llvm-project/llvm/lib/Transforms/IPO/MemProfContextDisambiguation.cpp
Teresa Johnson ac39d26dc4
[MemProf] Don't mutate the function type when calling clone (#147829)
In rare cases the declaration of a function may not match its callsite
after function importing, when the declaration was imported from a
module where the function had void return type (presumably due to
incomplete types). Instead of using setCalledFunction() to change a call
to call its clone, which updates the call's function type as well, just
call setCalledOperand directly so the only thing changed is the function
target.

Note this can't happen for the other places where we call
setCalledFunction: FullLTO requires the cloned callee to be defined in
the same FullLTO merged module; ThinLTO memprof ICP calls an ICP
facility to first perform the promotion and that will be blocked if the
function type doesn't match the callsite (the new test explicitly tests
this latter case).
2025-07-11 11:33:43 -07:00

5779 lines
249 KiB
C++

//==-- MemProfContextDisambiguation.cpp - Disambiguate contexts -------------=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements support for context disambiguation of allocation
// calls for profile guided heap optimization. Specifically, it uses Memprof
// profiles which indicate context specific allocation behavior (currently
// distinguishing cold vs hot memory allocations). Cloning is performed to
// expose the cold allocation call contexts, and the allocation calls are
// subsequently annotated with an attribute for later transformation.
//
// The transformations can be performed either directly on IR (regular LTO), or
// on a ThinLTO index (and later applied to the IR during the ThinLTO backend).
// Both types of LTO operate on a the same base graph representation, which
// uses CRTP to support either IR or Index formats.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/MemProfContextDisambiguation.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryProfileInfo.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/InterleavedRange.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Instrumentation.h"
#include <deque>
#include <sstream>
#include <unordered_map>
#include <vector>
using namespace llvm;
using namespace llvm::memprof;
#define DEBUG_TYPE "memprof-context-disambiguation"
STATISTIC(FunctionClonesAnalysis,
"Number of function clones created during whole program analysis");
STATISTIC(FunctionClonesThinBackend,
"Number of function clones created during ThinLTO backend");
STATISTIC(FunctionsClonedThinBackend,
"Number of functions that had clones created during ThinLTO backend");
STATISTIC(AllocTypeNotCold, "Number of not cold static allocations (possibly "
"cloned) during whole program analysis");
STATISTIC(AllocTypeCold, "Number of cold static allocations (possibly cloned) "
"during whole program analysis");
STATISTIC(AllocTypeNotColdThinBackend,
"Number of not cold static allocations (possibly cloned) during "
"ThinLTO backend");
STATISTIC(AllocTypeColdThinBackend, "Number of cold static allocations "
"(possibly cloned) during ThinLTO backend");
STATISTIC(OrigAllocsThinBackend,
"Number of original (not cloned) allocations with memprof profiles "
"during ThinLTO backend");
STATISTIC(
AllocVersionsThinBackend,
"Number of allocation versions (including clones) during ThinLTO backend");
STATISTIC(MaxAllocVersionsThinBackend,
"Maximum number of allocation versions created for an original "
"allocation during ThinLTO backend");
STATISTIC(UnclonableAllocsThinBackend,
"Number of unclonable ambigous allocations during ThinLTO backend");
STATISTIC(RemovedEdgesWithMismatchedCallees,
"Number of edges removed due to mismatched callees (profiled vs IR)");
STATISTIC(FoundProfiledCalleeCount,
"Number of profiled callees found via tail calls");
STATISTIC(FoundProfiledCalleeDepth,
"Aggregate depth of profiled callees found via tail calls");
STATISTIC(FoundProfiledCalleeMaxDepth,
"Maximum depth of profiled callees found via tail calls");
STATISTIC(FoundProfiledCalleeNonUniquelyCount,
"Number of profiled callees found via multiple tail call chains");
STATISTIC(DeferredBackedges, "Number of backedges with deferred cloning");
STATISTIC(NewMergedNodes, "Number of new nodes created during merging");
STATISTIC(NonNewMergedNodes, "Number of non new nodes used during merging");
STATISTIC(MissingAllocForContextId,
"Number of missing alloc nodes for context ids");
STATISTIC(SkippedCallsCloning,
"Number of calls skipped during cloning due to unexpected operand");
static cl::opt<std::string> DotFilePathPrefix(
"memprof-dot-file-path-prefix", cl::init(""), cl::Hidden,
cl::value_desc("filename"),
cl::desc("Specify the path prefix of the MemProf dot files."));
static cl::opt<bool> ExportToDot("memprof-export-to-dot", cl::init(false),
cl::Hidden,
cl::desc("Export graph to dot files."));
// How much of the graph to export to dot.
enum DotScope {
All, // The full CCG graph.
Alloc, // Only contexts for the specified allocation.
Context, // Only the specified context.
};
static cl::opt<DotScope> DotGraphScope(
"memprof-dot-scope", cl::desc("Scope of graph to export to dot"),
cl::Hidden, cl::init(DotScope::All),
cl::values(
clEnumValN(DotScope::All, "all", "Export full callsite graph"),
clEnumValN(DotScope::Alloc, "alloc",
"Export only nodes with contexts feeding given "
"-memprof-dot-alloc-id"),
clEnumValN(DotScope::Context, "context",
"Export only nodes with given -memprof-dot-context-id")));
static cl::opt<unsigned>
AllocIdForDot("memprof-dot-alloc-id", cl::init(0), cl::Hidden,
cl::desc("Id of alloc to export if -memprof-dot-scope=alloc "
"or to highlight if -memprof-dot-scope=all"));
static cl::opt<unsigned> ContextIdForDot(
"memprof-dot-context-id", cl::init(0), cl::Hidden,
cl::desc("Id of context to export if -memprof-dot-scope=context or to "
"highlight otherwise"));
static cl::opt<bool>
DumpCCG("memprof-dump-ccg", cl::init(false), cl::Hidden,
cl::desc("Dump CallingContextGraph to stdout after each stage."));
static cl::opt<bool>
VerifyCCG("memprof-verify-ccg", cl::init(false), cl::Hidden,
cl::desc("Perform verification checks on CallingContextGraph."));
static cl::opt<bool>
VerifyNodes("memprof-verify-nodes", cl::init(false), cl::Hidden,
cl::desc("Perform frequent verification checks on nodes."));
static cl::opt<std::string> MemProfImportSummary(
"memprof-import-summary",
cl::desc("Import summary to use for testing the ThinLTO backend via opt"),
cl::Hidden);
static cl::opt<unsigned>
TailCallSearchDepth("memprof-tail-call-search-depth", cl::init(5),
cl::Hidden,
cl::desc("Max depth to recursively search for missing "
"frames through tail calls."));
// Optionally enable cloning of callsites involved with recursive cycles
static cl::opt<bool> AllowRecursiveCallsites(
"memprof-allow-recursive-callsites", cl::init(true), cl::Hidden,
cl::desc("Allow cloning of callsites involved in recursive cycles"));
static cl::opt<bool> CloneRecursiveContexts(
"memprof-clone-recursive-contexts", cl::init(true), cl::Hidden,
cl::desc("Allow cloning of contexts through recursive cycles"));
// Generally this is needed for correct assignment of allocation clones to
// function clones, however, allow it to be disabled for debugging while the
// functionality is new and being tested more widely.
static cl::opt<bool>
MergeClones("memprof-merge-clones", cl::init(true), cl::Hidden,
cl::desc("Merge clones before assigning functions"));
// When disabled, try to detect and prevent cloning of recursive contexts.
// This is only necessary until we support cloning through recursive cycles.
// Leave on by default for now, as disabling requires a little bit of compile
// time overhead and doesn't affect correctness, it will just inflate the cold
// hinted bytes reporting a bit when -memprof-report-hinted-sizes is enabled.
static cl::opt<bool> AllowRecursiveContexts(
"memprof-allow-recursive-contexts", cl::init(true), cl::Hidden,
cl::desc("Allow cloning of contexts having recursive cycles"));
// Set the minimum absolute count threshold for allowing inlining of indirect
// calls promoted during cloning.
static cl::opt<unsigned> MemProfICPNoInlineThreshold(
"memprof-icp-noinline-threshold", cl::init(2), cl::Hidden,
cl::desc("Minimum absolute count for promoted target to be inlinable"));
namespace llvm {
cl::opt<bool> EnableMemProfContextDisambiguation(
"enable-memprof-context-disambiguation", cl::init(false), cl::Hidden,
cl::ZeroOrMore, cl::desc("Enable MemProf context disambiguation"));
// Indicate we are linking with an allocator that supports hot/cold operator
// new interfaces.
cl::opt<bool> SupportsHotColdNew(
"supports-hot-cold-new", cl::init(false), cl::Hidden,
cl::desc("Linking with hot/cold operator new interfaces"));
static cl::opt<bool> MemProfRequireDefinitionForPromotion(
"memprof-require-definition-for-promotion", cl::init(false), cl::Hidden,
cl::desc(
"Require target function definition when promoting indirect calls"));
} // namespace llvm
extern cl::opt<bool> MemProfReportHintedSizes;
extern cl::opt<unsigned> MinClonedColdBytePercent;
namespace {
/// CRTP base for graphs built from either IR or ThinLTO summary index.
///
/// The graph represents the call contexts in all memprof metadata on allocation
/// calls, with nodes for the allocations themselves, as well as for the calls
/// in each context. The graph is initially built from the allocation memprof
/// metadata (or summary) MIBs. It is then updated to match calls with callsite
/// metadata onto the nodes, updating it to reflect any inlining performed on
/// those calls.
///
/// Each MIB (representing an allocation's call context with allocation
/// behavior) is assigned a unique context id during the graph build. The edges
/// and nodes in the graph are decorated with the context ids they carry. This
/// is used to correctly update the graph when cloning is performed so that we
/// can uniquify the context for a single (possibly cloned) allocation.
template <typename DerivedCCG, typename FuncTy, typename CallTy>
class CallsiteContextGraph {
public:
CallsiteContextGraph() = default;
CallsiteContextGraph(const CallsiteContextGraph &) = default;
CallsiteContextGraph(CallsiteContextGraph &&) = default;
/// Main entry point to perform analysis and transformations on graph.
bool process();
/// Perform cloning on the graph necessary to uniquely identify the allocation
/// behavior of an allocation based on its context.
void identifyClones();
/// Assign callsite clones to functions, cloning functions as needed to
/// accommodate the combinations of their callsite clones reached by callers.
