOp.getSource().getType())
|
|
return otherOp.getSource();
|
|
|
|
setOperand(otherOp.getSource());
|
|
return getResult();
|
|
}
|
|
|
|
Attribute sourceConstant = adaptor.getSource();
|
|
if (!sourceConstant)
|
|
return {};
|
|
|
|
Type srcElemType = getSourceVectorType().getElementType();
|
|
Type dstElemType = getResultVectorType().getElementType();
|
|
|
|
if (auto floatPack = llvm::dyn_cast<DenseFPElementsAttr>(sourceConstant)) {
|
|
if (floatPack.isSplat()) {
|
|
auto splat = floatPack.getSplatValue<FloatAttr>();
|
|
|
|
// Casting fp16 into fp32.
|
|
if (srcElemType.isF16() && dstElemType.isF32()) {
|
|
uint32_t bits = static_cast<uint32_t>(
|
|
splat.getValue().bitcastToAPInt().getZExtValue());
|
|
// Duplicate the 16-bit pattern.
|
|
bits = (bits << 16) | (bits & 0xffff);
|
|
APInt intBits(32, bits);
|
|
APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
|
|
return DenseElementsAttr::get(getResultVectorType(), floatBits);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto intPack = llvm::dyn_cast<DenseIntElementsAttr>(sourceConstant)) {
|
|
if (intPack.isSplat()) {
|
|
auto splat = intPack.getSplatValue<IntegerAttr>();
|
|
|
|
if (llvm::isa<IntegerType>(dstElemType)) {
|
|
uint64_t srcBitWidth = srcElemType.getIntOrFloatBitWidth();
|
|
uint64_t dstBitWidth = dstElemType.getIntOrFloatBitWidth();
|
|
|
|
// Casting to a larger integer bit width.
|
|
if (dstBitWidth > srcBitWidth && dstBitWidth % srcBitWidth == 0) {
|
|
APInt intBits = splat.getValue().zext(dstBitWidth);
|
|
|
|
// Duplicate the lower width element.
|
|
for (uint64_t i = 0; i < dstBitWidth / srcBitWidth - 1; i++)
|
|
intBits = (intBits << srcBitWidth) | intBits;
|
|
return DenseElementsAttr::get(getResultVectorType(), intBits);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TypeCastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
|
|
auto vectorType = llvm::dyn_cast<VectorType>(memRefType.getElementType());
|
|
SmallVector<int64_t, 8> res(memRefType.getShape());
|
|
if (vectorType)
|
|
res.append(vectorType.getShape().begin(), vectorType.getShape().end());
|
|
return res;
|
|
}
|
|
|
|
/// Build the canonical memRefType with a single vector.
|
|
/// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
|
|
void TypeCastOp::build(OpBuilder &builder, OperationState &result,
|
|
Value source) {
|
|
result.addOperands(source);
|
|
MemRefType memRefType = llvm::cast<MemRefType>(source.getType());
|
|
VectorType vectorType =
|
|
VectorType::get(extractShape(memRefType),
|
|
getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
|
|
result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
|
|
memRefType.getMemorySpace()));
|
|
}
|
|
|
|
LogicalResult TypeCastOp::verify() {
|
|
MemRefType canonicalType = getMemRefType().canonicalizeStridedLayout();
|
|
if (!canonicalType.getLayout().isIdentity())
|
|
return emitOpError("expects operand to be a memref with identity layout");
|
|
if (!getResultMemRefType().getLayout().isIdentity())
|
|
return emitOpError("expects result to be a memref with identity layout");
|
|
if (getResultMemRefType().getMemorySpace() !=
|
|
getMemRefType().getMemorySpace())
|
|
return emitOpError("expects result in same memory space");
|
|
|
|
auto sourceType = getMemRefType();
|
|
auto resultType = getResultMemRefType();
|
|
if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
|
|
getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
|
|
return emitOpError(
|
|
"expects result and operand with same underlying scalar type: ")
|
|
<< resultType;
|
|
if (extractShape(sourceType) != extractShape(resultType))
|
|
return emitOpError(
|
|
"expects concatenated result and operand shapes to be equal: ")
|
|
<< resultType;
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TransposeOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
|
|
Value vector, ArrayRef<int64_t> permutation) {
|
|
VectorType vt = llvm::cast<VectorType>(vector.getType());
|
|
SmallVector<int64_t, 4> transposedShape(vt.getRank());
|
|
SmallVector<bool, 4> transposedScalableDims(vt.getRank());
|
|
for (unsigned i = 0; i < permutation.size(); ++i) {
|
|
transposedShape[i] = vt.getShape()[permutation[i]];
|
|
transposedScalableDims[i] = vt.getScalableDims()[permutation[i]];
|
|
}
|
|
|
|
result.addOperands(vector);
|
|
result.addTypes(VectorType::get(transposedShape, vt.getElementType(),
|
|
transposedScalableDims));
|
|
result.addAttribute(TransposeOp::getPermutationAttrName(result.name),
|
|
builder.getDenseI64ArrayAttr(permutation));
|
|
}
|
|
|
|
OpFoldResult vector::TransposeOp::fold(FoldAdaptor adaptor) {
|
|
// Eliminate splat constant transpose ops.
|
|
if (auto splat =
|
|
llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getVector()))
|
|
return splat.reshape(getResultVectorType());
|
|
|
|
// Eliminate poison transpose ops.
|
|
if (llvm::dyn_cast_if_present<ub::PoisonAttr>(adaptor.getVector()))
|
|
return ub::PoisonAttr::get(getContext());
|
|
|
|
// Eliminate identity transposes, and more generally any transposes that
|
|
// preserves the shape without permuting elements.
