James Newling abce4e9ad0
[mlir][vector] Folder: shape_cast(extract) -> extract (#146368)
In a later PR more shape_cast ops will appear. Specifically, broadcasts that 
just prepend ones become shape_cast ops (i.e. volume preserving broadcasts 
are canonicalized to shape_casts). This PR ensures that broadcast-like 
shape_cast ops fold at least as well as broadcast ops.

This is done by modifying patterns that target broadcast ops, to target
'broadcast-like' ops. No new patterns are added, the patterns that exist
are just made to match on shape_casts where appropriate.

This PR also includes minor code simplifications: use
`isBroadcastableTo` to simplify `ExtractOpFromBroadcast` and simplify
how broadcast dims are detected in `foldExtractFromBroadcast`. These are
NFC.

---------

Co-authored-by: Andrzej Warzyński <andrzej.warzynski@gmail.com>
2025-07-21 11:12:50 -07:00

7366 lines
286 KiB
C++

//===- VectorOps.cpp - MLIR Vector Dialect Operations ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements convenience types for working with super-vectorization
// operations, in particular super-vector loads and stores.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h"
#include "mlir/Dialect/Affine/IR/ValueBoundsOpInterfaceImpl.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/UB/IR/UBOps.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/ValueRange.h"
#include "mlir/Interfaces/SubsetOpInterface.h"
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <cstdint>
#include "mlir/Dialect/Vector/IR/VectorDialect.cpp.inc"
// Pull in all enum type and utility function definitions.
#include "mlir/Dialect/Vector/IR/VectorEnums.cpp.inc"
using namespace mlir;
using namespace mlir::vector;
/// Helper enum to classify mask value.
enum class MaskFormat {
AllTrue = 0,
AllFalse = 1,
Unknown = 2,
};
/// Helper method to classify a mask value. Currently, the method
/// looks "under the hood" of a constant value with dense attributes
/// and a constant mask operation (since the client may be called at
/// various stages during progressive lowering).
static MaskFormat getMaskFormat(Value mask) {
if (auto c = mask.getDefiningOp<arith::ConstantOp>()) {
// Inspect constant dense values. We count up for bits that
// are set, count down for bits that are cleared, and bail
// when a mix is detected.
if (auto denseElts = llvm::dyn_cast<DenseIntElementsAttr>(c.getValue())) {
int64_t val = 0;
for (bool b : denseElts.getValues<bool>())
if (b && val >= 0)
val++;
else if (!b && val <= 0)
val--;
else
return MaskFormat::Unknown;
if (val > 0)
return MaskFormat::AllTrue;
if (val < 0)
return MaskFormat::AllFalse;
}
} else if (auto m = mask.getDefiningOp<ConstantMaskOp>()) {
// Inspect constant mask index. If the index exceeds the
// dimension size, all bits are set. If the index is zero
// or less, no bits are set.
ArrayRef<int64_t> masks = m.getMaskDimSizes();
auto shape = m.getType().getShape();
bool allTrue = true;
bool allFalse = true;
for (auto [maskIdx, dimSize] : llvm::zip_equal(masks, shape)) {
if (maskIdx < dimSize)
allTrue = false;
if (maskIdx > 0)
allFalse = false;
}
if (allTrue)
return MaskFormat::AllTrue;
if (allFalse)
return MaskFormat::AllFalse;
} else if (auto m = mask.getDefiningOp<CreateMaskOp>()) {
// Finds all-false create_masks. An all-true create_mask requires all
// dims to be constants, so that'll be folded to a constant_mask, then
// detected in the constant_mask case.
auto maskOperands = m.getOperands();
for (Value operand : maskOperands) {
if (auto constantOp = operand.getDefiningOp<arith::ConstantOp>()) {
int64_t dimSize =
llvm::cast<IntegerAttr>(constantOp.getValue()).getInt();
if (dimSize <= 0)
return MaskFormat::AllFalse;
}
}
return MaskFormat::Unknown;
}
return MaskFormat::Unknown;
}
/// Default callback to build a region with a 'vector.yield' terminator with no
/// arguments.
void mlir::vector::buildTerminatedBody(OpBuilder &builder, Location loc) {
builder.create<vector::YieldOp>(loc);
}
// Helper for verifying combining kinds in contractions and reductions.
static bool isSupportedCombiningKind(CombiningKind combiningKind,
Type elementType) {
switch (combiningKind) {
case CombiningKind::ADD:
case CombiningKind::MUL:
return elementType.isIntOrIndexOrFloat();
case CombiningKind::MINUI:
case CombiningKind::MINSI:
case CombiningKind::MAXUI:
case CombiningKind::MAXSI:
case CombiningKind::AND:
case CombiningKind::OR:
case CombiningKind::XOR:
return elementType.isIntOrIndex();
case CombiningKind::MINNUMF:
case CombiningKind::MAXNUMF:
case CombiningKind::MINIMUMF:
case CombiningKind::MAXIMUMF:
return llvm::isa<FloatType>(elementType);
}
return false;
}
/// Returns the effective rank of the vector to read/write for Xfer Ops
///
/// When the element type of the shaped type is _a scalar_, this will simply
/// return the rank of the vector ( the result for xfer_read or the value to
/// store for xfer_write).
///
/// When the element type of the base shaped type is _a vector_, returns the
/// difference between the original vector type and the element type of the
/// shaped type.
///
/// EXAMPLE 1 (element type is _a scalar_):
/// - shapedType = tensor<10x20xf32>, vectorType = vector<2x4xf32>
/// - shapedType.getElementType() = f32 (rank 0)
/// - vectorType.getRank() = 2
/// - Result = 2 - 0 = 2
///
/// EXAMPLE 2 (element type is _a vector_):
/// - shapedType = tensor<10xvector<20xf32>>, vectorType = vector<20xf32>
/// - shapedType.getElementType() = vector<20xf32> (rank 1)
/// - vectorType.getRank() = 1
/// - Result = 1 - 1 = 0
///
/// This is used to determine the number of minor dimensions for identity maps
/// in vector transfer Ops.
static unsigned getEffectiveVectorRankForXferOp(ShapedType shapedType,
VectorType vectorType) {
unsigned elementVectorRank = 0;
VectorType elementVectorType =
llvm::dyn_cast<VectorType>(shapedType.getElementType());
if (elementVectorType)
elementVectorRank += elementVectorType.getRank();
return vectorType.getRank() - elementVectorRank;
}
AffineMap mlir::vector::getTransferMinorIdentityMap(ShapedType shapedType,
VectorType vectorType) {
// 0-d transfers are to/from tensor<t>/memref<t> and vector<1xt>.
// TODO: replace once we have 0-d vectors.
if (shapedType.getRank() == 0 &&
vectorType.getShape() == ArrayRef<int64_t>{1})
return AffineMap::get(
/*numDims=*/0, /*numSymbols=*/0,
getAffineConstantExpr(0, shapedType.getContext()));
return AffineMap::getMinorIdentityMap(
shapedType.getRank(),
getEffectiveVectorRankForXferOp(shapedType, vectorType),
shapedType.getContext());
}
/// Check if `write` is of a constant splat and the masked `read` is padded with
/// the same splat value -- meaning it could be the same value as the initial
/// constant splat.
static bool isSplatWriteConsistentWithMaskedRead(vector::TransferWriteOp write,
vector::TransferReadOp read) {
auto readMask = read.getMask();
auto writeMask = write.getMask();
// Check if the masks are consistent. The splat value could be the same if the
// read is masked (and padded with the splat value), and the write is unmasked
// or has the same mask. Note this does not allow the case where the write is
// masked and the read is unmasked, as then the read could be of more elements
// than the write (which may not be the same value).
bool couldBeSameSplat = readMask && (!writeMask || writeMask == readMask);
if (!couldBeSameSplat)
return false;
// Check for constant splat (as the source of the write).
DenseElementsAttr splatAttr;
if (!matchPattern(write.getVector(),
m_Constant<DenseElementsAttr>(&splatAttr)) ||
!splatAttr.isSplat()) {
return false;
}
// The padding of the read and the constant splat value must be the same.
Attribute padAttr;
if (!matchPattern(read.getPadding(), m_Constant(&padAttr)))
return false;
return padAttr == splatAttr.getSplatValue<Attribute>();
}
bool mlir::vector::checkSameValueRAW(vector::TransferWriteOp defWrite,
vector::TransferReadOp read) {
return !defWrite.hasOutOfBoundsDim() &&
defWrite.getIndices() == read.getIndices() &&
defWrite.getVectorType() == read.getVectorType() &&
defWrite.getPermutationMap() == read.getPermutationMap() &&
((!defWrite.getMask() && !read.getMask()) ||
isSplatWriteConsistentWithMaskedRead(defWrite, read));
}
bool mlir::vector::checkSameValueWAW(vector::TransferWriteOp write,
vector::TransferWriteOp priorWrite) {
return priorWrite.getIndices() == write.getIndices() &&
priorWrite.getMask() == write.getMask() &&
priorWrite.getVectorType() == write.getVectorType() &&
priorWrite.getPermutationMap() == write.getPermutationMap();
}
bool mlir::vector::isDisjointTransferIndices(
VectorTransferOpInterface transferA, VectorTransferOpInterface transferB,
bool testDynamicValueUsingBounds) {
// For simplicity only look at transfer of same type.
if (transferA.getVectorType() != transferB.getVectorType())
return false;
unsigned rankOffset = transferA.getLeadingShapedRank();
for (unsigned i = 0, e = transferA.getIndices().size(); i < e; i++) {
Value indexA = transferA.getIndices()[i];
Value indexB = transferB.getIndices()[i];
std::optional<int64_t> cstIndexA = getConstantIntValue(indexA);
std::optional<int64_t> cstIndexB = getConstantIntValue(indexB);
if (i < rankOffset) {
// For leading dimensions, if we can prove that index are different we
// know we are accessing disjoint slices.
if (cstIndexA.has_value() && cstIndexB.has_value()) {
if (*cstIndexA != *cstIndexB)
return true;
continue;
}
if (testDynamicValueUsingBounds) {
// First try to see if we can fully compose and simplify the affine
// expression as a fast track.
FailureOr<uint64_t> delta =
affine::fullyComposeAndComputeConstantDelta(indexA, indexB);
if (succeeded(delta) && *delta != 0)
return true;
FailureOr<bool> testEqual =
ValueBoundsConstraintSet::areEqual(indexA, indexB);
if (succeeded(testEqual) && !testEqual.value())
return true;
}
} else {
// For this dimension, we slice a part of the memref we need to make sure
// the intervals accessed don't overlap.
int64_t vectorDim = transferA.getVectorType().getDimSize(i - rankOffset);
if (cstIndexA.has_value() && cstIndexB.has_value()) {
int64_t distance = std::abs(*cstIndexA - *cstIndexB);
if (distance >= vectorDim)
return true;
continue;
}
if (testDynamicValueUsingBounds) {
// First try to see if we can fully compose and simplify the affine
// expression as a fast track.
FailureOr<int64_t> delta =
affine::fullyComposeAndComputeConstantDelta(indexA, indexB);
if (succeeded(delta) && std::abs(*delta) >= vectorDim)
return true;
FailureOr<int64_t> computeDelta =
ValueBoundsConstraintSet::computeConstantDelta(indexA, indexB);
if (succeeded(computeDelta)) {
if (std::abs(computeDelta.value()) >= vectorDim)
return true;
}
}
}
}
return false;
}
bool mlir::vector::isDisjointTransferSet(VectorTransferOpInterface transferA,
VectorTransferOpInterface transferB,
bool testDynamicValueUsingBounds) {
if (transferA.getBase() != transferB.getBase())
return false;
return isDisjointTransferIndices(transferA, transferB,
testDynamicValueUsingBounds);
}
// Helper to iterate over n-D vector slice elements. Calculate the next
// `position` in the n-D vector of size `shape`, applying an offset `offsets`.
// Modifies the `position` in place. Returns a failure when `position` becomes
// the end position.
static LogicalResult incSlicePosition(MutableArrayRef<int64_t> position,
ArrayRef<int64_t> shape,
ArrayRef<int64_t> offsets) {
for (auto [posInDim, dimSize, offsetInDim] :
llvm::reverse(llvm::zip_equal(position, shape, offsets))) {
++posInDim;
if (posInDim < dimSize + offsetInDim)
return success();
// Carry the overflow to the next loop iteration.
posInDim = offsetInDim;
}
return failure();
}
/// Returns the integer numbers in `values`. `values` are expected to be
/// constant operations.
SmallVector<int64_t> vector::getAsIntegers(ArrayRef<Value> values) {
SmallVector<int64_t> ints;
llvm::transform(values, std::back_inserter(ints), [](Value value) {
auto constOp = value.getDefiningOp<arith::ConstantIndexOp>();
assert(constOp && "Unexpected non-constant index");
return constOp.value();
});
return ints;
}
/// Returns the integer numbers in `foldResults`. `foldResults` are expected to
/// be constant operations.
SmallVector<int64_t> vector::getAsIntegers(ArrayRef<OpFoldResult> foldResults) {
SmallVector<int64_t> ints;
llvm::transform(
foldResults, std::back_inserter(ints), [](OpFoldResult foldResult) {
assert(isa<Attribute>(foldResult) && "Unexpected non-constant index");
return cast<IntegerAttr>(cast<Attribute>(foldResult)).getInt();
});
return ints;
}
/// Convert `foldResults` into Values. Integer attributes are converted to
/// constant op.
SmallVector<Value> vector::getAsValues(OpBuilder &builder, Location loc,
ArrayRef<OpFoldResult> foldResults) {
SmallVector<Value> values;
llvm::transform(foldResults, std::back_inserter(values),
[&](OpFoldResult foldResult) {
if (auto attr = dyn_cast<Attribute>(foldResult))
return builder
.create<arith::ConstantIndexOp>(
loc, cast<IntegerAttr>(attr).getInt())
.getResult();
return cast<Value>(foldResult);
});
return values;
}
std::optional<int64_t> vector::getConstantVscaleMultiplier(Value value) {
if (value.getDefiningOp<vector::VectorScaleOp>())
return 1;
auto mul = value.getDefiningOp<arith::MulIOp>();
if (!mul)
return {};
auto lhs = mul.getLhs();
auto rhs = mul.getRhs();
if (lhs.getDefiningOp<vector::VectorScaleOp>())
return getConstantIntValue(rhs);
if (rhs.getDefiningOp<vector::VectorScaleOp>())
return getConstantIntValue(lhs);
return {};
}
/// Converts an IntegerAttr to have the specified type if needed.
/// This handles cases where constant attributes have a different type than the
/// target element type. If the input attribute is not an IntegerAttr or already
/// has the correct type, returns it unchanged.
static Attribute convertIntegerAttr(Attribute attr, Type expectedType) {
if (auto intAttr = mlir::dyn_cast<IntegerAttr>(attr)) {
if (intAttr.getType() != expectedType)
return IntegerAttr::get(expectedType, intAttr.getInt());
}
return attr;
}
//===----------------------------------------------------------------------===//
// CombiningKindAttr
//===----------------------------------------------------------------------===//
namespace mlir {
namespace vector {
namespace detail {
struct BitmaskEnumStorage : public AttributeStorage {
using KeyTy = uint64_t;
BitmaskEnumStorage(KeyTy val) : value(val) {}
bool operator==(const KeyTy &key) const { return value == key; }
static BitmaskEnumStorage *construct(AttributeStorageAllocator &allocator,
const KeyTy &key) {
return new (allocator.allocate<BitmaskEnumStorage>())
BitmaskEnumStorage(key);
}
KeyTy value = 0;
};
} // namespace detail
} // namespace vector
} // namespace mlir
//===----------------------------------------------------------------------===//
// VectorDialect
//===----------------------------------------------------------------------===//
namespace {
/// This class defines the interface for handling inlining with vector dialect
/// operations.
struct VectorInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
/// All vector dialect ops can be inlined.
bool isLegalToInline(Operation *, Region *, bool, IRMapping &) const final {
return true;
}
};
} // namespace
void VectorDialect::initialize() {
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/Vector/IR/VectorAttributes.cpp.inc"
>();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"
>();
addInterfaces<VectorInlinerInterface>();
declarePromisedInterfaces<bufferization::BufferizableOpInterface,
TransferReadOp, TransferWriteOp, GatherOp, MaskOp,
YieldOp>();
declarePromisedInterfaces<SubsetOpInterface, TransferReadOp,
TransferWriteOp>();
declarePromisedInterface<SubsetExtractionOpInterface, TransferReadOp>();
declarePromisedInterface<SubsetInsertionOpInterface, TransferWriteOp>();
declarePromisedInterface<ConvertToLLVMPatternInterface, VectorDialect>();
}
/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *VectorDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
if (isa<ub::PoisonAttrInterface>(value))
return value.getDialect().materializeConstant(builder, value, type, loc);
return arith::ConstantOp::materialize(builder, value, type, loc);
}
IntegerType vector::getVectorSubscriptType(Builder &builder) {
return builder.getIntegerType(64);
}
ArrayAttr vector::getVectorSubscriptAttr(Builder &builder,
ArrayRef<int64_t> values) {
return builder.getI64ArrayAttr(values);
}
//===----------------------------------------------------------------------===//
// MultiDimReductionOp
//===----------------------------------------------------------------------===//
void vector::MultiDimReductionOp::build(OpBuilder &builder,
OperationState &result, Value source,
Value acc, ArrayRef<bool> reductionMask,
CombiningKind kind) {
SmallVector<int64_t> reductionDims;
for (const auto &en : llvm::enumerate(reductionMask))
if (en.value())
reductionDims.push_back(en.index());
build(builder, result, kind, source, acc, reductionDims);
}
OpFoldResult MultiDimReductionOp::fold(FoldAdaptor adaptor) {
// Single parallel dim, this is a noop.
if (getSourceVectorType().getRank() == 1 && !isReducedDim(0))
return getSource();
return {};
}
std::optional<SmallVector<int64_t, 4>>
MultiDimReductionOp::getShapeForUnroll() {
return llvm::to_vector<4>(getSourceVectorType().getShape());
}
LogicalResult MultiDimReductionOp::verify() {
SmallVector<int64_t> targetShape;
SmallVector<bool> scalableDims;
Type inferredReturnType;
auto sourceScalableDims = getSourceVectorType().getScalableDims();
for (auto [dimIdx, dimSize] :
llvm::enumerate(getSourceVectorType().getShape()))
if (!llvm::any_of(getReductionDims(),
[dimIdx = dimIdx](int64_t reductionDimIdx) {
return reductionDimIdx == static_cast<int64_t>(dimIdx);
})) {
targetShape.push_back(dimSize);
scalableDims.push_back(sourceScalableDims[dimIdx]);
}
// TODO: update to also allow 0-d vectors when available.
if (targetShape.empty())
inferredReturnType = getSourceVectorType().getElementType();
else
inferredReturnType = VectorType::get(
targetShape, getSourceVectorType().getElementType(), scalableDims);
if (getType() != inferredReturnType)
return emitOpError() << "destination type " << getType()
<< " is incompatible with source type "
<< getSourceVectorType();
return success();
}
/// Returns the mask type expected by this operation.
Type MultiDimReductionOp::getExpectedMaskType() {
auto vecType = getSourceVectorType();
return VectorType::get(vecType.getShape(),
IntegerType::get(vecType.getContext(), /*width=*/1),
vecType.getScalableDims());
}
namespace {
// Only unit dimensions that are being reduced are folded. If the dimension is
// unit, but not reduced, it is not folded, thereby keeping the output type the
// same. If not all dimensions which are reduced are of unit dimension, this
// transformation does nothing. This is just a generalization of
// ElideSingleElementReduction for ReduceOp.
struct ElideUnitDimsInMultiDimReduction
: public OpRewritePattern<MultiDimReductionOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(MultiDimReductionOp reductionOp,
PatternRewriter &rewriter) const override {
ArrayRef<int64_t> shape = reductionOp.getSourceVectorType().getShape();
for (const auto &dim : enumerate(shape)) {
if (reductionOp.isReducedDim(dim.index()) && dim.value() != 1)
return failure();
}
// Vector mask setup.
OpBuilder::InsertionGuard guard(rewriter);
Operation *rootOp;
Value mask;
if (reductionOp.isMasked()) {
rewriter.setInsertionPoint(reductionOp.getMaskingOp());
rootOp = reductionOp.getMaskingOp();
mask = reductionOp.getMaskingOp().getMask();
} else {
rootOp = reductionOp;
}
Location loc = reductionOp.getLoc();
Value acc = reductionOp.getAcc();
Value cast;
if (auto dstVecType = dyn_cast<VectorType>(reductionOp.getDestType())) {
if (mask) {
VectorType newMaskType =
VectorType::get(dstVecType.getShape(), rewriter.getI1Type(),
dstVecType.getScalableDims());
mask = rewriter.create<vector::ShapeCastOp>(loc, newMaskType, mask);
}
cast = rewriter.create<vector::ShapeCastOp>(
loc, reductionOp.getDestType(), reductionOp.getSource());
} else {
// This means we are reducing all the dimensions, and all reduction
// dimensions are of size 1. So a simple extraction would do.
if (mask)
mask = rewriter.create<vector::ExtractOp>(loc, mask);
cast = rewriter.create<vector::ExtractOp>(loc, reductionOp.getSource());
}
Value result =
vector::makeArithReduction(rewriter, loc, reductionOp.getKind(), acc,
cast, /*fastmath=*/nullptr, mask);
rewriter.replaceOp(rootOp, result);
return success();
}
};
} // namespace
void MultiDimReductionOp::getCanonicalizationPatterns(
RewritePatternSet &results, MLIRContext *context) {
results.add<ElideUnitDimsInMultiDimReduction>(context);
}
//===----------------------------------------------------------------------===//
// ReductionOp
//===----------------------------------------------------------------------===//
void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
CombiningKind kind, Value vector,
arith::FastMathFlags fastMathFlags) {
build(builder, result, kind, vector, /*acc=*/Value(), fastMathFlags);
}
void vector::ReductionOp::build(OpBuilder &builder, OperationState &result,
CombiningKind kind, Value vector, Value acc,
arith::FastMathFlags fastMathFlags) {
build(builder, result,
llvm::cast<VectorType>(vector.getType()).getElementType(), kind, vector,
acc, fastMathFlags);
}
LogicalResult ReductionOp::verify() {
// Verify for 0-D and 1-D vector.
int64_t rank = getSourceVectorType().getRank();
if (rank > 1)
return emitOpError("unsupported reduction rank: ") << rank;
// Verify supported reduction kind.
Type eltType = getDest().getType();
if (!isSupportedCombiningKind(getKind(), eltType))
return emitOpError("unsupported reduction type '")
<< eltType << "' for kind '" << stringifyCombiningKind(getKind())
<< "'";
return success();
}
// MaskableOpInterface methods.
/// Returns the mask type expected by this operation.
Type ReductionOp::getExpectedMaskType() {
auto vecType = getSourceVectorType();
return VectorType::get(vecType.getShape(),
IntegerType::get(vecType.getContext(), /*width=*/1),
vecType.getScalableDims());
}
Value mlir::vector::getVectorReductionOp(arith::AtomicRMWKind op,
OpBuilder &builder, Location loc,
Value vector) {
switch (op) {
case arith::AtomicRMWKind::addf:
case arith::AtomicRMWKind::addi:
return builder.create<vector::ReductionOp>(vector.getLoc(),
CombiningKind::ADD, vector);
case arith::AtomicRMWKind::mulf:
case arith::AtomicRMWKind::muli:
return builder.create<vector::ReductionOp>(vector.getLoc(),
CombiningKind::MUL, vector);
case arith::AtomicRMWKind::minimumf:
return builder.create<vector::ReductionOp>(vector.getLoc(),
CombiningKind::MINIMUMF, vector);
case arith::AtomicRMWKind::mins:
return builder.create<vector::ReductionOp>(vector.getLoc(),
CombiningKind::MINSI, vector);
case arith::AtomicRMWKind::minu:
return builder.create<vector::ReductionOp>(vector.getLoc(),
CombiningKind::MINUI, vector);
case arith::AtomicRMWKind::maximumf:
return builder.create<vector::ReductionOp>(vector.getLoc(),
CombiningKind::MAXIMUMF, vector);
case arith::AtomicRMWKind::maxs:
return builder.create<vector::ReductionOp>(vector.getLoc(),
CombiningKind::MAXSI, vector);
case arith::AtomicRMWKind::maxu:
return builder.create<vector::ReductionOp>(vector.getLoc(),
CombiningKind::MAXUI, vector);
case arith::AtomicRMWKind::andi:
return builder.create<vector::ReductionOp>(vector.getLoc(),
CombiningKind::AND, vector);
case arith::AtomicRMWKind::ori:
return builder.create<vector::ReductionOp>(vector.getLoc(),
CombiningKind::OR, vector);
// TODO: Add remaining reduction operations.
default:
(void)emitOptionalError(loc, "Reduction operation type not supported");
break;
}
return nullptr;
}
std::optional<SmallVector<int64_t, 4>> ReductionOp::getShapeForUnroll() {
return llvm::to_vector<4>(getSourceVectorType().getShape());
}
namespace {
struct ElideSingleElementReduction : public OpRewritePattern<ReductionOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ReductionOp reductionOp,
PatternRewriter &rewriter) const override {
// Vector mask setup.
OpBuilder::InsertionGuard guard(rewriter);
auto maskableOp =
cast<vector::MaskableOpInterface>(reductionOp.getOperation());
Operation *rootOp;
Value mask;
if (maskableOp.isMasked()) {
rewriter.setInsertionPoint(maskableOp.getMaskingOp());
rootOp = maskableOp.getMaskingOp();
mask = maskableOp.getMaskingOp().getMask();
} else {
rootOp = reductionOp;
}
auto vectorType = reductionOp.getSourceVectorType();
if (vectorType.getRank() != 0 && vectorType.getDimSize(0) != 1)
return failure();
Location loc = reductionOp.getLoc();
if (mask)
mask = rewriter.create<ExtractOp>(loc, mask);
Value result = rewriter.create<ExtractOp>(loc, reductionOp.getVector());
if (Value acc = reductionOp.getAcc())
result = vector::makeArithReduction(rewriter, loc, reductionOp.getKind(),
result, acc,
reductionOp.getFastmathAttr(), mask);
rewriter.replaceOp(rootOp, result);
return success();
}
};
} // namespace
void ReductionOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ElideSingleElementReduction>(context);
}
//===----------------------------------------------------------------------===//
// ContractionOp
//===----------------------------------------------------------------------===//
void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
Value lhs, Value rhs, Value acc,
ArrayRef<ArrayRef<AffineExpr>> indexingExprs,
ArrayRef<IteratorType> iteratorTypes) {
result.addOperands({lhs, rhs, acc});
result.addTypes(acc.getType());
result.addAttribute(
getIndexingMapsAttrName(result.name),
builder.getAffineMapArrayAttr(
AffineMap::inferFromExprList(indexingExprs, builder.getContext())));
result.addAttribute(
getIteratorTypesAttrName(result.name),
builder.getArrayAttr(llvm::to_vector(llvm::map_range(
iteratorTypes, [&](IteratorType t) -> mlir::Attribute {
return IteratorTypeAttr::get(builder.getContext(), t);
}))));
}
void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
Value lhs, Value rhs, Value acc,
ArrayAttr indexingMaps,
ArrayAttr iteratorTypes) {
build(builder, result, lhs, rhs, acc, indexingMaps, iteratorTypes,
ContractionOp::getDefaultKind());
}
void vector::ContractionOp::build(OpBuilder &builder, OperationState &result,
Value lhs, Value rhs, Value acc,
ArrayAttr indexingMaps,
ArrayAttr iteratorTypes, CombiningKind kind) {
result.addOperands({lhs, rhs, acc});
result.addTypes(acc.getType());
result.addAttribute(getIndexingMapsAttrName(result.name), indexingMaps);
result.addAttribute(getIteratorTypesAttrName(result.name), iteratorTypes);
result.addAttribute(getKindAttrName(result.name),
CombiningKindAttr::get(builder.getContext(), kind));
}
ParseResult ContractionOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::UnresolvedOperand lhsInfo;
OpAsmParser::UnresolvedOperand rhsInfo;
OpAsmParser::UnresolvedOperand accInfo;
SmallVector<OpAsmParser::UnresolvedOperand, 2> masksInfo;
SmallVector<Type, 2> types;
Type resultType;
auto loc = parser.getCurrentLocation();
DictionaryAttr dictAttr;
// TODO: Unify linalg op attribute parsing.
if (parser.parseAttribute(dictAttr) || parser.parseOperand(lhsInfo) ||
parser.parseComma() || parser.parseOperand(rhsInfo) ||
parser.parseComma() || parser.parseOperand(accInfo) ||
parser.parseTrailingOperandList(masksInfo) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonTypeList(types) ||
parser.parseKeywordType("into", resultType) ||
parser.resolveOperand(lhsInfo, types[0], result.operands) ||
parser.resolveOperand(rhsInfo, types[1], result.operands) ||
parser.resolveOperand(accInfo, resultType, result.operands) ||
parser.addTypeToList(resultType, result.types))
return failure();
result.attributes.append(dictAttr.getValue().begin(),
dictAttr.getValue().end());
// Convert array of string into an array of IteratyType enums. This is needed,
// because tests still use the old format when 'iterator_types' attribute is
// represented as an array of strings.
// TODO: Remove this conversion once tests are fixed.
auto iteratorTypes = dyn_cast_or_null<ArrayAttr>(
result.attributes.get(getIteratorTypesAttrName(result.name)));
if (!iteratorTypes) {
return parser.emitError(loc)
<< "expected " << getIteratorTypesAttrName(result.name)
<< " array attribute";
}
SmallVector<Attribute> iteratorTypeAttrs;
for (StringRef s : iteratorTypes.getAsValueRange<StringAttr>()) {
auto maybeIteratorType = symbolizeIteratorType(s);
if (!maybeIteratorType.has_value())
return parser.emitError(loc) << "unexpected iterator_type (" << s << ")";
iteratorTypeAttrs.push_back(
IteratorTypeAttr::get(parser.getContext(), maybeIteratorType.value()));
}
result.attributes.set(getIteratorTypesAttrName(result.name),
parser.getBuilder().getArrayAttr(iteratorTypeAttrs));
if (!result.attributes.get(getKindAttrName(result.name))) {
result.addAttribute(
getKindAttrName(result.name),
CombiningKindAttr::get(result.getContext(),
ContractionOp::getDefaultKind()));
}
if (masksInfo.empty())
return success();
if (masksInfo.size() != 2)
return parser.emitError(parser.getNameLoc(),
"expected zero or exactly 2 vector mask operands");
auto lhsType = llvm::cast<VectorType>(types[0]);
auto rhsType = llvm::cast<VectorType>(types[1]);
auto maskElementType = parser.getBuilder().getI1Type();
std::array<VectorType, 2> maskTypes = {
VectorType::Builder(lhsType).setElementType(maskElementType),
VectorType::Builder(rhsType).setElementType(maskElementType)};
if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
return failure();
return success();
}
void ContractionOp::print(OpAsmPrinter &p) {
// TODO: Unify printing code with linalg ops.
auto attrNames = getTraitAttrNames();
llvm::StringSet<> traitAttrsSet;
traitAttrsSet.insert_range(attrNames);
SmallVector<NamedAttribute, 8> attrs;
for (auto attr : (*this)->getAttrs()) {
if (attr.getName() == getIteratorTypesAttrName()) {
auto iteratorTypes =
llvm::cast<ArrayAttr>(attr.getValue())
.getAsValueRange<IteratorTypeAttr, IteratorType>();
// Convert IteratorType enums into the string representation. This is
// needed, because tests still use the old format when 'iterator_types'
// attribute is represented as an array of strings.
// TODO: Remove this conversion once tests are fixed.
SmallVector<Attribute> iteratorTypeNames = llvm::to_vector(
llvm::map_range(iteratorTypes, [&](IteratorType t) -> Attribute {
return StringAttr::get(getContext(), stringifyIteratorType(t));
}));
attrs.emplace_back(getIteratorTypesAttrName(),
ArrayAttr::get(getContext(), iteratorTypeNames));
} else if (traitAttrsSet.count(attr.getName().strref()) > 0)
attrs.push_back(attr);
}
auto dictAttr = DictionaryAttr::get(getContext(), attrs);
p << " " << dictAttr << " " << getLhs() << ", ";
p << getRhs() << ", " << getAcc();
p.printOptionalAttrDict((*this)->getAttrs(), attrNames);
p << " : " << getLhs().getType() << ", " << getRhs().getType() << " into "
<< getResultType();
}
static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
const std::vector<std::pair<int64_t, int64_t>> &map) {
for (auto &dimPair : map) {
if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
return false;
}
return true;
}
static LogicalResult verifyOutputShape(
ContractionOp op, VectorType lhsType, VectorType rhsType, Type accType,
Type resType,
const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
DenseSet<int64_t> lhsContractingDimSet;
DenseSet<int64_t> rhsContractingDimSet;
for (auto &dimPair : contractingDimMap) {
lhsContractingDimSet.insert(dimPair.first);
rhsContractingDimSet.insert(dimPair.second);
}
DenseSet<int64_t> rhsBatchDimSet(llvm::from_range,
llvm::make_second_range(batchDimMap));
// Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
SmallVector<int64_t, 4> expectedResultDims;
for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
if (lhsContractingDimSet.count(i) > 0)
continue;
expectedResultDims.push_back(lhsType.getDimSize(i));
}
// Add free dimensions from 'rhsType' to 'expectedResultDims'.
for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
continue;
expectedResultDims.push_back(rhsType.getDimSize(i));
}
// Verify 'expectedResultDims'.
if (expectedResultDims.empty()) {
// No batch or free dimension implies a scalar result.
if (llvm::isa<VectorType>(resType) || llvm::isa<VectorType>(accType))
return op.emitOpError("invalid accumulator/result vector shape");
} else {
// At least one batch or free dimension implies a vector result.
auto resVectorType = llvm::dyn_cast<VectorType>(resType);
auto accVectorType = llvm::dyn_cast<VectorType>(accType);
if (!resVectorType || !accVectorType)
return op.emitOpError("invalid accumulator/result vector shape");
// Infer expected result vector type. Lhs + rhs map and lhs + rhs vector
// types fully define the result vector type. This assumes the affine maps
// are well-formed, which must have been verified already.