/// For regular LTO this clones functions and callsites in the IR, but for
/// ThinLTO the cloning decisions are noted in the summaries and later applied
/// in applyImport.
bool assignFunctions();
void dump() const;
void print(raw_ostream &OS) const;
void printTotalSizes(raw_ostream &OS) const;
friend raw_ostream &operator<<(raw_ostream &OS,
const CallsiteContextGraph &CCG) {
CCG.print(OS);
return OS;
}
friend struct GraphTraits<
const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *>;
friend struct DOTGraphTraits<
const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *>;
void exportToDot(std::string Label) const;
/// Represents a function clone via FuncTy pointer and clone number pair.
struct FuncInfo final
: public std::pair<FuncTy *, unsigned /*Clone number*/> {
using Base = std::pair<FuncTy *, unsigned>;
FuncInfo(const Base &B) : Base(B) {}
FuncInfo(FuncTy *F = nullptr, unsigned CloneNo = 0) : Base(F, CloneNo) {}
explicit operator bool() const { return this->first != nullptr; }
FuncTy *func() const { return this->first; }
unsigned cloneNo() const { return this->second; }
};
/// Represents a callsite clone via CallTy and clone number pair.
struct CallInfo final : public std::pair<CallTy, unsigned /*Clone number*/> {
using Base = std::pair<CallTy, unsigned>;
CallInfo(const Base &B) : Base(B) {}
CallInfo(CallTy Call = nullptr, unsigned CloneNo = 0)
: Base(Call, CloneNo) {}
explicit operator bool() const { return (bool)this->first; }
CallTy call() const { return this->first; }
unsigned cloneNo() const { return this->second; }
void setCloneNo(unsigned N) { this->second = N; }
void print(raw_ostream &OS) const {
if (!operator bool()) {
assert(!cloneNo());
OS << "null Call";
return;
}
call()->print(OS);
OS << "\t(clone " << cloneNo() << ")";
}
void dump() const {
print(dbgs());
dbgs() << "\n";
}
friend raw_ostream &operator<<(raw_ostream &OS, const CallInfo &Call) {
Call.print(OS);
return OS;
}
};
struct ContextEdge;
/// Node in the Callsite Context Graph
struct ContextNode {
// Keep this for now since in the IR case where we have an Instruction* it
// is not as immediately discoverable. Used for printing richer information
// when dumping graph.
bool IsAllocation;
// Keeps track of when the Call was reset to null because there was
// recursion.
bool Recursive = false;
// This will be formed by ORing together the AllocationType enum values
// for contexts including this node.
uint8_t AllocTypes = 0;
// The corresponding allocation or interior call. This is the primary call
// for which we have created this node.
CallInfo Call;
// List of other calls that can be treated the same as the primary call
// through cloning. I.e. located in the same function and have the same
// (possibly pruned) stack ids. They will be updated the same way as the
// primary call when assigning to function clones.
SmallVector<CallInfo, 0> MatchingCalls;
// For alloc nodes this is a unique id assigned when constructed, and for
// callsite stack nodes it is the original stack id when the node is
// constructed from the memprof MIB metadata on the alloc nodes. Note that
// this is only used when matching callsite metadata onto the stack nodes
// created when processing the allocation memprof MIBs, and for labeling
// nodes in the dot graph. Therefore we don't bother to assign a value for
// clones.
uint64_t OrigStackOrAllocId = 0;
// Edges to all callees in the profiled call stacks.
// TODO: Should this be a map (from Callee node) for more efficient lookup?
std::vector<std::shared_ptr<ContextEdge>> CalleeEdges;
// Edges to all callers in the profiled call stacks.
// TODO: Should this be a map (from Caller node) for more efficient lookup?
std::vector<std::shared_ptr<ContextEdge>> CallerEdges;
// Returns true if we need to look at the callee edges for determining the
// node context ids and allocation type.
bool useCallerEdgesForContextInfo() const {
// Typically if the callee edges are empty either the caller edges are
// also empty, or this is an allocation (leaf node). However, if we are
// allowing recursive callsites and contexts this will be violated for
// incompletely cloned recursive cycles.
assert(!CalleeEdges.empty() || CallerEdges.empty() || IsAllocation ||
(AllowRecursiveCallsites && AllowRecursiveContexts));
// When cloning for a recursive context, during cloning we might be in the
// midst of cloning for a recurrence and have moved context ids off of a
// caller edge onto the clone but not yet off of the incoming caller
// (back) edge. If we don't look at those we miss the fact that this node
// still has context ids of interest.
return IsAllocation || CloneRecursiveContexts;
}
// Compute the context ids for this node from the union of its edge context
// ids.
DenseSet<uint32_t> getContextIds() const {
unsigned Count = 0;
// Compute the number of ids for reserve below. In general we only need to
// look at one set of edges, typically the callee edges, since other than
// allocations and in some cases during recursion cloning, all the context
// ids on the callers should also flow out via callee edges.
for (auto &Edge : CalleeEdges.empty() ? CallerEdges : CalleeEdges)
Count += Edge->getContextIds().size();
DenseSet<uint32_t> ContextIds;
ContextIds.reserve(Count);
auto Edges = llvm::concat<const std::shared_ptr<ContextEdge>>(
CalleeEdges, useCallerEdgesForContextInfo()
? CallerEdges
: std::vector<std::shared_ptr<ContextEdge>>());
for (const auto &Edge : Edges)
ContextIds.insert_range(Edge->getContextIds());
return ContextIds;
}
// Compute the allocation type for this node from the OR of its edge
// allocation types.
uint8_t computeAllocType() const {
uint8_t BothTypes =
(uint8_t)AllocationType::Cold | (uint8_t)AllocationType::NotCold;
uint8_t AllocType = (uint8_t)AllocationType::None;
auto Edges = llvm::concat<const std::shared_ptr<ContextEdge>>(
CalleeEdges, useCallerEdgesForContextInfo()
? CallerEdges
: std::vector<std::shared_ptr<ContextEdge>>());
for (const auto &Edge : Edges) {
AllocType |= Edge->AllocTypes;
// Bail early if alloc type reached both, no further refinement.
if (AllocType == BothTypes)
return AllocType;
}
return AllocType;
}
// The context ids set for this node is empty if its edge context ids are
// also all empty.
bool emptyContextIds() const {
auto Edges = llvm::concat<const std::shared_ptr<ContextEdge>>(
CalleeEdges, useCallerEdgesForContextInfo()
? CallerEdges
: std::vector<std::shared_ptr<ContextEdge>>());
for (const auto &Edge : Edges) {
if (!Edge->getContextIds().empty())
return false;
}
return true;
}
// List of clones of this ContextNode, initially empty.
std::vector<ContextNode *> Clones;
// If a clone, points to the original uncloned node.
ContextNode *CloneOf = nullptr;
ContextNode(bool IsAllocation) : IsAllocation(IsAllocation), Call() {}
ContextNode(bool IsAllocation, CallInfo C)
: IsAllocation(IsAllocation), Call(C) {}
void addClone(ContextNode *Clone) {
if (CloneOf) {
CloneOf->Clones.push_back(Clone);
Clone->CloneOf = CloneOf;
} else {
Clones.push_back(Clone);
assert(!Clone->CloneOf);
Clone->CloneOf = this;
}
}
ContextNode *getOrigNode() {
if (!CloneOf)
return this;
return CloneOf;
}
void addOrUpdateCallerEdge(ContextNode *Caller, AllocationType AllocType,
unsigned int ContextId);
ContextEdge *findEdgeFromCallee(const ContextNode *Callee);
ContextEdge *findEdgeFromCaller(const ContextNode *Caller);
void eraseCalleeEdge(const ContextEdge *Edge);
void eraseCallerEdge(const ContextEdge *Edge);
void setCall(CallInfo C) { Call = C; }
bool hasCall() const { return (bool)Call.call(); }
void printCall(raw_ostream &OS) const { Call.print(OS); }
// True if this node was effectively removed from the graph, in which case
// it should have an allocation type of None and empty context ids.
bool isRemoved() const {
// Typically if the callee edges are empty either the caller edges are
// also empty, or this is an allocation (leaf node). However, if we are
// allowing recursive callsites and contexts this will be violated for
// incompletely cloned recursive cycles.
assert((AllowRecursiveCallsites && AllowRecursiveContexts) ||
(AllocTypes == (uint8_t)AllocationType::None) ==
emptyContextIds());
return AllocTypes == (uint8_t)AllocationType::None;
}
void dump() const;
void print(raw_ostream &OS) const;
friend raw_ostream &operator<<(raw_ostream &OS, const ContextNode &Node) {
Node.print(OS);
return OS;
}
};
/// Edge in the Callsite Context Graph from a ContextNode N to a caller or
/// callee.
struct ContextEdge {
ContextNode *Callee;
ContextNode *Caller;
// This will be formed by ORing together the AllocationType enum values
// for contexts including this edge.
uint8_t AllocTypes = 0;
// Set just before initiating cloning when cloning of recursive contexts is
// enabled. Used to defer cloning of backedges until we have done cloning of
// the callee node for non-backedge caller edges. This exposes cloning
// opportunities through the backedge of the cycle.
// TODO: Note that this is not updated during cloning, and it is unclear
// whether that would be needed.
bool IsBackedge = false;
// The set of IDs for contexts including this edge.
DenseSet<uint32_t> ContextIds;
ContextEdge(ContextNode *Callee, ContextNode *Caller, uint8_t AllocType,
DenseSet<uint32_t> ContextIds)
: Callee(Callee), Caller(Caller), AllocTypes(AllocType),
ContextIds(std::move(ContextIds)) {}
DenseSet<uint32_t> &getContextIds() { return ContextIds; }
// Helper to clear the fields of this edge when we are removing it from the
// graph.
inline void clear() {
ContextIds.clear();
AllocTypes = (uint8_t)AllocationType::None;
Caller = nullptr;
Callee = nullptr;
}
// Check if edge was removed from the graph. This is useful while iterating
// over a copy of edge lists when performing operations that mutate the
// graph in ways that might remove one of the edges.
inline bool isRemoved() const {
if (Callee || Caller)
return false;
// Any edges that have been removed from the graph but are still in a
// shared_ptr somewhere should have all fields null'ed out by clear()
// above.
assert(AllocTypes == (uint8_t)AllocationType::None);
assert(ContextIds.empty());
return true;
}
void dump() const;
void print(raw_ostream &OS) const;
friend raw_ostream &operator<<(raw_ostream &OS, const ContextEdge &Edge) {
Edge.print(OS);
return OS;
}
};
/// Helpers to remove edges that have allocation type None (due to not
/// carrying any context ids) after transformations.
void removeNoneTypeCalleeEdges(ContextNode *Node);
void removeNoneTypeCallerEdges(ContextNode *Node);
void
recursivelyRemoveNoneTypeCalleeEdges(ContextNode *Node,
DenseSet<const ContextNode *> &Visited);
protected:
/// Get a list of nodes corresponding to the stack ids in the given callsite
/// context.
template <class NodeT, class IteratorT>
std::vector<uint64_t>
getStackIdsWithContextNodes(CallStack<NodeT, IteratorT> &CallsiteContext);
/// Adds nodes for the given allocation and any stack ids on its memprof MIB
/// metadata (or summary).
ContextNode *addAllocNode(CallInfo Call, const FuncTy *F);
/// Adds nodes for the given MIB stack ids.
template <class NodeT, class IteratorT>
void addStackNodesForMIB(ContextNode *AllocNode,
CallStack<NodeT, IteratorT> &StackContext,
CallStack<NodeT, IteratorT> &CallsiteContext,
AllocationType AllocType,
ArrayRef<ContextTotalSize> ContextSizeInfo);
/// Matches all callsite metadata (or summary) to the nodes created for
/// allocation memprof MIB metadata, synthesizing new nodes to reflect any
/// inlining performed on those callsite instructions.
void updateStackNodes();
/// Update graph to conservatively handle any callsite stack nodes that target
/// multiple different callee target functions.
void handleCallsitesWithMultipleTargets();
/// Mark backedges via the standard DFS based backedge algorithm.
void markBackedges();
/// Merge clones generated during cloning for different allocations but that
/// are called by the same caller node, to ensure proper function assignment.
void mergeClones();
// Try to partition calls on the given node (already placed into the AllCalls
// array) by callee function, creating new copies of Node as needed to hold
// calls with different callees, and moving the callee edges appropriately.
// Returns true if partitioning was successful.
bool partitionCallsByCallee(
ContextNode *Node, ArrayRef<CallInfo> AllCalls,
std::vector<std::pair<CallInfo, ContextNode *>> &NewCallToNode);
/// Save lists of calls with MemProf metadata in each function, for faster
/// iteration.