|
|
//
|
|
// Examples of what to fold:
|
|
// %0 = vector.transpose %arg, [0, 1] : vector<1x1xi8> to vector<1x1xi8>
|
|
// %0 = vector.transpose %arg, [0, 1] : vector<2x2xi8> to vector<2x2xi8>
|
|
// %0 = vector.transpose %arg, [1, 0] : vector<1x1xi8> to vector<1x1xi8>
|
|
//
|
|
// Example of what NOT to fold:
|
|
// %0 = vector.transpose %arg, [1, 0] : vector<2x2xi8> to vector<2x2xi8>
|
|
//
|
|
if (getSourceVectorType() == getResultVectorType() &&
|
|
isOrderPreserving(*this))
|
|
return getVector();
|
|
|
|
return {};
|
|
}
|
|
|
|
LogicalResult vector::TransposeOp::verify() {
|
|
VectorType vectorType = getSourceVectorType();
|
|
VectorType resultType = getResultVectorType();
|
|
int64_t rank = resultType.getRank();
|
|
if (vectorType.getRank() != rank)
|
|
return emitOpError("vector result rank mismatch: ") << rank;
|
|
// Verify transposition array.
|
|
ArrayRef<int64_t> perm = getPermutation();
|
|
int64_t size = perm.size();
|
|
if (rank != size)
|
|
return emitOpError("transposition length mismatch: ") << size;
|
|
SmallVector<bool, 8> seen(rank, false);
|
|
for (const auto &ta : llvm::enumerate(perm)) {
|
|
if (ta.value() < 0 || ta.value() >= rank)
|
|
return emitOpError("transposition index out of range: ") << ta.value();
|
|
if (seen[ta.value()])
|
|
return emitOpError("duplicate position index: ") << ta.value();
|
|
seen[ta.value()] = true;
|
|
if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(ta.value()))
|
|
return emitOpError("dimension size mismatch at: ") << ta.value();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
std::optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() {
|
|
return llvm::to_vector<4>(getResultVectorType().getShape());
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
|
|
class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// Composes two permutations: result[i] = permutation1[permutation2[i]].
|
|
auto composePermutations = [](ArrayRef<int64_t> permutation1,
|
|
ArrayRef<int64_t> permutation2) {
|
|
SmallVector<int64_t, 4> result;
|
|
for (auto index : permutation2)
|
|
result.push_back(permutation1[index]);
|
|
return result;
|
|
};
|
|
|
|
// Return if the input of 'transposeOp' is not defined by another transpose.
|
|
vector::TransposeOp parentTransposeOp =
|
|
transposeOp.getVector().getDefiningOp<vector::TransposeOp>();
|
|
if (!parentTransposeOp)
|
|
return failure();
|
|
|
|
SmallVector<int64_t, 4> permutation = composePermutations(
|
|
parentTransposeOp.getPermutation(), transposeOp.getPermutation());
|
|
// Replace 'transposeOp' with a new transpose operation.
|
|
rewriter.replaceOpWithNewOp<vector::TransposeOp>(
|
|
transposeOp, transposeOp.getResult().getType(),
|
|
parentTransposeOp.getVector(), permutation);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Folds transpose(splat x : src_type) : res_type into splat x : res_type.
|
|
class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(TransposeOp transposeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>();
|
|
if (!splatOp)
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<vector::SplatOp>(
|
|
transposeOp, transposeOp.getResultVectorType(), splatOp.getInput());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Folds transpose(create_mask) into a new transposed create_mask.
|
|
class FoldTransposeCreateMask final : public OpRewritePattern<TransposeOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(TransposeOp transpOp,
|
|
PatternRewriter &rewriter) const override {
|
|
Value transposeSrc = transpOp.getVector();
|
|
auto createMaskOp = transposeSrc.getDefiningOp<vector::CreateMaskOp>();
|
|
auto constantMaskOp = transposeSrc.getDefiningOp<vector::ConstantMaskOp>();
|
|
if (!createMaskOp && !constantMaskOp)
|
|
return failure();
|
|
|
|
// Get the transpose permutation and apply it to the vector.create_mask or
|
|
// vector.constant_mask operands.
|
|
ArrayRef<int64_t> permutation = transpOp.getPermutation();
|
|
|
|
if (createMaskOp) {
|
|
auto maskOperands = createMaskOp.getOperands();
|
|
SmallVector<Value> newOperands(maskOperands.begin(), maskOperands.end());
|
|
applyPermutationToVector(newOperands, permutation);
|
|
|
|
rewriter.replaceOpWithNewOp<vector::CreateMaskOp>(
|
|
transpOp, transpOp.getResultVectorType(), newOperands);
|
|
return success();
|
|
}
|
|
|
|
// ConstantMaskOp case.
|
|
auto maskDimSizes = constantMaskOp.getMaskDimSizes();
|
|
auto newMaskDimSizes = applyPermutation(maskDimSizes, permutation);
|
|
|
|
rewriter.replaceOpWithNewOp<vector::ConstantMaskOp>(
|
|
transpOp, transpOp.getResultVectorType(), newMaskDimSizes);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Folds transpose(shape_cast) into a new shape_cast.
|
|
class FoldTransposeShapeCast final : public OpRewritePattern<TransposeOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(TransposeOp transposeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto shapeCastOp =
|
|
transposeOp.getVector().getDefiningOp<vector::ShapeCastOp>();
|
|
if (!shapeCastOp)
|
|
return failure();
|
|
if (!isOrderPreserving(transposeOp))
|
|
return failure();
|
|
|
|
VectorType resultType = transposeOp.getType();
|
|
|
|
// We don't need to check isValidShapeCast at this point, because it is
|
|
// guaranteed that merging the transpose into the the shape_cast is a valid
|
|
// shape_cast, because the transpose just inserts/removes ones.