MLIRContext *ctx = op.getContext();
AffineMap lhsMap = op.getIndexingMapsArray()[0];
AffineMap rhsMap = op.getIndexingMapsArray()[1];
if (getUnusedDimsBitVector({lhsMap, rhsMap}).any())
return op.emitOpError(
"expected all dimensions to be either a LHS or a RHS dimension");
SmallVector<AffineExpr, 4> extents(lhsMap.getNumInputs());
for (auto pair :
{std::make_pair(lhsType, lhsMap), std::make_pair(rhsType, rhsMap)}) {
VectorType v = pair.first;
auto map = pair.second;
for (unsigned idx = 0, e = v.getRank(); idx < e; ++idx) {
unsigned pos = map.getDimPosition(idx);
if (!extents[pos])
extents[pos] = getAffineConstantExpr(v.getShape()[idx], ctx);
}
}
if (!llvm::all_of(extents, [](AffineExpr e) { return e; }))
return op.emitOpError("expected all dimensions to get an extent as "
"either a LHS or a RHS dimension");
AffineMap resMap = op.getIndexingMapsArray()[2];
auto extentsMap = AffineMap::get(/*dimCount=*/extents.size(),
/*symbolCount=*/0, extents, ctx);
// Compose the resMap with the extentsMap, which is a constant map.
AffineMap expectedMap = simplifyAffineMap(resMap.compose(extentsMap));
assert(llvm::all_of(expectedMap.getResults(),
llvm::IsaPred<AffineConstantExpr>) &&
"expected constant extent along all dimensions.");
// Extract the expected shape and build the type.
auto expectedShape = llvm::to_vector<4>(
llvm::map_range(expectedMap.getResults(), [](AffineExpr e) {
return cast<AffineConstantExpr>(e).getValue();
}));
auto expected =
VectorType::get(expectedShape, resVectorType.getElementType(),
resVectorType.getScalableDims());
if (resVectorType != expected || accVectorType != expected)
return op.emitOpError(
"invalid accumulator/result vector shape, expected: ")
<< expected;
}
return success();
}
LogicalResult ContractionOp::verify() {
VectorType lhsType = getLhsType();
VectorType rhsType = getRhsType();
Type accType = getAccType();
Type resType = getResultType();
if (llvm::isa<IntegerType>(lhsType.getElementType())) {
if (!lhsType.getElementType().isSignlessInteger())
return emitOpError("only supports signless integer types");
}
// Verify that an indexing map was specified for each vector operand.
if (getIndexingMapsArray().size() != 3)
return emitOpError("expected an indexing map for each vector operand");
// Verify that each index map has 'numIterators' inputs, no symbols, and
// that the number of map outputs equals the rank of its associated
// vector operand.
unsigned numIterators = getIteratorTypes().getValue().size();
for (const auto &it : llvm::enumerate(getIndexingMapsArray())) {
auto index = it.index();
auto map = it.value();
if (map.getNumSymbols() != 0)
return emitOpError("expected indexing map ")
<< index << " to have no symbols";
auto vectorType = llvm::dyn_cast<VectorType>(getOperand(index).getType());
unsigned rank = vectorType ? vectorType.getShape().size() : 0;
// Verify that the map has the right number of inputs, outputs, and indices.
// This also correctly accounts for (..) -> () for rank-0 results.
if (map.getNumDims() != numIterators)
return emitOpError("expected indexing map ")
<< index << " to have " << numIterators << " number of inputs";
if (map.getNumResults() != rank)
return emitOpError("expected indexing map ")
<< index << " to have " << rank << " number of outputs";
if (!map.isProjectedPermutation())
return emitOpError("expected indexing map ")
<< index << " to be a projected permutation of its inputs";
}
auto contractingDimMap = getContractingDimMap();
auto batchDimMap = getBatchDimMap();
// Verify at least one contracting dimension pair was specified.
if (contractingDimMap.empty())
return emitOpError("expected at least one contracting dimension pair");
// Verify contracting dimension map was properly constructed.
if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
return emitOpError("invalid contracting dimension map");
// Verify batch dimension map was properly constructed.
if (!verifyDimMap(lhsType, rhsType, batchDimMap))
return emitOpError("invalid batch dimension map");
// Verify 'accType' and 'resType' shape.
if (failed(verifyOutputShape(*this, lhsType, rhsType, accType, resType,
contractingDimMap, batchDimMap)))
return failure();
// Verify supported combining kind.
auto vectorType = llvm::dyn_cast<VectorType>(resType);
auto elementType = vectorType ? vectorType.getElementType() : resType;
if (!isSupportedCombiningKind(getKind(), elementType))
return emitOpError("unsupported contraction type");
// Delayed calling of IndexingMapOpInterface::verifyImpl.
return cast<IndexingMapOpInterface>(this->getOperation()).verifyImpl();
}
// MaskableOpInterface methods.
/// Returns the mask type expected by this operation. Mostly used for
/// verification purposes. It requires the operation to be vectorized."
Type ContractionOp::getExpectedMaskType() {
auto indexingMaps = this->getIndexingMapsArray();
AffineMap lhsIdxMap = indexingMaps[0];
AffineMap rhsIdxMap = indexingMaps[1];
VectorType lhsType = this->getLhsType();
VectorType rhsType = this->getRhsType();
unsigned numVecDims = lhsIdxMap.getNumDims();
SmallVector<int64_t> maskShape(numVecDims, ShapedType::kDynamic);
SmallVector<bool> maskShapeScalableDims(numVecDims, false);
// Using the information in the indexing maps, extract the size of each
// dimension in the vector.contract operation from the two input operands.
for (auto [dimIdx, dimSize] : llvm::enumerate(lhsType.getShape())) {
maskShape[lhsIdxMap.getDimPosition(dimIdx)] = dimSize;
maskShapeScalableDims[lhsIdxMap.getDimPosition(dimIdx)] =
lhsType.getScalableDims()[dimIdx];
}
for (auto [dimIdx, dimSize] : llvm::enumerate(rhsType.getShape())) {
maskShape[rhsIdxMap.getDimPosition(dimIdx)] = dimSize;
maskShapeScalableDims[rhsIdxMap.getDimPosition(dimIdx)] =
rhsType.getScalableDims()[dimIdx];
}
assert(ShapedType::isStaticShape(maskShape) &&
"Mask shape couldn't be computed");
return VectorType::get(maskShape,
IntegerType::get(lhsType.getContext(), /*width=*/1),
maskShapeScalableDims);
}
SmallVector<StringRef> ContractionOp::getTraitAttrNames() {
return SmallVector<StringRef>{getIndexingMapsAttrName(),
getIteratorTypesAttrName(), getKindAttrName()};
}
static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
if (targetExpr == map.getResult(i))
return i;
return -1;
}
static std::vector<std::pair<int64_t, int64_t>>
getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
IteratorType targetIteratorType, MLIRContext *context) {
std::vector<std::pair<int64_t, int64_t>> dimMap;
for (const auto &it : llvm::enumerate(iteratorTypes)) {
auto iteratorType = llvm::cast<IteratorTypeAttr>(it.value()).getValue();
if (iteratorType != targetIteratorType)
continue;
// Search lhs/rhs map results for 'targetExpr'.
auto targetExpr = getAffineDimExpr(it.index(), context);
int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
if (lhsDim >= 0 && rhsDim >= 0)
dimMap.emplace_back(lhsDim, rhsDim);
}
return dimMap;
}
void ContractionOp::getIterationBounds(
SmallVectorImpl<int64_t> &iterationBounds) {
auto lhsShape = getLhsType().getShape();
auto resVectorType = llvm::dyn_cast<VectorType>(getResultType());
SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray());
for (const auto &it : llvm::enumerate(getIteratorTypes())) {
// Search lhs/rhs map results for 'targetExpr'.
auto targetExpr = getAffineDimExpr(it.index(), getContext());
auto iteratorType = llvm::cast<IteratorTypeAttr>(it.value()).getValue();
if (iteratorType == IteratorType::reduction) {
// Get reduction dim size from lhs shape (same size in rhsShape).
int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
assert(lhsDimIndex >= 0);
iterationBounds.push_back(lhsShape[lhsDimIndex]);
continue;
}
// Get parallel dimension size from result shape.
int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
assert(resDimIndex >= 0);
assert(resVectorType != nullptr);
iterationBounds.push_back(resVectorType.getShape()[resDimIndex]);
}
}
void ContractionOp::getIterationIndexMap(
std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
unsigned numMaps = getIndexingMapsArray().size();
iterationIndexMap.resize(numMaps);
for (const auto &it : llvm::enumerate(getIndexingMapsArray())) {
auto index = it.index();
auto map = it.value();
for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
auto dim = cast<AffineDimExpr>(map.getResult(i));
iterationIndexMap[index][dim.getPosition()] = i;
}
}
}
std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray());
return getDimMap(indexingMaps, getIteratorTypes(), IteratorType::reduction,
getContext());
}
std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
SmallVector<AffineMap, 4> indexingMaps(getIndexingMapsArray());
return getDimMap(indexingMaps, getIteratorTypes(), IteratorType::parallel,
getContext());
}
std::optional<SmallVector<int64_t, 4>> ContractionOp::getShapeForUnroll() {
SmallVector<int64_t, 4> shape;
getIterationBounds(shape);
return shape;
}
/// Return a fused vector::ContractionOp which represents a patterns such as:
///
/// ```mlir
/// %c0 = vector.constant 0: ...
/// %c = vector.contract %a, %b, %c0: ...
/// %e = add %c, %d: ...
/// ```
///
/// by:
///
/// ```mlir
/// %e = vector.contract %a, %b, %d: ...
/// ```
///
/// Return null if the canonicalization does not apply.
// TODO: This should be a folding of Add into Contract in core but while they
// live in different dialects, it is not possible without unnatural
// dependencies.
template <typename AddOpType>
struct CanonicalizeContractAdd : public OpRewritePattern<AddOpType> {
using OpRewritePattern<AddOpType>::OpRewritePattern;
LogicalResult matchAndRewrite(AddOpType addOp,
PatternRewriter &rewriter) const override {
auto canonicalize = [&](Value maybeContraction,
Value otherOperand) -> vector::ContractionOp {
vector::ContractionOp contractionOp =
dyn_cast_or_null<vector::ContractionOp>(
maybeContraction.getDefiningOp());
if (!contractionOp)
return vector::ContractionOp();
if (auto maybeZero = dyn_cast_or_null<arith::ConstantOp>(
contractionOp.getAcc().getDefiningOp())) {
if (maybeZero.getValue() ==
rewriter.getZeroAttr(contractionOp.getAcc().getType())) {
IRMapping bvm;
bvm.map(contractionOp.getAcc(), otherOperand);
auto newContraction =
cast<vector::ContractionOp>(rewriter.clone(*contractionOp, bvm));
rewriter.replaceOp(addOp, newContraction.getResult());
return newContraction;
}
}
return vector::ContractionOp();
};
Value a = addOp->getOperand(0), b = addOp->getOperand(1);
vector::ContractionOp contract = canonicalize(a, b);
contract = contract ? contract : canonicalize(b, a);
return contract ? success() : failure();
}
};
void ContractionOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<CanonicalizeContractAdd<arith::AddIOp>,
CanonicalizeContractAdd<arith::AddFOp>>(context);
}
//===----------------------------------------------------------------------===//
// ExtractElementOp
//===----------------------------------------------------------------------===//
void ExtractElementOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
SetIntRangeFn setResultRanges) {
setResultRanges(getResult(), argRanges.front());
}
void vector::ExtractElementOp::build(OpBuilder &builder, OperationState &result,
Value source) {
result.addOperands({source});
result.addTypes(llvm::cast<VectorType>(source.getType()).getElementType());
}
LogicalResult vector::ExtractElementOp::verify() {
VectorType vectorType = getSourceVectorType();
if (vectorType.getRank() == 0) {
if (getPosition())
return emitOpError("expected position to be empty with 0-D vector");
return success();
}
if (vectorType.getRank() != 1)
return emitOpError("unexpected >1 vector rank");
if (!getPosition())
return emitOpError("expected position for 1-D vector");
return success();
}
OpFoldResult vector::ExtractElementOp::fold(FoldAdaptor adaptor) {
// Skip the 0-D vector here now.
if (!adaptor.getPosition())
return {};
// Fold extractelement (splat X) -> X.
if (auto splat = getVector().getDefiningOp<vector::SplatOp>())
return splat.getInput();
// Fold extractelement(broadcast(X)) -> X.
if (auto broadcast = getVector().getDefiningOp<vector::BroadcastOp>())
if (!llvm::isa<VectorType>(broadcast.getSource().getType()))
return broadcast.getSource();
auto src = dyn_cast_or_null<DenseElementsAttr>(adaptor.getVector());
auto pos = dyn_cast_or_null<IntegerAttr>(adaptor.getPosition());
if (!pos || !src)
return {};
auto srcElements = src.getValues<Attribute>();
uint64_t posIdx = pos.getInt();
if (posIdx >= srcElements.size())
return {};
return srcElements[posIdx];
}
// Returns `true` if `index` is either within [0, maxIndex) or equal to
// `poisonValue`.
static bool isValidPositiveIndexOrPoison(int64_t index, int64_t poisonValue,
int64_t maxIndex) {
return index == poisonValue || (index >= 0 && index < maxIndex);
}
//===----------------------------------------------------------------------===//
// ExtractOp
//===----------------------------------------------------------------------===//
void ExtractOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
SetIntRangeFn setResultRanges) {
setResultRanges(getResult(), argRanges.front());
}
void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
Value source) {
auto vectorTy = cast<VectorType>(source.getType());
build(builder, result, source, SmallVector<int64_t>(vectorTy.getRank(), 0));
}
void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
Value source, int64_t position) {
build(builder, result, source, ArrayRef<int64_t>{position});
}
void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
Value source, OpFoldResult position) {
build(builder, result, source, ArrayRef<OpFoldResult>{position});
}
void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
Value source, ArrayRef<int64_t> position) {
build(builder, result, source, /*dynamic_position=*/ArrayRef<Value>(),
builder.getDenseI64ArrayAttr(position));
}
void vector::ExtractOp::build(OpBuilder &builder, OperationState &result,
Value source, ArrayRef<OpFoldResult> position) {
SmallVector<int64_t> staticPos;
SmallVector<Value> dynamicPos;
dispatchIndexOpFoldResults(position, dynamicPos, staticPos);
build(builder, result, source, dynamicPos,
builder.getDenseI64ArrayAttr(staticPos));
}
LogicalResult
ExtractOp::inferReturnTypes(MLIRContext *, std::optional<Location>,
ExtractOp::Adaptor adaptor,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto vectorType = llvm::cast<VectorType>(adaptor.getVector().getType());
if (static_cast<int64_t>(adaptor.getStaticPosition().size()) ==
vectorType.getRank()) {
inferredReturnTypes.push_back(vectorType.getElementType());
} else {
auto n = std::min<size_t>(adaptor.getStaticPosition().size(),
vectorType.getRank());
inferredReturnTypes.push_back(VectorType::get(
vectorType.getShape().drop_front(n), vectorType.getElementType(),
vectorType.getScalableDims().drop_front(n)));
}
return success();
}
bool ExtractOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
// Allow extracting 1-element vectors instead of scalars.
auto isCompatible = [](TypeRange l, TypeRange r) {
auto vectorType = llvm::dyn_cast<VectorType>(l.front());
return vectorType && vectorType.getShape().equals({1}) &&
vectorType.getElementType() == r.front();
};
if (l.size() == 1 && r.size() == 1 &&
(isCompatible(l, r) || isCompatible(r, l)))
return true;
return l == r;
}
LogicalResult vector::ExtractOp::verify() {
if (auto resTy = dyn_cast<VectorType>(getResult().getType()))
if (resTy.getRank() == 0)
return emitError(
"expected a scalar instead of a 0-d vector as the result type");
// Note: This check must come before getMixedPosition() to prevent a crash.
auto dynamicMarkersCount =
llvm::count_if(getStaticPosition(), ShapedType::isDynamic);
if (static_cast<size_t>(dynamicMarkersCount) != getDynamicPosition().size())
return emitOpError(
"mismatch between dynamic and static positions (kDynamic marker but no "
"corresponding dynamic position) -- this can only happen due to an "
"incorrect fold/rewrite");
auto position = getMixedPosition();
if (position.size() > static_cast<unsigned>(getSourceVectorType().getRank()))
return emitOpError(
"expected position attribute of rank no greater than vector rank");
for (auto [idx, pos] : llvm::enumerate(position)) {
if (auto attr = dyn_cast<Attribute>(pos)) {
int64_t constIdx = cast<IntegerAttr>(attr).getInt();
if (!isValidPositiveIndexOrPoison(
constIdx, kPoisonIndex, getSourceVectorType().getDimSize(idx))) {
return emitOpError("expected position attribute #")
<< (idx + 1)
<< " to be a non-negative integer smaller than the "
"corresponding vector dimension or poison (-1)";
}
}
}
return success();
}
template <typename IntType>
static SmallVector<IntType> extractVector(ArrayAttr arrayAttr) {
return llvm::to_vector<4>(llvm::map_range(
arrayAttr.getAsRange<IntegerAttr>(),
[](IntegerAttr attr) { return static_cast<IntType>(attr.getInt()); }));
}
/// Fold the result of chains of ExtractOp in place by simply concatenating the
/// positions.
static LogicalResult foldExtractOpFromExtractChain(ExtractOp extractOp) {
if (!extractOp.getVector().getDefiningOp<ExtractOp>())
return failure();
// TODO: Canonicalization for dynamic position not implemented yet.
if (extractOp.hasDynamicPosition())
return failure();
SmallVector<int64_t> globalPosition;
ExtractOp currentOp = extractOp;
ArrayRef<int64_t> extrPos = currentOp.getStaticPosition();
globalPosition.append(extrPos.rbegin(), extrPos.rend());
while (ExtractOp nextOp = currentOp.getVector().getDefiningOp<ExtractOp>()) {
currentOp = nextOp;
// TODO: Canonicalization for dynamic position not implemented yet.
if (currentOp.hasDynamicPosition())
return failure();
ArrayRef<int64_t> extrPos = currentOp.getStaticPosition();
globalPosition.append(extrPos.rbegin(), extrPos.rend());
}
extractOp.setOperand(0, currentOp.getVector());
// OpBuilder is only used as a helper to build an I64ArrayAttr.
OpBuilder b(extractOp.getContext());
std::reverse(globalPosition.begin(), globalPosition.end());
extractOp.setStaticPosition(globalPosition);
return success();
}
namespace {
/// Fold an ExtractOp that is fed by a chain of InsertOps and TransposeOps.
/// Walk back a chain of InsertOp/TransposeOp until we hit a match.
/// Compose TransposeOp permutations as we walk back.
/// This helper class keeps an updated extraction position `extractPosition`
/// with extra trailing sentinels.
/// The sentinels encode the internal transposition status of the result vector.
/// As we iterate, extractPosition is permuted and updated.
class ExtractFromInsertTransposeChainState {
public:
ExtractFromInsertTransposeChainState(ExtractOp e);
/// Iterate over producing insert and transpose ops until we find a fold.
Value fold();
private:
/// Return true if the vector at position `a` is contained within the vector
/// at position `b`. Under insert/extract semantics, this is the same as `a`
/// is a prefix of `b`.
template <typename ContainerA, typename ContainerB>
bool isContainedWithin(const ContainerA &a, const ContainerB &b) {
return a.size() <= b.size() &&
std::equal(a.begin(), a.begin() + a.size(), b.begin());
}
/// Return true if the vector at position `a` intersects the vector at
/// position `b`. Under insert/extract semantics, this is the same as equality
/// of all entries of `a` that are >=0 with the corresponding entries of b.
/// Comparison is on the common prefix (i.e. zip).
template <typename ContainerA, typename ContainerB>
bool intersectsWhereNonNegative(const ContainerA &a, const ContainerB &b) {
for (auto [elemA, elemB] : llvm::zip(a, b)) {
if (elemA < 0 || elemB < 0)
continue;
if (elemA != elemB)
return false;
}
return true;
}
/// Folding is only possible in the absence of an internal permutation in the
/// result vector.
bool canFold() {
return (sentinels == ArrayRef(extractPosition).drop_front(extractedRank));
}
// Helper to get the next defining op of interest.
void updateStateForNextIteration(Value v) {
nextInsertOp = v.getDefiningOp<vector::InsertOp>();
nextTransposeOp = v.getDefiningOp<vector::TransposeOp>();
};
// Case 1. If we hit a transpose, just compose the map and iterate.
// Invariant: insert + transpose do not change rank, we can always compose.
LogicalResult handleTransposeOp();
// Case 2: the insert position matches extractPosition exactly, early return.
LogicalResult handleInsertOpWithMatchingPos(Value &res);
/// Case 3: if the insert position is a prefix of extractPosition, extract a
/// portion of the source of the insert.
/// Example:
/// ```
/// %ins = vector.insert %source, %vest[1]: vector<3x4> into vector<2x3x4x5>
/// // extractPosition == [1, 2, 3]
/// %ext = vector.extract %ins[1, 0]: vector<5> from vector<3x4x5>
/// // can fold to vector.extract %source[0, 3]
/// %ext = vector.extract %source[3]: vector<6> from vector<5x6>
/// ```
/// To traverse through %source, we need to set the leading dims to 0 and
/// drop the extra leading dims.
/// This method updates the internal state.
LogicalResult handleInsertOpWithPrefixPos(Value &res);
/// Try to fold in place to extract(source, extractPosition) and return the
/// folded result. Return null if folding is not possible (e.g. due to an
/// internal transposition in the result).
Value tryToFoldExtractOpInPlace(Value source);
ExtractOp extractOp;
int64_t vectorRank;
int64_t extractedRank;
InsertOp nextInsertOp;
TransposeOp nextTransposeOp;
/// Sentinel values that encode the internal permutation status of the result.
/// They are set to (-1, ... , -k) at the beginning and appended to
/// `extractPosition`.
/// In the end, the tail of `extractPosition` must be exactly `sentinels` to
/// ensure that there is no internal transposition.
/// Internal transposition cannot be accounted for with a folding pattern.
// TODO: We could relax the internal transposition with an extra transposition
// operation in a future canonicalizer.
SmallVector<int64_t> sentinels;
SmallVector<int64_t> extractPosition;
};
} // namespace
ExtractFromInsertTransposeChainState::ExtractFromInsertTransposeChainState(
ExtractOp e)
: extractOp(e), vectorRank(extractOp.getSourceVectorType().getRank()),
extractedRank(extractOp.getNumIndices()) {
assert(vectorRank >= extractedRank && "Extracted position overflow");
sentinels.reserve(vectorRank - extractedRank);
for (int64_t i = 0, e = vectorRank - extractedRank; i < e; ++i)
sentinels.push_back(-(i + 1));
extractPosition.assign(extractOp.getStaticPosition().begin(),
extractOp.getStaticPosition().end());
llvm::append_range(extractPosition, sentinels);
}
// Case 1. If we hit a transpose, just compose the map and iterate.
// Invariant: insert + transpose do not change rank, we can always compose.
LogicalResult ExtractFromInsertTransposeChainState::handleTransposeOp() {
// TODO: Canonicalization for dynamic position not implemented yet.
if (extractOp.hasDynamicPosition())
return failure();
if (!nextTransposeOp)
return failure();
AffineMap m = inversePermutation(AffineMap::getPermutationMap(
nextTransposeOp.getPermutation(), extractOp.getContext()));
extractPosition = applyPermutationMap(m, ArrayRef(extractPosition));
return success();
}
// Case 2: the insert position matches extractPosition exactly, early return.
LogicalResult
ExtractFromInsertTransposeChainState::handleInsertOpWithMatchingPos(
Value &res) {
// TODO: Canonicalization for dynamic position not implemented yet.
if (extractOp.hasDynamicPosition() || nextInsertOp.hasDynamicPosition())
return failure();
ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition();
if (insertedPos != llvm::ArrayRef(extractPosition).take_front(extractedRank))
return failure();
// Case 2.a. early-exit fold.
res = nextInsertOp.getValueToStore();
// Case 2.b. if internal transposition is present, canFold will be false.
return success(canFold());
}
/// Case 3: if inserted position is a prefix of extractPosition,
/// extract a portion of the source of the insertion.
/// This method updates the internal state.
LogicalResult
ExtractFromInsertTransposeChainState::handleInsertOpWithPrefixPos(Value &res) {
// TODO: Canonicalization for dynamic position not implemented yet.
if (extractOp.hasDynamicPosition() || nextInsertOp.hasDynamicPosition())
return failure();
ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition();
if (!isContainedWithin(insertedPos, extractPosition))
return failure();
// Set leading dims to zero.
std::fill_n(extractPosition.begin(), insertedPos.size(), 0);
// Drop extra leading dims.
extractPosition.erase(extractPosition.begin(),
extractPosition.begin() + insertedPos.size());
extractedRank = extractPosition.size() - sentinels.size();
// Case 3.a. early-exit fold (break and delegate to post-while path).
res = nextInsertOp.getValueToStore();
// Case 3.b. if internal transposition is present, canFold will be false.
return success();
}
/// Try to fold in place to extract(source, extractPosition) and return the
/// folded result. Return null if folding is not possible (e.g. due to an
/// internal transposition in the result).
Value ExtractFromInsertTransposeChainState::tryToFoldExtractOpInPlace(
Value source) {
// TODO: Canonicalization for dynamic position not implemented yet.
if (extractOp.hasDynamicPosition())
return Value();
// If we can't fold (either internal transposition, or nothing to fold), bail.
bool nothingToFold = (source == extractOp.getVector());
if (nothingToFold || !canFold())
return Value();
// Otherwise, fold by updating the op inplace and return its result.
OpBuilder b(extractOp.getContext());
extractOp.setStaticPosition(
ArrayRef(extractPosition).take_front(extractedRank));
extractOp.getVectorMutable().assign(source);
return extractOp.getResult();
}
/// Iterate over producing insert and transpose ops until we find a fold.
Value ExtractFromInsertTransposeChainState::fold() {
// TODO: Canonicalization for dynamic position not implemented yet.
if (extractOp.hasDynamicPosition())
return Value();
Value valueToExtractFrom = extractOp.getVector();
updateStateForNextIteration(valueToExtractFrom);
while (nextInsertOp || nextTransposeOp) {
// Case 1. If we hit a transpose, just compose the map and iterate.
// Invariant: insert + transpose do not change rank, we can always compose.
if (succeeded(handleTransposeOp())) {
valueToExtractFrom = nextTransposeOp.getVector();
updateStateForNextIteration(valueToExtractFrom);
continue;
}
Value result;
// Case 2: the position match exactly.
if (succeeded(handleInsertOpWithMatchingPos(result)))
return result;
// Case 3: if the inserted position is a prefix of extractPosition, we can
// just extract a portion of the source of the insert.
if (succeeded(handleInsertOpWithPrefixPos(result)))
return tryToFoldExtractOpInPlace(result);
// Case 4: extractPositionRef intersects insertedPosRef on non-sentinel
// values. This is a more difficult case and we bail.
ArrayRef<int64_t> insertedPos = nextInsertOp.getStaticPosition();
if (isContainedWithin(extractPosition, insertedPos) ||
intersectsWhereNonNegative(extractPosition, insertedPos))
return Value();
// Case 5: No intersection, we forward the extract to insertOp.dest().
valueToExtractFrom = nextInsertOp.getDest();
updateStateForNextIteration(valueToExtractFrom);
}
// If after all this we can fold, go for it.
return tryToFoldExtractOpInPlace(valueToExtractFrom);
}
/// Returns true if the operation has a 0-D vector type operand or result.
static bool hasZeroDimVectors(Operation *op) {
auto hasZeroDimVectorType = [](Type type) -> bool {
auto vecType = dyn_cast<VectorType>(type);
return vecType && vecType.getRank() == 0;
};
return llvm::any_of(op->getOperandTypes(), hasZeroDimVectorType) ||
llvm::any_of(op->getResultTypes(), hasZeroDimVectorType);
}
/// All BroadcastOps and SplatOps, as well as ShapeCastOps that only prepend
/// 1s, are considered to be 'broadcastlike'.
static bool isBroadcastLike(Operation *op) {
if (isa<BroadcastOp, SplatOp>(op))
return true;
auto shapeCast = dyn_cast<ShapeCastOp>(op);
if (!shapeCast)
return false;
// Check that shape_cast **only** prepends 1s, like (2,3) -> (1,1,2,3).
// Checking that the destination shape has a prefix of 1s is not sufficient,
// for example (2,3) -> (1,3,2) is not broadcastlike. A sufficient condition
// is that the source shape is a suffix of the destination shape.
VectorType srcType = shapeCast.getSourceVectorType();
ArrayRef<int64_t> srcShape = srcType.getShape();
uint64_t srcRank = srcType.getRank();
ArrayRef<int64_t> dstShape = shapeCast.getType().getShape();
return dstShape.size() >= srcRank && dstShape.take_back(srcRank) == srcShape;
}
/// Fold extract(broadcast(X)) to either extract(X) or just X.
///
/// Example:
///
/// broadcast extract [1][2]
/// (3, 4) --------> (2, 3, 4) ----------------> (4)
///
/// becomes
/// extract [1]
/// (3,4) -------------------------------------> (4)
///
///
/// The variable names used in this implementation correspond to the above
/// shapes as,
///
/// - (3, 4) is `input` shape.
/// - (2, 3, 4) is `broadcast` shape.
/// - (4) is `extract` shape.
///
/// This folding is possible when the suffix of `input` shape is the same as
/// `extract` shape.
static Value foldExtractFromBroadcast(ExtractOp extractOp) {
Operation *defOp = extractOp.getVector().getDefiningOp();
if (!defOp || !isBroadcastLike(defOp))
return Value();
Value input = defOp->getOperand(0);
// Replace extract(broadcast(X)) with X
if (extractOp.getType() == input.getType())
return input;
// Get required types and ranks in the chain
// input -> broadcast -> extract
// (scalars are treated as rank-0).
auto inputType = llvm::dyn_cast<VectorType>(input.getType());
auto extractType = llvm::dyn_cast<VectorType>(extractOp.getType());
unsigned inputRank = inputType ? inputType.getRank() : 0;
unsigned broadcastRank = extractOp.getSourceVectorType().getRank();
unsigned extractRank = extractType ? extractType.getRank() : 0;
// Cannot do without the broadcast if overall the rank increases.
if (extractRank > inputRank)
return Value();
// The above condition guarantees that input is a vector.
assert(inputType && "input must be a vector type because of previous checks");
ArrayRef<int64_t> inputShape = inputType.getShape();
// In the case where there is a broadcast dimension in the suffix, it is not
// possible to replace extract(broadcast(X)) with extract(X). Example:
//
// broadcast extract
// (1) --------> (3,4) ------> (4)
if (extractType &&
extractType.getShape() != inputShape.take_back(extractRank))
return Value();
// Replace extract(broadcast(X)) with extract(X).
// First, determine the new extraction position.
unsigned deltaOverall = inputRank - extractRank;
unsigned deltaBroadcast = broadcastRank - inputRank;
SmallVector<OpFoldResult> oldPositions = extractOp.getMixedPosition();
SmallVector<OpFoldResult> newPositions(deltaOverall);
IntegerAttr zero = OpBuilder(extractOp.getContext()).getIndexAttr(0);
for (auto [i, size] : llvm::enumerate(inputShape.take_front(deltaOverall))) {
newPositions[i] = size == 1 ? zero : oldPositions[i + deltaBroadcast];
}
auto [staticPos, dynPos] = decomposeMixedValues(newPositions);
extractOp->setOperands(
llvm::to_vector(llvm::concat<Value>(ValueRange(input), dynPos)));
extractOp.setStaticPosition(staticPos);
return extractOp.getResult();
}
/// Fold extractOp coming from ShuffleOp.