MapVector<FuncTy *, std::vector<CallInfo>> FuncToCallsWithMetadata;
/// Map from callsite node to the enclosing caller function.
std::map<const ContextNode *, const FuncTy *> NodeToCallingFunc;
// When exporting to dot, and an allocation id is specified, contains the
// context ids on that allocation.
DenseSet<uint32_t> DotAllocContextIds;
private:
using EdgeIter = typename std::vector<std::shared_ptr<ContextEdge>>::iterator;
// Structure to keep track of information for each call as we are matching
// non-allocation callsites onto context nodes created from the allocation
// call metadata / summary contexts.
struct CallContextInfo {
// The callsite we're trying to match.
CallTy Call;
// The callsites stack ids that have a context node in the graph.
std::vector<uint64_t> StackIds;
// The function containing this callsite.
const FuncTy *Func;
// Initially empty, if needed this will be updated to contain the context
// ids for use in a new context node created for this callsite.
DenseSet<uint32_t> ContextIds;
};
/// Helper to remove edge from graph, updating edge iterator if it is provided
/// (in which case CalleeIter indicates which edge list is being iterated).
/// This will also perform the necessary clearing of the ContextEdge members
/// to enable later checking if the edge has been removed (since we may have
/// other copies of the shared_ptr in existence, and in fact rely on this to
/// enable removal while iterating over a copy of a node's edge list).
void removeEdgeFromGraph(ContextEdge *Edge, EdgeIter *EI = nullptr,
bool CalleeIter = true);
/// Assigns the given Node to calls at or inlined into the location with
/// the Node's stack id, after post order traversing and processing its
/// caller nodes. Uses the call information recorded in the given
/// StackIdToMatchingCalls map, and creates new nodes for inlined sequences
/// as needed. Called by updateStackNodes which sets up the given
/// StackIdToMatchingCalls map.
void assignStackNodesPostOrder(
ContextNode *Node, DenseSet<const ContextNode *> &Visited,
DenseMap<uint64_t, std::vector<CallContextInfo>> &StackIdToMatchingCalls,
DenseMap<CallInfo, CallInfo> &CallToMatchingCall);
/// Duplicates the given set of context ids, updating the provided
/// map from each original id with the newly generated context ids,
/// and returning the new duplicated id set.
DenseSet<uint32_t> duplicateContextIds(
const DenseSet<uint32_t> &StackSequenceContextIds,
DenseMap<uint32_t, DenseSet<uint32_t>> &OldToNewContextIds);
/// Propagates all duplicated context ids across the graph.
void propagateDuplicateContextIds(
const DenseMap<uint32_t, DenseSet<uint32_t>> &OldToNewContextIds);
/// Connect the NewNode to OrigNode's callees if TowardsCallee is true,
/// else to its callers. Also updates OrigNode's edges to remove any context
/// ids moved to the newly created edge.
void connectNewNode(ContextNode *NewNode, ContextNode *OrigNode,
bool TowardsCallee,
DenseSet<uint32_t> RemainingContextIds);
/// Get the stack id corresponding to the given Id or Index (for IR this will
/// return itself, for a summary index this will return the id recorded in the
/// index for that stack id index value).
uint64_t getStackId(uint64_t IdOrIndex) const {
return static_cast<const DerivedCCG *>(this)->getStackId(IdOrIndex);
}
/// Returns true if the given call targets the callee of the given edge, or if
/// we were able to identify the call chain through intermediate tail calls.
/// In the latter case new context nodes are added to the graph for the
/// identified tail calls, and their synthesized nodes are added to
/// TailCallToContextNodeMap. The EdgeIter is updated in the latter case for
/// the updated edges and to prepare it for an increment in the caller.
bool
calleesMatch(CallTy Call, EdgeIter &EI,
MapVector<CallInfo, ContextNode *> &TailCallToContextNodeMap);
// Return the callee function of the given call, or nullptr if it can't be
// determined
const FuncTy *getCalleeFunc(CallTy Call) {
return static_cast<DerivedCCG *>(this)->getCalleeFunc(Call);
}
/// Returns true if the given call targets the given function, or if we were
/// able to identify the call chain through intermediate tail calls (in which
/// case FoundCalleeChain will be populated).
bool calleeMatchesFunc(
CallTy Call, const FuncTy *Func, const FuncTy *CallerFunc,
std::vector<std::pair<CallTy, FuncTy *>> &FoundCalleeChain) {
return static_cast<DerivedCCG *>(this)->calleeMatchesFunc(
Call, Func, CallerFunc, FoundCalleeChain);
}
/// Returns true if both call instructions have the same callee.
bool sameCallee(CallTy Call1, CallTy Call2) {
return static_cast<DerivedCCG *>(this)->sameCallee(Call1, Call2);
}
/// Get a list of nodes corresponding to the stack ids in the given
/// callsite's context.
std::vector<uint64_t> getStackIdsWithContextNodesForCall(CallTy Call) {
return static_cast<DerivedCCG *>(this)->getStackIdsWithContextNodesForCall(
Call);
}
/// Get the last stack id in the context for callsite.
uint64_t getLastStackId(CallTy Call) {
return static_cast<DerivedCCG *>(this)->getLastStackId(Call);
}
/// Update the allocation call to record type of allocated memory.
void updateAllocationCall(CallInfo &Call, AllocationType AllocType) {
AllocType == AllocationType::Cold ? AllocTypeCold++ : AllocTypeNotCold++;
static_cast<DerivedCCG *>(this)->updateAllocationCall(Call, AllocType);
}
/// Get the AllocationType assigned to the given allocation instruction clone.
AllocationType getAllocationCallType(const CallInfo &Call) const {
return static_cast<const DerivedCCG *>(this)->getAllocationCallType(Call);
}
/// Update non-allocation call to invoke (possibly cloned) function
/// CalleeFunc.
void updateCall(CallInfo &CallerCall, FuncInfo CalleeFunc) {
static_cast<DerivedCCG *>(this)->updateCall(CallerCall, CalleeFunc);
}
/// Clone the given function for the given callsite, recording mapping of all
/// of the functions tracked calls to their new versions in the CallMap.
/// Assigns new clones to clone number CloneNo.
FuncInfo cloneFunctionForCallsite(
FuncInfo &Func, CallInfo &Call, std::map<CallInfo, CallInfo> &CallMap,
std::vector<CallInfo> &CallsWithMetadataInFunc, unsigned CloneNo) {
return static_cast<DerivedCCG *>(this)->cloneFunctionForCallsite(
Func, Call, CallMap, CallsWithMetadataInFunc, CloneNo);
}
/// Gets a label to use in the dot graph for the given call clone in the given
/// function.
std::string getLabel(const FuncTy *Func, const CallTy Call,
unsigned CloneNo) const {
return static_cast<const DerivedCCG *>(this)->getLabel(Func, Call, CloneNo);
}
// Create and return a new ContextNode.
ContextNode *createNewNode(bool IsAllocation, const FuncTy *F = nullptr,
CallInfo C = CallInfo()) {
NodeOwner.push_back(std::make_unique<ContextNode>(IsAllocation, C));
auto *NewNode = NodeOwner.back().get();
if (F)
NodeToCallingFunc[NewNode] = F;
return NewNode;
}
/// Helpers to find the node corresponding to the given call or stackid.
ContextNode *getNodeForInst(const CallInfo &C);
ContextNode *getNodeForAlloc(const CallInfo &C);
ContextNode *getNodeForStackId(uint64_t StackId);
/// Computes the alloc type corresponding to the given context ids, by
/// unioning their recorded alloc types.
uint8_t computeAllocType(DenseSet<uint32_t> &ContextIds) const;
/// Returns the allocation type of the intersection of the contexts of two
/// nodes (based on their provided context id sets), optimized for the case
/// when Node1Ids is smaller than Node2Ids.
uint8_t intersectAllocTypesImpl(const DenseSet<uint32_t> &Node1Ids,
const DenseSet<uint32_t> &Node2Ids) const;
/// Returns the allocation type of the intersection of the contexts of two
/// nodes (based on their provided context id sets).
uint8_t intersectAllocTypes(const DenseSet<uint32_t> &Node1Ids,
const DenseSet<uint32_t> &Node2Ids) const;
/// Create a clone of Edge's callee and move Edge to that new callee node,
/// performing the necessary context id and allocation type updates.
/// If ContextIdsToMove is non-empty, only that subset of Edge's ids are
/// moved to an edge to the new callee.
ContextNode *
moveEdgeToNewCalleeClone(const std::shared_ptr<ContextEdge> &Edge,
DenseSet<uint32_t> ContextIdsToMove = {});
/// Change the callee of Edge to existing callee clone NewCallee, performing
/// the necessary context id and allocation type updates.
/// If ContextIdsToMove is non-empty, only that subset of Edge's ids are
/// moved to an edge to the new callee.
void moveEdgeToExistingCalleeClone(const std::shared_ptr<ContextEdge> &Edge,
ContextNode *NewCallee,
bool NewClone = false,
DenseSet<uint32_t> ContextIdsToMove = {});
/// Change the caller of the edge at the given callee edge iterator to be
/// NewCaller, performing the necessary context id and allocation type
/// updates. This is similar to the above moveEdgeToExistingCalleeClone, but
/// a simplified version of it as we always move the given edge and all of its
/// context ids.
void moveCalleeEdgeToNewCaller(const std::shared_ptr<ContextEdge> &Edge,
ContextNode *NewCaller);
/// Recursive helper for marking backedges via DFS.
void markBackedges(ContextNode *Node, DenseSet<const ContextNode *> &Visited,
DenseSet<const ContextNode *> &CurrentStack);
/// Recursive helper for merging clones.
void
mergeClones(ContextNode *Node, DenseSet<const ContextNode *> &Visited,
DenseMap<uint32_t, ContextNode *> &ContextIdToAllocationNode);
/// Main worker for merging callee clones for a given node.
void mergeNodeCalleeClones(
ContextNode *Node, DenseSet<const ContextNode *> &Visited,
DenseMap<uint32_t, ContextNode *> &ContextIdToAllocationNode);
/// Helper to find other callers of the given set of callee edges that can
/// share the same callee merge node.
void findOtherCallersToShareMerge(
ContextNode *Node, std::vector<std::shared_ptr<ContextEdge>> &CalleeEdges,
DenseMap<uint32_t, ContextNode *> &ContextIdToAllocationNode,
DenseSet<ContextNode *> &OtherCallersToShareMerge);
/// Recursively perform cloning on the graph for the given Node and its
/// callers, in order to uniquely identify the allocation behavior of an
/// allocation given its context. The context ids of the allocation being
/// processed are given in AllocContextIds.
void identifyClones(ContextNode *Node, DenseSet<const ContextNode *> &Visited,
const DenseSet<uint32_t> &AllocContextIds);
/// Map from each context ID to the AllocationType assigned to that context.
DenseMap<uint32_t, AllocationType> ContextIdToAllocationType;
/// Map from each contextID to the profiled full contexts and their total
/// sizes (there may be more than one due to context trimming),
/// optionally populated when requested (via MemProfReportHintedSizes or
/// MinClonedColdBytePercent).
DenseMap<uint32_t, std::vector<ContextTotalSize>> ContextIdToContextSizeInfos;
/// Identifies the context node created for a stack id when adding the MIB
/// contexts to the graph. This is used to locate the context nodes when
/// trying to assign the corresponding callsites with those stack ids to these
/// nodes.
DenseMap<uint64_t, ContextNode *> StackEntryIdToContextNodeMap;
/// Maps to track the calls to their corresponding nodes in the graph.