|
|
|
|
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(transposeOp, resultType,
|
|
shapeCastOp.getSource());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Folds transpose(broadcast(x)) to broadcast(x) if the transpose is
|
|
/// 'order preserving', where 'order preserving' means the flattened
|
|
/// inputs and outputs of the transpose have identical (numerical) values.
|
|
///
|
|
/// Example:
|
|
/// ```
|
|
/// %0 = vector.broadcast %input : vector<1x1xi32> to vector<1x8xi32>
|
|
/// %1 = vector.transpose %0, [1, 0] : vector<1x8xi32>
|
|
/// to vector<8x1xi32>
|
|
/// ```
|
|
/// can be rewritten as the equivalent
|
|
/// ```
|
|
/// %0 = vector.broadcast %input : vector<1x1xi32> to vector<8x1xi32>.
|
|
/// ```
|
|
/// The algorithm works by partitioning dimensions into groups that can be
|
|
/// locally permuted while preserving order, and checks that the transpose
|
|
/// only permutes within these groups.
|
|
///
|
|
/// Groups are either contiguous sequences of 1s, or non-1s (1-element groups).
|
|
/// Consider broadcasting 4x1x1x7 to 2x3x4x5x6x7. This is equivalent to
|
|
/// broadcasting from 1x1x4x1x1x7.
|
|
/// ^^^ ^ ^^^ ^
|
|
/// groups: 0 1 2 3
|
|
/// Order preserving permutations for this example are ones that only permute
|
|
/// within the groups [0,1] and [3,4], like (1 0 2 4 3 5 6).
|
|
class FoldTransposeBroadcast : public OpRewritePattern<vector::TransposeOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
FoldTransposeBroadcast(MLIRContext *context, PatternBenefit benefit = 1)
|
|
: OpRewritePattern<vector::TransposeOp>(context, benefit) {}
|
|
|
|
LogicalResult matchAndRewrite(vector::TransposeOp transpose,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
vector::BroadcastOp broadcast =
|
|
transpose.getVector().getDefiningOp<vector::BroadcastOp>();
|
|
if (!broadcast) {
|
|
return rewriter.notifyMatchFailure(transpose,
|
|
"not preceded by a broadcast");
|
|
}
|
|
|
|
auto inputType = dyn_cast<VectorType>(broadcast.getSourceType());
|
|
VectorType outputType = transpose.getResultVectorType();
|
|
|
|
// transpose(broadcast(scalar)) -> broadcast(scalar) is always valid
|
|
bool inputIsScalar = !inputType;
|
|
if (inputIsScalar) {
|
|
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(transpose, outputType,
|
|
broadcast.getSource());
|
|
return success();
|
|
}
|
|
|
|
ArrayRef<int64_t> permutation = transpose.getPermutation();
|
|
ArrayRef<int64_t> inputShape = inputType.getShape();
|
|
int64_t inputRank = inputType.getRank();
|
|
int64_t outputRank = transpose.getType().getRank();
|
|
int64_t deltaRank = outputRank - inputRank;
|
|
|
|
int low = 0;
|
|
for (int inputIndex = 0; inputIndex < inputRank; ++inputIndex) {
|
|
bool notOne = inputShape[inputIndex] != 1;
|
|
bool prevNotOne = (inputIndex != 0 && inputShape[inputIndex - 1] != 1);
|
|
bool groupEndFound = notOne || prevNotOne;
|
|
if (groupEndFound) {
|
|
int high = inputIndex + deltaRank;
|
|
// Return failure if not all permutation destinations for indices in
|
|
// [low, high) are in [low, high), i.e. the permutation is not local to
|
|
// the group.
|
|
for (int i = low; i < high; ++i) {
|
|
if (permutation[i] < low || permutation[i] >= high) {
|
|
return rewriter.notifyMatchFailure(
|
|
transpose, "permutation not local to group");
|
|
}
|
|
}
|
|
low = high;
|
|
}
|
|
}
|
|
|
|
// We don't need to check the final group [low, outputRank) because if it is
|
|
// not locally bound, there must be a preceding group that already failed
|
|
// the check (impossible to have just 1 non-locally bound group).
|
|
|
|
// The preceding logic also ensures that at this point, the output of the
|
|
// transpose is definitely broadcastable from the input shape, assert so:
|
|
assert(vector::isBroadcastableTo(inputType, outputType) ==
|
|
vector::BroadcastableToResult::Success &&
|
|
"not broadcastable directly to transpose output");
|
|
|
|
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(transpose, outputType,
|
|
broadcast.getSource());
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void vector::TransposeOp::getCanonicalizationPatterns(
|
|
RewritePatternSet &results, MLIRContext *context) {
|
|
results.add<FoldTransposeCreateMask, FoldTransposeShapeCast, TransposeFolder,
|
|
FoldTransposeSplat, FoldTransposeBroadcast>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantMaskOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ConstantMaskOp::build(OpBuilder &builder, OperationState &result,
|
|
VectorType type, ConstantMaskKind kind) {
|
|
assert(kind == ConstantMaskKind::AllTrue ||
|
|
kind == ConstantMaskKind::AllFalse);
|
|
build(builder, result, type,
|
|
kind == ConstantMaskKind::AllTrue
|
|
? type.getShape()
|
|
: SmallVector<int64_t>(type.getRank(), 0));
|
|
}
|
|
|
|
LogicalResult ConstantMaskOp::verify() {
|
|
auto resultType = llvm::cast<VectorType>(getResult().getType());
|
|
// Check the corner case of 0-D vectors first.
|
|
if (resultType.getRank() == 0) {
|
|
if (getMaskDimSizes().size() != 1)
|
|
return emitError("array attr must have length 1 for 0-D vectors");
|
|
auto dim = getMaskDimSizes()[0];
|
|
if (dim != 0 && dim != 1)
|
|
return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
|
|
return success();
|
|
}
|
|
|
|
// Verify that array attr size matches the rank of the vector result.