///
/// Example:
///
/// %shuffle = vector.shuffle %a, %b [0, 8, 7, 15]
/// : vector<8xf32>, vector<8xf32>
/// %extract = vector.extract %shuffle[3] : f32 from vector<4xf32>
/// ->
/// %extract = vector.extract %b[7] : f32 from vector<8xf32>
///
static Value foldExtractFromShuffle(ExtractOp extractOp) {
// Dynamic positions are not folded as the resulting code would be more
// complex than the input code.
if (extractOp.hasDynamicPosition())
return Value();
auto shuffleOp = extractOp.getVector().getDefiningOp<ShuffleOp>();
if (!shuffleOp)
return Value();
// TODO: 0-D or multi-dimensional vectors not supported yet.
if (shuffleOp.getResultVectorType().getRank() != 1)
return Value();
int64_t inputVecSize = shuffleOp.getV1().getType().getShape()[0];
auto shuffleMask = shuffleOp.getMask();
int64_t extractIdx = extractOp.getStaticPosition()[0];
int64_t shuffleIdx = shuffleMask[extractIdx];
// Find the shuffled vector to extract from based on the shuffle index.
if (shuffleIdx < inputVecSize) {
extractOp.setOperand(0, shuffleOp.getV1());
extractOp.setStaticPosition({shuffleIdx});
} else {
extractOp.setOperand(0, shuffleOp.getV2());
extractOp.setStaticPosition({shuffleIdx - inputVecSize});
}
return extractOp.getResult();
}
// Fold extractOp with source coming from ShapeCast op.
static Value foldExtractFromShapeCast(ExtractOp extractOp) {
// TODO: Canonicalization for dynamic position not implemented yet.
if (extractOp.hasDynamicPosition())
return Value();
auto shapeCastOp = extractOp.getVector().getDefiningOp<vector::ShapeCastOp>();
if (!shapeCastOp)
return Value();
// Get the nth dimension size starting from lowest dimension.
auto getDimReverse = [](VectorType type, int64_t n) {
return type.getShape().take_back(n + 1).front();
};
int64_t destinationRank =
llvm::isa<VectorType>(extractOp.getType())
? llvm::cast<VectorType>(extractOp.getType()).getRank()
: 0;
if (destinationRank > shapeCastOp.getSourceVectorType().getRank())
return Value();
if (destinationRank > 0) {
auto destinationType =
llvm::cast<VectorType>(extractOp.getResult().getType());
for (int64_t i = 0; i < destinationRank; i++) {
// The lowest dimension of the destination must match the lowest
// dimension of the shapecast op source.
// TODO: This case could be support in a canonicalization pattern.
if (getDimReverse(shapeCastOp.getSourceVectorType(), i) !=
getDimReverse(destinationType, i))
return Value();
}
}
// Extract the strides associated with the extract op vector source. Then use
// this to calculate a linearized position for the extract.
SmallVector<int64_t> extractedPos(extractOp.getStaticPosition());
std::reverse(extractedPos.begin(), extractedPos.end());
SmallVector<int64_t, 4> strides;
int64_t stride = 1;
for (int64_t i = 0, e = extractedPos.size(); i < e; i++) {
strides.push_back(stride);
stride *=
getDimReverse(extractOp.getSourceVectorType(), i + destinationRank);
}
int64_t position = linearize(extractedPos, strides);
// Then extract the strides associated to the shapeCast op vector source and
// delinearize the position using those strides.
SmallVector<int64_t, 4> newStrides;
int64_t numDimension =
shapeCastOp.getSourceVectorType().getRank() - destinationRank;
stride = 1;
for (int64_t i = 0; i < numDimension; i++) {
newStrides.push_back(stride);
stride *=
getDimReverse(shapeCastOp.getSourceVectorType(), i + destinationRank);
}
std::reverse(newStrides.begin(), newStrides.end());
SmallVector<int64_t, 4> newPosition = delinearize(position, newStrides);
// OpBuilder is only used as a helper to build an I64ArrayAttr.
OpBuilder b(extractOp.getContext());
extractOp.setStaticPosition(newPosition);
extractOp.setOperand(0, shapeCastOp.getSource());
return extractOp.getResult();
}
/// Fold an ExtractOp from ExtractStridedSliceOp.
static Value foldExtractFromExtractStrided(ExtractOp extractOp) {
// TODO: Canonicalization for dynamic position not implemented yet.
if (extractOp.hasDynamicPosition())
return Value();
auto extractStridedSliceOp =
extractOp.getVector().getDefiningOp<vector::ExtractStridedSliceOp>();
if (!extractStridedSliceOp)
return Value();
// 0-D vectors not supported.
assert(!hasZeroDimVectors(extractOp) && "0-D vectors not supported");
if (hasZeroDimVectors(extractStridedSliceOp))
return Value();
// Return if 'extractStridedSliceOp' has non-unit strides.
if (extractStridedSliceOp.hasNonUnitStrides())
return Value();
// Trim offsets for dimensions fully extracted.
auto sliceOffsets =
extractVector<int64_t>(extractStridedSliceOp.getOffsets());
while (!sliceOffsets.empty()) {
size_t lastOffset = sliceOffsets.size() - 1;
if (sliceOffsets.back() != 0 ||
extractStridedSliceOp.getType().getDimSize(lastOffset) !=
extractStridedSliceOp.getSourceVectorType().getDimSize(lastOffset))
break;
sliceOffsets.pop_back();
}
unsigned destinationRank = 0;
if (auto vecType = llvm::dyn_cast<VectorType>(extractOp.getType()))
destinationRank = vecType.getRank();
// The dimensions of the result need to be untouched by the
// extractStridedSlice op.
if (destinationRank > extractStridedSliceOp.getSourceVectorType().getRank() -
sliceOffsets.size())
return Value();
SmallVector<int64_t> extractedPos(extractOp.getStaticPosition());
assert(extractedPos.size() >= sliceOffsets.size());
for (size_t i = 0, e = sliceOffsets.size(); i < e; i++)
extractedPos[i] = extractedPos[i] + sliceOffsets[i];
extractOp.getVectorMutable().assign(extractStridedSliceOp.getVector());
// OpBuilder is only used as a helper to build an I64ArrayAttr.
OpBuilder b(extractOp.getContext());
extractOp.setStaticPosition(extractedPos);
return extractOp.getResult();
}
/// Fold extract_op fed from a chain of insertStridedSlice ops.
static Value foldExtractStridedOpFromInsertChain(ExtractOp extractOp) {
// TODO: Canonicalization for dynamic position not implemented yet.
if (extractOp.hasDynamicPosition())
return Value();
int64_t destinationRank =
llvm::isa<VectorType>(extractOp.getType())
? llvm::cast<VectorType>(extractOp.getType()).getRank()
: 0;
auto insertOp = extractOp.getVector().getDefiningOp<InsertStridedSliceOp>();
if (!insertOp)
return Value();
// 0-D vectors not supported.
assert(!hasZeroDimVectors(extractOp) && "0-D vectors not supported");
if (hasZeroDimVectors(insertOp))
return Value();
while (insertOp) {
int64_t insertRankDiff = insertOp.getDestVectorType().getRank() -
insertOp.getSourceVectorType().getRank();
if (destinationRank > insertOp.getSourceVectorType().getRank())
return Value();
auto insertOffsets = extractVector<int64_t>(insertOp.getOffsets());
ArrayRef<int64_t> extractOffsets = extractOp.getStaticPosition();
if (llvm::any_of(insertOp.getStrides(), [](Attribute attr) {
return llvm::cast<IntegerAttr>(attr).getInt() != 1;
}))
return Value();
bool disjoint = false;
SmallVector<int64_t, 4> offsetDiffs;
for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
int64_t start = insertOffsets[dim];
int64_t size =
(dim < insertRankDiff)
? 1
: insertOp.getSourceVectorType().getDimSize(dim - insertRankDiff);
int64_t end = start + size;
int64_t offset = extractOffsets[dim];
// Check if the start of the extract offset is in the interval inserted.
if (start <= offset && offset < end) {
if (dim >= insertRankDiff)
offsetDiffs.push_back(offset - start);
continue;
}
disjoint = true;
break;
}
// The extract element chunk overlap with the vector inserted.
if (!disjoint) {
// If any of the inner dimensions are only partially inserted we have a
// partial overlap.
int64_t srcRankDiff =
insertOp.getSourceVectorType().getRank() - destinationRank;
for (int64_t i = 0; i < destinationRank; i++) {
if (insertOp.getSourceVectorType().getDimSize(i + srcRankDiff) !=
insertOp.getDestVectorType().getDimSize(i + srcRankDiff +
insertRankDiff))
return Value();
}
extractOp.getVectorMutable().assign(insertOp.getValueToStore());
// OpBuilder is only used as a helper to build an I64ArrayAttr.
OpBuilder b(extractOp.getContext());
extractOp.setStaticPosition(offsetDiffs);
return extractOp.getResult();
}
// If the chunk extracted is disjoint from the chunk inserted, keep
// looking in the insert chain.
insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
}
return Value();
}
/// Try to fold the extraction of a scalar from a vector defined by
/// vector.from_elements. E.g.:
///
/// %0 = vector.from_elements %a, %b : vector<2xf32>
/// %1 = vector.extract %0[0] : f32 from vector<2xf32>
/// ==> fold to %a
static Value foldScalarExtractFromFromElements(ExtractOp extractOp) {
// Dynamic extractions cannot be folded.
if (extractOp.hasDynamicPosition())
return {};
// Look for extract(from_elements).
auto fromElementsOp = extractOp.getVector().getDefiningOp<FromElementsOp>();
if (!fromElementsOp)
return {};
// Scalable vectors are not supported.
auto vecType = llvm::cast<VectorType>(fromElementsOp.getType());
if (vecType.isScalable())
return {};
// Only extractions of scalars are supported.
int64_t rank = vecType.getRank();
ArrayRef<int64_t> indices = extractOp.getStaticPosition();
if (extractOp.getType() != vecType.getElementType())
return {};
assert(static_cast<int64_t>(indices.size()) == rank &&
"unexpected number of indices");
// Compute flattened/linearized index and fold to operand.
int flatIndex = 0;
int stride = 1;
for (int i = rank - 1; i >= 0; --i) {
flatIndex += indices[i] * stride;
stride *= vecType.getDimSize(i);
}
return fromElementsOp.getElements()[flatIndex];
}
/// If the dynamic indices of `extractOp` or `insertOp` are in fact constants,
/// then fold it.
template <typename OpType, typename AdaptorType>
static Value extractInsertFoldConstantOp(OpType op, AdaptorType adaptor,
SmallVectorImpl<Value> &operands) {
std::vector<int64_t> staticPosition = op.getStaticPosition().vec();
OperandRange dynamicPosition = op.getDynamicPosition();
ArrayRef<Attribute> dynamicPositionAttr = adaptor.getDynamicPosition();
ArrayRef<int64_t> vectorShape;
if constexpr (std::is_same_v<OpType, ExtractOp>)
vectorShape = op.getSourceVectorType().getShape();
else
vectorShape = op.getDestVectorType().getShape();
// If the dynamic operands is empty, it is returned directly.
if (!dynamicPosition.size())
return {};
// `index` is used to iterate over the `dynamicPosition`.
unsigned index = 0;
// `opChange` is a flag. If it is true, it means to update `op` in place.
bool opChange = false;
for (unsigned i = 0, e = staticPosition.size(); i < e; ++i) {
if (ShapedType::isStatic(staticPosition[i]))
continue;
Attribute positionAttr = dynamicPositionAttr[index];
Value position = dynamicPosition[index++];
if (auto attr = mlir::dyn_cast_if_present<IntegerAttr>(positionAttr)) {
int64_t value = attr.getInt();
// Do not fold if the value is out of bounds (-1 signifies a poison
// value rather than OOB index).
if (value >= -1 && value < vectorShape[i]) {
staticPosition[i] = attr.getInt();
opChange = true;
continue;
}
}
operands.push_back(position);
}
if (opChange) {
op.setStaticPosition(staticPosition);
op.getOperation()->setOperands(operands);
// Return the original result to indicate an in-place folding happened.
return op.getResult();
}
return {};
}
/// Fold an insert or extract operation into an poison value when a poison index
/// is found at any dimension of the static position.
static Attribute foldPoisonIndexInsertExtractOp(MLIRContext *context,
ArrayRef<int64_t> staticPos,
int64_t poisonVal) {
if (!is_contained(staticPos, poisonVal))
return {};
return ub::PoisonAttr::get(context);
}
/// Fold a vector extract from is a poison source.
static Attribute foldPoisonSrcExtractOp(Attribute srcAttr) {
if (isa_and_nonnull<ub::PoisonAttr>(srcAttr))
return srcAttr;
return {};
}
/// Fold a vector extract extracting from a DenseElementsAttr.
static Attribute foldDenseElementsAttrSrcExtractOp(ExtractOp extractOp,
Attribute srcAttr) {
auto denseAttr = dyn_cast_if_present<DenseElementsAttr>(srcAttr);
if (!denseAttr) {
return {};
}
if (denseAttr.isSplat()) {
Attribute newAttr = denseAttr.getSplatValue<Attribute>();
if (auto vecDstType = dyn_cast<VectorType>(extractOp.getType()))
newAttr = DenseElementsAttr::get(vecDstType, newAttr);
return newAttr;
}
auto vecTy = cast<VectorType>(extractOp.getSourceVectorType());
if (vecTy.isScalable())
return {};
if (extractOp.hasDynamicPosition()) {
return {};
}
// Materializing subsets of a large constant array can generally lead to
// explosion in IR size because of different combination of subsets that
// can exist. However, vector.extract is a restricted form of subset
// extract where you can only extract non-overlapping (or the same) subset for
// a given rank of the subset. Because of this property, the IR size can only
// increase at most by `rank * size(array)` from a single constant array being
// extracted by multiple extracts.
// Calculate the linearized position of the continuous chunk of elements to
// extract.
SmallVector<int64_t> completePositions(vecTy.getRank(), 0);
copy(extractOp.getStaticPosition(), completePositions.begin());
int64_t startPos =
linearize(completePositions, computeStrides(vecTy.getShape()));
auto denseValuesBegin = denseAttr.value_begin<TypedAttr>() + startPos;
TypedAttr newAttr;
if (auto resVecTy = dyn_cast<VectorType>(extractOp.getType())) {
SmallVector<Attribute> elementValues(
denseValuesBegin, denseValuesBegin + resVecTy.getNumElements());
newAttr = DenseElementsAttr::get(resVecTy, elementValues);
} else {
newAttr = *denseValuesBegin;
}
return newAttr;
}
OpFoldResult ExtractOp::fold(FoldAdaptor adaptor) {
// Fold "vector.extract %v[] : vector<2x2xf32> from vector<2x2xf32>" to %v.
// Note: Do not fold "vector.extract %v[] : f32 from vector<f32>" (type
// mismatch).
if (getNumIndices() == 0 && getVector().getType() == getResult().getType())
return getVector();
if (auto res = foldPoisonSrcExtractOp(adaptor.getVector()))
return res;
// Fold `arith.constant` indices into the `vector.extract` operation.
// Do not stop here as this fold may enable subsequent folds that require
// constant indices.
SmallVector<Value> operands = {getVector()};
auto inplaceFolded = extractInsertFoldConstantOp(*this, adaptor, operands);
if (auto res = foldPoisonIndexInsertExtractOp(
getContext(), adaptor.getStaticPosition(), kPoisonIndex))
return res;
if (auto res = foldDenseElementsAttrSrcExtractOp(*this, adaptor.getVector()))
return res;
if (succeeded(foldExtractOpFromExtractChain(*this)))
return getResult();
if (auto res = ExtractFromInsertTransposeChainState(*this).fold())
return res;
if (auto res = foldExtractFromBroadcast(*this))
return res;
if (auto res = foldExtractFromShuffle(*this))
return res;
if (auto res = foldExtractFromShapeCast(*this))
return res;
if (auto val = foldExtractFromExtractStrided(*this))
return val;
if (auto val = foldExtractStridedOpFromInsertChain(*this))
return val;
if (auto val = foldScalarExtractFromFromElements(*this))
return val;
return inplaceFolded;
}
namespace {
// Pattern to rewrite a ExtractOp(Broadcast) -> Broadcast.
class ExtractOpFromBroadcast final : public OpRewritePattern<ExtractOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractOp extractOp,
PatternRewriter &rewriter) const override {
Operation *defOp = extractOp.getVector().getDefiningOp();
VectorType outType = dyn_cast<VectorType>(extractOp.getType());
if (!defOp || !isBroadcastLike(defOp) || !outType)
return failure();
Value source = defOp->getOperand(0);
if (isBroadcastableTo(source.getType(), outType) !=
BroadcastableToResult::Success)
return failure();
rewriter.replaceOpWithNewOp<BroadcastOp>(extractOp, outType, source);
return success();
}
};
// Pattern to rewrite a ExtractOp(CreateMask) -> CreateMask.
class ExtractOpFromCreateMask final : public OpRewritePattern<ExtractOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractOp extractOp,
PatternRewriter &rewriter) const override {
auto createMaskOp =
extractOp.getVector().getDefiningOp<vector::CreateMaskOp>();
if (!createMaskOp)
return failure();
VectorType extractedMaskType =
llvm::dyn_cast<VectorType>(extractOp.getResult().getType());
if (!extractedMaskType)
return failure();
auto maskOperands = createMaskOp.getOperands();
ArrayRef<int64_t> extractOpPos = extractOp.getStaticPosition();
VectorType maskType = createMaskOp.getVectorType();
bool containsUnknownDims = false;
bool allFalse = getMaskFormat(createMaskOp) == MaskFormat::AllFalse;
for (size_t dimIdx = 0; !allFalse && dimIdx < extractOpPos.size();
dimIdx++) {
int64_t pos = extractOpPos[dimIdx];
Value operand = maskOperands[dimIdx];
auto constantOp = operand.getDefiningOp<arith::ConstantOp>();
if (!constantOp) {
// Bounds of this dim unknown.
containsUnknownDims = true;
continue;
}
int64_t createMaskBound =
llvm::cast<IntegerAttr>(constantOp.getValue()).getInt();
if (pos != ShapedType::kDynamic) {
// If any position is outside the range from the `create_mask`, then the
// extracted mask will be all-false.
allFalse |= pos >= createMaskBound;
} else if (createMaskBound < maskType.getDimSize(dimIdx)) {
// This dim is not all-true and since this is a dynamic index we don't
// know if the extraction is within the true or false region.
// Note: Zero dims have already handled via getMaskFormat().
containsUnknownDims = true;
}
}
if (allFalse) {
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
extractOp, DenseElementsAttr::get(extractedMaskType, false));
} else if (!containsUnknownDims) {
rewriter.replaceOpWithNewOp<vector::CreateMaskOp>(
extractOp, extractedMaskType,
maskOperands.drop_front(extractOpPos.size()));
} else {
return failure();
}
return success();
}
};
// Folds extract(shape_cast(..)) into shape_cast when the total element count
// does not change.
LogicalResult foldExtractFromShapeCastToShapeCast(ExtractOp extractOp,
PatternRewriter &rewriter) {
auto castOp = extractOp.getVector().getDefiningOp<ShapeCastOp>();
if (!castOp)
return failure();
VectorType sourceType = castOp.getSourceVectorType();
auto targetType = dyn_cast<VectorType>(extractOp.getResult().getType());
if (!targetType)
return failure();
if (sourceType.getNumElements() != targetType.getNumElements())
return failure();
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(extractOp, targetType,
castOp.getSource());
return success();
}
/// Try to canonicalize the extraction of a subvector from a vector defined by
/// vector.from_elements. E.g.:
///
/// %0 = vector.from_elements %a, %b, %a, %a : vector<2x2xf32>
/// %1 = vector.extract %0[0] : vector<2xf32> from vector<2x2xf32>
/// ==> canonicalize to vector.from_elements %a, %b : vector<2xf32>
LogicalResult foldExtractFromFromElements(ExtractOp extractOp,
PatternRewriter &rewriter) {
// Dynamic positions are not supported.
if (extractOp.hasDynamicPosition())
return failure();
// Scalar extracts are handled by the folder.
auto resultType = dyn_cast<VectorType>(extractOp.getType());
if (!resultType)
return failure();
// Look for extracts from a from_elements op.
auto fromElementsOp = extractOp.getVector().getDefiningOp<FromElementsOp>();
if (!fromElementsOp)
return failure();
VectorType inputType = fromElementsOp.getType();
// Scalable vectors are not supported.
if (resultType.isScalable() || inputType.isScalable())
return failure();
// Compute the position of first extracted element and flatten/linearize the
// position.
SmallVector<int64_t> firstElementPos =
llvm::to_vector(extractOp.getStaticPosition());
firstElementPos.append(/*NumInputs=*/resultType.getRank(), /*Elt=*/0);
int flatIndex = 0;
int stride = 1;
for (int64_t i = inputType.getRank() - 1; i >= 0; --i) {
flatIndex += firstElementPos[i] * stride;
stride *= inputType.getDimSize(i);
}
// Replace the op with a smaller from_elements op.
rewriter.replaceOpWithNewOp<FromElementsOp>(
extractOp, resultType,
fromElementsOp.getElements().slice(flatIndex,
resultType.getNumElements()));
return success();
}
} // namespace
void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ExtractOpFromBroadcast, ExtractOpFromCreateMask>(context);
results.add(foldExtractFromShapeCastToShapeCast);
results.add(foldExtractFromFromElements);
}
static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
SmallVectorImpl<int64_t> &results) {
for (auto attr : arrayAttr)
results.push_back(llvm::cast<IntegerAttr>(attr).getInt());
}
//===----------------------------------------------------------------------===//
// FmaOp
//===----------------------------------------------------------------------===//
std::optional<SmallVector<int64_t, 4>> FMAOp::getShapeForUnroll() {
return llvm::to_vector<4>(getVectorType().getShape());
}
//===----------------------------------------------------------------------===//
// ToElementsOp
//===----------------------------------------------------------------------===//
/// Returns true if all the `operands` are defined by `defOp`.
/// Otherwise, returns false.
static bool haveSameDefiningOp(OperandRange operands, Operation *defOp) {
if (operands.empty())
return false;
return llvm::all_of(operands, [&](Value operand) {
Operation *currentDef = operand.getDefiningOp();
return currentDef == defOp;
});
}
/// Folds vector.to_elements(vector.from_elements(%e0, %e1, ...)) into
/// (%e0, %e1, ...). For example:
///
/// %0 = vector.from_elements %a, %b, %c : vector<3xf32>
/// %1:3 = vector.to_elements %0 : vector<3xf32>
/// user_op %1#0, %1#1, %1#2
///
/// becomes:
///
/// user_op %a, %b, %c
///
static LogicalResult
foldToElementsFromElements(ToElementsOp toElementsOp,
SmallVectorImpl<OpFoldResult> &results) {
auto fromElementsOp =
toElementsOp.getSource().getDefiningOp<FromElementsOp>();
if (!fromElementsOp)
return failure();
llvm::append_range(results, fromElementsOp.getElements());
return success();
}
LogicalResult ToElementsOp::fold(FoldAdaptor adaptor,
SmallVectorImpl<OpFoldResult> &results) {
return foldToElementsFromElements(*this, results);
}
//===----------------------------------------------------------------------===//
// FromElementsOp
//===----------------------------------------------------------------------===//
/// Folds vector.from_elements(vector.to_elements(%vector)) into %vector.
///
/// Case #1: Input and output vectors are the same.
///
/// %0:3 = vector.to_elements %a : vector<3xf32>
/// %1 = vector.from_elements %0#0, %0#1, %0#2 : vector<3xf32>
/// user_op %1
///
/// becomes:
///
/// user_op %a
///
static OpFoldResult foldFromElementsToElements(FromElementsOp fromElementsOp) {
OperandRange fromElemsOperands = fromElementsOp.getElements();
if (fromElemsOperands.empty())
return {};
auto toElementsOp = fromElemsOperands[0].getDefiningOp<ToElementsOp>();
if (!toElementsOp)
return {};
if (!haveSameDefiningOp(fromElemsOperands, toElementsOp))
return {};
// Case #1: Input and output vectors are the same. Forward the input vector.
Value toElementsInput = toElementsOp.getSource();
if (fromElementsOp.getType() == toElementsInput.getType() &&
llvm::equal(fromElemsOperands, toElementsOp.getResults())) {
return toElementsInput;
}
// TODO: Support cases with different input and output shapes and different
// number of elements.
return {};
}
/// Fold vector.from_elements to a constant when all operands are constants.
/// Example:
/// %c1 = arith.constant 1 : i32
/// %c2 = arith.constant 2 : i32
/// %v = vector.from_elements %c1, %c2 : vector<2xi32>
/// =>
/// %v = arith.constant dense<[1, 2]> : vector<2xi32>
///
static OpFoldResult foldFromElementsToConstant(FromElementsOp fromElementsOp,
ArrayRef<Attribute> elements) {
if (llvm::any_of(elements, [](Attribute attr) { return !attr; }))
return {};
auto destVecType = fromElementsOp.getDest().getType();
auto destEltType = destVecType.getElementType();
// Constant attributes might have a different type than the return type.
// Convert them before creating the dense elements attribute.
auto convertedElements = llvm::map_to_vector(elements, [&](Attribute attr) {
return convertIntegerAttr(attr, destEltType);
});
return DenseElementsAttr::get(destVecType, convertedElements);
}
OpFoldResult FromElementsOp::fold(FoldAdaptor adaptor) {
if (auto res = foldFromElementsToElements(*this))
return res;
if (auto res = foldFromElementsToConstant(*this, adaptor.getElements()))
return res;
return {};
}
/// Rewrite a vector.from_elements into a vector.splat if all elements are the
/// same SSA value. E.g.:
///
/// %0 = vector.from_elements %a, %a, %a : vector<3xf32>
/// ==> rewrite to vector.splat %a : vector<3xf32>
static LogicalResult rewriteFromElementsAsSplat(FromElementsOp fromElementsOp,
PatternRewriter &rewriter) {
if (!llvm::all_equal(fromElementsOp.getElements()))
return failure();
rewriter.replaceOpWithNewOp<SplatOp>(fromElementsOp, fromElementsOp.getType(),
fromElementsOp.getElements().front());
return success();
}
/// Rewrite from_elements on multiple scalar extracts as a shape_cast
/// on a single extract. Example:
/// %0 = vector.extract %source[0, 0] : i8 from vector<2x2xi8>
/// %1 = vector.extract %source[0, 1] : i8 from vector<2x2xi8>
/// %2 = vector.from_elements %0, %1 : vector<2xi8>
///
/// becomes
/// %1 = vector.extract %source[0] : vector<1x2xi8> from vector<2x2xi8>
/// %2 = vector.shape_cast %1 : vector<1x2xi8> to vector<2xi8>
///
/// The requirements for this to be valid are
///
/// i) The elements are extracted from the same vector (%source).
///
/// ii) The elements form a suffix of %source. Specifically, the number
/// of elements is the same as the product of the last N dimension sizes
/// of %source, for some N.
///
/// iii) The elements are extracted contiguously in ascending order.
class FromElementsToShapeCast : public OpRewritePattern<FromElementsOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(FromElementsOp fromElements,
PatternRewriter &rewriter) const override {
// Handled by `rewriteFromElementsAsSplat`
if (fromElements.getType().getNumElements() == 1)
return failure();
// The common source that all elements are extracted from, if one exists.
TypedValue<VectorType> source;
// The position of the combined extract operation, if one is created.
ArrayRef<int64_t> combinedPosition;
// The expected index of extraction of the current element in the loop, if
// elements are extracted contiguously in ascending order.
SmallVector<int64_t> expectedPosition;
for (auto [insertIndex, element] :
llvm::enumerate(fromElements.getElements())) {
// Check that the element is from a vector.extract operation.
auto extractOp =
dyn_cast_if_present<vector::ExtractOp>(element.getDefiningOp());
if (!extractOp) {
return rewriter.notifyMatchFailure(fromElements,
"element not from vector.extract");
}
// Check condition (i) by checking that all elements have the same source
// as the first element.
if (insertIndex == 0) {
source = extractOp.getVector();
} else if (extractOp.getVector() != source) {
return rewriter.notifyMatchFailure(fromElements,
"element from different vector");
}
ArrayRef<int64_t> position = extractOp.getStaticPosition();
int64_t rank = position.size();
assert(rank == source.getType().getRank() &&
"scalar extract must have full rank position");
// Check condition (ii) by checking that the position that the first
// element is extracted from has sufficient trailing 0s. For example, in
//
// %elm0 = vector.extract %source[1, 0, 0] : i8 from vector<2x3x4xi8>
// [...]
// %elms = vector.from_elements %elm0, [...] : vector<12xi8>
//
// The 2 trailing 0s in the position of extraction of %elm0 cover 3*4 = 12
// elements, which is the number of elements of %n, so this is valid.
if (insertIndex == 0) {
const int64_t numElms = fromElements.getType().getNumElements();
int64_t numSuffixElms = 1;
int64_t index = rank;
while (index > 0 && position[index - 1] == 0 &&
numSuffixElms < numElms) {
numSuffixElms *= source.getType().getDimSize(index - 1);
--index;
}
if (numSuffixElms != numElms) {
return rewriter.notifyMatchFailure(
fromElements, "elements do not form a suffix of source");
}
expectedPosition = llvm::to_vector(position);
combinedPosition = position.drop_back(rank - index);
}
// Check condition (iii).
else if (expectedPosition != position) {
return rewriter.notifyMatchFailure(
fromElements, "elements not in ascending order (static order)");
}
increment(expectedPosition, source.getType().getShape());
}
auto extracted = rewriter.createOrFold<vector::ExtractOp>(
fromElements.getLoc(), source, combinedPosition);
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(
fromElements, fromElements.getType(), extracted);
return success();
}
/// Increments n-D `indices` by 1 starting from the innermost dimension.
static void increment(MutableArrayRef<int64_t> indices,
ArrayRef<int64_t> shape) {
for (int dim : llvm::reverse(llvm::seq<int>(0, indices.size()))) {
indices[dim] += 1;
if (indices[dim] < shape[dim])
break;
indices[dim] = 0;
}
}
};
void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add(rewriteFromElementsAsSplat);
results.add<FromElementsToShapeCast>(context);
}
//===----------------------------------------------------------------------===//
// BroadcastOp
//===----------------------------------------------------------------------===//
void BroadcastOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
SetIntRangeFn setResultRanges) {
setResultRanges(getResult(), argRanges.front());
}
std::optional<SmallVector<int64_t, 4>> BroadcastOp::getShapeForUnroll() {
return llvm::to_vector<4>(getResultVectorType().getShape());
}
/// Return the dimensions of the result vector that were formerly ones in the
/// source tensor and thus correspond to "dim-1" broadcasting.
static llvm::SetVector<int64_t>
computeBroadcastedUnitDims(ArrayRef<int64_t> srcShape,
ArrayRef<int64_t> dstShape) {
int64_t rankDiff = dstShape.size() - srcShape.size();
int64_t dstDim = rankDiff;
llvm::SetVector<int64_t> res;
for (auto [s1, s2] :
llvm::zip_equal(srcShape, dstShape.drop_front(rankDiff))) {
if (s1 != s2) {
assert(s1 == 1 && "expected \"dim-1\" broadcasting");
res.insert(dstDim);
}
++dstDim;
}
return res;
}
llvm::SetVector<int64_t> BroadcastOp::computeBroadcastedUnitDims() {
// Scalar broadcast is without any unit dim broadcast.
auto srcVectorType = llvm::dyn_cast<VectorType>(getSourceType());
if (!srcVectorType)
return {};
return ::computeBroadcastedUnitDims(srcVectorType.getShape(),
getResultVectorType().getShape());
}
/// Broadcast `value` to a vector of `dstShape`, knowing that exactly the
/// `broadcastedDims` dimensions in the dstShape are broadcasted.
/// This requires (and asserts) that the broadcast is free of "dim-1"
/// broadcasting.
/// Since vector.broadcast only allows expanding leading dimensions, an extra
/// vector.transpose may be inserted to make the broadcast possible.
/// `value`, `dstShape` and `broadcastedDims` must be properly specified or
/// the helper will assert. This means:
/// 1. `dstShape` must not be empty.
/// 2. `broadcastedDims` must be confined to [0 .. rank(value.getVectorType)]
/// 2. `dstShape` trimmed of the dimensions specified in `broadcastedDims`
// must match the `value` shape.
Value BroadcastOp::createOrFoldBroadcastOp(
OpBuilder &b, Value value, ArrayRef<int64_t> dstShape,
const llvm::SetVector<int64_t> &broadcastedDims) {
assert(!dstShape.empty() && "unexpected empty dst shape");
// Well-formedness check.
SmallVector<int64_t> checkShape;
for (int i = 0, e = dstShape.size(); i < e; ++i) {
if (broadcastedDims.contains(i))
continue;
checkShape.push_back(dstShape[i]);
}
assert(broadcastedDims.size() == dstShape.size() - checkShape.size() &&
"ill-formed broadcastedDims contains values not confined to "
"destVectorShape");
Location loc = value.getLoc();
Type elementType = getElementTypeOrSelf(value.getType());
VectorType srcVectorType = llvm::dyn_cast<VectorType>(value.getType());
VectorType dstVectorType = VectorType::get(dstShape, elementType);
// Step 2. If scalar -> dstShape broadcast, just do it.
if (!srcVectorType) {
assert(checkShape.empty() &&
"ill-formed createOrFoldBroadcastOp arguments");
return b.createOrFold<vector::BroadcastOp>(loc, dstVectorType, value);
}
assert(srcVectorType.getShape().equals(checkShape) &&
"ill-formed createOrFoldBroadcastOp arguments");
// Step 3. Since vector.broadcast only allows creating leading dims,
// vector -> dstShape broadcast may require a transpose.