MapVector<CallInfo, ContextNode *> AllocationCallToContextNodeMap;
MapVector<CallInfo, ContextNode *> NonAllocationCallToContextNodeMap;
/// Owner of all ContextNode unique_ptrs.
std::vector<std::unique_ptr<ContextNode>> NodeOwner;
/// Perform sanity checks on graph when requested.
void check() const;
/// Keeps track of the last unique context id assigned.
unsigned int LastContextId = 0;
};
template <typename DerivedCCG, typename FuncTy, typename CallTy>
using ContextNode =
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode;
template <typename DerivedCCG, typename FuncTy, typename CallTy>
using ContextEdge =
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge;
template <typename DerivedCCG, typename FuncTy, typename CallTy>
using FuncInfo =
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::FuncInfo;
template <typename DerivedCCG, typename FuncTy, typename CallTy>
using CallInfo =
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::CallInfo;
/// CRTP derived class for graphs built from IR (regular LTO).
class ModuleCallsiteContextGraph
: public CallsiteContextGraph<ModuleCallsiteContextGraph, Function,
Instruction *> {
public:
ModuleCallsiteContextGraph(
Module &M,
llvm::function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter);
private:
friend CallsiteContextGraph<ModuleCallsiteContextGraph, Function,
Instruction *>;
uint64_t getStackId(uint64_t IdOrIndex) const;
const Function *getCalleeFunc(Instruction *Call);
bool calleeMatchesFunc(
Instruction *Call, const Function *Func, const Function *CallerFunc,
std::vector<std::pair<Instruction *, Function *>> &FoundCalleeChain);
bool sameCallee(Instruction *Call1, Instruction *Call2);
bool findProfiledCalleeThroughTailCalls(
const Function *ProfiledCallee, Value *CurCallee, unsigned Depth,
std::vector<std::pair<Instruction *, Function *>> &FoundCalleeChain,
bool &FoundMultipleCalleeChains);
uint64_t getLastStackId(Instruction *Call);
std::vector<uint64_t> getStackIdsWithContextNodesForCall(Instruction *Call);
void updateAllocationCall(CallInfo &Call, AllocationType AllocType);
AllocationType getAllocationCallType(const CallInfo &Call) const;
void updateCall(CallInfo &CallerCall, FuncInfo CalleeFunc);
CallsiteContextGraph<ModuleCallsiteContextGraph, Function,
Instruction *>::FuncInfo
cloneFunctionForCallsite(FuncInfo &Func, CallInfo &Call,
std::map<CallInfo, CallInfo> &CallMap,
std::vector<CallInfo> &CallsWithMetadataInFunc,
unsigned CloneNo);
std::string getLabel(const Function *Func, const Instruction *Call,
unsigned CloneNo) const;
const Module &Mod;
llvm::function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
};
/// Represents a call in the summary index graph, which can either be an
/// allocation or an interior callsite node in an allocation's context.
/// Holds a pointer to the corresponding data structure in the index.
struct IndexCall : public PointerUnion<CallsiteInfo *, AllocInfo *> {
IndexCall() : PointerUnion() {}
IndexCall(std::nullptr_t) : IndexCall() {}
IndexCall(CallsiteInfo *StackNode) : PointerUnion(StackNode) {}
IndexCall(AllocInfo *AllocNode) : PointerUnion(AllocNode) {}
IndexCall(PointerUnion PT) : PointerUnion(PT) {}
IndexCall *operator->() { return this; }
void print(raw_ostream &OS) const {
PointerUnion<CallsiteInfo *, AllocInfo *> Base = *this;
if (auto *AI = llvm::dyn_cast_if_present<AllocInfo *>(Base)) {
OS << *AI;
} else {
auto *CI = llvm::dyn_cast_if_present<CallsiteInfo *>(Base);
assert(CI);
OS << *CI;
}
}
};
} // namespace
namespace llvm {
template <> struct simplify_type<IndexCall> {
using SimpleType = PointerUnion<CallsiteInfo *, AllocInfo *>;
static SimpleType getSimplifiedValue(IndexCall &Val) { return Val; }
};
template <> struct simplify_type<const IndexCall> {
using SimpleType = const PointerUnion<CallsiteInfo *, AllocInfo *>;
static SimpleType getSimplifiedValue(const IndexCall &Val) { return Val; }
};
} // namespace llvm
namespace {
/// CRTP derived class for graphs built from summary index (ThinLTO).
class IndexCallsiteContextGraph
: public CallsiteContextGraph<IndexCallsiteContextGraph, FunctionSummary,
IndexCall> {
public:
IndexCallsiteContextGraph(
ModuleSummaryIndex &Index,
llvm::function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing);
~IndexCallsiteContextGraph() {
// Now that we are done with the graph it is safe to add the new
// CallsiteInfo structs to the function summary vectors. The graph nodes
// point into locations within these vectors, so we don't want to add them
// any earlier.
for (auto &I : FunctionCalleesToSynthesizedCallsiteInfos) {
auto *FS = I.first;
for (auto &Callsite : I.second)
FS->addCallsite(*Callsite.second);
}
}
private:
friend CallsiteContextGraph<IndexCallsiteContextGraph, FunctionSummary,
IndexCall>;
uint64_t getStackId(uint64_t IdOrIndex) const;
const FunctionSummary *getCalleeFunc(IndexCall &Call);
bool calleeMatchesFunc(
IndexCall &Call, const FunctionSummary *Func,
const FunctionSummary *CallerFunc,
std::vector<std::pair<IndexCall, FunctionSummary *>> &FoundCalleeChain);
bool sameCallee(IndexCall &Call1, IndexCall &Call2);
bool findProfiledCalleeThroughTailCalls(
ValueInfo ProfiledCallee, ValueInfo CurCallee, unsigned Depth,
std::vector<std::pair<IndexCall, FunctionSummary *>> &FoundCalleeChain,
bool &FoundMultipleCalleeChains);
uint64_t getLastStackId(IndexCall &Call);
std::vector<uint64_t> getStackIdsWithContextNodesForCall(IndexCall &Call);
void updateAllocationCall(CallInfo &Call, AllocationType AllocType);
AllocationType getAllocationCallType(const CallInfo &Call) const;
void updateCall(CallInfo &CallerCall, FuncInfo CalleeFunc);
CallsiteContextGraph<IndexCallsiteContextGraph, FunctionSummary,
IndexCall>::FuncInfo
cloneFunctionForCallsite(FuncInfo &Func, CallInfo &Call,
std::map<CallInfo, CallInfo> &CallMap,
std::vector<CallInfo> &CallsWithMetadataInFunc,
unsigned CloneNo);
std::string getLabel(const FunctionSummary *Func, const IndexCall &Call,
unsigned CloneNo) const;
// Saves mapping from function summaries containing memprof records back to
// its VI, for use in checking and debugging.
std::map<const FunctionSummary *, ValueInfo> FSToVIMap;
const ModuleSummaryIndex &Index;
llvm::function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing;
// Saves/owns the callsite info structures synthesized for missing tail call
// frames that we discover while building the graph.
// It maps from the summary of the function making the tail call, to a map
// of callee ValueInfo to corresponding synthesized callsite info.
std::unordered_map<FunctionSummary *,
std::map<ValueInfo, std::unique_ptr<CallsiteInfo>>>
FunctionCalleesToSynthesizedCallsiteInfos;
};
} // namespace
namespace llvm {
template <>
struct DenseMapInfo<typename CallsiteContextGraph<
ModuleCallsiteContextGraph, Function, Instruction *>::CallInfo>
: public DenseMapInfo<std::pair<Instruction *, unsigned>> {};
template <>
struct DenseMapInfo<typename CallsiteContextGraph<
IndexCallsiteContextGraph, FunctionSummary, IndexCall>::CallInfo>
: public DenseMapInfo<std::pair<IndexCall, unsigned>> {};
template <>
struct DenseMapInfo<IndexCall>
: public DenseMapInfo<PointerUnion<CallsiteInfo *, AllocInfo *>> {};
} // end namespace llvm
namespace {
// Map the uint8_t alloc types (which may contain NotCold|Cold) to the alloc
// type we should actually use on the corresponding allocation.
// If we can't clone a node that has NotCold+Cold alloc type, we will fall
// back to using NotCold. So don't bother cloning to distinguish NotCold+Cold
// from NotCold.
AllocationType allocTypeToUse(uint8_t AllocTypes) {
assert(AllocTypes != (uint8_t)AllocationType::None);
if (AllocTypes ==
((uint8_t)AllocationType::NotCold | (uint8_t)AllocationType::Cold))
return AllocationType::NotCold;
else
return (AllocationType)AllocTypes;
}
// Helper to check if the alloc types for all edges recorded in the
// InAllocTypes vector match the alloc types for all edges in the Edges
// vector.
template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool allocTypesMatch(
const std::vector<uint8_t> &InAllocTypes,
const std::vector<std::shared_ptr<ContextEdge<DerivedCCG, FuncTy, CallTy>>>
&Edges) {
// This should be called only when the InAllocTypes vector was computed for
// this set of Edges. Make sure the sizes are the same.
assert(InAllocTypes.size() == Edges.size());
return std::equal(
InAllocTypes.begin(), InAllocTypes.end(), Edges.begin(), Edges.end(),
[](const uint8_t &l,
const std::shared_ptr<ContextEdge<DerivedCCG, FuncTy, CallTy>> &r) {
// Can share if one of the edges is None type - don't
// care about the type along that edge as it doesn't
// exist for those context ids.
if (l == (uint8_t)AllocationType::None ||
r->AllocTypes == (uint8_t)AllocationType::None)
return true;
return allocTypeToUse(l) == allocTypeToUse(r->AllocTypes);
});
}
// Helper to check if the alloc types for all edges recorded in the
// InAllocTypes vector match the alloc types for callee edges in the given
// clone. Because the InAllocTypes were computed from the original node's callee
// edges, and other cloning could have happened after this clone was created, we
// need to find the matching clone callee edge, which may or may not exist.
template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool allocTypesMatchClone(
const std::vector<uint8_t> &InAllocTypes,
const ContextNode<DerivedCCG, FuncTy, CallTy> *Clone) {
const ContextNode<DerivedCCG, FuncTy, CallTy> *Node = Clone->CloneOf;
assert(Node);
// InAllocTypes should have been computed for the original node's callee
// edges.
assert(InAllocTypes.size() == Node->CalleeEdges.size());
// First create a map of the clone callee edge callees to the edge alloc type.