|
|
if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank())
|
|
return emitOpError(
|
|
"must specify array attr of size equal vector result rank");
|
|
// Verify that each array attr element is in bounds of corresponding vector
|
|
// result dimension size.
|
|
auto resultShape = resultType.getShape();
|
|
auto resultScalableDims = resultType.getScalableDims();
|
|
ArrayRef<int64_t> maskDimSizes = getMaskDimSizes();
|
|
for (const auto [index, maskDimSize] : llvm::enumerate(maskDimSizes)) {
|
|
if (maskDimSize < 0 || maskDimSize > resultShape[index])
|
|
return emitOpError(
|
|
"array attr of size out of bounds of vector result dimension size");
|
|
if (resultScalableDims[index] && maskDimSize != 0 &&
|
|
maskDimSize != resultShape[index])
|
|
return emitOpError(
|
|
"only supports 'none set' or 'all set' scalable dimensions");
|
|
}
|
|
// Verify that if one mask dim size is zero, they all should be zero (because
|
|
// the mask region is a conjunction of each mask dimension interval).
|
|
bool anyZeros = llvm::is_contained(maskDimSizes, 0);
|
|
bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
|
|
if (anyZeros && !allZeros)
|
|
return emitOpError("expected all mask dim sizes to be zeros, "
|
|
"as a result of conjunction with zero mask dim");
|
|
return success();
|
|
}
|
|
|
|
bool ConstantMaskOp::isAllOnesMask() {
|
|
auto resultType = getVectorType();
|
|
// Check the corner case of 0-D vectors first.
|
|
if (resultType.getRank() == 0) {
|
|
assert(getMaskDimSizes().size() == 1 && "invalid sizes for zero rank mask");
|
|
return getMaskDimSizes()[0] == 1;
|
|
}
|
|
for (const auto [resultSize, maskDimSize] :
|
|
llvm::zip_equal(resultType.getShape(), getMaskDimSizes())) {
|
|
if (maskDimSize < resultSize)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
OpFoldResult ConstantMaskOp::fold(FoldAdaptor adaptor) {
|
|
ArrayRef<int64_t> bounds = getMaskDimSizes();
|
|
ArrayRef<int64_t> vectorSizes = getVectorType().getShape();
|
|
|
|
auto createBoolSplat = [&](bool x) {
|
|
return SplatElementsAttr::get(getVectorType(),
|
|
BoolAttr::get(getContext(), x));
|
|
};
|
|
|
|
// Check the corner case of 0-D vectors first.
|
|
if (vectorSizes.empty()) {
|
|
assert(bounds.size() == 1 && "invalid sizes for zero rank mask");
|
|
return createBoolSplat(bounds[0] == 1);
|
|
}
|
|
// Fold vector.constant_mask to splat if possible.
|
|
if (bounds == vectorSizes)
|
|
return createBoolSplat(true);
|
|
if (llvm::all_of(bounds, [](int64_t x) { return x == 0; }))
|
|
return createBoolSplat(false);
|
|
return OpFoldResult();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CreateMaskOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void CreateMaskOp::build(OpBuilder &builder, OperationState &result,
|
|
VectorType type,
|
|
ArrayRef<OpFoldResult> mixedOperands) {
|
|
SmallVector<Value> operands =
|
|
getValueOrCreateConstantIndexOp(builder, result.location, mixedOperands);
|
|
build(builder, result, type, operands);
|
|
}
|
|
|
|
LogicalResult CreateMaskOp::verify() {
|
|
auto vectorType = llvm::cast<VectorType>(getResult().getType());
|
|
// Verify that an operand was specified for each result vector each dimension.
|
|
if (vectorType.getRank() == 0) {
|
|
if (getNumOperands() != 1)
|
|
return emitOpError(
|
|
"must specify exactly one operand for 0-D create_mask");
|
|
} else if (getNumOperands() !=
|
|
llvm::cast<VectorType>(getResult().getType()).getRank()) {
|
|
return emitOpError(
|
|
"must specify an operand for each result vector dimension");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
|
|
///
|
|
/// Ex 1:
|
|
/// %c2 = arith.constant 2 : index
|
|
/// %c3 = arith.constant 3 : index
|
|
/// %0 = vector.create_mask %c3, %c2 : vector<4x3xi1>
|
|
/// Becomes:
|
|
/// vector.constant_mask [3, 2] : vector<4x3xi1>
|
|
///
|
|
/// Ex 2:
|
|
/// %c_neg_1 = arith.constant -1 : index
|
|
/// %0 = vector.create_mask %c_neg_1 : vector<[8]xi1>
|
|
/// becomes:
|
|
/// vector.constant_mask [0] : vector<[8]xi1>
|
|
///
|
|
/// Ex 3:
|
|
/// %c8 = arith.constant 8 : index
|
|
/// %c16 = arith.constant 16 : index
|
|
/// %0 = vector.vscale
|
|
/// %1 = arith.muli %0, %c16 : index
|
|
/// %10 = vector.create_mask %c8, %1 : vector<8x[16]xi1>
|
|
/// becomes:
|
|
/// %0 = vector.constant_mask [8, 16] : vector<8x[16]xi1>
|
|
class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
|
|
PatternRewriter &rewriter) const override {
|
|
VectorType maskType = createMaskOp.getVectorType();
|
|
ArrayRef<int64_t> maskTypeDimSizes = maskType.getShape();
|
|
ArrayRef<bool> maskTypeDimScalableFlags = maskType.getScalableDims();
|
|
|
|
// Special case: Rank zero shape.