// Traverse the dims in order and construct:
// 1. The leading entries of the broadcastShape that is guaranteed to be
// achievable by a simple broadcast.
// 2. The induced permutation for the subsequent vector.transpose that will
// bring us from `broadcastShape` back to he desired `dstShape`.
// If the induced permutation is not the identity, create a vector.transpose.
SmallVector<int64_t> broadcastShape, permutation(dstShape.size(), -1);
broadcastShape.reserve(dstShape.size());
// Consider the example:
// srcShape = 2x4
// dstShape = 1x2x3x4x5
// broadcastedDims = [0, 2, 4]
//
// We want to build:
// broadcastShape = 1x3x5x2x4
// permutation = [0, 2, 4, 1, 3]
// ---V--- -----V-----
// leading broadcast part src shape part
//
// Note that the trailing dims of broadcastShape are exactly the srcShape
// by construction.
// nextSrcShapeDim is used to keep track of where in the permutation the
// "src shape part" occurs.
int64_t nextSrcShapeDim = broadcastedDims.size();
for (int64_t i = 0, e = dstShape.size(); i < e; ++i) {
if (broadcastedDims.contains(i)) {
// 3.a. For each dim in the dst shape, if it is a broadcasted dim,
// bring it to the head of the broadcastShape.
// It will need to be permuted back from `broadcastShape.size() - 1` into
// position `i`.
broadcastShape.push_back(dstShape[i]);
permutation[i] = broadcastShape.size() - 1;
} else {
// 3.b. Otherwise, the dim is not broadcasted, it comes from the src
// shape and needs to be permuted into position `i`.
// Don't touch `broadcastShape` here, the whole srcShape will be
// appended after.
permutation[i] = nextSrcShapeDim++;
}
}
// 3.c. Append the srcShape.
llvm::append_range(broadcastShape, srcVectorType.getShape());
// Ensure there are no "dim-1" broadcasts.
assert(::computeBroadcastedUnitDims(srcVectorType.getShape(), broadcastShape)
.empty() &&
"unexpected \"dim-1\" broadcast");
VectorType broadcastType = VectorType::get(broadcastShape, elementType);
assert(vector::isBroadcastableTo(value.getType(), broadcastType) ==
vector::BroadcastableToResult::Success &&
"must be broadcastable");
Value res = b.createOrFold<vector::BroadcastOp>(loc, broadcastType, value);
// Step 4. If we find any dimension that indeed needs to be permuted,
// immediately return a new vector.transpose.
for (int64_t i = 0, e = permutation.size(); i < e; ++i)
if (permutation[i] != i)
return b.createOrFold<vector::TransposeOp>(loc, res, permutation);
// Otherwise return res.
return res;
}
BroadcastableToResult mlir::vector::isBroadcastableTo(
Type srcType, VectorType dstVectorType,
std::pair<VectorDim, VectorDim> *mismatchingDims) {
// Broadcast scalar to vector of the same element type.
if (srcType.isIntOrIndexOrFloat() && dstVectorType &&
getElementTypeOrSelf(srcType) == getElementTypeOrSelf(dstVectorType))
return BroadcastableToResult::Success;
// From now on, only vectors broadcast.
VectorType srcVectorType = llvm::dyn_cast<VectorType>(srcType);
if (!srcVectorType)
return BroadcastableToResult::SourceTypeNotAVector;
int64_t srcRank = srcVectorType.getRank();
int64_t dstRank = dstVectorType.getRank();
if (srcRank > dstRank)
return BroadcastableToResult::SourceRankHigher;
// Source has an exact match or singleton value for all trailing dimensions
// (all leading dimensions are simply duplicated).
int64_t lead = dstRank - srcRank;
for (int64_t dimIdx = 0; dimIdx < srcRank; ++dimIdx) {
// Have mismatching dims (in the sense of vector.broadcast semantics) been
// encountered?
bool foundMismatchingDims = false;
// Check fixed-width dims.
int64_t srcDim = srcVectorType.getDimSize(dimIdx);
int64_t dstDim = dstVectorType.getDimSize(lead + dimIdx);
if (srcDim != 1 && srcDim != dstDim)
foundMismatchingDims = true;
// Check scalable flags.
bool srcDimScalableFlag = srcVectorType.getScalableDims()[dimIdx];
bool dstDimScalableFlag = dstVectorType.getScalableDims()[lead + dimIdx];
if ((srcDim == 1 && srcDimScalableFlag && dstDim != 1) ||
// 1 -> [N] is fine, everything else should be rejected when mixing
// fixed-width and scalable dims
(srcDimScalableFlag != dstDimScalableFlag &&
(srcDim != 1 || srcDimScalableFlag)))
foundMismatchingDims = true;
if (foundMismatchingDims) {
if (mismatchingDims != nullptr) {
mismatchingDims->first.dim = srcDim;
mismatchingDims->first.isScalable = srcDimScalableFlag;
mismatchingDims->second.dim = dstDim;
mismatchingDims->second.isScalable = dstDimScalableFlag;
}
return BroadcastableToResult::DimensionMismatch;
}
}
return BroadcastableToResult::Success;
}
LogicalResult BroadcastOp::verify() {
std::pair<VectorDim, VectorDim> mismatchingDims;
BroadcastableToResult res = isBroadcastableTo(
getSourceType(), getResultVectorType(), &mismatchingDims);
if (res == BroadcastableToResult::Success)
return success();
if (res == BroadcastableToResult::SourceRankHigher)
return emitOpError("source rank higher than destination rank");
if (res == BroadcastableToResult::DimensionMismatch) {
return emitOpError("dimension mismatch (")
<< (mismatchingDims.first.isScalable ? "[" : "")
<< mismatchingDims.first.dim
<< (mismatchingDims.first.isScalable ? "]" : "") << " vs. "
<< (mismatchingDims.second.isScalable ? "[" : "")
<< mismatchingDims.second.dim
<< (mismatchingDims.second.isScalable ? "]" : "") << ")";
}
if (res == BroadcastableToResult::SourceTypeNotAVector)
return emitOpError("source type is not a vector");
llvm_unreachable("unexpected vector.broadcast op error");
}
OpFoldResult BroadcastOp::fold(FoldAdaptor adaptor) {
if (getSourceType() == getResultVectorType())
return getSource();
if (!adaptor.getSource())
return {};
auto vectorType = getResultVectorType();
if (auto attr = llvm::dyn_cast<IntegerAttr>(adaptor.getSource())) {
if (vectorType.getElementType() != attr.getType())
return {};
return DenseElementsAttr::get(vectorType, attr);
}
if (auto attr = llvm::dyn_cast<FloatAttr>(adaptor.getSource())) {
if (vectorType.getElementType() != attr.getType())
return {};
return DenseElementsAttr::get(vectorType, attr);
}
if (auto attr = llvm::dyn_cast<SplatElementsAttr>(adaptor.getSource()))
return DenseElementsAttr::get(vectorType, attr.getSplatValue<Attribute>());
if (llvm::dyn_cast<ub::PoisonAttr>(adaptor.getSource()))
return ub::PoisonAttr::get(getContext());
return {};
}
namespace {
// Fold broadcast1(broadcast2(x)) into broadcast1(x).
struct BroadcastFolder : public OpRewritePattern<BroadcastOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(BroadcastOp broadcastOp,
PatternRewriter &rewriter) const override {
auto srcBroadcast = broadcastOp.getSource().getDefiningOp<BroadcastOp>();
if (!srcBroadcast)
return failure();
rewriter.replaceOpWithNewOp<BroadcastOp>(broadcastOp,
broadcastOp.getResultVectorType(),
srcBroadcast.getSource());
return success();
}
};
} // namespace
void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
// BroadcastToShapeCast is not a default canonicalization, it is opt-in by
// calling `populateCastAwayVectorLeadingOneDimPatterns`
results.add<BroadcastFolder>(context);
}
//===----------------------------------------------------------------------===//
// ShuffleOp
//===----------------------------------------------------------------------===//
LogicalResult ShuffleOp::verify() {
VectorType resultType = getResultVectorType();
VectorType v1Type = getV1VectorType();
VectorType v2Type = getV2VectorType();
// Verify ranks.
int64_t resRank = resultType.getRank();
int64_t v1Rank = v1Type.getRank();
int64_t v2Rank = v2Type.getRank();
bool wellFormed0DCase = v1Rank == 0 && v2Rank == 0 && resRank == 1;
bool wellFormedNDCase = v1Rank == resRank && v2Rank == resRank;
if (!wellFormed0DCase && !wellFormedNDCase)
return emitOpError("rank mismatch");
// Verify all but leading dimension sizes.
for (int64_t r = 1; r < v1Rank; ++r) {
int64_t resDim = resultType.getDimSize(r);
int64_t v1Dim = v1Type.getDimSize(r);
int64_t v2Dim = v2Type.getDimSize(r);
if (resDim != v1Dim || v1Dim != v2Dim)
return emitOpError("dimension mismatch");
}
// Verify mask length.
ArrayRef<int64_t> mask = getMask();
int64_t maskLength = mask.size();
if (maskLength <= 0)
return emitOpError("invalid mask length");
if (maskLength != resultType.getDimSize(0))
return emitOpError("mask length mismatch");
// Verify all indices.
int64_t indexSize = (v1Type.getRank() == 0 ? 1 : v1Type.getDimSize(0)) +
(v2Type.getRank() == 0 ? 1 : v2Type.getDimSize(0));
for (auto [idx, maskPos] : llvm::enumerate(mask)) {
if (!isValidPositiveIndexOrPoison(maskPos, kPoisonIndex, indexSize))
return emitOpError("mask index #") << (idx + 1) << " out of range";
}
return success();
}
LogicalResult
ShuffleOp::inferReturnTypes(MLIRContext *, std::optional<Location>,
ShuffleOp::Adaptor adaptor,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto v1Type = llvm::cast<VectorType>(adaptor.getV1().getType());
auto v1Rank = v1Type.getRank();
// Construct resulting type: leading dimension matches mask
// length, all trailing dimensions match the operands.
SmallVector<int64_t, 4> shape;
shape.reserve(v1Rank);
shape.push_back(std::max<size_t>(1, adaptor.getMask().size()));
// In the 0-D case there is no trailing shape to append.
if (v1Rank > 0)
llvm::append_range(shape, v1Type.getShape().drop_front());
inferredReturnTypes.push_back(
VectorType::get(shape, v1Type.getElementType()));
return success();
}
template <typename T>
static bool isStepIndexArray(ArrayRef<T> idxArr, uint64_t begin, size_t width) {
T expected = begin;
return idxArr.size() == width && llvm::all_of(idxArr, [&expected](T value) {
return value == expected++;
});
}
OpFoldResult vector::ShuffleOp::fold(FoldAdaptor adaptor) {
auto v1Type = getV1VectorType();
auto v2Type = getV2VectorType();
assert(!v1Type.isScalable() && !v2Type.isScalable() &&
"Vector shuffle does not support scalable vectors");
// For consistency: 0-D shuffle return type is 1-D, this cannot be a folding
// but must be a canonicalization into a vector.broadcast.
if (v1Type.getRank() == 0)
return {};
// Fold shuffle V1, V2, [0, 1, 2, 3] : <4xi32>, <2xi32> -> V1.
auto mask = getMask();
if (isStepIndexArray(mask, 0, v1Type.getDimSize(0)))
return getV1();
// Fold shuffle V1, V2, [4, 5] : <4xi32>, <2xi32> -> V2.
if (isStepIndexArray(mask, v1Type.getDimSize(0), v2Type.getDimSize(0)))
return getV2();
Attribute v1Attr = adaptor.getV1(), v2Attr = adaptor.getV2();
if (!v1Attr || !v2Attr)
return {};
// Fold shuffle poison, poison -> poison.
bool isV1Poison = isa<ub::PoisonAttr>(v1Attr);
bool isV2Poison = isa<ub::PoisonAttr>(v2Attr);
if (isV1Poison && isV2Poison)
return ub::PoisonAttr::get(getContext());
// Only support 1-D for now to avoid complicated n-D DenseElementsAttr
// manipulation.
if (v1Type.getRank() != 1)
return {};
// Poison input attributes need special handling as they are not
// DenseElementsAttr. If an index is poison, we select the first element of
// the first non-poison input.
SmallVector<Attribute> v1Elements, v2Elements;
Attribute poisonElement;
if (!isV2Poison) {
v2Elements =
to_vector(cast<DenseElementsAttr>(v2Attr).getValues<Attribute>());
poisonElement = v2Elements[0];
}
if (!isV1Poison) {
v1Elements =
to_vector(cast<DenseElementsAttr>(v1Attr).getValues<Attribute>());
poisonElement = v1Elements[0];
}
SmallVector<Attribute> results;
int64_t v1Size = v1Type.getDimSize(0);
for (int64_t maskIdx : mask) {
Attribute indexedElm;
// TODO: Return a partial poison vector when supported by the UB dialect.
if (maskIdx == ShuffleOp::kPoisonIndex) {
indexedElm = poisonElement;
} else {
if (maskIdx < v1Size)
indexedElm = isV1Poison ? poisonElement : v1Elements[maskIdx];
else
indexedElm = isV2Poison ? poisonElement : v2Elements[maskIdx - v1Size];
}
results.push_back(indexedElm);
}
return DenseElementsAttr::get(getResultVectorType(), results);
}
namespace {
// Pattern to rewrite a 0-D shuffle with [0] or [1] mask returning a 1-D vector
// to a broadcast.
struct Canonicalize0DShuffleOp : public OpRewritePattern<ShuffleOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ShuffleOp shuffleOp,
PatternRewriter &rewriter) const override {
VectorType v1VectorType = shuffleOp.getV1VectorType();
ArrayRef<int64_t> mask = shuffleOp.getMask();
if (v1VectorType.getRank() > 0)
return failure();
if (mask.size() != 1)
return failure();
VectorType resType = VectorType::Builder(v1VectorType).setShape({1});
if (mask[0] == 0)
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(shuffleOp, resType,
shuffleOp.getV1());
else
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(shuffleOp, resType,
shuffleOp.getV2());
return success();
}
};
/// Pattern to rewrite a ShuffleOp(SplatOp, SplatOp) to SplatOp.
class ShuffleSplat final : public OpRewritePattern<ShuffleOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ShuffleOp op,
PatternRewriter &rewriter) const override {
auto v1Splat = op.getV1().getDefiningOp<SplatOp>();
auto v2Splat = op.getV2().getDefiningOp<SplatOp>();
if (!v1Splat || !v2Splat)
return failure();
if (v1Splat.getInput() != v2Splat.getInput())
return failure();
rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), v1Splat.getInput());
return success();
}
};
/// Pattern to rewrite a fixed-size interleave via vector.shuffle to
/// vector.interleave.
class ShuffleInterleave : public OpRewritePattern<ShuffleOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ShuffleOp op,
PatternRewriter &rewriter) const override {
VectorType resultType = op.getResultVectorType();
if (resultType.isScalable())
return rewriter.notifyMatchFailure(
op, "ShuffleOp can't represent a scalable interleave");
if (resultType.getRank() != 1)
return rewriter.notifyMatchFailure(
op, "ShuffleOp can't represent an n-D interleave");
VectorType sourceType = op.getV1VectorType();
if (sourceType != op.getV2VectorType() ||
sourceType.getNumElements() * 2 != resultType.getNumElements()) {
return rewriter.notifyMatchFailure(
op, "ShuffleOp types don't match an interleave");
}
ArrayRef<int64_t> shuffleMask = op.getMask();
int64_t resultVectorSize = resultType.getNumElements();
for (int i = 0, e = resultVectorSize / 2; i < e; ++i) {
int64_t maskValueA = shuffleMask[i * 2];
int64_t maskValueB = shuffleMask[(i * 2) + 1];
if (maskValueA != i || maskValueB != (resultVectorSize / 2) + i)
return rewriter.notifyMatchFailure(op,
"ShuffleOp mask not interleaving");
}
rewriter.replaceOpWithNewOp<InterleaveOp>(op, op.getV1(), op.getV2());
return success();
}
};
} // namespace
void ShuffleOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ShuffleSplat, ShuffleInterleave, Canonicalize0DShuffleOp>(
context);
}
//===----------------------------------------------------------------------===//
// InsertElementOp
//===----------------------------------------------------------------------===//
void InsertElementOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
SetIntRangeFn setResultRanges) {
setResultRanges(getResult(), argRanges[0].rangeUnion(argRanges[1]));
}
void InsertElementOp::build(OpBuilder &builder, OperationState &result,
Value source, Value dest) {
build(builder, result, source, dest, {});
}
LogicalResult InsertElementOp::verify() {
auto dstVectorType = getDestVectorType();
if (dstVectorType.getRank() == 0) {
if (getPosition())
return emitOpError("expected position to be empty with 0-D vector");
return success();
}
if (dstVectorType.getRank() != 1)
return emitOpError("unexpected >1 vector rank");
if (!getPosition())
return emitOpError("expected position for 1-D vector");
return success();
}
OpFoldResult vector::InsertElementOp::fold(FoldAdaptor adaptor) {
// Skip the 0-D vector here.
if (!adaptor.getPosition())
return {};
auto src = dyn_cast_or_null<TypedAttr>(adaptor.getSource());
auto dst = dyn_cast_or_null<DenseElementsAttr>(adaptor.getDest());
auto pos = dyn_cast_or_null<IntegerAttr>(adaptor.getPosition());
if (!src || !dst || !pos)
return {};
if (src.getType() != getDestVectorType().getElementType())
return {};
auto dstElements = dst.getValues<Attribute>();
SmallVector<Attribute> results(dstElements);
uint64_t posIdx = pos.getInt();
if (posIdx >= results.size())
return {};
results[posIdx] = src;
return DenseElementsAttr::get(getDestVectorType(), results);
}
//===----------------------------------------------------------------------===//
// InsertOp
//===----------------------------------------------------------------------===//
void vector::InsertOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
SetIntRangeFn setResultRanges) {
setResultRanges(getResult(), argRanges[0].rangeUnion(argRanges[1]));
}
void vector::InsertOp::build(OpBuilder &builder, OperationState &result,
Value source, Value dest) {
auto vectorTy = cast<VectorType>(dest.getType());
build(builder, result, source, dest,
SmallVector<int64_t>(vectorTy.getRank(), 0));
}
void vector::InsertOp::build(OpBuilder &builder, OperationState &result,
Value source, Value dest, int64_t position) {
build(builder, result, source, dest, ArrayRef<int64_t>{position});
}
void vector::InsertOp::build(OpBuilder &builder, OperationState &result,
Value source, Value dest, OpFoldResult position) {
build(builder, result, source, dest, ArrayRef<OpFoldResult>{position});
}
void vector::InsertOp::build(OpBuilder &builder, OperationState &result,
Value source, Value dest,
ArrayRef<int64_t> position) {
SmallVector<OpFoldResult> posVals;
posVals.reserve(position.size());
llvm::transform(position, std::back_inserter(posVals),
[&](int64_t pos) { return builder.getI64IntegerAttr(pos); });
build(builder, result, source, dest, posVals);
}
void vector::InsertOp::build(OpBuilder &builder, OperationState &result,
Value source, Value dest,
ArrayRef<OpFoldResult> position) {
SmallVector<int64_t> staticPos;
SmallVector<Value> dynamicPos;
dispatchIndexOpFoldResults(position, dynamicPos, staticPos);
build(builder, result, source, dest, dynamicPos,
builder.getDenseI64ArrayAttr(staticPos));
}
LogicalResult InsertOp::verify() {
if (auto srcTy = dyn_cast<VectorType>(getValueToStoreType()))
if (srcTy.getRank() == 0)
return emitError(
"expected a scalar instead of a 0-d vector as the source operand");
SmallVector<OpFoldResult> position = getMixedPosition();
auto destVectorType = getDestVectorType();
if (position.size() > static_cast<unsigned>(destVectorType.getRank()))
return emitOpError(
"expected position attribute of rank no greater than dest vector rank");
auto srcVectorType = llvm::dyn_cast<VectorType>(getValueToStoreType());
if (srcVectorType &&
(static_cast<unsigned>(srcVectorType.getRank()) + position.size() !=
static_cast<unsigned>(destVectorType.getRank())))
return emitOpError("expected position attribute rank + source rank to "
"match dest vector rank");
if (!srcVectorType &&
(position.size() != static_cast<unsigned>(destVectorType.getRank())))
return emitOpError(
"expected position attribute rank to match the dest vector rank");
for (auto [idx, pos] : llvm::enumerate(position)) {
if (auto attr = dyn_cast<Attribute>(pos)) {
int64_t constIdx = cast<IntegerAttr>(attr).getInt();
if (!isValidPositiveIndexOrPoison(constIdx, kPoisonIndex,
destVectorType.getDimSize(idx))) {
return emitOpError("expected position attribute #")
<< (idx + 1)
<< " to be a non-negative integer smaller than the "
"corresponding "
"dest vector dimension";
}
}
}
return success();
}
namespace {
// If insertOp is only inserting unit dimensions it can be transformed to a
// broadcast.
class InsertToBroadcast final : public OpRewritePattern<InsertOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(InsertOp insertOp,
PatternRewriter &rewriter) const override {
auto srcVecType =
llvm::dyn_cast<VectorType>(insertOp.getValueToStoreType());
if (!srcVecType || insertOp.getDestVectorType().getNumElements() !=
srcVecType.getNumElements())
return failure();
rewriter.replaceOpWithNewOp<BroadcastOp>(
insertOp, insertOp.getDestVectorType(), insertOp.getValueToStore());
return success();
}
};
/// Pattern to rewrite a InsertOp(SplatOp, SplatOp) to SplatOp.
class InsertSplatToSplat final : public OpRewritePattern<InsertOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(InsertOp op,
PatternRewriter &rewriter) const override {
auto srcSplat = op.getValueToStore().getDefiningOp<SplatOp>();
auto dstSplat = op.getDest().getDefiningOp<SplatOp>();
if (!srcSplat || !dstSplat)
return failure();
if (srcSplat.getInput() != dstSplat.getInput())
return failure();
rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), srcSplat.getInput());
return success();
}
};
} // namespace
static Attribute
foldDenseElementsAttrDestInsertOp(InsertOp insertOp, Attribute srcAttr,
Attribute dstAttr,
int64_t maxVectorSizeFoldThreshold) {
if (insertOp.hasDynamicPosition())
return {};
auto denseDst = llvm::dyn_cast_if_present<DenseElementsAttr>(dstAttr);
if (!denseDst)
return {};
if (!srcAttr) {
return {};
}
VectorType destTy = insertOp.getDestVectorType();
if (destTy.isScalable())
return {};
// Make sure we do not create too many large constants.
if (destTy.getNumElements() > maxVectorSizeFoldThreshold &&
!insertOp->hasOneUse())
return {};
// Calculate the linearized position of the continuous chunk of elements to
// insert.
llvm::SmallVector<int64_t> completePositions(destTy.getRank(), 0);
copy(insertOp.getStaticPosition(), completePositions.begin());
int64_t insertBeginPosition =
linearize(completePositions, computeStrides(destTy.getShape()));
SmallVector<Attribute> insertedValues;
Type destEltType = destTy.getElementType();
/// Converts the expected type to an IntegerAttr if there's
/// a mismatch.
if (auto denseSource = llvm::dyn_cast<DenseElementsAttr>(srcAttr)) {
for (auto value : denseSource.getValues<Attribute>())
insertedValues.push_back(convertIntegerAttr(value, destEltType));
} else {
insertedValues.push_back(convertIntegerAttr(srcAttr, destEltType));
}
auto allValues = llvm::to_vector(denseDst.getValues<Attribute>());
copy(insertedValues, allValues.begin() + insertBeginPosition);
auto newAttr = DenseElementsAttr::get(destTy, allValues);
return newAttr;
}
/// Folder to replace the `dest` operand of the insert op with the root dest of
/// the insert op use chain.
static Value foldInsertUseChain(InsertOp insertOp) {
auto destInsert = insertOp.getDest().getDefiningOp<InsertOp>();
if (!destInsert)
return {};
if (insertOp.getMixedPosition() != destInsert.getMixedPosition())
return {};
insertOp.setOperand(1, destInsert.getDest());
return insertOp.getResult();
}
void InsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<InsertToBroadcast, BroadcastFolder, InsertSplatToSplat>(context);
}
OpFoldResult InsertOp::fold(FoldAdaptor adaptor) {
// Do not create constants with more than `vectorSizeFoldThreashold` elements,
// unless the source vector constant has a single use.
constexpr int64_t vectorSizeFoldThreshold = 256;
// Fold "vector.insert %v, %dest [] : vector<2x2xf32> from vector<2x2xf32>" to
// %v. Note: Do not fold "vector.insert %v, %dest [] : f32 into vector<f32>"
// (type mismatch).
if (getNumIndices() == 0 && getValueToStoreType() == getType())
return getValueToStore();
// Fold `arith.constant` indices into the `vector.insert` operation.
// Do not stop here as this fold may enable subsequent folds that require
// constant indices.
SmallVector<Value> operands = {getValueToStore(), getDest()};
auto inplaceFolded = extractInsertFoldConstantOp(*this, adaptor, operands);
if (auto res = foldInsertUseChain(*this))
return res;
if (auto res = foldPoisonIndexInsertExtractOp(
getContext(), adaptor.getStaticPosition(), kPoisonIndex))
return res;
if (auto res = foldDenseElementsAttrDestInsertOp(
*this, adaptor.getValueToStore(), adaptor.getDest(),
vectorSizeFoldThreshold)) {
return res;
}
return inplaceFolded;
}
//===----------------------------------------------------------------------===//
// InsertStridedSliceOp
//===----------------------------------------------------------------------===//
void InsertStridedSliceOp::build(OpBuilder &builder, OperationState &result,
Value source, Value dest,
ArrayRef<int64_t> offsets,
ArrayRef<int64_t> strides) {
result.addOperands({source, dest});
auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
auto stridesAttr = getVectorSubscriptAttr(builder, strides);
result.addTypes(dest.getType());
result.addAttribute(InsertStridedSliceOp::getOffsetsAttrName(result.name),
offsetsAttr);
result.addAttribute(InsertStridedSliceOp::getStridesAttrName(result.name),
stridesAttr);
}
// TODO: Should be moved to Tablegen ConfinedAttr attributes.
template <typename OpType>
static LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op,
ArrayAttr arrayAttr,
ArrayRef<int64_t> shape,
StringRef attrName) {
if (arrayAttr.size() > shape.size())
return op.emitOpError("expected ")
<< attrName << " attribute of rank no greater than vector rank";
return success();
}
// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
// interval. If `halfOpen` is true then the admissible interval is [min, max).
// Otherwise, the admissible interval is [min, max].
template <typename OpType>
static LogicalResult
isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr, int64_t min,
int64_t max, StringRef attrName,
bool halfOpen = true) {
for (auto attr : arrayAttr) {
auto val = llvm::cast<IntegerAttr>(attr).getInt();
auto upper = max;
if (!halfOpen)
upper += 1;
if (val < min || val >= upper)
return op.emitOpError("expected ") << attrName << " to be confined to ["
<< min << ", " << upper << ")";
}
return success();
}
// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
// interval. If `halfOpen` is true then the admissible interval is [min, max).
// Otherwise, the admissible interval is [min, max].
template <typename OpType>
static LogicalResult
isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
ArrayRef<int64_t> shape, StringRef attrName,
bool halfOpen = true, int64_t min = 0) {
for (auto [index, attrDimPair] :
llvm::enumerate(llvm::zip_first(arrayAttr, shape))) {
int64_t val = llvm::cast<IntegerAttr>(std::get<0>(attrDimPair)).getInt();
int64_t max = std::get<1>(attrDimPair);
if (!halfOpen)
max += 1;
if (val < min || val >= max)
return op.emitOpError("expected ")
<< attrName << " dimension " << index << " to be confined to ["
<< min << ", " << max << ")";
}
return success();
}
// Returns true if, for all indices i = 0..shape.size()-1, val is in the
// [min, max} interval:
// val = `arrayAttr1[i]` + `arrayAttr2[i]`,
// If `halfOpen` is true then the admissible interval is [min, max). Otherwise,
// the admissible interval is [min, max].
template <typename OpType>
static LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
bool halfOpen = true, int64_t min = 1) {
assert(arrayAttr1.size() <= shape.size());
assert(arrayAttr2.size() <= shape.size());
for (auto [index, it] :
llvm::enumerate(llvm::zip(arrayAttr1, arrayAttr2, shape))) {
auto val1 = llvm::cast<IntegerAttr>(std::get<0>(it)).getInt();
auto val2 = llvm::cast<IntegerAttr>(std::get<1>(it)).getInt();
int64_t max = std::get<2>(it);
if (!halfOpen)
max += 1;
if (val1 + val2 < 0 || val1 + val2 >= max)
return op.emitOpError("expected sum(")
<< attrName1 << ", " << attrName2 << ") dimension " << index
<< " to be confined to [" << min << ", " << max << ")";
}
return success();
}
static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
MLIRContext *context) {
auto attrs = llvm::map_range(values, [context](int64_t v) -> Attribute {
return IntegerAttr::get(IntegerType::get(context, 64), APInt(64, v));
});
return ArrayAttr::get(context, llvm::to_vector<8>(attrs));
}
LogicalResult InsertStridedSliceOp::verify() {
auto sourceVectorType = getSourceVectorType();
auto destVectorType = getDestVectorType();
auto offsets = getOffsetsAttr();
auto strides = getStridesAttr();
if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
return emitOpError(
"expected offsets of same size as destination vector rank");
if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
return emitOpError("expected strides of same size as source vector rank");
if (sourceVectorType.getRank() > destVectorType.getRank())
return emitOpError(
"expected source rank to be no greater than destination rank");
auto sourceShape = sourceVectorType.getShape();
auto destShape = destVectorType.getShape();
SmallVector<int64_t, 4> sourceShapeAsDestShape(
destShape.size() - sourceShape.size(), 0);
sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
auto offName = InsertStridedSliceOp::getOffsetsAttrName();
auto stridesName = InsertStridedSliceOp::getStridesAttrName();
if (failed(isIntegerArrayAttrConfinedToShape(*this, offsets, destShape,
offName)) ||
failed(isIntegerArrayAttrConfinedToRange(*this, strides, /*min=*/1,
/*max=*/1, stridesName,
/*halfOpen=*/false)) ||
failed(isSumOfIntegerArrayAttrConfinedToShape(
*this, offsets,
makeI64ArrayAttr(sourceShapeAsDestShape, getContext()), destShape,
offName, "source vector shape",
/*halfOpen=*/false, /*min=*/1)))
return failure();
unsigned rankDiff = destShape.size() - sourceShape.size();
for (unsigned idx = 0; idx < sourceShape.size(); ++idx) {
if (sourceVectorType.getScalableDims()[idx] !=
destVectorType.getScalableDims()[idx + rankDiff]) {
return emitOpError("mismatching scalable flags (at source vector idx=")
<< idx << ")";
}
if (sourceVectorType.getScalableDims()[idx]) {
auto sourceSize = sourceShape[idx];
auto destSize = destShape[idx + rankDiff];
if (sourceSize != destSize) {
return emitOpError("expected size at idx=")
<< idx
<< (" to match the corresponding base size from the input "
"vector (")
<< sourceSize << (" vs ") << destSize << (")");
}
}
}
return success();
}
namespace {
/// Pattern to rewrite an InsertStridedSliceOp(SplatOp(X):src_type,
/// SplatOp(X):dst_type) to SplatOp(X):dst_type.
class FoldInsertStridedSliceSplat final
: public OpRewritePattern<InsertStridedSliceOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp,
PatternRewriter &rewriter) const override {
auto srcSplatOp =
insertStridedSliceOp.getValueToStore().getDefiningOp<vector::SplatOp>();
auto destSplatOp =
insertStridedSliceOp.getDest().getDefiningOp<vector::SplatOp>();
if (!srcSplatOp || !destSplatOp)
return failure();
if (srcSplatOp.getInput() != destSplatOp.getInput())
return failure();
rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest());
return success();
}
};
/// Pattern to rewrite an InsertStridedSliceOp(ExtractStridedSliceOp(dst), dst)
/// to dst.
class FoldInsertStridedSliceOfExtract final
: public OpRewritePattern<InsertStridedSliceOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(InsertStridedSliceOp insertStridedSliceOp,
PatternRewriter &rewriter) const override {
auto extractStridedSliceOp =
insertStridedSliceOp.getValueToStore()
.getDefiningOp<vector::ExtractStridedSliceOp>();
if (!extractStridedSliceOp)
return failure();
if (extractStridedSliceOp.getOperand() != insertStridedSliceOp.getDest())
return failure();
// Check if have the same strides and offsets.
if (extractStridedSliceOp.getStrides() !=
insertStridedSliceOp.getStrides() ||
extractStridedSliceOp.getOffsets() != insertStridedSliceOp.getOffsets())
return failure();
rewriter.replaceOp(insertStridedSliceOp, insertStridedSliceOp.getDest());
return success();
}
};
// Pattern to rewrite an InsertStridedSliceOp(ConstantOp into ConstantOp) ->
// ConstantOp.
class InsertStridedSliceConstantFolder final
: public OpRewritePattern<InsertStridedSliceOp> {
public:
using OpRewritePattern::OpRewritePattern;
// Do not create constants with more than `vectorSizeFoldThreashold` elements,
// unless the source vector constant has a single use.
static constexpr int64_t vectorSizeFoldThreshold = 256;
LogicalResult matchAndRewrite(InsertStridedSliceOp op,
PatternRewriter &rewriter) const override {
// Return if 'InsertOp' operand is not defined by a compatible vector
// ConstantOp.