DenseMap<const ContextNode<DerivedCCG, FuncTy, CallTy> *, uint8_t>
EdgeCalleeMap;
for (const auto &E : Clone->CalleeEdges) {
assert(!EdgeCalleeMap.contains(E->Callee));
EdgeCalleeMap[E->Callee] = E->AllocTypes;
}
// Next, walk the original node's callees, and look for the corresponding
// clone edge to that callee.
for (unsigned I = 0; I < Node->CalleeEdges.size(); I++) {
auto Iter = EdgeCalleeMap.find(Node->CalleeEdges[I]->Callee);
// Not found is ok, we will simply add an edge if we use this clone.
if (Iter == EdgeCalleeMap.end())
continue;
// Can share if one of the edges is None type - don't
// care about the type along that edge as it doesn't
// exist for those context ids.
if (InAllocTypes[I] == (uint8_t)AllocationType::None ||
Iter->second == (uint8_t)AllocationType::None)
continue;
if (allocTypeToUse(Iter->second) != allocTypeToUse(InAllocTypes[I]))
return false;
}
return true;
}
} // end anonymous namespace
template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::getNodeForInst(
const CallInfo &C) {
ContextNode *Node = getNodeForAlloc(C);
if (Node)
return Node;
return NonAllocationCallToContextNodeMap.lookup(C);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::getNodeForAlloc(
const CallInfo &C) {
return AllocationCallToContextNodeMap.lookup(C);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::getNodeForStackId(
uint64_t StackId) {
auto StackEntryNode = StackEntryIdToContextNodeMap.find(StackId);
if (StackEntryNode != StackEntryIdToContextNodeMap.end())
return StackEntryNode->second;
return nullptr;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
addOrUpdateCallerEdge(ContextNode *Caller, AllocationType AllocType,
unsigned int ContextId) {
for (auto &Edge : CallerEdges) {
if (Edge->Caller == Caller) {
Edge->AllocTypes |= (uint8_t)AllocType;
Edge->getContextIds().insert(ContextId);
return;
}
}
std::shared_ptr<ContextEdge> Edge = std::make_shared<ContextEdge>(
this, Caller, (uint8_t)AllocType, DenseSet<uint32_t>({ContextId}));
CallerEdges.push_back(Edge);
Caller->CalleeEdges.push_back(Edge);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::removeEdgeFromGraph(
ContextEdge *Edge, EdgeIter *EI, bool CalleeIter) {
assert(!EI || (*EI)->get() == Edge);
assert(!Edge->isRemoved());
// Save the Caller and Callee pointers so we can erase Edge from their edge
// lists after clearing Edge below. We do the clearing first in case it is
// destructed after removing from the edge lists (if those were the last
// shared_ptr references to Edge).
auto *Callee = Edge->Callee;
auto *Caller = Edge->Caller;
// Make sure the edge fields are cleared out so we can properly detect
// removed edges if Edge is not destructed because there is still a shared_ptr
// reference.
Edge->clear();
#ifndef NDEBUG
auto CalleeCallerCount = Callee->CallerEdges.size();
auto CallerCalleeCount = Caller->CalleeEdges.size();
#endif
if (!EI) {
Callee->eraseCallerEdge(Edge);
Caller->eraseCalleeEdge(Edge);
} else if (CalleeIter) {
Callee->eraseCallerEdge(Edge);
*EI = Caller->CalleeEdges.erase(*EI);
} else {
Caller->eraseCalleeEdge(Edge);
*EI = Callee->CallerEdges.erase(*EI);
}
assert(Callee->CallerEdges.size() < CalleeCallerCount);
assert(Caller->CalleeEdges.size() < CallerCalleeCount);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<
DerivedCCG, FuncTy, CallTy>::removeNoneTypeCalleeEdges(ContextNode *Node) {
for (auto EI = Node->CalleeEdges.begin(); EI != Node->CalleeEdges.end();) {
auto Edge = *EI;
if (Edge->AllocTypes == (uint8_t)AllocationType::None) {
assert(Edge->ContextIds.empty());
removeEdgeFromGraph(Edge.get(), &EI, /*CalleeIter=*/true);
} else
++EI;
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<
DerivedCCG, FuncTy, CallTy>::removeNoneTypeCallerEdges(ContextNode *Node) {
for (auto EI = Node->CallerEdges.begin(); EI != Node->CallerEdges.end();) {
auto Edge = *EI;
if (Edge->AllocTypes == (uint8_t)AllocationType::None) {
assert(Edge->ContextIds.empty());
Edge->Caller->eraseCalleeEdge(Edge.get());
EI = Node->CallerEdges.erase(EI);
} else
++EI;
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
findEdgeFromCallee(const ContextNode *Callee) {
for (const auto &Edge : CalleeEdges)
if (Edge->Callee == Callee)
return Edge.get();
return nullptr;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
findEdgeFromCaller(const ContextNode *Caller) {
for (const auto &Edge : CallerEdges)
if (Edge->Caller == Caller)
return Edge.get();
return nullptr;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
eraseCalleeEdge(const ContextEdge *Edge) {
auto EI = llvm::find_if(
CalleeEdges, [Edge](const std::shared_ptr<ContextEdge> &CalleeEdge) {
return CalleeEdge.get() == Edge;
});
assert(EI != CalleeEdges.end());
CalleeEdges.erase(EI);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::
eraseCallerEdge(const ContextEdge *Edge) {
auto EI = llvm::find_if(
CallerEdges, [Edge](const std::shared_ptr<ContextEdge> &CallerEdge) {
return CallerEdge.get() == Edge;
});
assert(EI != CallerEdges.end());
CallerEdges.erase(EI);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
uint8_t CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::computeAllocType(
DenseSet<uint32_t> &ContextIds) const {
uint8_t BothTypes =
(uint8_t)AllocationType::Cold | (uint8_t)AllocationType::NotCold;
uint8_t AllocType = (uint8_t)AllocationType::None;
for (auto Id : ContextIds) {
AllocType |= (uint8_t)ContextIdToAllocationType.at(Id);
// Bail early if alloc type reached both, no further refinement.
if (AllocType == BothTypes)
return AllocType;
}
return AllocType;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
uint8_t
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::intersectAllocTypesImpl(
const DenseSet<uint32_t> &Node1Ids,
const DenseSet<uint32_t> &Node2Ids) const {
uint8_t BothTypes =
(uint8_t)AllocationType::Cold | (uint8_t)AllocationType::NotCold;
uint8_t AllocType = (uint8_t)AllocationType::None;
for (auto Id : Node1Ids) {
if (!Node2Ids.count(Id))
continue;
AllocType |= (uint8_t)ContextIdToAllocationType.at(Id);
// Bail early if alloc type reached both, no further refinement.
if (AllocType == BothTypes)
return AllocType;
}
return AllocType;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
uint8_t CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::intersectAllocTypes(
const DenseSet<uint32_t> &Node1Ids,
const DenseSet<uint32_t> &Node2Ids) const {
if (Node1Ids.size() < Node2Ids.size())
return intersectAllocTypesImpl(Node1Ids, Node2Ids);
else
return intersectAllocTypesImpl(Node2Ids, Node1Ids);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::addAllocNode(
CallInfo Call, const FuncTy *F) {
assert(!getNodeForAlloc(Call));
ContextNode *AllocNode = createNewNode(/*IsAllocation=*/true, F, Call);
AllocationCallToContextNodeMap[Call] = AllocNode;
// Use LastContextId as a uniq id for MIB allocation nodes.
AllocNode->OrigStackOrAllocId = LastContextId;
// Alloc type should be updated as we add in the MIBs. We should assert
// afterwards that it is not still None.
AllocNode->AllocTypes = (uint8_t)AllocationType::None;
return AllocNode;
}
static std::string getAllocTypeString(uint8_t AllocTypes) {
if (!AllocTypes)
return "None";
std::string Str;
if (AllocTypes & (uint8_t)AllocationType::NotCold)
Str += "NotCold";
if (AllocTypes & (uint8_t)AllocationType::Cold)
Str += "Cold";
return Str;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
template <class NodeT, class IteratorT>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::addStackNodesForMIB(
ContextNode *AllocNode, CallStack<NodeT, IteratorT> &StackContext,
CallStack<NodeT, IteratorT> &CallsiteContext, AllocationType AllocType,
ArrayRef<ContextTotalSize> ContextSizeInfo) {
// Treating the hot alloc type as NotCold before the disambiguation for "hot"
// is done.
if (AllocType == AllocationType::Hot)
AllocType = AllocationType::NotCold;
ContextIdToAllocationType[++LastContextId] = AllocType;
if (!ContextSizeInfo.empty()) {
auto &Entry = ContextIdToContextSizeInfos[LastContextId];
Entry.insert(Entry.begin(), ContextSizeInfo.begin(), ContextSizeInfo.end());
}
// Update alloc type and context ids for this MIB.
AllocNode->AllocTypes |= (uint8_t)AllocType;
// Now add or update nodes for each stack id in alloc's context.
// Later when processing the stack ids on non-alloc callsites we will adjust
// for any inlining in the context.
ContextNode *PrevNode = AllocNode;
// Look for recursion (direct recursion should have been collapsed by
// module summary analysis, here we should just be detecting mutual
// recursion). Mark these nodes so we don't try to clone.
SmallSet<uint64_t, 8> StackIdSet;
// Skip any on the allocation call (inlining).
for (auto ContextIter = StackContext.beginAfterSharedPrefix(CallsiteContext);
ContextIter != StackContext.end(); ++ContextIter) {
auto StackId = getStackId(*ContextIter);
ContextNode *StackNode = getNodeForStackId(StackId);
if (!StackNode) {
StackNode = createNewNode(/*IsAllocation=*/false);
StackEntryIdToContextNodeMap[StackId] = StackNode;
StackNode->OrigStackOrAllocId = StackId;
}
// Marking a node recursive will prevent its cloning completely, even for
// non-recursive contexts flowing through it.
if (!AllowRecursiveCallsites) {
auto Ins = StackIdSet.insert(StackId);
if (!Ins.second)
StackNode->Recursive = true;
}
StackNode->AllocTypes |= (uint8_t)AllocType;
PrevNode->addOrUpdateCallerEdge(StackNode, AllocType, LastContextId);
PrevNode = StackNode;
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
DenseSet<uint32_t>
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::duplicateContextIds(
const DenseSet<uint32_t> &StackSequenceContextIds,
DenseMap<uint32_t, DenseSet<uint32_t>> &OldToNewContextIds) {
DenseSet<uint32_t> NewContextIds;
for (auto OldId : StackSequenceContextIds) {
NewContextIds.insert(++LastContextId);
OldToNewContextIds[OldId].insert(LastContextId);
assert(ContextIdToAllocationType.count(OldId));
// The new context has the same allocation type as original.
ContextIdToAllocationType[LastContextId] = ContextIdToAllocationType[OldId];
if (DotAllocContextIds.contains(OldId))
DotAllocContextIds.insert(LastContextId);
}
return NewContextIds;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::
propagateDuplicateContextIds(
const DenseMap<uint32_t, DenseSet<uint32_t>> &OldToNewContextIds) {
// Build a set of duplicated context ids corresponding to the input id set.
auto GetNewIds = [&OldToNewContextIds](const DenseSet<uint32_t> &ContextIds) {
DenseSet<uint32_t> NewIds;
for (auto Id : ContextIds)
if (auto NewId = OldToNewContextIds.find(Id);
NewId != OldToNewContextIds.end())
NewIds.insert_range(NewId->second);
return NewIds;
};
// Recursively update context ids sets along caller edges.
auto UpdateCallers = [&](ContextNode *Node,
DenseSet<const ContextEdge *> &Visited,
auto &&UpdateCallers) -> void {
for (const auto &Edge : Node->CallerEdges) {
auto Inserted = Visited.insert(Edge.get());
if (!Inserted.second)
continue;
ContextNode *NextNode = Edge->Caller;
DenseSet<uint32_t> NewIdsToAdd = GetNewIds(Edge->getContextIds());
// Only need to recursively iterate to NextNode via this caller edge if
// it resulted in any added ids to NextNode.
if (!NewIdsToAdd.empty()) {
Edge->getContextIds().insert_range(NewIdsToAdd);
UpdateCallers(NextNode, Visited, UpdateCallers);
}
}
};
DenseSet<const ContextEdge *> Visited;
for (auto &Entry : AllocationCallToContextNodeMap) {
auto *Node = Entry.second;
UpdateCallers(Node, Visited, UpdateCallers);
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::connectNewNode(
ContextNode *NewNode, ContextNode *OrigNode, bool TowardsCallee,
// This must be passed by value to make a copy since it will be adjusted
// as ids are moved.