|
|
constexpr std::array<int64_t, 1> rankZeroShape{1};
|
|
constexpr std::array<bool, 1> rankZeroScalableDims{false};
|
|
if (maskType.getRank() == 0) {
|
|
maskTypeDimSizes = rankZeroShape;
|
|
maskTypeDimScalableFlags = rankZeroScalableDims;
|
|
}
|
|
|
|
// Determine if this CreateMaskOp can be folded to a ConstantMaskOp and
|
|
// collect the `constantDims` (for the ConstantMaskOp).
|
|
SmallVector<int64_t, 4> constantDims;
|
|
for (auto [i, dimSize] : llvm::enumerate(createMaskOp.getOperands())) {
|
|
if (auto intSize = getConstantIntValue(dimSize)) {
|
|
// Constant value.
|
|
// If the mask dim is non-scalable this can be any value.
|
|
// If the mask dim is scalable only zero (all-false) is supported.
|
|
if (maskTypeDimScalableFlags[i] && intSize >= 0)
|
|
return failure();
|
|
constantDims.push_back(*intSize);
|
|
} else if (auto vscaleMultiplier = getConstantVscaleMultiplier(dimSize)) {
|
|
// Constant vscale multiple (e.g. 4 x vscale).
|
|
// Must be all-true to fold to a ConstantMask.
|
|
if (vscaleMultiplier < maskTypeDimSizes[i])
|
|
return failure();
|
|
constantDims.push_back(*vscaleMultiplier);
|
|
} else {
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
// Clamp values to constant_mask bounds.
|
|
for (auto [value, maskDimSize] : llvm::zip(constantDims, maskTypeDimSizes))
|
|
value = std::clamp<int64_t>(value, 0, maskDimSize);
|
|
|
|
// If one of dim sizes is zero, set all dims to zero.
|
|
if (llvm::is_contained(constantDims, 0))
|
|
constantDims.assign(constantDims.size(), 0);
|
|
|
|
// Replace 'createMaskOp' with ConstantMaskOp.
|
|
rewriter.replaceOpWithNewOp<ConstantMaskOp>(createMaskOp, maskType,
|
|
constantDims);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<CreateMaskFolder>(context);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MaskOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void MaskOp::build(
|
|
OpBuilder &builder, OperationState &result, Value mask,
|
|
Operation *maskableOp,
|
|
function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) {
|
|
assert(maskRegionBuilder &&
|
|
"builder callback for 'maskRegion' must be present");
|
|
|
|
result.addOperands(mask);
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
Region *maskRegion = result.addRegion();
|
|
builder.createBlock(maskRegion);
|
|
maskRegionBuilder(builder, maskableOp);
|
|
}
|
|
|
|
void MaskOp::build(
|
|
OpBuilder &builder, OperationState &result, TypeRange resultTypes,
|
|
Value mask, Operation *maskableOp,
|
|
function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) {
|
|
build(builder, result, resultTypes, mask, /*passthru=*/Value(), maskableOp,
|
|
maskRegionBuilder);
|
|
}
|
|
|
|
void MaskOp::build(
|
|
OpBuilder &builder, OperationState &result, TypeRange resultTypes,
|
|
Value mask, Value passthru, Operation *maskableOp,
|
|
function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) {
|
|
build(builder, result, mask, maskableOp, maskRegionBuilder);
|
|
if (passthru)
|
|
result.addOperands(passthru);
|
|
result.addTypes(resultTypes);
|
|
}
|
|
|
|
ParseResult MaskOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
// Create the op region.
|
|
result.regions.reserve(1);
|
|
Region &maskRegion = *result.addRegion();
|
|
|
|
auto &builder = parser.getBuilder();
|
|
|
|
// Parse all the operands.
|
|
OpAsmParser::UnresolvedOperand mask;
|
|
if (parser.parseOperand(mask))
|
|
return failure();
|
|
|
|
// Optional passthru operand.
|
|
OpAsmParser::UnresolvedOperand passthru;
|
|
ParseResult parsePassthru = parser.parseOptionalComma();
|
|
if (parsePassthru.succeeded() && parser.parseOperand(passthru))
|
|
return failure();
|
|
|
|
// Parse op region.
|
|
if (parser.parseRegion(maskRegion, /*arguments=*/{}, /*argTypes=*/{}))
|
|
return failure();
|
|
|
|
MaskOp::ensureTerminator(maskRegion, builder, result.location);
|
|
|
|
// Parse the optional attribute list.
|
|
if (parser.parseOptionalAttrDict(result.attributes))
|
|
return failure();
|
|
|
|
// Parse all the types.
|
|
Type maskType;
|
|
if (parser.parseColonType(maskType))
|
|
return failure();
|
|
|
|
SmallVector<Type> resultTypes;
|
|
if (parser.parseOptionalArrowTypeList(resultTypes))
|
|
return failure();
|
|
result.types.append(resultTypes);
|
|
|
|
// Resolve operands.
|
|
if (parser.resolveOperand(mask, maskType, result.operands))
|
|
return failure();
|
|
|
|
if (parsePassthru.succeeded()) {
|
|
if (resultTypes.empty())
|
|
return parser.emitError(
|
|
parser.getNameLoc(),
|
|
"expects a result if passthru operand is provided");
|
|
|
|
if (parser.resolveOperand(passthru, resultTypes[0], result.operands))
|
|
return failure();
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
void mlir::vector::MaskOp::print(OpAsmPrinter &p) {
|
|
p << " " << getMask();
|
|
if (getPassthru())
|
|
p << ", " << getPassthru();
|
|
|
|
// Print single masked operation and skip terminator.