TypedValue<VectorType> destVector = op.getDest();
Attribute vectorDestCst;
if (!matchPattern(destVector, m_Constant(&vectorDestCst)))
return failure();
VectorType destTy = destVector.getType();
if (destTy.isScalable())
return failure();
// Make sure we do not create too many large constants.
if (destTy.getNumElements() > vectorSizeFoldThreshold &&
!destVector.hasOneUse())
return failure();
TypedValue<VectorType> sourceValue = op.getValueToStore();
Attribute sourceCst;
if (!matchPattern(sourceValue, m_Constant(&sourceCst)))
return failure();
// TODO: Support poison.
if (isa<ub::PoisonAttr>(vectorDestCst) || isa<ub::PoisonAttr>(sourceCst))
return failure();
// TODO: Handle non-unit strides when they become available.
if (op.hasNonUnitStrides())
return failure();
VectorType sliceVecTy = sourceValue.getType();
ArrayRef<int64_t> sliceShape = sliceVecTy.getShape();
int64_t rankDifference = destTy.getRank() - sliceVecTy.getRank();
SmallVector<int64_t, 4> offsets = getI64SubArray(op.getOffsets());
SmallVector<int64_t, 4> destStrides = computeStrides(destTy.getShape());
// Calcualte the destination element indices by enumerating all slice
// positions within the destination and linearizing them. The enumeration
// order is lexicographic which yields a sequence of monotonically
// increasing linearized position indices.
// Because the destination may have higher dimensionality then the slice,
// we keep track of two overlapping sets of positions and offsets.
auto denseDest = llvm::cast<DenseElementsAttr>(vectorDestCst);
auto denseSlice = llvm::cast<DenseElementsAttr>(sourceCst);
auto sliceValuesIt = denseSlice.value_begin<Attribute>();
auto newValues = llvm::to_vector(denseDest.getValues<Attribute>());
SmallVector<int64_t> currDestPosition(offsets.begin(), offsets.end());
MutableArrayRef<int64_t> currSlicePosition(
currDestPosition.begin() + rankDifference, currDestPosition.end());
ArrayRef<int64_t> sliceOffsets(offsets.begin() + rankDifference,
offsets.end());
do {
int64_t linearizedPosition = linearize(currDestPosition, destStrides);
assert(linearizedPosition < destTy.getNumElements() && "Invalid index");
assert(sliceValuesIt != denseSlice.value_end<Attribute>() &&
"Invalid slice element");
newValues[linearizedPosition] = *sliceValuesIt;
++sliceValuesIt;
} while (succeeded(
incSlicePosition(currSlicePosition, sliceShape, sliceOffsets)));
auto newAttr = DenseElementsAttr::get(destTy, newValues);
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, newAttr);
return success();
}
};
} // namespace
void vector::InsertStridedSliceOp::getCanonicalizationPatterns(
RewritePatternSet &results, MLIRContext *context) {
results.add<FoldInsertStridedSliceSplat, FoldInsertStridedSliceOfExtract,
InsertStridedSliceConstantFolder>(context);
}
OpFoldResult InsertStridedSliceOp::fold(FoldAdaptor adaptor) {
if (getSourceVectorType() == getDestVectorType())
return getValueToStore();
return {};
}
//===----------------------------------------------------------------------===//
// OuterProductOp
//===----------------------------------------------------------------------===//
/// Build an op without mask, use the type of `acc` as the return type.
void OuterProductOp::build(OpBuilder &builder, OperationState &result,
Value lhs, Value rhs, Value acc) {
result.addOperands({lhs, rhs, acc});
result.addTypes(acc.getType());
}
void OuterProductOp::print(OpAsmPrinter &p) {
p << " " << getLhs() << ", " << getRhs();
if (getAcc()) {
p << ", " << getAcc();
p.printOptionalAttrDict((*this)->getAttrs());
}
p << " : " << getLhs().getType() << ", " << getRhs().getType();
}
ParseResult OuterProductOp::parse(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::UnresolvedOperand, 3> operandsInfo;
Type tLHS, tRHS;
if (parser.parseOperandList(operandsInfo) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(tLHS) || parser.parseComma() ||
parser.parseType(tRHS))
return failure();
if (operandsInfo.size() < 2)
return parser.emitError(parser.getNameLoc(),
"expected at least 2 operands");
VectorType vLHS = llvm::dyn_cast<VectorType>(tLHS);
VectorType vRHS = llvm::dyn_cast<VectorType>(tRHS);
if (!vLHS)
return parser.emitError(parser.getNameLoc(),
"expected vector type for operand #1");
VectorType resType;
if (vRHS) {
SmallVector<bool> scalableDimsRes{vLHS.getScalableDims()[0],
vRHS.getScalableDims()[0]};
resType = VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
vLHS.getElementType(), scalableDimsRes);
} else {
// Scalar RHS operand
SmallVector<bool> scalableDimsRes{vLHS.getScalableDims()[0]};
resType = VectorType::get({vLHS.getDimSize(0)}, vLHS.getElementType(),
scalableDimsRes);
}
if (!result.attributes.get(OuterProductOp::getKindAttrName(result.name))) {
result.attributes.append(
OuterProductOp::getKindAttrName(result.name),
CombiningKindAttr::get(result.getContext(),
OuterProductOp::getDefaultKind()));
}
return failure(
parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
(operandsInfo.size() > 2 &&
parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
parser.addTypeToList(resType, result.types));
}
LogicalResult OuterProductOp::verify() {
Type tRHS = getOperandTypeRHS();
VectorType vLHS = getOperandVectorTypeLHS(),
vRHS = llvm::dyn_cast<VectorType>(tRHS),
vACC = getOperandVectorTypeACC(), vRES = getResultVectorType();
if (vLHS.getRank() != 1)
return emitOpError("expected 1-d vector for operand #1");
if (vRHS) {
// Proper OUTER operation.
if (vRHS.getRank() != 1)
return emitOpError("expected 1-d vector for operand #2");
if (vRES.getRank() != 2)
return emitOpError("expected 2-d vector result");
if (vLHS.getDimSize(0) != vRES.getDimSize(0))
return emitOpError("expected #1 operand dim to match result dim #1");
if (vRHS.getDimSize(0) != vRES.getDimSize(1))
return emitOpError("expected #2 operand dim to match result dim #2");
if (vLHS.isScalable() && !vRHS.isScalable()) {
// This restriction reflects what's currently supported in terms of
// scalable vectors. However, we could relax this if there's a use case.
return emitOpError(
"expected either both or only #2 operand dim to be scalable");
}
} else {
// An AXPY operation.
if (vRES.getRank() != 1)
return emitOpError("expected 1-d vector result");
if (vLHS.getDimSize(0) != vRES.getDimSize(0))
return emitOpError("expected #1 operand dim to match result dim #1");
}
if (vACC && vACC != vRES)
return emitOpError("expected operand #3 of same type as result type");
// Verify supported combining kind.
if (!isSupportedCombiningKind(getKind(), vRES.getElementType()))
return emitOpError("unsupported outerproduct type");
return success();
}
// MaskableOpInterface methods.
/// Returns the mask type expected by this operation. Mostly used for
/// verification purposes. It requires the operation to be vectorized."
Type OuterProductOp::getExpectedMaskType() {
auto vecType = this->getResultVectorType();
return VectorType::get(vecType.getShape(),
IntegerType::get(vecType.getContext(), /*width=*/1),
vecType.getScalableDims());
}
//===----------------------------------------------------------------------===//
// ExtractStridedSliceOp
//===----------------------------------------------------------------------===//
// Inference works as follows:
// 1. Add 'sizes' from prefix of dims in 'offsets'.
// 2. Add sizes from 'vectorType' for remaining dims.
// Scalable flags are inherited from 'vectorType'.
static Type inferStridedSliceOpResultType(VectorType vectorType,
ArrayAttr offsets, ArrayAttr sizes,
ArrayAttr strides) {
assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
SmallVector<int64_t, 4> shape;
shape.reserve(vectorType.getRank());
unsigned idx = 0;
for (unsigned e = offsets.size(); idx < e; ++idx)
shape.push_back(llvm::cast<IntegerAttr>(sizes[idx]).getInt());
for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
shape.push_back(vectorType.getShape()[idx]);
return VectorType::get(shape, vectorType.getElementType(),
vectorType.getScalableDims());
}
void ExtractStridedSliceOp::build(OpBuilder &builder, OperationState &result,
Value source, ArrayRef<int64_t> offsets,
ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides) {
result.addOperands(source);
auto offsetsAttr = getVectorSubscriptAttr(builder, offsets);
auto sizesAttr = getVectorSubscriptAttr(builder, sizes);
auto stridesAttr = getVectorSubscriptAttr(builder, strides);
result.addTypes(
inferStridedSliceOpResultType(llvm::cast<VectorType>(source.getType()),
offsetsAttr, sizesAttr, stridesAttr));
result.addAttribute(ExtractStridedSliceOp::getOffsetsAttrName(result.name),
offsetsAttr);
result.addAttribute(ExtractStridedSliceOp::getSizesAttrName(result.name),
sizesAttr);
result.addAttribute(ExtractStridedSliceOp::getStridesAttrName(result.name),
stridesAttr);
}
LogicalResult ExtractStridedSliceOp::verify() {
auto type = getSourceVectorType();
auto offsets = getOffsetsAttr();
auto sizes = getSizesAttr();
auto strides = getStridesAttr();
if (offsets.size() != sizes.size() || offsets.size() != strides.size())
return emitOpError(
"expected offsets, sizes and strides attributes of same size");
auto shape = type.getShape();
auto offName = getOffsetsAttrName();
auto sizesName = getSizesAttrName();
auto stridesName = getStridesAttrName();
if (failed(
isIntegerArrayAttrSmallerThanShape(*this, offsets, shape, offName)) ||
failed(
isIntegerArrayAttrSmallerThanShape(*this, sizes, shape, sizesName)) ||
failed(isIntegerArrayAttrSmallerThanShape(*this, strides, shape,
stridesName)) ||
failed(
isIntegerArrayAttrConfinedToShape(*this, offsets, shape, offName)) ||
failed(isIntegerArrayAttrConfinedToShape(*this, sizes, shape, sizesName,
/*halfOpen=*/false,
/*min=*/1)) ||
failed(isIntegerArrayAttrConfinedToRange(*this, strides, /*min=*/1,
/*max=*/1, stridesName,
/*halfOpen=*/false)) ||
failed(isSumOfIntegerArrayAttrConfinedToShape(*this, offsets, sizes,
shape, offName, sizesName,
/*halfOpen=*/false)))
return failure();
auto resultType = inferStridedSliceOpResultType(getSourceVectorType(),
offsets, sizes, strides);
if (getResult().getType() != resultType)
return emitOpError("expected result type to be ") << resultType;
for (unsigned idx = 0; idx < sizes.size(); ++idx) {
if (type.getScalableDims()[idx]) {
auto inputDim = type.getShape()[idx];
auto inputSize = llvm::cast<IntegerAttr>(sizes[idx]).getInt();
if (inputDim != inputSize)
return emitOpError("expected size at idx=")
<< idx
<< (" to match the corresponding base size from the input "
"vector (")
<< inputSize << (" vs ") << inputDim << (")");
}
}
return success();
}
// When the source of ExtractStrided comes from a chain of InsertStrided ops try
// to use the source of the InsertStrided ops if we can detect that the
// extracted vector is a subset of one of the vector inserted.
static LogicalResult
foldExtractStridedOpFromInsertChain(ExtractStridedSliceOp op) {
// Helper to extract integer out of ArrayAttr.
auto getElement = [](ArrayAttr array, int idx) {
return llvm::cast<IntegerAttr>(array[idx]).getInt();
};
ArrayAttr extractOffsets = op.getOffsets();
ArrayAttr extractStrides = op.getStrides();
ArrayAttr extractSizes = op.getSizes();
auto insertOp = op.getVector().getDefiningOp<InsertStridedSliceOp>();
while (insertOp) {
if (op.getSourceVectorType().getRank() !=
insertOp.getSourceVectorType().getRank())
return failure();
ArrayAttr insertOffsets = insertOp.getOffsets();
ArrayAttr insertStrides = insertOp.getStrides();
// If the rank of extract is greater than the rank of insert, we are likely
// extracting a partial chunk of the vector inserted.
if (extractOffsets.size() > insertOffsets.size())
return failure();
bool patialoverlap = false;
bool disjoint = false;
SmallVector<int64_t, 4> offsetDiffs;
for (unsigned dim = 0, e = extractOffsets.size(); dim < e; ++dim) {
if (getElement(extractStrides, dim) != getElement(insertStrides, dim))
return failure();
int64_t start = getElement(insertOffsets, dim);
int64_t end = start + insertOp.getSourceVectorType().getDimSize(dim);
int64_t offset = getElement(extractOffsets, dim);
int64_t size = getElement(extractSizes, dim);
// Check if the start of the extract offset is in the interval inserted.
if (start <= offset && offset < end) {
// If the extract interval overlaps but is not fully included we may
// have a partial overlap that will prevent any folding.
if (offset + size > end)
patialoverlap = true;
offsetDiffs.push_back(offset - start);
continue;
}
disjoint = true;
break;
}
// The extract element chunk is a subset of the insert element.
if (!disjoint && !patialoverlap) {
op.setOperand(insertOp.getValueToStore());
// OpBuilder is only used as a helper to build an I64ArrayAttr.
OpBuilder b(op.getContext());
op.setOffsetsAttr(b.getI64ArrayAttr(offsetDiffs));
return success();
}
// If the chunk extracted is disjoint from the chunk inserted, keep looking
// in the insert chain.
if (disjoint)
insertOp = insertOp.getDest().getDefiningOp<InsertStridedSliceOp>();
else {
// The extracted vector partially overlap the inserted vector, we cannot
// fold.
return failure();
}
}
return failure();
}
// ExtractStridedSliceOp(non-splat ConstantOp) -> ConstantOp.
static OpFoldResult
foldExtractStridedSliceNonSplatConstant(ExtractStridedSliceOp op,
Attribute foldInput) {
auto dense = llvm::dyn_cast_if_present<DenseElementsAttr>(foldInput);
if (!dense)
return {};
// TODO: Handle non-unit strides when they become available.
if (op.hasNonUnitStrides())
return {};
VectorType sourceVecTy = op.getSourceVectorType();
ArrayRef<int64_t> sourceShape = sourceVecTy.getShape();
SmallVector<int64_t, 4> sourceStrides = computeStrides(sourceShape);
VectorType sliceVecTy = op.getType();
ArrayRef<int64_t> sliceShape = sliceVecTy.getShape();
int64_t rank = sliceVecTy.getRank();
// Expand offsets and sizes to match the vector rank.
SmallVector<int64_t, 4> offsets(rank, 0);
copy(getI64SubArray(op.getOffsets()), offsets.begin());
SmallVector<int64_t, 4> sizes(sourceShape);
copy(getI64SubArray(op.getSizes()), sizes.begin());
// Calculate the slice elements by enumerating all slice positions and
// linearizing them. The enumeration order is lexicographic which yields a
// sequence of monotonically increasing linearized position indices.
const auto denseValuesBegin = dense.value_begin<Attribute>();
SmallVector<Attribute> sliceValues;
sliceValues.reserve(sliceVecTy.getNumElements());
SmallVector<int64_t> currSlicePosition(offsets.begin(), offsets.end());
do {
int64_t linearizedPosition = linearize(currSlicePosition, sourceStrides);
assert(linearizedPosition < sourceVecTy.getNumElements() &&
"Invalid index");
sliceValues.push_back(*(denseValuesBegin + linearizedPosition));
} while (succeeded(incSlicePosition(currSlicePosition, sliceShape, offsets)));
assert(static_cast<int64_t>(sliceValues.size()) ==
sliceVecTy.getNumElements() &&
"Invalid number of slice elements");
return DenseElementsAttr::get(sliceVecTy, sliceValues);
}
OpFoldResult ExtractStridedSliceOp::fold(FoldAdaptor adaptor) {
if (getSourceVectorType() == getResult().getType())
return getVector();
if (succeeded(foldExtractStridedOpFromInsertChain(*this)))
return getResult();
// ExtractStridedSliceOp(splat ConstantOp) -> ConstantOp.
if (auto splat =
llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getVector()))
DenseElementsAttr::get(getType(), splat.getSplatValue<Attribute>());
// ExtractStridedSliceOp(non-splat ConstantOp) -> ConstantOp.
return foldExtractStridedSliceNonSplatConstant(*this, adaptor.getVector());
}
void ExtractStridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
populateFromInt64AttrArray(getOffsets(), results);
}
namespace {
// Pattern to rewrite an ExtractStridedSliceOp(CreateMaskOp) to
// CreateMaskOp.
//
// Example:
//
// %mask = vector.create_mask %ub : vector<16xi1>
// %slice = vector.extract_strided_slice [%offset] [8] [1]
//
// to
//
// %new_ub = arith.subi %ub, %offset
// %mask = vector.create_mask %new_ub : vector<8xi1>
class StridedSliceCreateMaskFolder final
: public OpRewritePattern<ExtractStridedSliceOp> {
using OpRewritePattern::OpRewritePattern;
public:
LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
PatternRewriter &rewriter) const override {
Location loc = extractStridedSliceOp.getLoc();
// Return if 'extractStridedSliceOp' operand is not defined by a
// CreateMaskOp.
auto createMaskOp =
extractStridedSliceOp.getVector().getDefiningOp<CreateMaskOp>();
if (!createMaskOp)
return failure();
// Return if 'extractStridedSliceOp' has non-unit strides.
if (extractStridedSliceOp.hasNonUnitStrides())
return failure();
// Gather constant mask dimension sizes.
SmallVector<Value> maskDimSizes(createMaskOp.getOperands());
// Gather strided slice offsets and sizes.
SmallVector<int64_t> sliceOffsets;
populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
sliceOffsets);
SmallVector<int64_t> sliceSizes;
populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
// Compute slice of vector mask region.
SmallVector<Value> sliceMaskDimSizes;
sliceMaskDimSizes.reserve(maskDimSizes.size());
// sliceOffsets.size() <= maskDimSizes.size(), so we use llvm::zip and
// only iterate on the leading dim sizes. The tail accounts for the
// remaining dim sizes.
for (auto [maskDimSize, sliceOffset, sliceSize] :
llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
// No need to clamp on min/max values, because create_mask has clamping
// semantics, i.e. the sliceMaskDimSize is allowed to be negative or
// greater than the vector dim size.
IntegerAttr offsetAttr =
rewriter.getIntegerAttr(maskDimSize.getType(), sliceOffset);
Value offset = rewriter.create<arith::ConstantOp>(loc, offsetAttr);
Value sliceMaskDimSize =
rewriter.create<arith::SubIOp>(loc, maskDimSize, offset);
sliceMaskDimSizes.push_back(sliceMaskDimSize);
}
// Add unchanged dimensions.
llvm::append_range(
sliceMaskDimSizes,
llvm::drop_begin(maskDimSizes, sliceMaskDimSizes.size()));
// Replace 'extractStridedSliceOp' with CreateMaskOp with sliced mask
// region.
rewriter.replaceOpWithNewOp<CreateMaskOp>(
extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
sliceMaskDimSizes);
return success();
}
};
// Pattern to rewrite an ExtractStridedSliceOp(ConstantMaskOp) to
// ConstantMaskOp.
class StridedSliceConstantMaskFolder final
: public OpRewritePattern<ExtractStridedSliceOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractStridedSliceOp extractStridedSliceOp,
PatternRewriter &rewriter) const override {
// Return if 'extractStridedSliceOp' operand is not defined by a
// ConstantMaskOp.
auto *defOp = extractStridedSliceOp.getVector().getDefiningOp();
auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
if (!constantMaskOp)
return failure();
// Return if 'extractStridedSliceOp' has non-unit strides.
if (extractStridedSliceOp.hasNonUnitStrides())
return failure();
// Gather constant mask dimension sizes.
ArrayRef<int64_t> maskDimSizes = constantMaskOp.getMaskDimSizes();
// Gather strided slice offsets and sizes.
SmallVector<int64_t> sliceOffsets;
populateFromInt64AttrArray(extractStridedSliceOp.getOffsets(),
sliceOffsets);
SmallVector<int64_t> sliceSizes;
populateFromInt64AttrArray(extractStridedSliceOp.getSizes(), sliceSizes);
// Compute slice of vector mask region.
SmallVector<int64_t> sliceMaskDimSizes;
sliceMaskDimSizes.reserve(maskDimSizes.size());
for (auto [maskDimSize, sliceOffset, sliceSize] :
llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
int64_t sliceMaskDimSize = std::max(
static_cast<int64_t>(0),
std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
sliceMaskDimSizes.push_back(sliceMaskDimSize);
}
// Add unchanged dimensions.
if (sliceMaskDimSizes.size() < maskDimSizes.size())
for (size_t i = sliceMaskDimSizes.size(); i < maskDimSizes.size(); ++i)
sliceMaskDimSizes.push_back(maskDimSizes[i]);
// If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
// region is a conjunction of mask dim intervals).
if (llvm::is_contained(sliceMaskDimSizes, 0))
sliceMaskDimSizes.assign(maskDimSizes.size(), 0);
// Replace 'extractStridedSliceOp' with ConstantMaskOp with sliced mask
// region.
rewriter.replaceOpWithNewOp<ConstantMaskOp>(
extractStridedSliceOp, extractStridedSliceOp.getResult().getType(),
sliceMaskDimSizes);
return success();
}
};
// Pattern to rewrite an ExtractStridedSliceOp(BroadcastOp) to
// BroadcastOp(ExtractStrideSliceOp).
class StridedSliceBroadcast final
: public OpRewritePattern<ExtractStridedSliceOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto broadcast = op.getVector().getDefiningOp<BroadcastOp>();
if (!broadcast)
return failure();
auto srcVecType =
llvm::dyn_cast<VectorType>(broadcast.getSource().getType());
unsigned srcRank = srcVecType ? srcVecType.getRank() : 0;
auto dstVecType = llvm::cast<VectorType>(op.getType());
unsigned dstRank = dstVecType.getRank();
unsigned rankDiff = dstRank - srcRank;
// Source dimensions can be broadcasted (1 -> n with n > 1) or sliced
// (n -> m with n > m). If they are originally both broadcasted *and*
// sliced, this can be simplified to just broadcasting.
bool needsSlice = false;
for (unsigned i = 0; i < srcRank; i++) {
if (srcVecType.getDimSize(i) != 1 &&
srcVecType.getDimSize(i) != dstVecType.getDimSize(i + rankDiff)) {
needsSlice = true;
break;
}
}
Value source = broadcast.getSource();
if (needsSlice) {
SmallVector<int64_t> offsets =
getI64SubArray(op.getOffsets(), /*dropFront=*/rankDiff);
SmallVector<int64_t> sizes =
getI64SubArray(op.getSizes(), /*dropFront=*/rankDiff);
for (unsigned i = 0; i < srcRank; i++) {
if (srcVecType.getDimSize(i) == 1) {
// In case this dimension was broadcasted *and* sliced, the offset
// and size need to be updated now that there is no broadcast before
// the slice.
offsets[i] = 0;
sizes[i] = 1;
}
}
source = rewriter.create<ExtractStridedSliceOp>(
op->getLoc(), source, offsets, sizes,
getI64SubArray(op.getStrides(), /*dropFront=*/rankDiff));
}
rewriter.replaceOpWithNewOp<BroadcastOp>(op, op.getType(), source);
return success();
}
};
/// Pattern to rewrite an ExtractStridedSliceOp(SplatOp) to SplatOp.
class StridedSliceSplat final : public OpRewritePattern<ExtractStridedSliceOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
PatternRewriter &rewriter) const override {
auto splat = op.getVector().getDefiningOp<SplatOp>();
if (!splat)
return failure();
rewriter.replaceOpWithNewOp<SplatOp>(op, op.getType(), splat.getInput());
return success();
}
};
/// Pattern to rewrite simple cases of N-D extract_strided_slice, where the
/// slice is contiguous, into extract and shape_cast.
///
/// Example:
/// Before:
/// %1 = vector.extract_strided_slice %arg0 {
/// offsets = [0, 0, 0, 0, 0],
/// sizes = [1, 1, 1, 1, 8],
/// strides = [1, 1, 1, 1, 1]
/// } : vector<8x1x1x2x8xi8> to vector<1x1x1x1x8xi8>
/// After:
/// %0 = vector.extract %arg0[0, 0, 0, 0]
/// : vector<8xi8> from vector<8x1x1x2x8xi8>
/// %1 = vector.shape_cast %0
/// : vector<8xi8> to vector<1x1x1x1x8xi8>
///
class ContiguousExtractStridedSliceToExtract final
: public OpRewritePattern<ExtractStridedSliceOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
PatternRewriter &rewriter) const override {
if (op.hasNonUnitStrides())
return failure();
Value source = op.getOperand();
auto sourceType = cast<VectorType>(source.getType());
if (sourceType.isScalable() || sourceType.getRank() == 0)
return failure();
// Compute the number of offsets to pass to ExtractOp::build. That is the
// difference between the source rank and the desired slice rank. We walk
// the dimensions from innermost out, and stop when the next slice dimension
// is not full-size.
SmallVector<int64_t> sizes = getI64SubArray(op.getSizes());
int numOffsets;
for (numOffsets = sizes.size(); numOffsets > 0; --numOffsets) {
if (sizes[numOffsets - 1] != sourceType.getDimSize(numOffsets - 1))
break;
}
// If the created extract op would have no offsets, then this whole
// extract_strided_slice is the identity and should have been handled by
// other canonicalizations.
if (numOffsets == 0)
return failure();
// If not even the inner-most dimension is full-size, this op can't be
// rewritten as an ExtractOp.
if (numOffsets == sourceType.getRank() &&
static_cast<int>(sizes.size()) == sourceType.getRank())
return failure();
// The outer dimensions must have unit size.
for (int i = 0; i < numOffsets; ++i) {
if (sizes[i] != 1)
return failure();
}
// Avoid generating slices that have leading unit dimensions. The shape_cast
// op that we create below would take bad generic fallback patterns
// (ShapeCastOpRewritePattern).
while (numOffsets < static_cast<int>(sizes.size()) - 1 &&
sizes[numOffsets] == 1) {
++numOffsets;
}
SmallVector<int64_t> offsets = getI64SubArray(op.getOffsets());
auto extractOffsets = ArrayRef(offsets).take_front(numOffsets);
Value extract = rewriter.create<vector::ExtractOp>(op->getLoc(), source,
extractOffsets);
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(op, op.getType(), extract);
return success();
}
};
} // namespace
void ExtractStridedSliceOp::getCanonicalizationPatterns(
RewritePatternSet &results, MLIRContext *context) {
// Pattern to rewrite a ExtractStridedSliceOp(ConstantMaskOp) ->
// ConstantMaskOp and ExtractStridedSliceOp(ConstantOp) -> ConstantOp.
results.add<StridedSliceCreateMaskFolder, StridedSliceConstantMaskFolder,
StridedSliceBroadcast, StridedSliceSplat,
ContiguousExtractStridedSliceToExtract>(context);
}
//===----------------------------------------------------------------------===//
// TransferReadOp
//===----------------------------------------------------------------------===//
/// 1. Builder that sets padding to zero and an empty mask (variant with attrs).
void TransferReadOp::build(OpBuilder &builder, OperationState &result,
VectorType vectorType, Value source,
ValueRange indices, std::optional<Value> padding,
AffineMapAttr permutationMapAttr,
/*optional*/ ArrayAttr inBoundsAttr) {
Type elemType = llvm::cast<ShapedType>(source.getType()).getElementType();
if (!padding)
padding = builder.create<ub::PoisonOp>(result.location, elemType);
build(builder, result, vectorType, source, indices, permutationMapAttr,
*padding, /*mask=*/Value(), inBoundsAttr);
}
/// 2. Builder that sets padding to zero an empty mask (variant without attrs).
void TransferReadOp::build(OpBuilder &builder, OperationState &result,
VectorType vectorType, Value source,
ValueRange indices, std::optional<Value> padding,
AffineMap permutationMap,
std::optional<ArrayRef<bool>> inBounds) {
auto permutationMapAttr = AffineMapAttr::get(permutationMap);
auto inBoundsAttr = (inBounds && !inBounds.value().empty())
? builder.getBoolArrayAttr(inBounds.value())
: builder.getBoolArrayAttr(
SmallVector<bool>(vectorType.getRank(), false));
Type elemType = llvm::cast<ShapedType>(source.getType()).getElementType();
if (!padding)
padding = builder.create<ub::PoisonOp>(result.location, elemType);
build(builder, result, vectorType, source, indices, *padding,
permutationMapAttr, inBoundsAttr);
}
/// 3. Builder that sets permutation map to 'getMinorIdentityMap'.
void TransferReadOp::build(OpBuilder &builder, OperationState &result,
VectorType vectorType, Value source,
ValueRange indices, std::optional<Value> padding,
std::optional<ArrayRef<bool>> inBounds) {
AffineMap permutationMap = getTransferMinorIdentityMap(
llvm::cast<ShapedType>(source.getType()), vectorType);
auto permutationMapAttr = AffineMapAttr::get(permutationMap);
auto inBoundsAttr = (inBounds && !inBounds.value().empty())
? builder.getBoolArrayAttr(inBounds.value())
: builder.getBoolArrayAttr(
SmallVector<bool>(vectorType.getRank(), false));
Type elemType = llvm::cast<ShapedType>(source.getType()).getElementType();
if (!padding)
padding = builder.create<ub::PoisonOp>(result.location, elemType);
build(builder, result, vectorType, source, indices, permutationMapAttr,
*padding,
/*mask=*/Value(), inBoundsAttr);
}
template <typename EmitFun>
static LogicalResult verifyPermutationMap(AffineMap permutationMap,
EmitFun emitOpError) {
SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
for (auto expr : permutationMap.getResults()) {
auto dim = dyn_cast<AffineDimExpr>(expr);
auto zero = dyn_cast<AffineConstantExpr>(expr);
if (zero) {
if (zero.getValue() != 0) {
return emitOpError(
"requires a projected permutation_map (at most one dim or the zero "
"constant can appear in each result)");
}
continue;
}
if (!dim) {
return emitOpError("requires a projected permutation_map (at most one "
"dim or the zero constant can appear in each result)");
}
if (seen[dim.getPosition()]) {
return emitOpError(
"requires a permutation_map that is a permutation (found one dim "
"used more than once)");
}
seen[dim.getPosition()] = true;
}
return success();
}
static LogicalResult
verifyTransferOp(VectorTransferOpInterface op, ShapedType shapedType,
VectorType vectorType, VectorType maskType,
VectorType inferredMaskType, AffineMap permutationMap,
ArrayAttr inBounds) {
if (op->hasAttr("masked")) {
return op->emitOpError("masked attribute has been removed. "
"Use in_bounds instead.");
}
if (!llvm::isa<MemRefType, RankedTensorType>(shapedType))
return op->emitOpError(
"requires source to be a memref or ranked tensor type");
auto elementType = shapedType.getElementType();
DataLayout dataLayout = DataLayout::closest(op);
if (auto vectorElementType = llvm::dyn_cast<VectorType>(elementType)) {
// Memref or tensor has vector element type.
unsigned sourceVecSize =
dataLayout.getTypeSizeInBits(vectorElementType.getElementType()) *
vectorElementType.getShape().back();
unsigned resultVecSize =
dataLayout.getTypeSizeInBits(vectorType.getElementType()) *
vectorType.getShape().back();
if (resultVecSize % sourceVecSize != 0)
return op->emitOpError(
"requires the bitwidth of the minor 1-D vector to be an integral "
"multiple of the bitwidth of the minor 1-D vector of the source");
unsigned sourceVecEltRank = vectorElementType.getRank();
unsigned resultVecRank = vectorType.getRank();
if (sourceVecEltRank > resultVecRank)
return op->emitOpError(
"requires source vector element and vector result ranks to match.");
unsigned rankOffset = resultVecRank - sourceVecEltRank;
// Check that permutation map results match 'rankOffset' of vector type.
if (permutationMap.getNumResults() != rankOffset)
return op->emitOpError("requires a permutation_map with result dims of "
"the same rank as the vector type");
if (maskType)
return op->emitOpError("does not support masks with vector element type");
} else {
// Memref or tensor has scalar element type.
unsigned minorSize =
vectorType.getRank() == 0 ? 1 : vectorType.getShape().back();
unsigned resultVecSize =
dataLayout.getTypeSizeInBits(vectorType.getElementType()) * minorSize;
if (resultVecSize % dataLayout.getTypeSizeInBits(elementType) != 0)
return op->emitOpError(
"requires the bitwidth of the minor 1-D vector to be an integral "
"multiple of the bitwidth of the source element type");
// Check that permutation map results match rank of vector type.