DenseSet<uint32_t> RemainingContextIds) {
auto &OrigEdges =
TowardsCallee ? OrigNode->CalleeEdges : OrigNode->CallerEdges;
DenseSet<uint32_t> RecursiveContextIds;
DenseSet<uint32_t> AllCallerContextIds;
if (AllowRecursiveCallsites) {
// Identify which context ids are recursive which is needed to properly
// update the RemainingContextIds set. The relevant recursive context ids
// are those that are in multiple edges.
for (auto &CE : OrigEdges) {
AllCallerContextIds.reserve(CE->getContextIds().size());
for (auto Id : CE->getContextIds())
if (!AllCallerContextIds.insert(Id).second)
RecursiveContextIds.insert(Id);
}
}
// Increment iterator in loop so that we can remove edges as needed.
for (auto EI = OrigEdges.begin(); EI != OrigEdges.end();) {
auto Edge = *EI;
DenseSet<uint32_t> NewEdgeContextIds;
DenseSet<uint32_t> NotFoundContextIds;
// Remove any matching context ids from Edge, return set that were found and
// removed, these are the new edge's context ids. Also update the remaining
// (not found ids).
set_subtract(Edge->getContextIds(), RemainingContextIds, NewEdgeContextIds,
NotFoundContextIds);
// Update the remaining context ids set for the later edges. This is a
// compile time optimization.
if (RecursiveContextIds.empty()) {
// No recursive ids, so all of the previously remaining context ids that
// were not seen on this edge are the new remaining set.
RemainingContextIds.swap(NotFoundContextIds);
} else {
// Keep the recursive ids in the remaining set as we expect to see those
// on another edge. We can remove the non-recursive remaining ids that
// were seen on this edge, however. We already have the set of remaining
// ids that were on this edge (in NewEdgeContextIds). Figure out which are
// non-recursive and only remove those. Note that despite the higher
// overhead of updating the remaining context ids set when recursion
// handling is enabled, it was found to be at worst performance neutral
// and in one case a clear win.
DenseSet<uint32_t> NonRecursiveRemainingCurEdgeIds =
set_difference(NewEdgeContextIds, RecursiveContextIds);
set_subtract(RemainingContextIds, NonRecursiveRemainingCurEdgeIds);
}
// If no matching context ids for this edge, skip it.
if (NewEdgeContextIds.empty()) {
++EI;
continue;
}
if (TowardsCallee) {
uint8_t NewAllocType = computeAllocType(NewEdgeContextIds);
auto NewEdge = std::make_shared<ContextEdge>(
Edge->Callee, NewNode, NewAllocType, std::move(NewEdgeContextIds));
NewNode->CalleeEdges.push_back(NewEdge);
NewEdge->Callee->CallerEdges.push_back(NewEdge);
} else {
uint8_t NewAllocType = computeAllocType(NewEdgeContextIds);
auto NewEdge = std::make_shared<ContextEdge>(
NewNode, Edge->Caller, NewAllocType, std::move(NewEdgeContextIds));
NewNode->CallerEdges.push_back(NewEdge);
NewEdge->Caller->CalleeEdges.push_back(NewEdge);
}
// Remove old edge if context ids empty.
if (Edge->getContextIds().empty()) {
removeEdgeFromGraph(Edge.get(), &EI, TowardsCallee);
continue;
}
++EI;
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
static void checkEdge(
const std::shared_ptr<ContextEdge<DerivedCCG, FuncTy, CallTy>> &Edge) {
// Confirm that alloc type is not None and that we have at least one context
// id.
assert(Edge->AllocTypes != (uint8_t)AllocationType::None);
assert(!Edge->ContextIds.empty());
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
static void checkNode(const ContextNode<DerivedCCG, FuncTy, CallTy> *Node,
bool CheckEdges = true) {
if (Node->isRemoved())
return;
#ifndef NDEBUG
// Compute node's context ids once for use in asserts.
auto NodeContextIds = Node->getContextIds();
#endif
// Node's context ids should be the union of both its callee and caller edge
// context ids.
if (Node->CallerEdges.size()) {
DenseSet<uint32_t> CallerEdgeContextIds(
Node->CallerEdges.front()->ContextIds);
for (const auto &Edge : llvm::drop_begin(Node->CallerEdges)) {
if (CheckEdges)
checkEdge<DerivedCCG, FuncTy, CallTy>(Edge);
set_union(CallerEdgeContextIds, Edge->ContextIds);
}
// Node can have more context ids than callers if some contexts terminate at
// node and some are longer. If we are allowing recursive callsites and
// contexts this will be violated for incompletely cloned recursive cycles,
// so skip the checking in that case.
assert((AllowRecursiveCallsites && AllowRecursiveContexts) ||
NodeContextIds == CallerEdgeContextIds ||
set_is_subset(CallerEdgeContextIds, NodeContextIds));
}
if (Node->CalleeEdges.size()) {
DenseSet<uint32_t> CalleeEdgeContextIds(
Node->CalleeEdges.front()->ContextIds);
for (const auto &Edge : llvm::drop_begin(Node->CalleeEdges)) {
if (CheckEdges)
checkEdge<DerivedCCG, FuncTy, CallTy>(Edge);
set_union(CalleeEdgeContextIds, Edge->getContextIds());
}
// If we are allowing recursive callsites and contexts this will be violated
// for incompletely cloned recursive cycles, so skip the checking in that
// case.
assert((AllowRecursiveCallsites && AllowRecursiveContexts) ||
NodeContextIds == CalleeEdgeContextIds);
}
// FIXME: Since this checking is only invoked under an option, we should
// change the error checking from using assert to something that will trigger
// an error on a release build.
#ifndef NDEBUG
// Make sure we don't end up with duplicate edges between the same caller and
// callee.
DenseSet<ContextNode<DerivedCCG, FuncTy, CallTy> *> NodeSet;
for (const auto &E : Node->CalleeEdges)
NodeSet.insert(E->Callee);
assert(NodeSet.size() == Node->CalleeEdges.size());
#endif
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::
assignStackNodesPostOrder(
ContextNode *Node, DenseSet<const ContextNode *> &Visited,
DenseMap<uint64_t, std::vector<CallContextInfo>>
&StackIdToMatchingCalls,
DenseMap<CallInfo, CallInfo> &CallToMatchingCall) {
auto Inserted = Visited.insert(Node);
if (!Inserted.second)
return;
// Post order traversal. Iterate over a copy since we may add nodes and
// therefore new callers during the recursive call, invalidating any
// iterator over the original edge vector. We don't need to process these
// new nodes as they were already processed on creation.
auto CallerEdges = Node->CallerEdges;
for (auto &Edge : CallerEdges) {
// Skip any that have been removed during the recursion.
if (Edge->isRemoved()) {
assert(!is_contained(Node->CallerEdges, Edge));
continue;
}
assignStackNodesPostOrder(Edge->Caller, Visited, StackIdToMatchingCalls,
CallToMatchingCall);
}
// If this node's stack id is in the map, update the graph to contain new
// nodes representing any inlining at interior callsites. Note we move the
// associated context ids over to the new nodes.
// Ignore this node if it is for an allocation or we didn't record any
// stack id lists ending at it.
if (Node->IsAllocation ||
!StackIdToMatchingCalls.count(Node->OrigStackOrAllocId))
return;
auto &Calls = StackIdToMatchingCalls[Node->OrigStackOrAllocId];
// Handle the simple case first. A single call with a single stack id.
// In this case there is no need to create any new context nodes, simply
// assign the context node for stack id to this Call.
if (Calls.size() == 1) {
auto &[Call, Ids, Func, SavedContextIds] = Calls[0];
if (Ids.size() == 1) {
assert(SavedContextIds.empty());
// It should be this Node
assert(Node == getNodeForStackId(Ids[0]));
if (Node->Recursive)
return;
Node->setCall(Call);
NonAllocationCallToContextNodeMap[Call] = Node;
NodeToCallingFunc[Node] = Func;
return;
}
}
#ifndef NDEBUG
// Find the node for the last stack id, which should be the same
// across all calls recorded for this id, and is this node's id.
uint64_t LastId = Node->OrigStackOrAllocId;
ContextNode *LastNode = getNodeForStackId(LastId);
// We should only have kept stack ids that had nodes.
assert(LastNode);
assert(LastNode == Node);
#else
ContextNode *LastNode = Node;
#endif
// Compute the last node's context ids once, as it is shared by all calls in
// this entry.
DenseSet<uint32_t> LastNodeContextIds = LastNode->getContextIds();
[[maybe_unused]] bool PrevIterCreatedNode = false;
bool CreatedNode = false;
for (unsigned I = 0; I < Calls.size();
I++, PrevIterCreatedNode = CreatedNode) {
CreatedNode = false;
auto &[Call, Ids, Func, SavedContextIds] = Calls[I];
// Skip any for which we didn't assign any ids, these don't get a node in
// the graph.
if (SavedContextIds.empty()) {
// If this call has a matching call (located in the same function and
// having the same stack ids), simply add it to the context node created
// for its matching call earlier. These can be treated the same through
// cloning and get updated at the same time.
if (!CallToMatchingCall.contains(Call))
continue;
auto MatchingCall = CallToMatchingCall[Call];
if (!NonAllocationCallToContextNodeMap.contains(MatchingCall)) {
// This should only happen if we had a prior iteration, and it didn't
// create a node because of the below recomputation of context ids
// finding none remaining and continuing early.
assert(I > 0 && !PrevIterCreatedNode);
continue;
}
NonAllocationCallToContextNodeMap[MatchingCall]->MatchingCalls.push_back(
Call);
continue;
}
assert(LastId == Ids.back());
// Recompute the context ids for this stack id sequence (the
// intersection of the context ids of the corresponding nodes).
// Start with the ids we saved in the map for this call, which could be
// duplicated context ids. We have to recompute as we might have overlap
// overlap between the saved context ids for different last nodes, and
// removed them already during the post order traversal.
set_intersect(SavedContextIds, LastNodeContextIds);
ContextNode *PrevNode = LastNode;
bool Skip = false;
// Iterate backwards through the stack Ids, starting after the last Id
// in the list, which was handled once outside for all Calls.
for (auto IdIter = Ids.rbegin() + 1; IdIter != Ids.rend(); IdIter++) {
auto Id = *IdIter;
ContextNode *CurNode = getNodeForStackId(Id);
// We should only have kept stack ids that had nodes and weren't
// recursive.
assert(CurNode);
assert(!CurNode->Recursive);
auto *Edge = CurNode->findEdgeFromCaller(PrevNode);
if (!Edge) {
Skip = true;
break;
}
PrevNode = CurNode;
// Update the context ids, which is the intersection of the ids along
// all edges in the sequence.
set_intersect(SavedContextIds, Edge->getContextIds());
// If we now have no context ids for clone, skip this call.
if (SavedContextIds.empty()) {
Skip = true;
break;
}
}
if (Skip)
continue;
// Create new context node.
ContextNode *NewNode = createNewNode(/*IsAllocation=*/false, Func, Call);
NonAllocationCallToContextNodeMap[Call] = NewNode;
CreatedNode = true;
NewNode->AllocTypes = computeAllocType(SavedContextIds);
ContextNode *FirstNode = getNodeForStackId(Ids[0]);
assert(FirstNode);
// Connect to callees of innermost stack frame in inlined call chain.
// This updates context ids for FirstNode's callee's to reflect those
// moved to NewNode.
connectNewNode(NewNode, FirstNode, /*TowardsCallee=*/true, SavedContextIds);
// Connect to callers of outermost stack frame in inlined call chain.
// This updates context ids for FirstNode's caller's to reflect those
// moved to NewNode.
connectNewNode(NewNode, LastNode, /*TowardsCallee=*/false, SavedContextIds);
// Now we need to remove context ids from edges/nodes between First and
// Last Node.