|
|
p << " { ";
|
|
Block *singleBlock = &getMaskRegion().getBlocks().front();
|
|
if (singleBlock && !singleBlock->getOperations().empty())
|
|
p.printCustomOrGenericOp(&singleBlock->front());
|
|
p << " }";
|
|
|
|
p.printOptionalAttrDict(getOperation()->getAttrs());
|
|
|
|
p << " : " << getMask().getType();
|
|
if (getNumResults() > 0)
|
|
p << " -> " << getResultTypes();
|
|
}
|
|
|
|
void MaskOp::ensureTerminator(Region ®ion, Builder &builder, Location loc) {
|
|
// 1. For an empty `vector.mask`, create a default terminator.
|
|
if (region.empty() || region.front().empty()) {
|
|
OpTrait::SingleBlockImplicitTerminator<vector::YieldOp>::Impl<
|
|
MaskOp>::ensureTerminator(region, builder, loc);
|
|
return;
|
|
}
|
|
|
|
// 2. For a non-empty `vector.mask` with an explicit terminator, do nothing.
|
|
Block &block = region.front();
|
|
if (isa<vector::YieldOp>(block.back()))
|
|
return;
|
|
|
|
// 3. For a non-empty `vector.mask` without an explicit terminator:
|
|
|
|
// Create default terminator if the number of masked operations is not
|
|
// one. This case will trigger a verification failure.
|
|
if (block.getOperations().size() != 1) {
|
|
OpTrait::SingleBlockImplicitTerminator<vector::YieldOp>::Impl<
|
|
MaskOp>::ensureTerminator(region, builder, loc);
|
|
return;
|
|
}
|
|
|
|
// Create a terminator that yields the results from the masked operation.
|
|
OpBuilder opBuilder(builder.getContext());
|
|
Operation *maskedOp = &block.front();
|
|
opBuilder.setInsertionPointToEnd(&block);
|
|
opBuilder.create<vector::YieldOp>(loc, maskedOp->getResults());
|
|
}
|
|
|
|
LogicalResult MaskOp::verify() {
|
|
// Structural checks.
|
|
Block &block = getMaskRegion().getBlocks().front();
|
|
if (block.getOperations().empty())
|
|
return emitOpError("expects a terminator within the mask region");
|
|
|
|
unsigned numMaskRegionOps = block.getOperations().size();
|
|
if (numMaskRegionOps > 2)
|
|
return emitOpError("expects only one operation to mask");
|
|
|
|
// Terminator checks.
|
|
auto terminator = dyn_cast<vector::YieldOp>(block.back());
|
|
if (!terminator)
|
|
return emitOpError("expects a terminator within the mask region");
|
|
|
|
if (terminator->getNumOperands() != getNumResults())
|
|
return emitOpError(
|
|
"expects number of results to match mask region yielded values");
|
|
|
|
// Empty vector.mask. Nothing else to check.
|
|
if (numMaskRegionOps == 1)
|
|
return success();
|
|
|
|
auto maskableOp = dyn_cast<MaskableOpInterface>(block.front());
|
|
if (!maskableOp)
|
|
return emitOpError("expects a MaskableOpInterface within the mask region");
|
|
|
|
// Result checks.
|
|
if (maskableOp->getNumResults() != getNumResults())
|
|
return emitOpError("expects number of results to match maskable operation "
|
|
"number of results");
|
|
|
|
if (!llvm::equal(maskableOp->getResults(), terminator.getOperands()))
|
|
return emitOpError("expects all the results from the MaskableOpInterface "
|
|
"to match all the values returned by the terminator");
|
|
|
|
if (!llvm::equal(maskableOp->getResultTypes(), getResultTypes()))
|
|
return emitOpError(
|
|
"expects result type to match maskable operation result type");
|
|
|
|
if (llvm::count_if(maskableOp->getResultTypes(),
|
|
[](Type t) { return llvm::isa<VectorType>(t); }) > 1)
|
|
return emitOpError("multiple vector results not supported");
|
|
|
|
// Mask checks.
|
|
Type expectedMaskType = maskableOp.getExpectedMaskType();
|
|
if (getMask().getType() != expectedMaskType)
|
|
return emitOpError("expects a ")
|
|
<< expectedMaskType << " mask for the maskable operation";
|
|
|
|
// Passthru checks.
|
|
Value passthru = getPassthru();
|
|
if (passthru) {
|
|
if (!maskableOp.supportsPassthru())
|
|
return emitOpError(
|
|
"doesn't expect a passthru argument for this maskable operation");
|
|
|
|
if (maskableOp->getNumResults() != 1)
|
|
return emitOpError("expects result when passthru argument is provided");
|
|
|
|
if (passthru.getType() != maskableOp->getResultTypes()[0])
|
|
return emitOpError("expects passthru type to match result type");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Folds empty `vector.mask` with no passthru operand and with or without
|
|
/// return values. For example:
|
|
///
|
|
/// %0 = vector.mask %mask { vector.yield %a : vector<8xf32> } :
|
|
/// vector<8xi1> -> vector<8xf32>
|
|
/// %1 = user_op %0 : vector<8xf32>
|
|
///
|
|
/// becomes:
|
|
///
|
|
/// %0 = user_op %a : vector<8xf32>
|
|
///
|
|
/// Empty `vector.mask` with passthru operand are handled by the canonicalizer
|
|
/// as it requires creating new operations.
|
|
|
|
static LogicalResult foldEmptyMaskOp(MaskOp maskOp, MaskOp::FoldAdaptor adaptor,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
if (!maskOp.isEmpty() || maskOp.hasPassthru())
|
|
return failure();
|
|
|
|
Block *block = maskOp.getMaskBlock();
|
|
auto terminator = cast<vector::YieldOp>(block->front());
|
|
if (terminator.getNumOperands() == 0) {
|
|
// `vector.mask` has no results, just remove the `vector.mask`.
|
|
return success();
|
|
}
|
|
|
|
// `vector.mask` has results, propagate the results.