if (permutationMap.getNumResults() != vectorType.getRank())
return op->emitOpError("requires a permutation_map with result dims of "
"the same rank as the vector type");
}
if (permutationMap.getNumSymbols() != 0)
return op->emitOpError("requires permutation_map without symbols");
if (permutationMap.getNumInputs() != shapedType.getRank())
return op->emitOpError("requires a permutation_map with input dims of the "
"same rank as the source type");
if (maskType && maskType != inferredMaskType)
return op->emitOpError("inferred mask type (")
<< inferredMaskType << ") and mask operand type (" << maskType
<< ") don't match";
if (permutationMap.getNumResults() != static_cast<int64_t>(inBounds.size()))
return op->emitOpError("expects the in_bounds attr of same rank "
"as permutation_map results: ")
<< AffineMapAttr::get(permutationMap)
<< " vs inBounds of size: " << inBounds.size();
return success();
}
static void printTransferAttrs(OpAsmPrinter &p, VectorTransferOpInterface op) {
SmallVector<StringRef, 3> elidedAttrs;
elidedAttrs.push_back(TransferReadOp::getOperandSegmentSizeAttr());
if (op.getPermutationMap().isMinorIdentity())
elidedAttrs.push_back(op.getPermutationMapAttrName());
// Elide in_bounds attribute if all dims are out-of-bounds.
if (llvm::none_of(op.getInBoundsValues(), [](bool b) { return b; }))
elidedAttrs.push_back(op.getInBoundsAttrName());
p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
}
void TransferReadOp::print(OpAsmPrinter &p) {
p << " " << getBase() << "[" << getIndices() << "], " << getPadding();
if (getMask())
p << ", " << getMask();
printTransferAttrs(p, *this);
p << " : " << getShapedType() << ", " << getVectorType();
}
VectorType mlir::vector::inferTransferOpMaskType(VectorType vecType,
AffineMap permMap) {
auto i1Type = IntegerType::get(permMap.getContext(), 1);
AffineMap invPermMap = inversePermutation(compressUnusedDims(permMap));
assert(invPermMap && "Inversed permutation map couldn't be computed");
SmallVector<int64_t, 8> maskShape = invPermMap.compose(vecType.getShape());
// The MaskOp specification doesn't support 0-D vectors at the moment. Turn a
// 0-D mask into a single-element 1-D mask.
if (maskShape.empty())
maskShape.push_back(1);
SmallVector<bool> scalableDims =
applyPermutationMap(invPermMap, vecType.getScalableDims());
return VectorType::get(maskShape, i1Type, scalableDims);
}
ParseResult TransferReadOp::parse(OpAsmParser &parser, OperationState &result) {
auto &builder = parser.getBuilder();
SMLoc typesLoc;
OpAsmParser::UnresolvedOperand sourceInfo;
SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
OpAsmParser::UnresolvedOperand paddingInfo;
SmallVector<Type, 2> types;
OpAsmParser::UnresolvedOperand maskInfo;
// Parsing with support for paddingValue.
if (parser.parseOperand(sourceInfo) ||
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(paddingInfo))
return failure();
ParseResult hasMask = parser.parseOptionalComma();
if (hasMask.succeeded()) {
if (parser.parseOperand(maskInfo))
return failure();
}
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
return failure();
if (types.size() != 2)
return parser.emitError(typesLoc, "requires two types");
auto indexType = builder.getIndexType();
auto shapedType = llvm::dyn_cast<ShapedType>(types[0]);
if (!shapedType || !llvm::isa<MemRefType, RankedTensorType>(shapedType))
return parser.emitError(typesLoc, "requires memref or ranked tensor type");
VectorType vectorType = llvm::dyn_cast<VectorType>(types[1]);
if (!vectorType)
return parser.emitError(typesLoc, "requires vector type");
auto permMapAttrName = TransferReadOp::getPermutationMapAttrName(result.name);
Attribute permMapAttr = result.attributes.get(permMapAttrName);
AffineMap permMap;
if (!permMapAttr) {
if (shapedType.getRank() <
getEffectiveVectorRankForXferOp(shapedType, vectorType))
return parser.emitError(typesLoc,
"expected a custom permutation_map when "
"rank(source) != rank(destination)");
permMap = getTransferMinorIdentityMap(shapedType, vectorType);
result.attributes.set(permMapAttrName, AffineMapAttr::get(permMap));
} else {
permMap = llvm::cast<AffineMapAttr>(permMapAttr).getValue();
}
auto inBoundsAttrName = TransferReadOp::getInBoundsAttrName(result.name);
Attribute inBoundsAttr = result.attributes.get(inBoundsAttrName);
if (!inBoundsAttr) {
result.addAttribute(inBoundsAttrName,
builder.getBoolArrayAttr(
SmallVector<bool>(permMap.getNumResults(), false)));
}
if (parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
parser.resolveOperands(indexInfo, indexType, result.operands) ||
parser.resolveOperand(paddingInfo, shapedType.getElementType(),
result.operands))
return failure();
if (hasMask.succeeded()) {
if (llvm::dyn_cast<VectorType>(shapedType.getElementType()))
return parser.emitError(
maskInfo.location, "does not support masks with vector element type");
if (vectorType.getRank() != permMap.getNumResults()) {
return parser.emitError(typesLoc,
"expected the same rank for the vector and the "
"results of the permutation map");
}
// Instead of adding the mask type as an op type, compute it based on the
// vector type and the permutation map (to keep the type signature small).
auto maskType = inferTransferOpMaskType(vectorType, permMap);
if (parser.resolveOperand(maskInfo, maskType, result.operands))
return failure();
}
result.addAttribute(TransferReadOp::getOperandSegmentSizeAttr(),
builder.getDenseI32ArrayAttr(
{1, static_cast<int32_t>(indexInfo.size()), 1,
static_cast<int32_t>(hasMask.succeeded())}));
return parser.addTypeToList(vectorType, result.types);
}
LogicalResult TransferReadOp::verify() {
// Consistency of elemental types in source and vector.
ShapedType shapedType = getShapedType();
VectorType vectorType = getVectorType();
VectorType maskType = getMaskType();
auto paddingType = getPadding().getType();
auto permutationMap = getPermutationMap();
VectorType inferredMaskType =
maskType ? inferTransferOpMaskType(vectorType, permutationMap)
: VectorType();
auto sourceElementType = shapedType.getElementType();
if (static_cast<int64_t>(getIndices().size()) != shapedType.getRank())
return emitOpError("requires ") << shapedType.getRank() << " indices";
if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
shapedType, vectorType, maskType,
inferredMaskType, permutationMap, getInBounds())))
return failure();
if (auto sourceVectorElementType =
llvm::dyn_cast<VectorType>(sourceElementType)) {
// Source has vector element type.
// Check that 'sourceVectorElementType' and 'paddingType' types match.
if (sourceVectorElementType != paddingType)
return emitOpError(
"requires source element type and padding type to match.");
} else {
// Check that 'paddingType' is valid to store in a vector type.
if (!VectorType::isValidElementType(paddingType))
return emitOpError("requires valid padding vector elemental type");
// Check that padding type and vector element types match.
if (paddingType != sourceElementType)
return emitOpError(
"requires formal padding and source of the same elemental type");
}
return verifyPermutationMap(permutationMap,
[&](Twine t) { return emitOpError(t); });
}
// MaskableOpInterface methods.
/// Returns the mask type expected by this operation. Mostly used for
/// verification purposes. It requires the operation to be vectorized."
Type TransferReadOp::getExpectedMaskType() {
return inferTransferOpMaskType(getVectorType(), getPermutationMap());
}
//===----------------------------------------------------------------------===//
// TransferReadOp: VectorTransferOpInterface methods.
//===----------------------------------------------------------------------===//
VectorType TransferReadOp::getVectorType() {
return cast<VectorType>(getVector().getType());
}
template <typename TransferOp>
static bool isInBounds(TransferOp op, int64_t resultIdx, int64_t indicesIdx) {
// TODO: support more aggressive createOrFold on:
// op.getIndices()[indicesIdx] + vectorType < dim(op.getSource(), indicesIdx)
if (op.getShapedType().isDynamicDim(indicesIdx))
return false;
Value index = op.getIndices()[indicesIdx];
std::optional<int64_t> cstOp = getConstantIntValue(index);
if (!cstOp.has_value())
return false;
int64_t sourceSize = op.getShapedType().getDimSize(indicesIdx);
int64_t vectorSize = op.getVectorType().getDimSize(resultIdx);
return cstOp.value() + vectorSize <= sourceSize;
}
template <typename TransferOp>
static LogicalResult foldTransferInBoundsAttribute(TransferOp op) {
// TODO: support 0-d corner case.
// TODO: Be less conservative.
if (op.getTransferRank() == 0)
return failure();
AffineMap permutationMap = op.getPermutationMap();
bool changed = false;
SmallVector<bool, 4> newInBounds;
newInBounds.reserve(op.getTransferRank());
// Idxs of non-bcast dims - used when analysing bcast dims.
SmallVector<unsigned> nonBcastDims;
// 1. Process non-broadcast dims
for (unsigned i = 0; i < op.getTransferRank(); ++i) {
// 1.1. Already marked as in-bounds, nothing to see here.
if (op.isDimInBounds(i)) {
newInBounds.push_back(true);
continue;
}
// 1.2. Currently out-of-bounds, check whether we can statically determine
// it is inBounds.
bool inBounds = false;
auto dimExpr = dyn_cast<AffineDimExpr>(permutationMap.getResult(i));
if (dimExpr) {
inBounds = isInBounds(op, /*resultIdx=*/i,
/*indicesIdx=*/dimExpr.getPosition());
nonBcastDims.push_back(i);
}
newInBounds.push_back(inBounds);
// We commit the pattern if it is "more inbounds".
changed |= inBounds;
}
// 2. Handle broadcast dims
// If all non-broadcast dims are "in bounds", then all bcast dims should be
// "in bounds" as well.
bool allNonBcastDimsInBounds = llvm::all_of(
nonBcastDims, [&newInBounds](unsigned idx) { return newInBounds[idx]; });
if (allNonBcastDimsInBounds) {
for (size_t idx : permutationMap.getBroadcastDims()) {
changed |= !newInBounds[idx];
newInBounds[idx] = true;
}
}
if (!changed)
return failure();
// OpBuilder is only used as a helper to build an I64ArrayAttr.
OpBuilder b(op.getContext());
op.setInBoundsAttr(b.getBoolArrayAttr(newInBounds));
return success();
}
template <typename TransferOp>
static LogicalResult foldTransferFullMask(TransferOp op) {
auto mask = op.getMask();
if (!mask)
return failure();
if (getMaskFormat(mask) != MaskFormat::AllTrue)
return failure();
op.getMaskMutable().clear();
return success();
}
/// ```
/// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
/// : vector<1x4xf32>, tensor<4x4xf32>
/// %0 = vector.transfer_read %w0[%c1, %c0], %cf0 {in_bounds = [true, true]}
/// : tensor<4x4xf32>, vector<1x4xf32>
/// ```
/// -> Folds into
/// ```
/// %v0
/// ```
static Value foldRAW(TransferReadOp readOp) {
if (!llvm::isa<RankedTensorType>(readOp.getShapedType()))
return {};
auto defWrite = readOp.getBase().getDefiningOp<vector::TransferWriteOp>();
while (defWrite) {
if (checkSameValueRAW(defWrite, readOp))
return defWrite.getVector();
if (!isDisjointTransferIndices(
cast<VectorTransferOpInterface>(defWrite.getOperation()),
cast<VectorTransferOpInterface>(readOp.getOperation())))
break;
defWrite = defWrite.getBase().getDefiningOp<vector::TransferWriteOp>();
}
return {};
}
OpFoldResult TransferReadOp::fold(FoldAdaptor) {
if (Value vec = foldRAW(*this))
return vec;
/// transfer_read(memrefcast) -> transfer_read
if (succeeded(foldTransferInBoundsAttribute(*this)))
return getResult();
if (succeeded(foldTransferFullMask(*this)))
return getResult();
if (succeeded(memref::foldMemRefCast(*this)))
return getResult();
if (succeeded(tensor::foldTensorCast(*this)))
return getResult();
return OpFoldResult();
}
std::optional<SmallVector<int64_t, 4>> TransferReadOp::getShapeForUnroll() {
return llvm::to_vector<4>(getVectorType().getShape());
}
void TransferReadOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
if (llvm::isa<MemRefType>(getShapedType()))
effects.emplace_back(MemoryEffects::Read::get(), &getBaseMutable(),
SideEffects::DefaultResource::get());
}
Speculation::Speculatability TransferReadOp::getSpeculatability() {
if (hasPureTensorSemantics())
return Speculation::Speculatable;
return Speculation::NotSpeculatable;
}
namespace {
/// Store to load forwarding for transfer operations with permuation maps.
/// Even if the permutation maps are different we can still propagate the store
/// into the load if the size of the dimensions read and written match. Then we
/// can replace the transfer_read + transfer_write by vector.broadcast and
/// vector.transpose.
/// Example:
/// ```
/// %w0 = vector.transfer_write %v0, %arg0[%c0, %c0, %c0]
/// {in_bounds = [true, true],
/// permutation_map = affine_map<(d0, d1, d2) -> (d2, d1)>} :
/// vector<4x1xf32>, tensor<4x4x4xf32>
/// %r = vector.transfer_read %w0[%c0, %c0, %c0], %cf0
/// {in_bounds = [true, true, true, true],
/// permutation_map = affine_map<(d0, d1, d2) -> (d1, 0, d2, 0)>} :
/// tensor<4x4x4xf32>, vector<1x100x4x5xf32>
/// ```
/// To:
/// ```
/// %0 = vector.broadcast %arg1 : vector<4x1xf32> to vector<100x5x4x1xf32>
/// %r = vector.transpose %0, [3, 0, 2, 1] :
/// vector<100x5x4x1xf32> to vector<1x100x4x5xf32>
/// ```
struct TransferReadAfterWriteToBroadcast
: public OpRewritePattern<TransferReadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(TransferReadOp readOp,
PatternRewriter &rewriter) const override {
auto defWrite = readOp.getBase().getDefiningOp<vector::TransferWriteOp>();
if (!defWrite)
return failure();
// Bail if we need an alias analysis.
if (!readOp.hasPureTensorSemantics() || !defWrite.hasPureTensorSemantics())
return failure();
// Bail if we need a bounds analysis.
if (readOp.hasOutOfBoundsDim() || defWrite.hasOutOfBoundsDim())
return failure();
// TODO: If the written transfer chunk is a superset of the read transfer
// chunk we could do an extract_strided_slice.
if (readOp.getTransferChunkAccessed() !=
defWrite.getTransferChunkAccessed())
return failure();
// TODO: Support cases where a dim is explicitly written but implicitly
// read (i.e., a unit dim that is rank reduced).
if (getUnusedDimsBitVector({readOp.getPermutationMap()}) !=
getUnusedDimsBitVector({defWrite.getPermutationMap()}))
return failure();
// This pattern should only catch the broadcast case, the non-broadcast case
// should be done separately to keep application conditions clean and
// separate.
AffineMap readMap = compressUnusedDims(readOp.getPermutationMap());
AffineMap writeMap = compressUnusedDims(defWrite.getPermutationMap());
bool bcast = !readMap.getBroadcastDims().empty() ||
!writeMap.getBroadcastDims().empty();
if (!bcast)
return failure();
// At this point, we know we have a bcast.
// Bail in the masked case (too complex atm and needed to properly account
// for padding).
if (readOp.getMask() || defWrite.getMask())
return failure();
// If indices are not the same a shift may be required, bail.
if (readOp.getIndices() != defWrite.getIndices())
return failure();
Value vec = defWrite.getVector();
// TODO: loop through the chain of transfer_write if we can prove that they
// don't overlap with the transfer_read. This requires improving
// `isDisjointTransferIndices` helper.
AffineMap map = readMap.compose(writeMap);
if (map.getNumResults() == 0)
return failure();
// Calculate the permutation to apply to go from the vector stored to the
// vector read.
SmallVector<unsigned> permutation;
if (!map.isPermutationOfMinorIdentityWithBroadcasting(permutation))
return failure();
Location loc = readOp.getLoc();
// Calculate the broadcast shape by applying the reverse permutation to the
// final shape we want.
ArrayRef<int64_t> destShape = readOp.getVectorType().getShape();
SmallVector<int64_t> broadcastShape(destShape.size());
SmallVector<bool> broadcastScalableFlags(destShape.size());
for (const auto &pos : llvm::enumerate(permutation)) {
broadcastShape[pos.value()] = destShape[pos.index()];
broadcastScalableFlags[pos.value()] =
readOp.getVectorType().getScalableDims()[pos.index()];
}
VectorType broadcastedType = VectorType::get(
broadcastShape, defWrite.getVectorType().getElementType(),
broadcastScalableFlags);
vec = rewriter.create<vector::BroadcastOp>(loc, broadcastedType, vec);
SmallVector<int64_t> transposePerm(permutation.begin(), permutation.end());
rewriter.replaceOpWithNewOp<vector::TransposeOp>(readOp, vec,
transposePerm);
return success();
}
};
} // namespace
void TransferReadOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<TransferReadAfterWriteToBroadcast>(context);
}
//===----------------------------------------------------------------------===//
// TransferWriteOp
//===----------------------------------------------------------------------===//
/// 1. Builder with type inference.
void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
Value vector, Value dest, ValueRange indices,
AffineMapAttr permutationMapAttr,
/*optional*/ Value mask,
/*optional*/ ArrayAttr inBoundsAttr) {
Type resultType = llvm::dyn_cast<RankedTensorType>(dest.getType());
build(builder, result, resultType, vector, dest, indices, permutationMapAttr,
mask, inBoundsAttr);
}
/// 2. Builder with type inference that sets an empty mask (variant with attrs).
void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
Value vector, Value dest, ValueRange indices,
AffineMapAttr permutationMapAttr,
/*optional*/ ArrayAttr inBoundsAttr) {
build(builder, result, vector, dest, indices, permutationMapAttr,
/*mask=*/Value(), inBoundsAttr);
}
/// 3. Builder with type inference that sets an empty mask (variant without
/// attrs)
void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
Value vector, Value dest, ValueRange indices,
AffineMap permutationMap,
std::optional<ArrayRef<bool>> inBounds) {
auto permutationMapAttr = AffineMapAttr::get(permutationMap);
auto inBoundsAttr =
(inBounds && !inBounds.value().empty())
? builder.getBoolArrayAttr(inBounds.value())
: builder.getBoolArrayAttr(SmallVector<bool>(
llvm::cast<VectorType>(vector.getType()).getRank(), false));
build(builder, result, vector, dest, indices, permutationMapAttr,
/*mask=*/Value(), inBoundsAttr);
}
/// 4. Builder with type inference that sets an empty mask and sets permutation
/// map to 'getMinorIdentityMap'.
void TransferWriteOp::build(OpBuilder &builder, OperationState &result,
Value vector, Value dest, ValueRange indices,
std::optional<ArrayRef<bool>> inBounds) {
auto vectorType = llvm::cast<VectorType>(vector.getType());
AffineMap permutationMap = getTransferMinorIdentityMap(
llvm::cast<ShapedType>(dest.getType()), vectorType);
build(builder, result, vector, dest, indices, permutationMap, inBounds);
}
ParseResult TransferWriteOp::parse(OpAsmParser &parser,
OperationState &result) {
auto &builder = parser.getBuilder();
SMLoc typesLoc;
OpAsmParser::UnresolvedOperand vectorInfo, sourceInfo;
SmallVector<OpAsmParser::UnresolvedOperand, 8> indexInfo;
SmallVector<Type, 2> types;
OpAsmParser::UnresolvedOperand maskInfo;
if (parser.parseOperand(vectorInfo) || parser.parseComma() ||
parser.parseOperand(sourceInfo) ||
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square))
return failure();
ParseResult hasMask = parser.parseOptionalComma();
if (hasMask.succeeded() && parser.parseOperand(maskInfo))
return failure();
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
return failure();
if (types.size() != 2)
return parser.emitError(typesLoc, "requires two types");
auto indexType = builder.getIndexType();
VectorType vectorType = llvm::dyn_cast<VectorType>(types[0]);
if (!vectorType)
return parser.emitError(typesLoc, "requires vector type");
ShapedType shapedType = llvm::dyn_cast<ShapedType>(types[1]);
if (!shapedType || !llvm::isa<MemRefType, RankedTensorType>(shapedType))
return parser.emitError(typesLoc, "requires memref or ranked tensor type");
auto permMapAttrName =
TransferWriteOp::getPermutationMapAttrName(result.name);
auto permMapAttr = result.attributes.get(permMapAttrName);
AffineMap permMap;
if (!permMapAttr) {
if (shapedType.getRank() <
getEffectiveVectorRankForXferOp(shapedType, vectorType))
return parser.emitError(typesLoc,
"expected a custom permutation_map when "
"rank(source) != rank(destination)");
permMap = getTransferMinorIdentityMap(shapedType, vectorType);
result.attributes.set(permMapAttrName, AffineMapAttr::get(permMap));
} else {
permMap = llvm::cast<AffineMapAttr>(permMapAttr).getValue();
}
auto inBoundsAttrName = TransferWriteOp::getInBoundsAttrName(result.name);
Attribute inBoundsAttr = result.attributes.get(inBoundsAttrName);
if (!inBoundsAttr) {
result.addAttribute(inBoundsAttrName,
builder.getBoolArrayAttr(
SmallVector<bool>(permMap.getNumResults(), false)));
}
if (parser.resolveOperand(vectorInfo, vectorType, result.operands) ||
parser.resolveOperand(sourceInfo, shapedType, result.operands) ||
parser.resolveOperands(indexInfo, indexType, result.operands))
return failure();
if (hasMask.succeeded()) {
if (llvm::dyn_cast<VectorType>(shapedType.getElementType()))
return parser.emitError(
maskInfo.location, "does not support masks with vector element type");
if (vectorType.getRank() != permMap.getNumResults()) {
return parser.emitError(typesLoc,
"expected the same rank for the vector and the "
"results of the permutation map");
}
auto maskType = inferTransferOpMaskType(vectorType, permMap);
if (parser.resolveOperand(maskInfo, maskType, result.operands))
return failure();
}
result.addAttribute(TransferWriteOp::getOperandSegmentSizeAttr(),
builder.getDenseI32ArrayAttr(
{1, 1, static_cast<int32_t>(indexInfo.size()),
static_cast<int32_t>(hasMask.succeeded())}));
return failure(llvm::isa<RankedTensorType>(shapedType) &&
parser.addTypeToList(shapedType, result.types));
}
void TransferWriteOp::print(OpAsmPrinter &p) {
p << " " << getVector() << ", " << getBase() << "[" << getIndices() << "]";
if (getMask())
p << ", " << getMask();
printTransferAttrs(p, *this);
p << " : " << getVectorType() << ", " << getShapedType();
}
LogicalResult TransferWriteOp::verify() {
// Consistency of elemental types in shape and vector.
ShapedType shapedType = getShapedType();
VectorType vectorType = getVectorType();
VectorType maskType = getMaskType();
auto permutationMap = getPermutationMap();
VectorType inferredMaskType =
maskType ? inferTransferOpMaskType(vectorType, permutationMap)
: VectorType();
if (llvm::size(getIndices()) != shapedType.getRank())
return emitOpError("requires ") << shapedType.getRank() << " indices";
// We do not allow broadcast dimensions on TransferWriteOps for the moment,
// as the semantics is unclear. This can be revisited later if necessary.
if (hasBroadcastDim())
return emitOpError("should not have broadcast dimensions");
if (failed(verifyTransferOp(cast<VectorTransferOpInterface>(getOperation()),
shapedType, vectorType, maskType,
inferredMaskType, permutationMap, getInBounds())))
return failure();
return verifyPermutationMap(permutationMap,
[&](Twine t) { return emitOpError(t); });
}
//===----------------------------------------------------------------------===//
// TransferWriteOp: MaskableOpInterface methods.
//===----------------------------------------------------------------------===//
/// Returns the mask type expected by this operation. Mostly used for
/// verification purposes.
Type TransferWriteOp::getExpectedMaskType() {
return inferTransferOpMaskType(getVectorType(), getPermutationMap());
}
//===----------------------------------------------------------------------===//
// TransferWriteOp: VectorTransferOpInterface methods.
//===----------------------------------------------------------------------===//
Value TransferWriteOp::getVector() { return getOperand(0); }
VectorType TransferWriteOp::getVectorType() {
return cast<VectorType>(getValueToStore().getType());
}
//===----------------------------------------------------------------------===//
// TransferWriteOp: fold methods.
//===----------------------------------------------------------------------===//
/// Fold:
/// ```
/// %t1 = ...
/// %v = vector.transfer_read %t0[%c0...], {in_bounds = [true...]} :
/// tensor<static_sizesxf32>, vector<static_sizesxf32>
/// %t2 = vector.transfer_write %v, %t1[%c0...] {in_bounds = [true...]} :
/// vector<static_sizesxf32>, tensor<static_sizesxf32>
/// ```
///
/// into:
///
/// ```
/// %t0
/// ```
///
/// The producer of t1 may or may not be DCE'd depending on whether it is a
/// block argument or has side effects.
static LogicalResult foldReadInitWrite(TransferWriteOp write,
ArrayRef<Attribute>,
SmallVectorImpl<OpFoldResult> &results) {
// TODO: support 0-d corner case.
if (write.getTransferRank() == 0)
return failure();
auto rankedTensorType =
llvm::dyn_cast<RankedTensorType>(write.getBase().getType());
// If not operating on tensors, bail.
if (!rankedTensorType)
return failure();
// If no read, bail.
auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
if (!read)
return failure();
// TODO: support 0-d corner case.
if (read.getTransferRank() == 0)
return failure();
// For now, only accept minor identity. Future: composition is minor identity.
if (!read.getPermutationMap().isMinorIdentity() ||
!write.getPermutationMap().isMinorIdentity())
return failure();
// Bail on mismatching ranks.
if (read.getTransferRank() != write.getTransferRank())
return failure();
// Bail on potential out-of-bounds accesses.
if (read.hasOutOfBoundsDim() || write.hasOutOfBoundsDim())
return failure();
// Tensor types must be the same.
if (read.getBase().getType() != rankedTensorType)
return failure();
// Vector types must be the same.
if (read.getVectorType() != write.getVectorType())
return failure();
// Vector and Tensor shapes must match.
if (read.getVectorType().getShape() != rankedTensorType.getShape())
return failure();
// If any index is nonzero.
auto isNotConstantZero = [](Value v) {
auto cstOp = getConstantIntValue(v);
return !cstOp.has_value() || cstOp.value() != 0;
};
if (llvm::any_of(read.getIndices(), isNotConstantZero) ||
llvm::any_of(write.getIndices(), isNotConstantZero))
return failure();
// Success.
results.push_back(read.getBase());
return success();
}
static bool checkSameValueWAR(vector::TransferReadOp read,
vector::TransferWriteOp write) {
return read.getBase() == write.getBase() &&
read.getIndices() == write.getIndices() &&
read.getPermutationMap() == write.getPermutationMap() &&
read.getVectorType() == write.getVectorType() && !read.getMask() &&
!write.getMask();
}
/// Fold transfer_write write after read:
/// ```
/// %t0 = ...
/// %v = vector.transfer_read %t0[%c0...] :
/// tensor<static_sizesxf32>, vector<static_sizesxf32>
/// %t1 = vector.transfer_write %v, %t0[%c0...] :
/// vector<static_sizesxf32>, tensor<static_sizesxf32>
/// ```
///
/// into:
///
/// ```
/// %t0
/// ```
static LogicalResult foldWAR(TransferWriteOp write,
SmallVectorImpl<OpFoldResult> &results) {
if (!llvm::isa<RankedTensorType>(write.getBase().getType()))
return failure();
auto read = write.getVector().getDefiningOp<vector::TransferReadOp>();
if (!read)
return failure();
if (!checkSameValueWAR(read, write))
return failure();
results.push_back(read.getBase());
return success();
}
LogicalResult TransferWriteOp::fold(FoldAdaptor adaptor,
SmallVectorImpl<OpFoldResult> &results) {
if (succeeded(foldReadInitWrite(*this, adaptor.getOperands(), results)))
return success();
if (succeeded(foldWAR(*this, results)))
return success();
if (succeeded(foldTransferInBoundsAttribute(*this)))
return success();
if (succeeded(foldTransferFullMask(*this)))
return success();
return memref::foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// TransferWriteOp: other methods.
//===----------------------------------------------------------------------===//
std::optional<SmallVector<int64_t, 4>> TransferWriteOp::getShapeForUnroll() {
return llvm::to_vector<4>(getVectorType().getShape());
}
void TransferWriteOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
if (llvm::isa<MemRefType>(getShapedType()))
effects.emplace_back(MemoryEffects::Write::get(), &getBaseMutable(),
SideEffects::DefaultResource::get());
}
Speculation::Speculatability TransferWriteOp::getSpeculatability() {
if (hasPureTensorSemantics())
return Speculation::Speculatable;
return Speculation::NotSpeculatable;
}
namespace {
/// Remove dead transfer write from the SSA chain so that it an be eliminated by
/// DCE
/// ```
/// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
/// : vector<1x4xf32>, tensor<4x4xf32>
/// %w1 = vector.transfer_write %v0, %w0[%c2, %c0] {in_bounds = [true, true]}
/// : vector<1x4xf32>, tensor<4x4xf32>
/// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
/// : vector<1x4xf32>, tensor<4x4xf32>
/// ```
///
/// into:
///
/// ```
/// %w0 = vector.transfer_write %v0, %arg0[%c1, %c0] {in_bounds = [true, true]}
/// : vector<1x4xf32>, tensor<4x4xf32>
/// %w1 = vector.transfer_write %v0, %arg0[%c2, %c0] {in_bounds = [true, true]}
/// : vector<1x4xf32>, tensor<4x4xf32>
/// %w2 = vector.transfer_write %v1, %w1[%c1, %c0] {in_bounds = [true, true]}
/// : vector<1x4xf32>, tensor<4x4xf32>
/// ```
///
/// `%w0 = vector.transfer_write` op will be removed by DCE if it doesn't have
/// any other uses.
class FoldWaw final : public OpRewritePattern<TransferWriteOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(TransferWriteOp writeOp,
PatternRewriter &rewriter) const override {
if (!llvm::isa<RankedTensorType>(writeOp.getShapedType()))
return failure();
vector::TransferWriteOp writeToModify = writeOp;
auto defWrite = writeOp.getBase().getDefiningOp<vector::TransferWriteOp>();
while (defWrite) {
if (checkSameValueWAW(writeOp, defWrite)) {
rewriter.modifyOpInPlace(writeToModify, [&]() {
writeToModify.getBaseMutable().assign(defWrite.getBase());
});
return success();
}
if (!isDisjointTransferIndices(
cast<VectorTransferOpInterface>(defWrite.getOperation()),
cast<VectorTransferOpInterface>(writeOp.getOperation())))
break;
// If the previous write op doesn't have any other use we an safely look
// at the previous store to see if it can be removed.
if (!defWrite->hasOneUse())
break;
writeToModify = defWrite;
defWrite = defWrite.getBase().getDefiningOp<vector::TransferWriteOp>();
}
return failure();
}
};
/// Rewrite tensor::ExtractSliceOp(vector::TransferWriteOp) to
/// vector::TransferWriteOp(tensor::ExtractSliceOp) if the full slice is
/// overwritten and inserted into another tensor. After this rewrite, the
/// operations bufferize in-place since all of them work on the same slice.