PrevNode = nullptr;
for (auto Id : Ids) {
ContextNode *CurNode = getNodeForStackId(Id);
// We should only have kept stack ids that had nodes.
assert(CurNode);
// Remove the context ids moved to NewNode from CurNode, and the
// edge from the prior node.
if (PrevNode) {
auto *PrevEdge = CurNode->findEdgeFromCallee(PrevNode);
// If the sequence contained recursion, we might have already removed
// some edges during the connectNewNode calls above.
if (!PrevEdge) {
PrevNode = CurNode;
continue;
}
set_subtract(PrevEdge->getContextIds(), SavedContextIds);
if (PrevEdge->getContextIds().empty())
removeEdgeFromGraph(PrevEdge);
}
// Since we update the edges from leaf to tail, only look at the callee
// edges. This isn't an alloc node, so if there are no callee edges, the
// alloc type is None.
CurNode->AllocTypes = CurNode->CalleeEdges.empty()
? (uint8_t)AllocationType::None
: CurNode->computeAllocType();
PrevNode = CurNode;
}
if (VerifyNodes) {
checkNode<DerivedCCG, FuncTy, CallTy>(NewNode, /*CheckEdges=*/true);
for (auto Id : Ids) {
ContextNode *CurNode = getNodeForStackId(Id);
// We should only have kept stack ids that had nodes.
assert(CurNode);
checkNode<DerivedCCG, FuncTy, CallTy>(CurNode, /*CheckEdges=*/true);
}
}
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::updateStackNodes() {
// Map of stack id to all calls with that as the last (outermost caller)
// callsite id that has a context node (some might not due to pruning
// performed during matching of the allocation profile contexts).
// The CallContextInfo contains the Call and a list of its stack ids with
// ContextNodes, the function containing Call, and the set of context ids
// the analysis will eventually identify for use in any new node created
// for that callsite.
DenseMap<uint64_t, std::vector<CallContextInfo>> StackIdToMatchingCalls;
for (auto &[Func, CallsWithMetadata] : FuncToCallsWithMetadata) {
for (auto &Call : CallsWithMetadata) {
// Ignore allocations, already handled.
if (AllocationCallToContextNodeMap.count(Call))
continue;
auto StackIdsWithContextNodes =
getStackIdsWithContextNodesForCall(Call.call());
// If there were no nodes created for MIBs on allocs (maybe this was in
// the unambiguous part of the MIB stack that was pruned), ignore.
if (StackIdsWithContextNodes.empty())
continue;
// Otherwise, record this Call along with the list of ids for the last
// (outermost caller) stack id with a node.
StackIdToMatchingCalls[StackIdsWithContextNodes.back()].push_back(
{Call.call(), StackIdsWithContextNodes, Func, {}});
}
}
// First make a pass through all stack ids that correspond to a call,
// as identified in the above loop. Compute the context ids corresponding to
// each of these calls when they correspond to multiple stack ids due to
// due to inlining. Perform any duplication of context ids required when
// there is more than one call with the same stack ids. Their (possibly newly
// duplicated) context ids are saved in the StackIdToMatchingCalls map.
DenseMap<uint32_t, DenseSet<uint32_t>> OldToNewContextIds;
// Save a map from each call to any that are found to match it. I.e. located
// in the same function and have the same (possibly pruned) stack ids. We use
// this to avoid creating extra graph nodes as they can be treated the same.
DenseMap<CallInfo, CallInfo> CallToMatchingCall;
for (auto &It : StackIdToMatchingCalls) {
auto &Calls = It.getSecond();
// Skip single calls with a single stack id. These don't need a new node.
if (Calls.size() == 1) {
auto &Ids = Calls[0].StackIds;
if (Ids.size() == 1)
continue;
}
// In order to do the best and maximal matching of inlined calls to context
// node sequences we will sort the vectors of stack ids in descending order
// of length, and within each length, lexicographically by stack id. The
// latter is so that we can specially handle calls that have identical stack
// id sequences (either due to cloning or artificially because of the MIB
// context pruning). Those with the same Ids are then sorted by function to
// facilitate efficiently mapping them to the same context node.
// Because the functions are pointers, to ensure a stable sort first assign
// each function pointer to its first index in the Calls array, and then use
// that to sort by.
DenseMap<const FuncTy *, unsigned> FuncToIndex;
for (const auto &[Idx, CallCtxInfo] : enumerate(Calls))
FuncToIndex.insert({CallCtxInfo.Func, Idx});
llvm::stable_sort(
Calls,
[&FuncToIndex](const CallContextInfo &A, const CallContextInfo &B) {
return A.StackIds.size() > B.StackIds.size() ||
(A.StackIds.size() == B.StackIds.size() &&
(A.StackIds < B.StackIds ||
(A.StackIds == B.StackIds &&
FuncToIndex[A.Func] < FuncToIndex[B.Func])));
});
// Find the node for the last stack id, which should be the same
// across all calls recorded for this id, and is the id for this
// entry in the StackIdToMatchingCalls map.
uint64_t LastId = It.getFirst();
ContextNode *LastNode = getNodeForStackId(LastId);
// We should only have kept stack ids that had nodes.
assert(LastNode);
if (LastNode->Recursive)
continue;
// Initialize the context ids with the last node's. We will subsequently
// refine the context ids by computing the intersection along all edges.
DenseSet<uint32_t> LastNodeContextIds = LastNode->getContextIds();
assert(!LastNodeContextIds.empty());
#ifndef NDEBUG
// Save the set of functions seen for a particular set of the same stack
// ids. This is used to ensure that they have been correctly sorted to be
// adjacent in the Calls list, since we rely on that to efficiently place
// all such matching calls onto the same context node.
DenseSet<const FuncTy *> MatchingIdsFuncSet;
#endif
for (unsigned I = 0; I < Calls.size(); I++) {
auto &[Call, Ids, Func, SavedContextIds] = Calls[I];
assert(SavedContextIds.empty());
assert(LastId == Ids.back());
#ifndef NDEBUG
// If this call has a different set of ids than the last one, clear the
// set used to ensure they are sorted properly.
if (I > 0 && Ids != Calls[I - 1].StackIds)
MatchingIdsFuncSet.clear();
#endif
// First compute the context ids for this stack id sequence (the
// intersection of the context ids of the corresponding nodes).
// Start with the remaining saved ids for the last node.
assert(!LastNodeContextIds.empty());
DenseSet<uint32_t> StackSequenceContextIds = LastNodeContextIds;
ContextNode *PrevNode = LastNode;
ContextNode *CurNode = LastNode;
bool Skip = false;
// Iterate backwards through the stack Ids, starting after the last Id
// in the list, which was handled once outside for all Calls.
for (auto IdIter = Ids.rbegin() + 1; IdIter != Ids.rend(); IdIter++) {
auto Id = *IdIter;
CurNode = getNodeForStackId(Id);
// We should only have kept stack ids that had nodes.
assert(CurNode);
if (CurNode->Recursive) {
Skip = true;
break;
}
auto *Edge = CurNode->findEdgeFromCaller(PrevNode);
// If there is no edge then the nodes belong to different MIB contexts,
// and we should skip this inlined context sequence. For example, this
// particular inlined context may include stack ids A->B, and we may
// indeed have nodes for both A and B, but it is possible that they were
// never profiled in sequence in a single MIB for any allocation (i.e.
// we might have profiled an allocation that involves the callsite A,
// but through a different one of its callee callsites, and we might
// have profiled an allocation that involves callsite B, but reached
// from a different caller callsite).
if (!Edge) {
Skip = true;
break;
}
PrevNode = CurNode;
// Update the context ids, which is the intersection of the ids along
// all edges in the sequence.
set_intersect(StackSequenceContextIds, Edge->getContextIds());
// If we now have no context ids for clone, skip this call.
if (StackSequenceContextIds.empty()) {
Skip = true;
break;
}
}
if (Skip)
continue;
// If some of this call's stack ids did not have corresponding nodes (due
// to pruning), don't include any context ids for contexts that extend
// beyond these nodes. Otherwise we would be matching part of unrelated /
// not fully matching stack contexts. To do this, subtract any context ids
// found in caller nodes of the last node found above.
if (Ids.back() != getLastStackId(Call)) {
for (const auto &PE : LastNode->CallerEdges) {
set_subtract(StackSequenceContextIds, PE->getContextIds());
if (StackSequenceContextIds.empty())
break;
}
// If we now have no context ids for clone, skip this call.
if (StackSequenceContextIds.empty())
continue;
}
#ifndef NDEBUG
// If the prior call had the same stack ids this set would not be empty.
// Check if we already have a call that "matches" because it is located
// in the same function. If the Calls list was sorted properly we should
// not encounter this situation as all such entries should be adjacent
// and processed in bulk further below.
assert(!MatchingIdsFuncSet.contains(Func));
MatchingIdsFuncSet.insert(Func);
#endif
// Check if the next set of stack ids is the same (since the Calls vector
// of tuples is sorted by the stack ids we can just look at the next one).
// If so, save them in the CallToMatchingCall map so that they get
// assigned to the same context node, and skip them.
bool DuplicateContextIds = false;
for (unsigned J = I + 1; J < Calls.size(); J++) {
auto &CallCtxInfo = Calls[J];
auto &NextIds = CallCtxInfo.StackIds;
if (NextIds != Ids)
break;
auto *NextFunc = CallCtxInfo.Func;
if (NextFunc != Func) {
// We have another Call with the same ids but that cannot share this
// node, must duplicate ids for it.
DuplicateContextIds = true;
break;
}
auto &NextCall = CallCtxInfo.Call;
CallToMatchingCall[NextCall] = Call;
// Update I so that it gets incremented correctly to skip this call.
I = J;
}
// If we don't have duplicate context ids, then we can assign all the
// context ids computed for the original node sequence to this call.
// If there are duplicate calls with the same stack ids then we synthesize
// new context ids that are duplicates of the originals. These are
// assigned to SavedContextIds, which is a reference into the map entry
// for this call, allowing us to access these ids later on.
OldToNewContextIds.reserve(OldToNewContextIds.size() +
StackSequenceContextIds.size());
SavedContextIds =
DuplicateContextIds
? duplicateContextIds(StackSequenceContextIds, OldToNewContextIds)
: StackSequenceContextIds;
assert(!SavedContextIds.empty());
if (!DuplicateContextIds) {
// Update saved last node's context ids to remove those that are
// assigned to other calls, so that it is ready for the next call at
// this stack id.
set_subtract(LastNodeContextIds, StackSequenceContextIds);
if (LastNodeContextIds.empty())
break;
}
}
}
// Propagate the duplicate context ids over the graph.
propagateDuplicateContextIds(OldToNewContextIds);
if (VerifyCCG)
check();
// Now perform a post-order traversal over the graph, starting with the
// allocation nodes, essentially processing nodes from callers to callees.
// For any that contains an id in the map, update the graph to contain new
// nodes representing any inlining at interior callsites. Note we move the
// associated context ids over to the new nodes.