|
|
llvm::append_range(results, terminator.getOperands());
|
|
return success();
|
|
}
|
|
|
|
LogicalResult MaskOp::fold(FoldAdaptor adaptor,
|
|
SmallVectorImpl<OpFoldResult> &results) {
|
|
if (succeeded(foldEmptyMaskOp(*this, adaptor, results)))
|
|
return success();
|
|
|
|
MaskFormat maskFormat = getMaskFormat(getMask());
|
|
if (maskFormat != MaskFormat::AllTrue)
|
|
return failure();
|
|
|
|
// Move maskable operation outside of the `vector.mask` region.
|
|
Operation *maskableOp = getMaskableOp();
|
|
maskableOp->dropAllUses();
|
|
maskableOp->moveBefore(getOperation());
|
|
|
|
llvm::append_range(results, maskableOp->getResults());
|
|
return success();
|
|
}
|
|
|
|
/// Canonialize empty `vector.mask` operations that can't be handled in
|
|
/// `VectorMask::fold` as they require creating new operations.
|
|
///
|
|
/// Example 1: Empty `vector.mask` with passthru operand.
|
|
///
|
|
/// %0 = vector.mask %mask, %passthru { vector.yield %a : vector<8xf32> } :
|
|
/// vector<8xi1> -> vector<8xf32>
|
|
///
|
|
/// becomes:
|
|
///
|
|
/// %0 = arith.select %mask, %a, %passthru : vector<8xf32>
|
|
///
|
|
class CanonializeEmptyMaskOp : public OpRewritePattern<MaskOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(MaskOp maskOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!maskOp.isEmpty())
|
|
return failure();
|
|
|
|
if (!maskOp.hasPassthru())
|
|
return failure();
|
|
|
|
Block *block = maskOp.getMaskBlock();
|
|
auto terminator = cast<vector::YieldOp>(block->front());
|
|
assert(terminator.getNumOperands() == 1 &&
|
|
"expected one result when passthru is provided");
|
|
|
|
rewriter.replaceOpWithNewOp<arith::SelectOp>(
|
|
maskOp, maskOp.getResultTypes(), maskOp.getMask(),
|
|
terminator.getOperand(0), maskOp.getPassthru());
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
void MaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
MLIRContext *context) {
|
|
results.add<CanonializeEmptyMaskOp>(context);
|
|
}
|
|
|
|
// MaskingOpInterface definitions.
|
|
|
|
/// Returns the operation masked by this 'vector.mask'.
|
|
Operation *MaskOp::getMaskableOp() {
|
|
Block *block = getMaskBlock();
|
|
if (block->getOperations().size() < 2)
|
|
return nullptr;
|
|
|
|
return &block->front();
|
|
}
|
|
|
|
/// Returns true if 'vector.mask' has a passthru value.
|
|
bool MaskOp::hasPassthru() { return getPassthru() != Value(); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ScanOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult ScanOp::verify() {
|
|
VectorType srcType = getSourceType();
|
|
VectorType initialType = getInitialValueType();
|
|
// Check reduction dimension < rank.
|
|
int64_t srcRank = srcType.getRank();
|
|
int64_t reductionDim = getReductionDim();
|
|
if (reductionDim >= srcRank)
|
|
return emitOpError("reduction dimension ")
|
|
<< reductionDim << " has to be less than " << srcRank;
|
|
|
|
// Check that rank(initial_value) = rank(src) - 1.
|
|
int64_t initialValueRank = initialType.getRank();
|
|
if (initialValueRank != srcRank - 1)
|
|
return emitOpError("initial value rank ")
|
|
<< initialValueRank << " has to be equal to " << srcRank - 1;
|
|
|
|
// Check shapes of initial value and src.
|
|
ArrayRef<int64_t> srcShape = srcType.getShape();
|
|
ArrayRef<int64_t> initialValueShapes = initialType.getShape();
|
|
SmallVector<int64_t> expectedShape;
|
|
for (int i = 0; i < srcRank; i++) {
|
|
if (i != reductionDim)
|
|
expectedShape.push_back(srcShape[i]);
|
|
}
|
|
if (!llvm::equal(initialValueShapes, expectedShape)) {
|
|
return emitOpError("incompatible input/initial value shapes");
|
|
}
|
|
|
|
// Verify supported reduction kind.
|
|
Type eltType = getDestType().getElementType();
|
|
if (!isSupportedCombiningKind(getKind(), eltType))
|
|
return emitOpError("unsupported reduction type ")
|
|
<< eltType << " for kind '" << stringifyCombiningKind(getKind())
|
|
<< "'";
|
|
|
|
return success();
|
|
}
|
|
|
|
void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
|
|
RewritePatternSet &patterns, PatternBenefit benefit) {
|
|
patterns
|
|
.add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
|
|
ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
|
|
StridedSliceConstantMaskFolder, TransposeFolder>(
|
|
patterns.getContext(), benefit);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SplatOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult SplatOp::fold(FoldAdaptor adaptor) {
|
|
auto constOperand = adaptor.getInput();
|
|
if (!isa_and_nonnull<IntegerAttr, FloatAttr>(constOperand))
|
|
return {};
|
|
|
|
// SplatElementsAttr::get treats single value for second arg as being a splat.