///
/// For example:
/// ```mlir
/// %0 = vector.transfer_write %vec, %init_tensor[%c0, %c0]
/// : vector<8x16xf32>, tensor<8x16xf32>
/// %1 = tensor.extract_slice %0[0, 0] [%sz0, %sz1] [1, 1]
/// : tensor<8x16xf32> to tensor<?x?xf32>
/// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
/// : tensor<?x?xf32> into tensor<27x37xf32>
/// ```
/// folds to
/// ```mlir
/// %0 = tensor.extract_slice %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
/// : tensor<27x37xf32> to tensor<?x?xf32>
/// %1 = vector.transfer_write %vec, %0[%c0, %c0]
/// : vector<8x16xf32>, tensor<?x?xf32>
/// %r = tensor.insert_slice %1 into %iter_arg[%iv0, %iv1] [%sz0, %sz1] [1, 1]
/// : tensor<?x?xf32> into tensor<27x37xf32>
/// ```
struct SwapExtractSliceOfTransferWrite
: public OpRewritePattern<tensor::InsertSliceOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::InsertSliceOp insertOp,
PatternRewriter &rewriter) const override {
if (!insertOp.hasUnitStride())
return failure();
auto extractOp =
insertOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
if (!extractOp || !extractOp.hasUnitStride() || !extractOp->hasOneUse())
return failure();
auto transferOp = extractOp.getSource().getDefiningOp<TransferWriteOp>();
if (!transferOp || !transferOp->hasOneUse())
return failure();
// Fail if vector::TransferWriteOp or tensor::ExtractSliceOp is
// rank-reducing.
if (insertOp.getSourceType().getRank() != transferOp.getTransferRank()) {
return rewriter.notifyMatchFailure(insertOp,
"use-def chain is rank-reducing");
}
// Fail if tensor::ExtractSliceOp has non-zero offset.
if (!extractOp.hasZeroOffset()) {
return rewriter.notifyMatchFailure(insertOp,
"ExtractSliceOp has non-zero offset");
}
// Fail if tensor::TransferWriteOp has non-zero offset.
if (!llvm::all_of(transferOp.getIndices(), [](Value value) {
return getConstantIntValue(value) == static_cast<int64_t>(0);
})) {
return rewriter.notifyMatchFailure(insertOp,
"TranferWriteOp has non-zero offset");
}
// Fail if tensor::ExtractSliceOp and tensor::InsertSliceOp sizes differ.
if (insertOp.getMixedSizes().size() != extractOp.getMixedSizes().size()) {
return rewriter.notifyMatchFailure(
insertOp, "InsertSliceOp and ExtractSliceOp ranks differ");
}
for (auto [insertSize, extractSize] :
llvm::zip_equal(insertOp.getMixedSizes(), extractOp.getMixedSizes())) {
if (!isEqualConstantIntOrValue(insertSize, extractSize)) {
return rewriter.notifyMatchFailure(
insertOp, "InsertSliceOp and ExtractSliceOp sizes differ");
}
}
// Fail if the vector::TransferWriteOp may not overwrite the full tensor.
assert(transferOp.getVectorType().hasStaticShape() &&
"expected vector to have a static shape");
ArrayRef<int64_t> vectorShape = transferOp.getVectorType().getShape();
SmallVector<int64_t> resultShape = applyPermutationMap(
transferOp.getPermutationMap(), transferOp.getShapedType().getShape());
if (transferOp.getMask() || !vectorShape.equals(resultShape)) {
return rewriter.notifyMatchFailure(
insertOp, "TransferWriteOp may not write the full tensor.");
}
// Swap the tensor::ExtractSliceOp in front of the vector::TransferWriteOp.
// Set all in_bounds to false and let the folder infer them.
SmallVector<bool> newInBounds(vectorShape.size(), false);
auto newExtractOp = rewriter.create<tensor::ExtractSliceOp>(
extractOp.getLoc(), insertOp.getSourceType(), insertOp.getDest(),
insertOp.getMixedOffsets(), insertOp.getMixedSizes(),
insertOp.getMixedStrides());
auto newTransferWriteOp = rewriter.create<TransferWriteOp>(
transferOp.getLoc(), transferOp.getVector(), newExtractOp.getResult(),
transferOp.getIndices(), transferOp.getPermutationMapAttr(),
rewriter.getBoolArrayAttr(newInBounds));
rewriter.modifyOpInPlace(insertOp, [&]() {
insertOp.getSourceMutable().assign(newTransferWriteOp.getResult());
});
return success();
}
};
} // namespace
void TransferWriteOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<FoldWaw, SwapExtractSliceOfTransferWrite>(context);
}
//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//
static LogicalResult verifyLoadStoreMemRefLayout(Operation *op,
VectorType vecTy,
MemRefType memRefTy) {
// If rank==0 or size==1 it's equivalent to scalar load/store, so we don't
// need any strides limitations.
if (!vecTy.isScalable() &&
(vecTy.getRank() == 0 || vecTy.getNumElements() == 1))
return success();
if (!memRefTy.isLastDimUnitStride())
return op->emitOpError("most minor memref dim must have unit stride");
return success();
}
LogicalResult vector::LoadOp::verify() {
VectorType resVecTy = getVectorType();
MemRefType memRefTy = getMemRefType();
if (failed(verifyLoadStoreMemRefLayout(*this, resVecTy, memRefTy)))
return failure();
if (memRefTy.getRank() < resVecTy.getRank())
return emitOpError(
"destination memref has lower rank than the result vector");
// Checks for vector memrefs.
Type memElemTy = memRefTy.getElementType();
if (auto memVecTy = llvm::dyn_cast<VectorType>(memElemTy)) {
if (memVecTy != resVecTy)
return emitOpError("base memref and result vector types should match");
memElemTy = memVecTy.getElementType();
}
if (resVecTy.getElementType() != memElemTy)
return emitOpError("base and result element types should match");
if (llvm::size(getIndices()) != memRefTy.getRank())
return emitOpError("requires ") << memRefTy.getRank() << " indices";
return success();
}
OpFoldResult LoadOp::fold(FoldAdaptor) {
if (succeeded(memref::foldMemRefCast(*this)))
return getResult();
return OpFoldResult();
}
std::optional<SmallVector<int64_t, 4>> LoadOp::getShapeForUnroll() {
return llvm::to_vector<4>(getVectorType().getShape());
}
//===----------------------------------------------------------------------===//
// StoreOp
//===----------------------------------------------------------------------===//
LogicalResult vector::StoreOp::verify() {
VectorType valueVecTy = getVectorType();
MemRefType memRefTy = getMemRefType();
if (failed(verifyLoadStoreMemRefLayout(*this, valueVecTy, memRefTy)))
return failure();
if (memRefTy.getRank() < valueVecTy.getRank())
return emitOpError("source memref has lower rank than the vector to store");
// Checks for vector memrefs.
Type memElemTy = memRefTy.getElementType();
if (auto memVecTy = llvm::dyn_cast<VectorType>(memElemTy)) {
if (memVecTy != valueVecTy)
return emitOpError(
"base memref and valueToStore vector types should match");
memElemTy = memVecTy.getElementType();
}
if (valueVecTy.getElementType() != memElemTy)
return emitOpError("base and valueToStore element type should match");
if (llvm::size(getIndices()) != memRefTy.getRank())
return emitOpError("requires ") << memRefTy.getRank() << " indices";
return success();
}
LogicalResult StoreOp::fold(FoldAdaptor adaptor,
SmallVectorImpl<OpFoldResult> &results) {
return memref::foldMemRefCast(*this);
}
std::optional<SmallVector<int64_t, 4>> StoreOp::getShapeForUnroll() {
return llvm::to_vector<4>(getVectorType().getShape());
}
//===----------------------------------------------------------------------===//
// MaskedLoadOp
//===----------------------------------------------------------------------===//
LogicalResult MaskedLoadOp::verify() {
VectorType maskVType = getMaskVectorType();
VectorType passVType = getPassThruVectorType();
VectorType resVType = getVectorType();
MemRefType memType = getMemRefType();
if (resVType.getElementType() != memType.getElementType())
return emitOpError("base and result element type should match");
if (llvm::size(getIndices()) != memType.getRank())
return emitOpError("requires ") << memType.getRank() << " indices";
if (resVType.getShape() != maskVType.getShape())
return emitOpError("expected result shape to match mask shape");
if (resVType != passVType)
return emitOpError("expected pass_thru of same type as result type");
return success();
}
namespace {
class MaskedLoadFolder final : public OpRewritePattern<MaskedLoadOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(MaskedLoadOp load,
PatternRewriter &rewriter) const override {
switch (getMaskFormat(load.getMask())) {
case MaskFormat::AllTrue:
rewriter.replaceOpWithNewOp<vector::LoadOp>(
load, load.getType(), load.getBase(), load.getIndices());
return success();
case MaskFormat::AllFalse:
rewriter.replaceOp(load, load.getPassThru());
return success();
case MaskFormat::Unknown:
return failure();
}
llvm_unreachable("Unexpected 1DMaskFormat on MaskedLoad");
}
};
} // namespace
void MaskedLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<MaskedLoadFolder>(context);
}
OpFoldResult MaskedLoadOp::fold(FoldAdaptor) {
if (succeeded(memref::foldMemRefCast(*this)))
return getResult();
return OpFoldResult();
}
//===----------------------------------------------------------------------===//
// MaskedStoreOp
//===----------------------------------------------------------------------===//
LogicalResult MaskedStoreOp::verify() {
VectorType maskVType = getMaskVectorType();
VectorType valueVType = getVectorType();
MemRefType memType = getMemRefType();
if (valueVType.getElementType() != memType.getElementType())
return emitOpError("base and valueToStore element type should match");
if (llvm::size(getIndices()) != memType.getRank())
return emitOpError("requires ") << memType.getRank() << " indices";
if (valueVType.getShape() != maskVType.getShape())
return emitOpError("expected valueToStore shape to match mask shape");
return success();
}
namespace {
class MaskedStoreFolder final : public OpRewritePattern<MaskedStoreOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(MaskedStoreOp store,
PatternRewriter &rewriter) const override {
switch (getMaskFormat(store.getMask())) {
case MaskFormat::AllTrue:
rewriter.replaceOpWithNewOp<vector::StoreOp>(
store, store.getValueToStore(), store.getBase(), store.getIndices());
return success();
case MaskFormat::AllFalse:
rewriter.eraseOp(store);
return success();
case MaskFormat::Unknown:
return failure();
}
llvm_unreachable("Unexpected 1DMaskFormat on MaskedStore");
}
};
} // namespace
void MaskedStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<MaskedStoreFolder>(context);
}
LogicalResult MaskedStoreOp::fold(FoldAdaptor adaptor,
SmallVectorImpl<OpFoldResult> &results) {
return memref::foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// GatherOp
//===----------------------------------------------------------------------===//
LogicalResult GatherOp::verify() {
VectorType indVType = getIndexVectorType();
VectorType maskVType = getMaskVectorType();
VectorType resVType = getVectorType();
ShapedType baseType = getBaseType();
if (!llvm::isa<MemRefType, RankedTensorType>(baseType))
return emitOpError("requires base to be a memref or ranked tensor type");
if (resVType.getElementType() != baseType.getElementType())
return emitOpError("base and result element type should match");
if (llvm::size(getIndices()) != baseType.getRank())
return emitOpError("requires ") << baseType.getRank() << " indices";
if (resVType.getShape() != indVType.getShape())
return emitOpError("expected result dim to match indices dim");
if (resVType.getShape() != maskVType.getShape())
return emitOpError("expected result dim to match mask dim");
if (resVType != getPassThruVectorType())
return emitOpError("expected pass_thru of same type as result type");
return success();
}
// MaskableOpInterface methods.
/// Returns the mask type expected by this operation. Mostly used for
/// verification purposes. It requires the operation to be vectorized."
Type GatherOp::getExpectedMaskType() {
auto vecType = this->getIndexVectorType();
return VectorType::get(vecType.getShape(),
IntegerType::get(vecType.getContext(), /*width=*/1),
vecType.getScalableDims());
}
std::optional<SmallVector<int64_t, 4>> GatherOp::getShapeForUnroll() {
return llvm::to_vector<4>(getVectorType().getShape());
}
/// Cheeck if `indexVec` is constant 1D vec of consecutive values [0, 1, 2, ...]
static LogicalResult isZeroBasedContiguousSeq(Value indexVec) {
auto vecType = dyn_cast<VectorType>(indexVec.getType());
if (!vecType || vecType.getRank() != 1 || vecType.isScalable())
return failure();
if (indexVec.getDefiningOp<StepOp>())
return success();
DenseIntElementsAttr elements;
if (!matchPattern(indexVec, m_Constant(&elements)))
return failure();
return success(
llvm::equal(elements, llvm::seq<int64_t>(0, vecType.getNumElements())));
}
namespace {
class GatherFolder final : public OpRewritePattern<GatherOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(GatherOp gather,
PatternRewriter &rewriter) const override {
switch (getMaskFormat(gather.getMask())) {
case MaskFormat::AllTrue:
return failure(); // no unmasked equivalent
case MaskFormat::AllFalse:
rewriter.replaceOp(gather, gather.getPassThru());
return success();
case MaskFormat::Unknown:
return failure();
}
llvm_unreachable("Unexpected 1DMaskFormat on GatherFolder");
}
};
/// Fold gathers with consecutive offsets [0, 1, 2, ...] into contiguous
/// maskedload. Only 1D fixed vectors are supported for now.
class FoldContiguousGather final : public OpRewritePattern<GatherOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(GatherOp op,
PatternRewriter &rewriter) const override {
if (!isa<MemRefType>(op.getBase().getType()))
return rewriter.notifyMatchFailure(op, "base must be of memref type");
if (failed(isZeroBasedContiguousSeq(op.getIndexVec())))
return failure();
rewriter.replaceOpWithNewOp<MaskedLoadOp>(op, op.getType(), op.getBase(),
op.getIndices(), op.getMask(),
op.getPassThru());
return success();
}
};
} // namespace
void GatherOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<GatherFolder, FoldContiguousGather>(context);
}
//===----------------------------------------------------------------------===//
// ScatterOp
//===----------------------------------------------------------------------===//
LogicalResult ScatterOp::verify() {
VectorType indVType = getIndexVectorType();
VectorType maskVType = getMaskVectorType();
VectorType valueVType = getVectorType();
MemRefType memType = getMemRefType();
if (valueVType.getElementType() != memType.getElementType())
return emitOpError("base and valueToStore element type should match");
if (llvm::size(getIndices()) != memType.getRank())
return emitOpError("requires ") << memType.getRank() << " indices";
if (valueVType.getShape() != indVType.getShape())
return emitOpError("expected valueToStore dim to match indices dim");
if (valueVType.getShape() != maskVType.getShape())
return emitOpError("expected valueToStore dim to match mask dim");
return success();
}
namespace {
class ScatterFolder final : public OpRewritePattern<ScatterOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ScatterOp scatter,
PatternRewriter &rewriter) const override {
switch (getMaskFormat(scatter.getMask())) {
case MaskFormat::AllTrue:
return failure(); // no unmasked equivalent
case MaskFormat::AllFalse:
rewriter.eraseOp(scatter);
return success();
case MaskFormat::Unknown:
return failure();
}
llvm_unreachable("Unexpected 1DMaskFormat on ScatterFolder");
}
};
/// Fold scatters with consecutive offsets [0, 1, 2, ...] into contiguous
/// maskedstore. Only 1D fixed vectors are supported for now.
class FoldContiguousScatter final : public OpRewritePattern<ScatterOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ScatterOp op,
PatternRewriter &rewriter) const override {
if (failed(isZeroBasedContiguousSeq(op.getIndexVec())))
return failure();
rewriter.replaceOpWithNewOp<MaskedStoreOp>(
op, op.getBase(), op.getIndices(), op.getMask(), op.getValueToStore());
return success();
}
};
} // namespace
void ScatterOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ScatterFolder, FoldContiguousScatter>(context);
}
//===----------------------------------------------------------------------===//
// ExpandLoadOp
//===----------------------------------------------------------------------===//
LogicalResult ExpandLoadOp::verify() {
VectorType maskVType = getMaskVectorType();
VectorType passVType = getPassThruVectorType();
VectorType resVType = getVectorType();
MemRefType memType = getMemRefType();
if (resVType.getElementType() != memType.getElementType())
return emitOpError("base and result element type should match");
if (llvm::size(getIndices()) != memType.getRank())
return emitOpError("requires ") << memType.getRank() << " indices";
if (resVType.getDimSize(0) != maskVType.getDimSize(0))
return emitOpError("expected result dim to match mask dim");
if (resVType != passVType)
return emitOpError("expected pass_thru of same type as result type");
return success();
}
namespace {
class ExpandLoadFolder final : public OpRewritePattern<ExpandLoadOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ExpandLoadOp expand,
PatternRewriter &rewriter) const override {
switch (getMaskFormat(expand.getMask())) {
case MaskFormat::AllTrue:
rewriter.replaceOpWithNewOp<vector::LoadOp>(
expand, expand.getType(), expand.getBase(), expand.getIndices());
return success();
case MaskFormat::AllFalse:
rewriter.replaceOp(expand, expand.getPassThru());
return success();
case MaskFormat::Unknown:
return failure();
}
llvm_unreachable("Unexpected 1DMaskFormat on ExpandLoadFolder");
}
};
} // namespace
void ExpandLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ExpandLoadFolder>(context);
}
//===----------------------------------------------------------------------===//
// CompressStoreOp
//===----------------------------------------------------------------------===//
LogicalResult CompressStoreOp::verify() {
VectorType maskVType = getMaskVectorType();
VectorType valueVType = getVectorType();
MemRefType memType = getMemRefType();
if (valueVType.getElementType() != memType.getElementType())
return emitOpError("base and valueToStore element type should match");
if (llvm::size(getIndices()) != memType.getRank())
return emitOpError("requires ") << memType.getRank() << " indices";
if (valueVType.getDimSize(0) != maskVType.getDimSize(0))
return emitOpError("expected valueToStore dim to match mask dim");
return success();
}
namespace {
class CompressStoreFolder final : public OpRewritePattern<CompressStoreOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(CompressStoreOp compress,
PatternRewriter &rewriter) const override {
switch (getMaskFormat(compress.getMask())) {
case MaskFormat::AllTrue:
rewriter.replaceOpWithNewOp<vector::StoreOp>(
compress, compress.getValueToStore(), compress.getBase(),
compress.getIndices());
return success();
case MaskFormat::AllFalse:
rewriter.eraseOp(compress);
return success();
case MaskFormat::Unknown:
return failure();
}
llvm_unreachable("Unexpected 1DMaskFormat on CompressStoreFolder");
}
};
} // namespace
void CompressStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<CompressStoreFolder>(context);
}
//===----------------------------------------------------------------------===//
// ShapeCastOp
//===----------------------------------------------------------------------===//
void ShapeCastOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
SetIntRangeFn setResultRanges) {
setResultRanges(getResult(), argRanges.front());
}
LogicalResult ShapeCastOp::verify() {
VectorType sourceType = getSourceVectorType();
VectorType resultType = getResultVectorType();
// Check that element type is preserved
if (sourceType.getElementType() != resultType.getElementType())
return emitOpError("has different source and result element types");
// Check that number of elements is preserved
int64_t sourceNElms = sourceType.getNumElements();
int64_t resultNElms = resultType.getNumElements();
if (sourceNElms != resultNElms) {
return emitOpError() << "has different number of elements at source ("
<< sourceNElms << ") and result (" << resultNElms
<< ")";
}
// Check that (non-)scalability is preserved
int64_t sourceNScalableDims = sourceType.getNumScalableDims();
int64_t resultNScalableDims = resultType.getNumScalableDims();
if (sourceNScalableDims != resultNScalableDims)
return emitOpError() << "has different number of scalable dims at source ("
<< sourceNScalableDims << ") and result ("
<< resultNScalableDims << ")";
return success();
}
/// Return true if `transpose` does not permute a pair of non-unit dims.
/// By `order preserving` we mean that the flattened versions of the input and
/// output vectors are (numerically) identical. In other words `transpose` is
/// effectively a shape cast.
static bool isOrderPreserving(TransposeOp transpose) {
ArrayRef<int64_t> permutation = transpose.getPermutation();
VectorType sourceType = transpose.getSourceVectorType();
ArrayRef<int64_t> inShape = sourceType.getShape();
ArrayRef<bool> inDimIsScalable = sourceType.getScalableDims();
auto isNonScalableUnitDim = [&](int64_t dim) {
return inShape[dim] == 1 && !inDimIsScalable[dim];
};
int64_t current = 0;
for (auto p : permutation) {
if (!isNonScalableUnitDim(p)) {
if (p < current) {
return false;
}
current = p;
}
}
return true;
}
OpFoldResult ShapeCastOp::fold(FoldAdaptor adaptor) {
VectorType resultType = getType();
// No-op shape cast.
if (getSource().getType() == resultType)
return getSource();
// shape_cast(shape_cast(x)) -> shape_cast(x)
if (auto precedingShapeCast = getSource().getDefiningOp<ShapeCastOp>()) {
setOperand(precedingShapeCast.getSource());
return getResult();
}
// shape_cast(transpose(x)) -> shape_cast(x)
if (auto transpose = getSource().getDefiningOp<TransposeOp>()) {
if (isOrderPreserving(transpose)) {
setOperand(transpose.getVector());
return getResult();
}
return {};
}
// Y = shape_cast(broadcast(X))
// -> X, if X and Y have same type
if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) {
if (bcastOp.getSourceType() == resultType)
return bcastOp.getSource();
}
// shape_cast(constant) -> constant
if (auto splatAttr =
llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getSource()))
return splatAttr.reshape(getType());
// shape_cast(poison) -> poison
if (llvm::dyn_cast_if_present<ub::PoisonAttr>(adaptor.getSource())) {
return ub::PoisonAttr::get(getContext());
}
return {};
}
namespace {
/// Helper function that computes a new vector type based on the input vector
/// type by removing the trailing one dims:
///
/// vector<4x1x1xi1> --> vector<4x1xi1>
///
static VectorType trimTrailingOneDims(VectorType oldType) {
ArrayRef<int64_t> oldShape = oldType.getShape();
ArrayRef<int64_t> newShape = oldShape;
ArrayRef<bool> oldScalableDims = oldType.getScalableDims();
ArrayRef<bool> newScalableDims = oldScalableDims;
while (!newShape.empty() && newShape.back() == 1 && !newScalableDims.back()) {
newShape = newShape.drop_back(1);
newScalableDims = newScalableDims.drop_back(1);
}
// Make sure we have at least 1 dimension.
// TODO: Add support for 0-D vectors.
if (newShape.empty()) {
newShape = oldShape.take_back();
newScalableDims = oldScalableDims.take_back();
}
return VectorType::get(newShape, oldType.getElementType(), newScalableDims);
}
/// Folds qualifying shape_cast(create_mask) into a new create_mask
///
/// Looks at `vector.shape_cast` Ops that simply "drop" the trailing unit
/// dimension. If the input vector comes from `vector.create_mask` for which
/// the corresponding mask input value is 1 (e.g. `%c1` below), then it is safe
/// to fold shape_cast into create_mask.
///
/// BEFORE:
/// %1 = vector.create_mask %c1, %dim, %c1, %c1 : vector<1x[4]x1x1xi1>
/// %2 = vector.shape_cast %1 : vector<1x[4]x1x1xi1> to vector<1x[4]xi1>
/// AFTER:
/// %0 = vector.create_mask %c1, %dim : vector<1x[4]xi1>
class ShapeCastCreateMaskFolderTrailingOneDim final
: public OpRewritePattern<ShapeCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ShapeCastOp shapeOp,
PatternRewriter &rewriter) const override {
Value shapeOpSrc = shapeOp->getOperand(0);
auto createMaskOp = shapeOpSrc.getDefiningOp<vector::CreateMaskOp>();
auto constantMaskOp = shapeOpSrc.getDefiningOp<vector::ConstantMaskOp>();
if (!createMaskOp && !constantMaskOp)
return failure();
VectorType shapeOpResTy = shapeOp.getResultVectorType();
VectorType shapeOpSrcTy = shapeOp.getSourceVectorType();
VectorType newVecType = trimTrailingOneDims(shapeOpSrcTy);
if (newVecType != shapeOpResTy)
return failure();
auto numDimsToDrop =
shapeOpSrcTy.getShape().size() - shapeOpResTy.getShape().size();
// No unit dims to drop
if (!numDimsToDrop)
return failure();
if (createMaskOp) {
auto maskOperands = createMaskOp.getOperands();
auto numMaskOperands = maskOperands.size();
// Check every mask dim size to see whether it can be dropped
for (size_t i = numMaskOperands - 1; i >= numMaskOperands - numDimsToDrop;
--i) {
auto constant = maskOperands[i].getDefiningOp<arith::ConstantIndexOp>();
if (!constant || (constant.value() != 1))
return failure();
}
SmallVector<Value> newMaskOperands =
maskOperands.drop_back(numDimsToDrop);
rewriter.replaceOpWithNewOp<vector::CreateMaskOp>(shapeOp, shapeOpResTy,
newMaskOperands);
return success();
}
if (constantMaskOp) {
auto maskDimSizes = constantMaskOp.getMaskDimSizes();
auto numMaskOperands = maskDimSizes.size();
// Check every mask dim size to see whether it can be dropped
for (size_t i = numMaskOperands - 1; i >= numMaskOperands - numDimsToDrop;
--i) {
if (maskDimSizes[i] != 1)
return failure();
}
auto newMaskOperands = maskDimSizes.drop_back(numDimsToDrop);
rewriter.replaceOpWithNewOp<vector::ConstantMaskOp>(shapeOp, shapeOpResTy,
newMaskOperands);
return success();
}
return failure();
}
};
/// Pattern to rewrite Y = ShapeCast(Broadcast(X)) as either
/// i) Y = ShapeCast(X), or
/// ii) Y = Broadcast(X)
/// If both (i) and (ii) are possible, (i) is chosen.
class ShapeCastBroadcastFolder final : public OpRewritePattern<ShapeCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ShapeCastOp shapeCastOp,
PatternRewriter &rewriter) const override {
auto broadcastOp =
shapeCastOp.getSource().getDefiningOp<vector::BroadcastOp>();
if (!broadcastOp)
return failure();
auto srcVectorType = dyn_cast<VectorType>(broadcastOp.getSourceType());
bool srcIsScalar = !srcVectorType;
// Replace Y = ShapeCast(Broadcast(X)) with Y = ShapeCast(X).
// Example:
// %0 = vector.broadcast %in : vector<3x4xf32> to vector<1x3x4xf32>
// %1 = vector.shape_cast %0 : vector<1x3x4xf32> to vector<12xf32>
// to
// %1 = vector.shape_cast %in : vector<3x4xf32> to vector<12xf32>
if (srcVectorType) {
if (srcVectorType.getNumElements() ==
shapeCastOp.getResultVectorType().getNumElements()) {
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(
shapeCastOp, shapeCastOp.getResultVectorType(),
broadcastOp.getSource());
return success();
}
}
// Replace Y = ShapeCast(Broadcast(X)) with Y = Broadcast(X)
// Example
// %0 = vector.broadcast %in : vector<3xf32> to vector<2x4x3xf32>
// %1 = vector.shape_cast %0 : vector<2x4x3xf32> to vector<8x3xf32>
// to
// %1 = vector.broadcast %in : vector<3xf32> to vector<8x3xf32>
VectorType dstVectorType = shapeCastOp.getResultVectorType();
if (srcIsScalar || isBroadcastableTo(srcVectorType, dstVectorType) ==
BroadcastableToResult::Success) {
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(
shapeCastOp, dstVectorType, broadcastOp.getSource());
return success();
}
return failure();
}
};
} // namespace
void ShapeCastOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results
.add<ShapeCastCreateMaskFolderTrailingOneDim, ShapeCastBroadcastFolder>(
context);
}
//===----------------------------------------------------------------------===//
// VectorBitCastOp
//===----------------------------------------------------------------------===//
LogicalResult BitCastOp::verify() {
auto sourceVectorType = getSourceVectorType();
auto resultVectorType = getResultVectorType();
for (int64_t i = 0, e = sourceVectorType.getRank() - 1; i < e; i++) {
if (sourceVectorType.getDimSize(i) != resultVectorType.getDimSize(i))
return emitOpError("dimension size mismatch at: ") << i;
}
DataLayout dataLayout = DataLayout::closest(*this);
auto sourceElementBits =
dataLayout.getTypeSizeInBits(sourceVectorType.getElementType());
auto resultElementBits =
dataLayout.getTypeSizeInBits(resultVectorType.getElementType());
if (sourceVectorType.getRank() == 0) {
if (sourceElementBits != resultElementBits)
return emitOpError("source/result bitwidth of the 0-D vector element "
"types must be equal");
} else if (sourceElementBits * sourceVectorType.getShape().back() !=
resultElementBits * resultVectorType.getShape().back()) {
return emitOpError(
"source/result bitwidth of the minor 1-D vectors must be equal");
}
return success();
}
OpFoldResult BitCastOp::fold(FoldAdaptor adaptor) {
// Nop cast.
if (getSource().getType() == getResult().getType())
return getSource();
// Canceling bitcasts.
if (auto otherOp = getSource().getDefiningOp<BitCastOp>()) {
if (getResult().getType() == otherOp.getSource().getType())
return otherOp.getSource();
setOperand(otherOp.getSource());
return getResult();
}
Attribute sourceConstant = adaptor.getSource();
if (!sourceConstant)
return {};
Type srcElemType = getSourceVectorType().getElementType();
Type dstElemType = getResultVectorType().getElementType();
if (auto floatPack = llvm::dyn_cast<DenseFPElementsAttr>(sourceConstant)) {
if (floatPack.isSplat()) {
auto splat = floatPack.getSplatValue<FloatAttr>();
// Casting fp16 into fp32.
if (srcElemType.isF16() && dstElemType.isF32()) {
uint32_t bits = static_cast<uint32_t>(
splat.getValue().bitcastToAPInt().getZExtValue());
// Duplicate the 16-bit pattern.
bits = (bits << 16) | (bits & 0xffff);
APInt intBits(32, bits);
APFloat floatBits(llvm::APFloat::IEEEsingle(), intBits);
return DenseElementsAttr::get(getResultVectorType(), floatBits);
}
}
}
if (auto intPack = llvm::dyn_cast<DenseIntElementsAttr>(sourceConstant)) {
if (intPack.isSplat()) {
auto splat = intPack.getSplatValue<IntegerAttr>();
if (llvm::isa<IntegerType>(dstElemType)) {
uint64_t srcBitWidth = srcElemType.getIntOrFloatBitWidth();
uint64_t dstBitWidth = dstElemType.getIntOrFloatBitWidth();
// Casting to a larger integer bit width.
if (dstBitWidth > srcBitWidth && dstBitWidth % srcBitWidth == 0) {
APInt intBits = splat.getValue().zext(dstBitWidth);
// Duplicate the lower width element.
for (uint64_t i = 0; i < dstBitWidth / srcBitWidth - 1; i++)
intBits = (intBits << srcBitWidth) | intBits;
return DenseElementsAttr::get(getResultVectorType(), intBits);
}
}
}
}
return {};
}
//===----------------------------------------------------------------------===//
// TypeCastOp
//===----------------------------------------------------------------------===//
static SmallVector<int64_t, 8> extractShape(MemRefType memRefType) {
auto vectorType = llvm::dyn_cast<VectorType>(memRefType.getElementType());
SmallVector<int64_t, 8> res(memRefType.getShape());
if (vectorType)
res.append(vectorType.getShape().begin(), vectorType.getShape().end());
return res;
}
/// Build the canonical memRefType with a single vector.
/// E.g. memref<4 x 5 x vector<6 x f32>> -> memref<vector<4 x 5 x 6 x f32>>.
void TypeCastOp::build(OpBuilder &builder, OperationState &result,
Value source) {
result.addOperands(source);
MemRefType memRefType = llvm::cast<MemRefType>(source.getType());
VectorType vectorType =
VectorType::get(extractShape(memRefType),
getElementTypeOrSelf(getElementTypeOrSelf(memRefType)));
result.addTypes(MemRefType::get({}, vectorType, MemRefLayoutAttrInterface(),
memRefType.getMemorySpace()));
}
LogicalResult TypeCastOp::verify() {
MemRefType canonicalType = getMemRefType().canonicalizeStridedLayout();
if (!canonicalType.getLayout().isIdentity())
return emitOpError("expects operand to be a memref with identity layout");
if (!getResultMemRefType().getLayout().isIdentity())
return emitOpError("expects result to be a memref with identity layout");
if (getResultMemRefType().getMemorySpace() !=
getMemRefType().getMemorySpace())
return emitOpError("expects result in same memory space");
auto sourceType = getMemRefType();
auto resultType = getResultMemRefType();
if (getElementTypeOrSelf(getElementTypeOrSelf(sourceType)) !=
getElementTypeOrSelf(getElementTypeOrSelf(resultType)))
return emitOpError(
"expects result and operand with same underlying scalar type: ")
<< resultType;
if (extractShape(sourceType) != extractShape(resultType))
return emitOpError(
"expects concatenated result and operand shapes to be equal: ")
<< resultType;
return success();
}
//===----------------------------------------------------------------------===//
// TransposeOp
//===----------------------------------------------------------------------===//
void vector::TransposeOp::build(OpBuilder &builder, OperationState &result,
Value vector, ArrayRef<int64_t> permutation) {
VectorType vt = llvm::cast<VectorType>(vector.getType());
SmallVector<int64_t, 4> transposedShape(vt.getRank());
SmallVector<bool, 4> transposedScalableDims(vt.getRank());
for (unsigned i = 0; i < permutation.size(); ++i) {
transposedShape[i] = vt.getShape()[permutation[i]];
transposedScalableDims[i] = vt.getScalableDims()[permutation[i]];
}
result.addOperands(vector);
result.addTypes(VectorType::get(transposedShape, vt.getElementType(),
transposedScalableDims));
result.addAttribute(TransposeOp::getPermutationAttrName(result.name),
builder.getDenseI64ArrayAttr(permutation));
}
OpFoldResult vector::TransposeOp::fold(FoldAdaptor adaptor) {
// Eliminate splat constant transpose ops.
if (auto splat =
llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getVector()))
return splat.reshape(getResultVectorType());
// Eliminate poison transpose ops.
if (llvm::dyn_cast_if_present<ub::PoisonAttr>(adaptor.getVector()))
return ub::PoisonAttr::get(getContext());
// Eliminate identity transposes, and more generally any transposes that
// preserves the shape without permuting elements.