|
|
return SplatElementsAttr::get(getType(), {constOperand});
|
|
}
|
|
|
|
void SplatOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
|
|
SetIntRangeFn setResultRanges) {
|
|
setResultRanges(getResult(), argRanges.front());
|
|
}
|
|
|
|
Value mlir::vector::makeArithReduction(OpBuilder &b, Location loc,
|
|
CombiningKind kind, Value v1, Value acc,
|
|
arith::FastMathFlagsAttr fastmath,
|
|
Value mask) {
|
|
Type t1 = getElementTypeOrSelf(v1.getType());
|
|
Type tAcc = getElementTypeOrSelf(acc.getType());
|
|
Value result;
|
|
|
|
switch (kind) {
|
|
case CombiningKind::ADD:
|
|
if (t1.isIntOrIndex() && tAcc.isIntOrIndex())
|
|
result = b.createOrFold<arith::AddIOp>(loc, v1, acc);
|
|
else if (llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc))
|
|
result = b.createOrFold<arith::AddFOp>(loc, v1, acc, fastmath);
|
|
else
|
|
llvm_unreachable("invalid value types for ADD reduction");
|
|
break;
|
|
case CombiningKind::AND:
|
|
assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");
|
|
result = b.createOrFold<arith::AndIOp>(loc, v1, acc);
|
|
break;
|
|
case CombiningKind::MAXNUMF:
|
|
assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) &&
|
|
"expected float values");
|
|
result = b.createOrFold<arith::MaxNumFOp>(loc, v1, acc, fastmath);
|
|
break;
|
|
case CombiningKind::MAXIMUMF:
|
|
assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) &&
|
|
"expected float values");
|
|
result = b.createOrFold<arith::MaximumFOp>(loc, v1, acc, fastmath);
|
|
break;
|
|
case CombiningKind::MINNUMF:
|
|
assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) &&
|
|
"expected float values");
|
|
result = b.createOrFold<arith::MinNumFOp>(loc, v1, acc, fastmath);
|
|
break;
|
|
case CombiningKind::MINIMUMF:
|
|
assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) &&
|
|
"expected float values");
|
|
result = b.createOrFold<arith::MinimumFOp>(loc, v1, acc, fastmath);
|
|
break;
|
|
case CombiningKind::MAXSI:
|
|
assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");
|
|
result = b.createOrFold<arith::MaxSIOp>(loc, v1, acc);
|
|
break;
|
|
case CombiningKind::MINSI:
|
|
assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");
|
|
result = b.createOrFold<arith::MinSIOp>(loc, v1, acc);
|
|
break;
|
|
case CombiningKind::MAXUI:
|
|
assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");
|
|
result = b.createOrFold<arith::MaxUIOp>(loc, v1, acc);
|
|
break;
|
|
case CombiningKind::MINUI:
|
|
assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");
|
|
result = b.createOrFold<arith::MinUIOp>(loc, v1, acc);
|
|
break;
|
|
case CombiningKind::MUL:
|
|
if (t1.isIntOrIndex() && tAcc.isIntOrIndex())
|
|
result = b.createOrFold<arith::MulIOp>(loc, v1, acc);
|
|
else if (llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc))
|
|
result = b.createOrFold<arith::MulFOp>(loc, v1, acc, fastmath);
|
|
else
|
|
llvm_unreachable("invalid value types for MUL reduction");
|
|
break;
|
|
case CombiningKind::OR:
|
|
assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");
|
|
result = b.createOrFold<arith::OrIOp>(loc, v1, acc);
|
|
break;
|
|
case CombiningKind::XOR:
|
|
assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");
|
|
result = b.createOrFold<arith::XOrIOp>(loc, v1, acc);
|
|
break;
|
|
};
|
|
|
|
assert(result && "unknown CombiningKind");
|
|
return selectPassthru(b, mask, result, acc);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Vector Masking Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create the vector.yield-ended region of a vector.mask op with `maskableOp`
|
|
/// as masked operation.
|
|
void mlir::vector::createMaskOpRegion(OpBuilder &builder,
|
|
Operation *maskableOp) {
|
|
assert(maskableOp->getBlock() && "MaskableOp must be inserted into a block");
|
|
Block *insBlock = builder.getInsertionBlock();
|
|
// Create a block and move the op to that block.
|
|
insBlock->getOperations().splice(
|
|
insBlock->begin(), maskableOp->getBlock()->getOperations(), maskableOp);
|
|
builder.create<YieldOp>(maskableOp->getLoc(), maskableOp->getResults());
|
|
}
|
|
|
|
/// Creates a vector.mask operation around a maskable operation. Returns the
|
|
/// vector.mask operation if the mask provided is valid. Otherwise, returns
|
|
/// the maskable operation itself.
|
|
Operation *mlir::vector::maskOperation(OpBuilder &builder,
|
|
Operation *maskableOp, Value mask,
|
|
Value passthru) {
|
|
if (!mask)
|
|
return maskableOp;
|
|
if (passthru)
|
|
return builder.create<MaskOp>(maskableOp->getLoc(),
|
|
maskableOp->getResultTypes(), mask, passthru,
|
|
maskableOp, createMaskOpRegion);
|
|
return builder.create<MaskOp>(maskableOp->getLoc(),
|
|
maskableOp->getResultTypes(), mask, maskableOp,
|
|
createMaskOpRegion);
|
|
}
|
|
|
|
/// Creates a vector select operation that picks values from `newValue` or
|
|
/// `passthru` for each result vector lane based on `mask`. This utility is used
|
|
/// to propagate the pass-thru value of vector.mask or for cases where only the
|
|
/// pass-thru value propagation is needed. VP intrinsics do not support
|
|
/// pass-thru values and every mask-out lane is set to poison. LLVM backends are
|
|
/// usually able to match op + select patterns and fold them into a native
|
|
/// target instructions.
|
|
Value mlir::vector::selectPassthru(OpBuilder &builder, Value mask,
|
|
Value newValue, Value passthru) {
|
|
if (!mask)
|
|
return newValue;
|
|
|
|
return builder.create<arith::SelectOp>(newValue.getLoc(), newValue.getType(),
|
|
mask, newValue, passthru);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TableGen'd op method definitions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define GET_ATTRDEF_CLASSES
|
|
#include "mlir/Dialect/Vector/IR/VectorAttributes.cpp.inc"
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
|