//
// Examples of what to fold:
// %0 = vector.transpose %arg, [0, 1] : vector<1x1xi8> to vector<1x1xi8>
// %0 = vector.transpose %arg, [0, 1] : vector<2x2xi8> to vector<2x2xi8>
// %0 = vector.transpose %arg, [1, 0] : vector<1x1xi8> to vector<1x1xi8>
//
// Example of what NOT to fold:
// %0 = vector.transpose %arg, [1, 0] : vector<2x2xi8> to vector<2x2xi8>
//
if (getSourceVectorType() == getResultVectorType() &&
isOrderPreserving(*this))
return getVector();
return {};
}
LogicalResult vector::TransposeOp::verify() {
VectorType vectorType = getSourceVectorType();
VectorType resultType = getResultVectorType();
int64_t rank = resultType.getRank();
if (vectorType.getRank() != rank)
return emitOpError("vector result rank mismatch: ") << rank;
// Verify transposition array.
ArrayRef<int64_t> perm = getPermutation();
int64_t size = perm.size();
if (rank != size)
return emitOpError("transposition length mismatch: ") << size;
SmallVector<bool, 8> seen(rank, false);
for (const auto &ta : llvm::enumerate(perm)) {
if (ta.value() < 0 || ta.value() >= rank)
return emitOpError("transposition index out of range: ") << ta.value();
if (seen[ta.value()])
return emitOpError("duplicate position index: ") << ta.value();
seen[ta.value()] = true;
if (resultType.getDimSize(ta.index()) != vectorType.getDimSize(ta.value()))
return emitOpError("dimension size mismatch at: ") << ta.value();
}
return success();
}
std::optional<SmallVector<int64_t, 4>> TransposeOp::getShapeForUnroll() {
return llvm::to_vector<4>(getResultVectorType().getShape());
}
namespace {
// Rewrites two back-to-back TransposeOp operations into a single TransposeOp.
class TransposeFolder final : public OpRewritePattern<vector::TransposeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
PatternRewriter &rewriter) const override {
// Composes two permutations: result[i] = permutation1[permutation2[i]].
auto composePermutations = [](ArrayRef<int64_t> permutation1,
ArrayRef<int64_t> permutation2) {
SmallVector<int64_t, 4> result;
for (auto index : permutation2)
result.push_back(permutation1[index]);
return result;
};
// Return if the input of 'transposeOp' is not defined by another transpose.
vector::TransposeOp parentTransposeOp =
transposeOp.getVector().getDefiningOp<vector::TransposeOp>();
if (!parentTransposeOp)
return failure();
SmallVector<int64_t, 4> permutation = composePermutations(
parentTransposeOp.getPermutation(), transposeOp.getPermutation());
// Replace 'transposeOp' with a new transpose operation.
rewriter.replaceOpWithNewOp<vector::TransposeOp>(
transposeOp, transposeOp.getResult().getType(),
parentTransposeOp.getVector(), permutation);
return success();
}
};
// Folds transpose(splat x : src_type) : res_type into splat x : res_type.
class FoldTransposeSplat final : public OpRewritePattern<TransposeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(TransposeOp transposeOp,
PatternRewriter &rewriter) const override {
auto splatOp = transposeOp.getVector().getDefiningOp<vector::SplatOp>();
if (!splatOp)
return failure();
rewriter.replaceOpWithNewOp<vector::SplatOp>(
transposeOp, transposeOp.getResultVectorType(), splatOp.getInput());
return success();
}
};
/// Folds transpose(create_mask) into a new transposed create_mask.
class FoldTransposeCreateMask final : public OpRewritePattern<TransposeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(TransposeOp transpOp,
PatternRewriter &rewriter) const override {
Value transposeSrc = transpOp.getVector();
auto createMaskOp = transposeSrc.getDefiningOp<vector::CreateMaskOp>();
auto constantMaskOp = transposeSrc.getDefiningOp<vector::ConstantMaskOp>();
if (!createMaskOp && !constantMaskOp)
return failure();
// Get the transpose permutation and apply it to the vector.create_mask or
// vector.constant_mask operands.
ArrayRef<int64_t> permutation = transpOp.getPermutation();
if (createMaskOp) {
auto maskOperands = createMaskOp.getOperands();
SmallVector<Value> newOperands(maskOperands.begin(), maskOperands.end());
applyPermutationToVector(newOperands, permutation);
rewriter.replaceOpWithNewOp<vector::CreateMaskOp>(
transpOp, transpOp.getResultVectorType(), newOperands);
return success();
}
// ConstantMaskOp case.
auto maskDimSizes = constantMaskOp.getMaskDimSizes();
auto newMaskDimSizes = applyPermutation(maskDimSizes, permutation);
rewriter.replaceOpWithNewOp<vector::ConstantMaskOp>(
transpOp, transpOp.getResultVectorType(), newMaskDimSizes);
return success();
}
};
/// Folds transpose(shape_cast) into a new shape_cast.
class FoldTransposeShapeCast final : public OpRewritePattern<TransposeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(TransposeOp transposeOp,
PatternRewriter &rewriter) const override {
auto shapeCastOp =
transposeOp.getVector().getDefiningOp<vector::ShapeCastOp>();
if (!shapeCastOp)
return failure();
if (!isOrderPreserving(transposeOp))
return failure();
VectorType resultType = transposeOp.getType();
// We don't need to check isValidShapeCast at this point, because it is
// guaranteed that merging the transpose into the the shape_cast is a valid
// shape_cast, because the transpose just inserts/removes ones.
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(transposeOp, resultType,
shapeCastOp.getSource());
return success();
}
};
/// Folds transpose(broadcast(x)) to broadcast(x) if the transpose is
/// 'order preserving', where 'order preserving' means the flattened
/// inputs and outputs of the transpose have identical (numerical) values.
///
/// Example:
/// ```
/// %0 = vector.broadcast %input : vector<1x1xi32> to vector<1x8xi32>
/// %1 = vector.transpose %0, [1, 0] : vector<1x8xi32>
/// to vector<8x1xi32>
/// ```
/// can be rewritten as the equivalent
/// ```
/// %0 = vector.broadcast %input : vector<1x1xi32> to vector<8x1xi32>.
/// ```
/// The algorithm works by partitioning dimensions into groups that can be
/// locally permuted while preserving order, and checks that the transpose
/// only permutes within these groups.
///
/// Groups are either contiguous sequences of 1s, or non-1s (1-element groups).
/// Consider broadcasting 4x1x1x7 to 2x3x4x5x6x7. This is equivalent to
/// broadcasting from 1x1x4x1x1x7.
/// ^^^ ^ ^^^ ^
/// groups: 0 1 2 3
/// Order preserving permutations for this example are ones that only permute
/// within the groups [0,1] and [3,4], like (1 0 2 4 3 5 6).
class FoldTransposeBroadcast : public OpRewritePattern<vector::TransposeOp> {
public:
using OpRewritePattern::OpRewritePattern;
FoldTransposeBroadcast(MLIRContext *context, PatternBenefit benefit = 1)
: OpRewritePattern<vector::TransposeOp>(context, benefit) {}
LogicalResult matchAndRewrite(vector::TransposeOp transpose,
PatternRewriter &rewriter) const override {
vector::BroadcastOp broadcast =
transpose.getVector().getDefiningOp<vector::BroadcastOp>();
if (!broadcast) {
return rewriter.notifyMatchFailure(transpose,
"not preceded by a broadcast");
}
auto inputType = dyn_cast<VectorType>(broadcast.getSourceType());
VectorType outputType = transpose.getResultVectorType();
// transpose(broadcast(scalar)) -> broadcast(scalar) is always valid
bool inputIsScalar = !inputType;
if (inputIsScalar) {
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(transpose, outputType,
broadcast.getSource());
return success();
}
ArrayRef<int64_t> permutation = transpose.getPermutation();
ArrayRef<int64_t> inputShape = inputType.getShape();
int64_t inputRank = inputType.getRank();
int64_t outputRank = transpose.getType().getRank();
int64_t deltaRank = outputRank - inputRank;
int low = 0;
for (int inputIndex = 0; inputIndex < inputRank; ++inputIndex) {
bool notOne = inputShape[inputIndex] != 1;
bool prevNotOne = (inputIndex != 0 && inputShape[inputIndex - 1] != 1);
bool groupEndFound = notOne || prevNotOne;
if (groupEndFound) {
int high = inputIndex + deltaRank;
// Return failure if not all permutation destinations for indices in
// [low, high) are in [low, high), i.e. the permutation is not local to
// the group.
for (int i = low; i < high; ++i) {
if (permutation[i] < low || permutation[i] >= high) {
return rewriter.notifyMatchFailure(
transpose, "permutation not local to group");
}
}
low = high;
}
}
// We don't need to check the final group [low, outputRank) because if it is
// not locally bound, there must be a preceding group that already failed
// the check (impossible to have just 1 non-locally bound group).
// The preceding logic also ensures that at this point, the output of the
// transpose is definitely broadcastable from the input shape, assert so:
assert(vector::isBroadcastableTo(inputType, outputType) ==
vector::BroadcastableToResult::Success &&
"not broadcastable directly to transpose output");
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(transpose, outputType,
broadcast.getSource());
return success();
}
};
} // namespace
void vector::TransposeOp::getCanonicalizationPatterns(
RewritePatternSet &results, MLIRContext *context) {
results.add<FoldTransposeCreateMask, FoldTransposeShapeCast, TransposeFolder,
FoldTransposeSplat, FoldTransposeBroadcast>(context);
}
//===----------------------------------------------------------------------===//
// ConstantMaskOp
//===----------------------------------------------------------------------===//
void ConstantMaskOp::build(OpBuilder &builder, OperationState &result,
VectorType type, ConstantMaskKind kind) {
assert(kind == ConstantMaskKind::AllTrue ||
kind == ConstantMaskKind::AllFalse);
build(builder, result, type,
kind == ConstantMaskKind::AllTrue
? type.getShape()
: SmallVector<int64_t>(type.getRank(), 0));
}
LogicalResult ConstantMaskOp::verify() {
auto resultType = llvm::cast<VectorType>(getResult().getType());
// Check the corner case of 0-D vectors first.
if (resultType.getRank() == 0) {
if (getMaskDimSizes().size() != 1)
return emitError("array attr must have length 1 for 0-D vectors");
auto dim = getMaskDimSizes()[0];
if (dim != 0 && dim != 1)
return emitError("mask dim size must be either 0 or 1 for 0-D vectors");
return success();
}
// Verify that array attr size matches the rank of the vector result.
if (static_cast<int64_t>(getMaskDimSizes().size()) != resultType.getRank())
return emitOpError(
"must specify array attr of size equal vector result rank");
// Verify that each array attr element is in bounds of corresponding vector
// result dimension size.
auto resultShape = resultType.getShape();
auto resultScalableDims = resultType.getScalableDims();
ArrayRef<int64_t> maskDimSizes = getMaskDimSizes();
for (const auto [index, maskDimSize] : llvm::enumerate(maskDimSizes)) {
if (maskDimSize < 0 || maskDimSize > resultShape[index])
return emitOpError(
"array attr of size out of bounds of vector result dimension size");
if (resultScalableDims[index] && maskDimSize != 0 &&
maskDimSize != resultShape[index])
return emitOpError(
"only supports 'none set' or 'all set' scalable dimensions");
}
// Verify that if one mask dim size is zero, they all should be zero (because
// the mask region is a conjunction of each mask dimension interval).
bool anyZeros = llvm::is_contained(maskDimSizes, 0);
bool allZeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
if (anyZeros && !allZeros)
return emitOpError("expected all mask dim sizes to be zeros, "
"as a result of conjunction with zero mask dim");
return success();
}
bool ConstantMaskOp::isAllOnesMask() {
auto resultType = getVectorType();
// Check the corner case of 0-D vectors first.
if (resultType.getRank() == 0) {
assert(getMaskDimSizes().size() == 1 && "invalid sizes for zero rank mask");
return getMaskDimSizes()[0] == 1;
}
for (const auto [resultSize, maskDimSize] :
llvm::zip_equal(resultType.getShape(), getMaskDimSizes())) {
if (maskDimSize < resultSize)
return false;
}
return true;
}
OpFoldResult ConstantMaskOp::fold(FoldAdaptor adaptor) {
ArrayRef<int64_t> bounds = getMaskDimSizes();
ArrayRef<int64_t> vectorSizes = getVectorType().getShape();
auto createBoolSplat = [&](bool x) {
return SplatElementsAttr::get(getVectorType(),
BoolAttr::get(getContext(), x));
};
// Check the corner case of 0-D vectors first.
if (vectorSizes.empty()) {
assert(bounds.size() == 1 && "invalid sizes for zero rank mask");
return createBoolSplat(bounds[0] == 1);
}
// Fold vector.constant_mask to splat if possible.
if (bounds == vectorSizes)
return createBoolSplat(true);
if (llvm::all_of(bounds, [](int64_t x) { return x == 0; }))
return createBoolSplat(false);
return OpFoldResult();
}
//===----------------------------------------------------------------------===//
// CreateMaskOp
//===----------------------------------------------------------------------===//
void CreateMaskOp::build(OpBuilder &builder, OperationState &result,
VectorType type,
ArrayRef<OpFoldResult> mixedOperands) {
SmallVector<Value> operands =
getValueOrCreateConstantIndexOp(builder, result.location, mixedOperands);
build(builder, result, type, operands);
}
LogicalResult CreateMaskOp::verify() {
auto vectorType = llvm::cast<VectorType>(getResult().getType());
// Verify that an operand was specified for each result vector each dimension.
if (vectorType.getRank() == 0) {
if (getNumOperands() != 1)
return emitOpError(
"must specify exactly one operand for 0-D create_mask");
} else if (getNumOperands() !=
llvm::cast<VectorType>(getResult().getType()).getRank()) {
return emitOpError(
"must specify an operand for each result vector dimension");
}
return success();
}
namespace {
/// Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
///
/// Ex 1:
/// %c2 = arith.constant 2 : index
/// %c3 = arith.constant 3 : index
/// %0 = vector.create_mask %c3, %c2 : vector<4x3xi1>
/// Becomes:
/// vector.constant_mask [3, 2] : vector<4x3xi1>
///
/// Ex 2:
/// %c_neg_1 = arith.constant -1 : index
/// %0 = vector.create_mask %c_neg_1 : vector<[8]xi1>
/// becomes:
/// vector.constant_mask [0] : vector<[8]xi1>
///
/// Ex 3:
/// %c8 = arith.constant 8 : index
/// %c16 = arith.constant 16 : index
/// %0 = vector.vscale
/// %1 = arith.muli %0, %c16 : index
/// %10 = vector.create_mask %c8, %1 : vector<8x[16]xi1>
/// becomes:
/// %0 = vector.constant_mask [8, 16] : vector<8x[16]xi1>
class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(CreateMaskOp createMaskOp,
PatternRewriter &rewriter) const override {
VectorType maskType = createMaskOp.getVectorType();
ArrayRef<int64_t> maskTypeDimSizes = maskType.getShape();
ArrayRef<bool> maskTypeDimScalableFlags = maskType.getScalableDims();
// Special case: Rank zero shape.
constexpr std::array<int64_t, 1> rankZeroShape{1};
constexpr std::array<bool, 1> rankZeroScalableDims{false};
if (maskType.getRank() == 0) {
maskTypeDimSizes = rankZeroShape;
maskTypeDimScalableFlags = rankZeroScalableDims;
}
// Determine if this CreateMaskOp can be folded to a ConstantMaskOp and
// collect the `constantDims` (for the ConstantMaskOp).
SmallVector<int64_t, 4> constantDims;
for (auto [i, dimSize] : llvm::enumerate(createMaskOp.getOperands())) {
if (auto intSize = getConstantIntValue(dimSize)) {
// Constant value.
// If the mask dim is non-scalable this can be any value.
// If the mask dim is scalable only zero (all-false) is supported.
if (maskTypeDimScalableFlags[i] && intSize >= 0)
return failure();
constantDims.push_back(*intSize);
} else if (auto vscaleMultiplier = getConstantVscaleMultiplier(dimSize)) {
// Constant vscale multiple (e.g. 4 x vscale).
// Must be all-true to fold to a ConstantMask.
if (vscaleMultiplier < maskTypeDimSizes[i])
return failure();
constantDims.push_back(*vscaleMultiplier);
} else {
return failure();
}
}
// Clamp values to constant_mask bounds.
for (auto [value, maskDimSize] : llvm::zip(constantDims, maskTypeDimSizes))
value = std::clamp<int64_t>(value, 0, maskDimSize);
// If one of dim sizes is zero, set all dims to zero.
if (llvm::is_contained(constantDims, 0))
constantDims.assign(constantDims.size(), 0);
// Replace 'createMaskOp' with ConstantMaskOp.
rewriter.replaceOpWithNewOp<ConstantMaskOp>(createMaskOp, maskType,
constantDims);
return success();
}
};
} // namespace
void CreateMaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<CreateMaskFolder>(context);
}
//===----------------------------------------------------------------------===//
// MaskOp
//===----------------------------------------------------------------------===//
void MaskOp::build(
OpBuilder &builder, OperationState &result, Value mask,
Operation *maskableOp,
function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) {
assert(maskRegionBuilder &&
"builder callback for 'maskRegion' must be present");
result.addOperands(mask);
OpBuilder::InsertionGuard guard(builder);
Region *maskRegion = result.addRegion();
builder.createBlock(maskRegion);
maskRegionBuilder(builder, maskableOp);
}
void MaskOp::build(
OpBuilder &builder, OperationState &result, TypeRange resultTypes,
Value mask, Operation *maskableOp,
function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) {
build(builder, result, resultTypes, mask, /*passthru=*/Value(), maskableOp,
maskRegionBuilder);
}
void MaskOp::build(
OpBuilder &builder, OperationState &result, TypeRange resultTypes,
Value mask, Value passthru, Operation *maskableOp,
function_ref<void(OpBuilder &, Operation *)> maskRegionBuilder) {
build(builder, result, mask, maskableOp, maskRegionBuilder);
if (passthru)
result.addOperands(passthru);
result.addTypes(resultTypes);
}
ParseResult MaskOp::parse(OpAsmParser &parser, OperationState &result) {
// Create the op region.
result.regions.reserve(1);
Region &maskRegion = *result.addRegion();
auto &builder = parser.getBuilder();
// Parse all the operands.
OpAsmParser::UnresolvedOperand mask;
if (parser.parseOperand(mask))
return failure();
// Optional passthru operand.
OpAsmParser::UnresolvedOperand passthru;
ParseResult parsePassthru = parser.parseOptionalComma();
if (parsePassthru.succeeded() && parser.parseOperand(passthru))
return failure();
// Parse op region.
if (parser.parseRegion(maskRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
MaskOp::ensureTerminator(maskRegion, builder, result.location);
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
// Parse all the types.
Type maskType;
if (parser.parseColonType(maskType))
return failure();
SmallVector<Type> resultTypes;
if (parser.parseOptionalArrowTypeList(resultTypes))
return failure();
result.types.append(resultTypes);
// Resolve operands.
if (parser.resolveOperand(mask, maskType, result.operands))
return failure();
if (parsePassthru.succeeded()) {
if (resultTypes.empty())
return parser.emitError(
parser.getNameLoc(),
"expects a result if passthru operand is provided");
if (parser.resolveOperand(passthru, resultTypes[0], result.operands))
return failure();
}
return success();
}
void mlir::vector::MaskOp::print(OpAsmPrinter &p) {
p << " " << getMask();
if (getPassthru())
p << ", " << getPassthru();
// Print single masked operation and skip terminator.
p << " { ";
Block *singleBlock = &getMaskRegion().getBlocks().front();
if (singleBlock && !singleBlock->getOperations().empty())
p.printCustomOrGenericOp(&singleBlock->front());
p << " }";
p.printOptionalAttrDict(getOperation()->getAttrs());
p << " : " << getMask().getType();
if (getNumResults() > 0)
p << " -> " << getResultTypes();
}
void MaskOp::ensureTerminator(Region &region, Builder &builder, Location loc) {
// 1. For an empty `vector.mask`, create a default terminator.
if (region.empty() || region.front().empty()) {
OpTrait::SingleBlockImplicitTerminator<vector::YieldOp>::Impl<
MaskOp>::ensureTerminator(region, builder, loc);
return;
}
// 2. For a non-empty `vector.mask` with an explicit terminator, do nothing.
Block &block = region.front();
if (isa<vector::YieldOp>(block.back()))
return;
// 3. For a non-empty `vector.mask` without an explicit terminator:
// Create default terminator if the number of masked operations is not
// one. This case will trigger a verification failure.
if (block.getOperations().size() != 1) {
OpTrait::SingleBlockImplicitTerminator<vector::YieldOp>::Impl<
MaskOp>::ensureTerminator(region, builder, loc);
return;
}
// Create a terminator that yields the results from the masked operation.
OpBuilder opBuilder(builder.getContext());
Operation *maskedOp = &block.front();
opBuilder.setInsertionPointToEnd(&block);
opBuilder.create<vector::YieldOp>(loc, maskedOp->getResults());
}
LogicalResult MaskOp::verify() {
// Structural checks.
Block &block = getMaskRegion().getBlocks().front();
if (block.getOperations().empty())
return emitOpError("expects a terminator within the mask region");
unsigned numMaskRegionOps = block.getOperations().size();
if (numMaskRegionOps > 2)
return emitOpError("expects only one operation to mask");
// Terminator checks.
auto terminator = dyn_cast<vector::YieldOp>(block.back());
if (!terminator)
return emitOpError("expects a terminator within the mask region");
if (terminator->getNumOperands() != getNumResults())
return emitOpError(
"expects number of results to match mask region yielded values");
// Empty vector.mask. Nothing else to check.
if (numMaskRegionOps == 1)
return success();
auto maskableOp = dyn_cast<MaskableOpInterface>(block.front());
if (!maskableOp)
return emitOpError("expects a MaskableOpInterface within the mask region");
// Result checks.
if (maskableOp->getNumResults() != getNumResults())
return emitOpError("expects number of results to match maskable operation "
"number of results");
if (!llvm::equal(maskableOp->getResults(), terminator.getOperands()))
return emitOpError("expects all the results from the MaskableOpInterface "
"to match all the values returned by the terminator");
if (!llvm::equal(maskableOp->getResultTypes(), getResultTypes()))
return emitOpError(
"expects result type to match maskable operation result type");
if (llvm::count_if(maskableOp->getResultTypes(),
[](Type t) { return llvm::isa<VectorType>(t); }) > 1)
return emitOpError("multiple vector results not supported");
// Mask checks.
Type expectedMaskType = maskableOp.getExpectedMaskType();
if (getMask().getType() != expectedMaskType)
return emitOpError("expects a ")
<< expectedMaskType << " mask for the maskable operation";
// Passthru checks.
Value passthru = getPassthru();
if (passthru) {
if (!maskableOp.supportsPassthru())
return emitOpError(
"doesn't expect a passthru argument for this maskable operation");
if (maskableOp->getNumResults() != 1)
return emitOpError("expects result when passthru argument is provided");
if (passthru.getType() != maskableOp->getResultTypes()[0])
return emitOpError("expects passthru type to match result type");
}
return success();
}
/// Folds empty `vector.mask` with no passthru operand and with or without
/// return values. For example:
///
/// %0 = vector.mask %mask { vector.yield %a : vector<8xf32> } :
/// vector<8xi1> -> vector<8xf32>
/// %1 = user_op %0 : vector<8xf32>
///
/// becomes:
///
/// %0 = user_op %a : vector<8xf32>
///
/// Empty `vector.mask` with passthru operand are handled by the canonicalizer
/// as it requires creating new operations.
static LogicalResult foldEmptyMaskOp(MaskOp maskOp, MaskOp::FoldAdaptor adaptor,
SmallVectorImpl<OpFoldResult> &results) {
if (!maskOp.isEmpty() || maskOp.hasPassthru())
return failure();
Block *block = maskOp.getMaskBlock();
auto terminator = cast<vector::YieldOp>(block->front());
if (terminator.getNumOperands() == 0) {
// `vector.mask` has no results, just remove the `vector.mask`.
return success();
}
// `vector.mask` has results, propagate the results.
llvm::append_range(results, terminator.getOperands());
return success();
}
LogicalResult MaskOp::fold(FoldAdaptor adaptor,
SmallVectorImpl<OpFoldResult> &results) {
if (succeeded(foldEmptyMaskOp(*this, adaptor, results)))
return success();
MaskFormat maskFormat = getMaskFormat(getMask());
if (maskFormat != MaskFormat::AllTrue)
return failure();
// Move maskable operation outside of the `vector.mask` region.
Operation *maskableOp = getMaskableOp();
maskableOp->dropAllUses();
maskableOp->moveBefore(getOperation());
llvm::append_range(results, maskableOp->getResults());
return success();
}
/// Canonialize empty `vector.mask` operations that can't be handled in
/// `VectorMask::fold` as they require creating new operations.
///
/// Example 1: Empty `vector.mask` with passthru operand.
///
/// %0 = vector.mask %mask, %passthru { vector.yield %a : vector<8xf32> } :
/// vector<8xi1> -> vector<8xf32>
///
/// becomes:
///
/// %0 = arith.select %mask, %a, %passthru : vector<8xf32>
///
class CanonializeEmptyMaskOp : public OpRewritePattern<MaskOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(MaskOp maskOp,
PatternRewriter &rewriter) const override {
if (!maskOp.isEmpty())
return failure();
if (!maskOp.hasPassthru())
return failure();
Block *block = maskOp.getMaskBlock();
auto terminator = cast<vector::YieldOp>(block->front());
assert(terminator.getNumOperands() == 1 &&
"expected one result when passthru is provided");
rewriter.replaceOpWithNewOp<arith::SelectOp>(
maskOp, maskOp.getResultTypes(), maskOp.getMask(),
terminator.getOperand(0), maskOp.getPassthru());
return success();
}
};
void MaskOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<CanonializeEmptyMaskOp>(context);
}
// MaskingOpInterface definitions.
/// Returns the operation masked by this 'vector.mask'.
Operation *MaskOp::getMaskableOp() {
Block *block = getMaskBlock();
if (block->getOperations().size() < 2)
return nullptr;
return &block->front();
}
/// Returns true if 'vector.mask' has a passthru value.
bool MaskOp::hasPassthru() { return getPassthru() != Value(); }
//===----------------------------------------------------------------------===//
// ScanOp
//===----------------------------------------------------------------------===//
LogicalResult ScanOp::verify() {
VectorType srcType = getSourceType();
VectorType initialType = getInitialValueType();
// Check reduction dimension < rank.
int64_t srcRank = srcType.getRank();
int64_t reductionDim = getReductionDim();
if (reductionDim >= srcRank)
return emitOpError("reduction dimension ")
<< reductionDim << " has to be less than " << srcRank;
// Check that rank(initial_value) = rank(src) - 1.
int64_t initialValueRank = initialType.getRank();
if (initialValueRank != srcRank - 1)
return emitOpError("initial value rank ")
<< initialValueRank << " has to be equal to " << srcRank - 1;
// Check shapes of initial value and src.
ArrayRef<int64_t> srcShape = srcType.getShape();
ArrayRef<int64_t> initialValueShapes = initialType.getShape();
SmallVector<int64_t> expectedShape;
for (int i = 0; i < srcRank; i++) {
if (i != reductionDim)
expectedShape.push_back(srcShape[i]);
}
if (!llvm::equal(initialValueShapes, expectedShape)) {
return emitOpError("incompatible input/initial value shapes");
}
// Verify supported reduction kind.
Type eltType = getDestType().getElementType();
if (!isSupportedCombiningKind(getKind(), eltType))
return emitOpError("unsupported reduction type ")
<< eltType << " for kind '" << stringifyCombiningKind(getKind())
<< "'";
return success();
}
void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns
.add<CreateMaskFolder, MaskedLoadFolder, MaskedStoreFolder, GatherFolder,
ScatterFolder, ExpandLoadFolder, CompressStoreFolder,
StridedSliceConstantMaskFolder, TransposeFolder>(
patterns.getContext(), benefit);
}
//===----------------------------------------------------------------------===//
// SplatOp
//===----------------------------------------------------------------------===//
OpFoldResult SplatOp::fold(FoldAdaptor adaptor) {
auto constOperand = adaptor.getInput();
if (!isa_and_nonnull<IntegerAttr, FloatAttr>(constOperand))
return {};
// SplatElementsAttr::get treats single value for second arg as being a splat.
return SplatElementsAttr::get(getType(), {constOperand});
}
void SplatOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
SetIntRangeFn setResultRanges) {
setResultRanges(getResult(), argRanges.front());
}
Value mlir::vector::makeArithReduction(OpBuilder &b, Location loc,
CombiningKind kind, Value v1, Value acc,
arith::FastMathFlagsAttr fastmath,
Value mask) {
Type t1 = getElementTypeOrSelf(v1.getType());
Type tAcc = getElementTypeOrSelf(acc.getType());
Value result;
switch (kind) {
case CombiningKind::ADD:
if (t1.isIntOrIndex() && tAcc.isIntOrIndex())
result = b.createOrFold<arith::AddIOp>(loc, v1, acc);
else if (llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc))
result = b.createOrFold<arith::AddFOp>(loc, v1, acc, fastmath);
else
llvm_unreachable("invalid value types for ADD reduction");
break;
case CombiningKind::AND:
assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");
result = b.createOrFold<arith::AndIOp>(loc, v1, acc);
break;
case CombiningKind::MAXNUMF:
assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) &&
"expected float values");
result = b.createOrFold<arith::MaxNumFOp>(loc, v1, acc, fastmath);
break;
case CombiningKind::MAXIMUMF:
assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) &&
"expected float values");
result = b.createOrFold<arith::MaximumFOp>(loc, v1, acc, fastmath);
break;
case CombiningKind::MINNUMF:
assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) &&
"expected float values");
result = b.createOrFold<arith::MinNumFOp>(loc, v1, acc, fastmath);
break;
case CombiningKind::MINIMUMF:
assert(llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc) &&
"expected float values");
result = b.createOrFold<arith::MinimumFOp>(loc, v1, acc, fastmath);
break;
case CombiningKind::MAXSI:
assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");
result = b.createOrFold<arith::MaxSIOp>(loc, v1, acc);
break;
case CombiningKind::MINSI:
assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");
result = b.createOrFold<arith::MinSIOp>(loc, v1, acc);
break;
case CombiningKind::MAXUI:
assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");
result = b.createOrFold<arith::MaxUIOp>(loc, v1, acc);
break;
case CombiningKind::MINUI:
assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");
result = b.createOrFold<arith::MinUIOp>(loc, v1, acc);
break;
case CombiningKind::MUL:
if (t1.isIntOrIndex() && tAcc.isIntOrIndex())
result = b.createOrFold<arith::MulIOp>(loc, v1, acc);
else if (llvm::isa<FloatType>(t1) && llvm::isa<FloatType>(tAcc))
result = b.createOrFold<arith::MulFOp>(loc, v1, acc, fastmath);
else
llvm_unreachable("invalid value types for MUL reduction");
break;
case CombiningKind::OR:
assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");
result = b.createOrFold<arith::OrIOp>(loc, v1, acc);
break;
case CombiningKind::XOR:
assert(t1.isIntOrIndex() && tAcc.isIntOrIndex() && "expected int values");
result = b.createOrFold<arith::XOrIOp>(loc, v1, acc);
break;
};
assert(result && "unknown CombiningKind");
return selectPassthru(b, mask, result, acc);
}
//===----------------------------------------------------------------------===//
// Vector Masking Utilities
//===----------------------------------------------------------------------===//
/// Create the vector.yield-ended region of a vector.mask op with `maskableOp`
/// as masked operation.
void mlir::vector::createMaskOpRegion(OpBuilder &builder,
Operation *maskableOp) {
assert(maskableOp->getBlock() && "MaskableOp must be inserted into a block");
Block *insBlock = builder.getInsertionBlock();
// Create a block and move the op to that block.
insBlock->getOperations().splice(
insBlock->begin(), maskableOp->getBlock()->getOperations(), maskableOp);
builder.create<YieldOp>(maskableOp->getLoc(), maskableOp->getResults());
}
/// Creates a vector.mask operation around a maskable operation. Returns the
/// vector.mask operation if the mask provided is valid. Otherwise, returns
/// the maskable operation itself.
Operation *mlir::vector::maskOperation(OpBuilder &builder,
Operation *maskableOp, Value mask,
Value passthru) {
if (!mask)
return maskableOp;
if (passthru)
return builder.create<MaskOp>(maskableOp->getLoc(),
maskableOp->getResultTypes(), mask, passthru,
maskableOp, createMaskOpRegion);
return builder.create<MaskOp>(maskableOp->getLoc(),
maskableOp->getResultTypes(), mask, maskableOp,
createMaskOpRegion);
}
/// Creates a vector select operation that picks values from `newValue` or
/// `passthru` for each result vector lane based on `mask`. This utility is used
/// to propagate the pass-thru value of vector.mask or for cases where only the
/// pass-thru value propagation is needed. VP intrinsics do not support
/// pass-thru values and every mask-out lane is set to poison. LLVM backends are
/// usually able to match op + select patterns and fold them into a native
/// target instructions.
Value mlir::vector::selectPassthru(OpBuilder &builder, Value mask,
Value newValue, Value passthru) {
if (!mask)
return newValue;
return builder.create<arith::SelectOp>(newValue.getLoc(), newValue.getType(),
mask, newValue, passthru);
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/Vector/IR/VectorAttributes.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/Vector/IR/VectorOps.cpp.inc"