DenseSet<const ContextNode *> Visited;
for (auto &Entry : AllocationCallToContextNodeMap)
assignStackNodesPostOrder(Entry.second, Visited, StackIdToMatchingCalls,
CallToMatchingCall);
if (VerifyCCG)
check();
}
uint64_t ModuleCallsiteContextGraph::getLastStackId(Instruction *Call) {
CallStack<MDNode, MDNode::op_iterator> CallsiteContext(
Call->getMetadata(LLVMContext::MD_callsite));
return CallsiteContext.back();
}
uint64_t IndexCallsiteContextGraph::getLastStackId(IndexCall &Call) {
assert(isa<CallsiteInfo *>(Call));
CallStack<CallsiteInfo, SmallVector<unsigned>::const_iterator>
CallsiteContext(dyn_cast_if_present<CallsiteInfo *>(Call));
// Need to convert index into stack id.
return Index.getStackIdAtIndex(CallsiteContext.back());
}
static const std::string MemProfCloneSuffix = ".memprof.";
static std::string getMemProfFuncName(Twine Base, unsigned CloneNo) {
// We use CloneNo == 0 to refer to the original version, which doesn't get
// renamed with a suffix.
if (!CloneNo)
return Base.str();
return (Base + MemProfCloneSuffix + Twine(CloneNo)).str();
}
static bool isMemProfClone(const Function &F) {
return F.getName().contains(MemProfCloneSuffix);
}
std::string ModuleCallsiteContextGraph::getLabel(const Function *Func,
const Instruction *Call,
unsigned CloneNo) const {
return (Twine(Call->getFunction()->getName()) + " -> " +
cast<CallBase>(Call)->getCalledFunction()->getName())
.str();
}
std::string IndexCallsiteContextGraph::getLabel(const FunctionSummary *Func,
const IndexCall &Call,
unsigned CloneNo) const {
auto VI = FSToVIMap.find(Func);
assert(VI != FSToVIMap.end());
if (isa<AllocInfo *>(Call))
return (VI->second.name() + " -> alloc").str();
else {
auto *Callsite = dyn_cast_if_present<CallsiteInfo *>(Call);
return (VI->second.name() + " -> " +
getMemProfFuncName(Callsite->Callee.name(),
Callsite->Clones[CloneNo]))
.str();
}
}
std::vector<uint64_t>
ModuleCallsiteContextGraph::getStackIdsWithContextNodesForCall(
Instruction *Call) {
CallStack<MDNode, MDNode::op_iterator> CallsiteContext(
Call->getMetadata(LLVMContext::MD_callsite));
return getStackIdsWithContextNodes<MDNode, MDNode::op_iterator>(
CallsiteContext);
}
std::vector<uint64_t>
IndexCallsiteContextGraph::getStackIdsWithContextNodesForCall(IndexCall &Call) {
assert(isa<CallsiteInfo *>(Call));
CallStack<CallsiteInfo, SmallVector<unsigned>::const_iterator>
CallsiteContext(dyn_cast_if_present<CallsiteInfo *>(Call));
return getStackIdsWithContextNodes<CallsiteInfo,
SmallVector<unsigned>::const_iterator>(
CallsiteContext);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
template <class NodeT, class IteratorT>
std::vector<uint64_t>
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::getStackIdsWithContextNodes(
CallStack<NodeT, IteratorT> &CallsiteContext) {
std::vector<uint64_t> StackIds;
for (auto IdOrIndex : CallsiteContext) {
auto StackId = getStackId(IdOrIndex);
ContextNode *Node = getNodeForStackId(StackId);
if (!Node)
break;
StackIds.push_back(StackId);
}
return StackIds;
}
ModuleCallsiteContextGraph::ModuleCallsiteContextGraph(
Module &M,
llvm::function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter)
: Mod(M), OREGetter(OREGetter) {
for (auto &F : M) {
std::vector<CallInfo> CallsWithMetadata;
for (auto &BB : F) {
for (auto &I : BB) {
if (!isa<CallBase>(I))
continue;
if (auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof)) {
CallsWithMetadata.push_back(&I);
auto *AllocNode = addAllocNode(&I, &F);
auto *CallsiteMD = I.getMetadata(LLVMContext::MD_callsite);
assert(CallsiteMD);
CallStack<MDNode, MDNode::op_iterator> CallsiteContext(CallsiteMD);
// Add all of the MIBs and their stack nodes.
for (auto &MDOp : MemProfMD->operands()) {
auto *MIBMD = cast<const MDNode>(MDOp);
std::vector<ContextTotalSize> ContextSizeInfo;
// Collect the context size information if it exists.
if (MIBMD->getNumOperands() > 2) {
for (unsigned I = 2; I < MIBMD->getNumOperands(); I++) {
MDNode *ContextSizePair =
dyn_cast<MDNode>(MIBMD->getOperand(I));
assert(ContextSizePair->getNumOperands() == 2);
uint64_t FullStackId = mdconst::dyn_extract<ConstantInt>(
ContextSizePair->getOperand(0))
->getZExtValue();
uint64_t TotalSize = mdconst::dyn_extract<ConstantInt>(
ContextSizePair->getOperand(1))
->getZExtValue();
ContextSizeInfo.push_back({FullStackId, TotalSize});
}
}
MDNode *StackNode = getMIBStackNode(MIBMD);
assert(StackNode);
CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode);
addStackNodesForMIB<MDNode, MDNode::op_iterator>(
AllocNode, StackContext, CallsiteContext,
getMIBAllocType(MIBMD), ContextSizeInfo);
}
// If exporting the graph to dot and an allocation id of interest was
// specified, record all the context ids for this allocation node.
if (ExportToDot && AllocNode->OrigStackOrAllocId == AllocIdForDot)
DotAllocContextIds = AllocNode->getContextIds();
assert(AllocNode->AllocTypes != (uint8_t)AllocationType::None);
// Memprof and callsite metadata on memory allocations no longer
// needed.
I.setMetadata(LLVMContext::MD_memprof, nullptr);
I.setMetadata(LLVMContext::MD_callsite, nullptr);
}
// For callsite metadata, add to list for this function for later use.
else if (I.getMetadata(LLVMContext::MD_callsite)) {
CallsWithMetadata.push_back(&I);
}
}
}
if (!CallsWithMetadata.empty())
FuncToCallsWithMetadata[&F] = CallsWithMetadata;
}
if (DumpCCG) {
dbgs() << "CCG before updating call stack chains:\n";
dbgs() << *this;
}
if (ExportToDot)
exportToDot("prestackupdate");
updateStackNodes();
if (ExportToDot)
exportToDot("poststackupdate");
handleCallsitesWithMultipleTargets();
markBackedges();
// Strip off remaining callsite metadata, no longer needed.
for (auto &FuncEntry : FuncToCallsWithMetadata)
for (auto &Call : FuncEntry.second)
Call.call()->setMetadata(LLVMContext::MD_callsite, nullptr);
}
IndexCallsiteContextGraph::IndexCallsiteContextGraph(
ModuleSummaryIndex &Index,
llvm::function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing)
: Index(Index), isPrevailing(isPrevailing) {
for (auto &I : Index) {
auto VI = Index.getValueInfo(I);
for (auto &S : VI.getSummaryList()) {
// We should only add the prevailing nodes. Otherwise we may try to clone
// in a weak copy that won't be linked (and may be different than the
// prevailing version).
// We only keep the memprof summary on the prevailing copy now when
// building the combined index, as a space optimization, however don't
// rely on this optimization. The linker doesn't resolve local linkage
// values so don't check whether those are prevailing.
if (!GlobalValue::isLocalLinkage(S->linkage()) &&
!isPrevailing(VI.getGUID(), S.get()))
continue;
auto *FS = dyn_cast<FunctionSummary>(S.get());
if (!FS)
continue;
std::vector<CallInfo> CallsWithMetadata;
if (!FS->allocs().empty()) {
for (auto &AN : FS->mutableAllocs()) {
// This can happen because of recursion elimination handling that
// currently exists in ModuleSummaryAnalysis. Skip these for now.
// We still added them to the summary because we need to be able to
// correlate properly in applyImport in the backends.
if (AN.MIBs.empty())
continue;
IndexCall AllocCall(&AN);
CallsWithMetadata.push_back(AllocCall);
auto *AllocNode = addAllocNode(AllocCall, FS);
// Pass an empty CallStack to the CallsiteContext (second)
// parameter, since for ThinLTO we already collapsed out the inlined
// stack ids on the allocation call during ModuleSummaryAnalysis.
CallStack<MIBInfo, SmallVector<unsigned>::const_iterator>
EmptyContext;
unsigned I = 0;
assert(!metadataMayIncludeContextSizeInfo() ||
AN.ContextSizeInfos.size() == AN.MIBs.size());
// Now add all of the MIBs and their stack nodes.
for (auto &MIB : AN.MIBs) {
CallStack<MIBInfo, SmallVector<unsigned>::const_iterator>
StackContext(&MIB);
std::vector<ContextTotalSize> ContextSizeInfo;
if (!AN.ContextSizeInfos.empty()) {
for (auto [FullStackId, TotalSize] : AN.ContextSizeInfos[I])
ContextSizeInfo.push_back({FullStackId, TotalSize});
}
addStackNodesForMIB<MIBInfo, SmallVector<unsigned>::const_iterator>(
AllocNode, StackContext, EmptyContext, MIB.AllocType,
ContextSizeInfo);
I++;
}
// If exporting the graph to dot and an allocation id of interest was
// specified, record all the context ids for this allocation node.
if (ExportToDot && AllocNode->OrigStackOrAllocId == AllocIdForDot)
DotAllocContextIds = AllocNode->getContextIds();
assert(AllocNode->AllocTypes != (uint8_t)AllocationType::None);
// Initialize version 0 on the summary alloc node to the current alloc
// type, unless it has both types in which case make it default, so
// that in the case where we aren't able to clone the original version
// always ends up with the default allocation behavior.
AN.Versions[0] = (uint8_t)allocTypeToUse(AllocNode->AllocTypes);
}
}
// For callsite metadata, add to list for this function for later use.
if (!FS->callsites().empty())
for (auto &SN : FS->mutableCallsites()) {
IndexCall StackNodeCall(&SN);
CallsWithMetadata.push_back(StackNodeCall);
}
if (!CallsWithMetadata.empty())
FuncToCallsWithMetadata[FS] = CallsWithMetadata;
if (!FS->allocs().empty() || !FS->callsites().empty())
FSToVIMap[FS] = VI;
}
}
if (DumpCCG) {
dbgs() << "CCG before updating call stack chains:\n";
dbgs() << *this;
}
if (ExportToDot)
exportToDot("prestackupdate");
updateStackNodes();
if (ExportToDot)
exportToDot("poststackupdate");
handleCallsitesWithMultipleTargets();
markBackedges();
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy,
CallTy>::handleCallsitesWithMultipleTargets() {
// Look for and workaround callsites that call multiple functions.
// This can happen for indirect calls, which needs better handling, and in
// more rare cases (e.g. macro expansion).
// TODO: To fix this for indirect calls we will want to perform speculative
// devirtualization using either the normal PGO info with ICP, or using the
// information in the profiled MemProf contexts. We can do this prior to
// this transformation for regular LTO, and for ThinLTO we can simulate that
// effect in the summary and perform the actual speculative devirtualization
// while cloning in the ThinLTO backend.
// Keep track of the new nodes synthesized for discovered tail calls missing
// from the profiled contexts.
MapVector<CallInfo, ContextNode *> TailCallToContextNodeMap;
std::vector<std::pair<CallInfo, ContextNode *>> NewCallToNode;
for (auto &Entry : NonAllocationCallToContextNodeMap) {
auto *Node = Entry.second;
assert(Node->Clones.empty());
// Check all node callees and see if in the same function.
// We need to check all of the calls recorded in this Node, because in some
// cases we may have had multiple calls with the same debug info calling
// different callees. This can happen, for example, when an object is
// constructed in the paramter list - the destructor call of the object has
// the same debug info (line/col) as the call the object was passed to.
// Here we will prune any that don't match all callee nodes.
std::vector<CallInfo> AllCalls;
AllCalls.reserve(Node->MatchingCalls.size() + 1);
AllCalls.push_back(Node->Call);
llvm::append_range(AllCalls, Node->MatchingCalls);
// First see if we can partition the calls by callee function, creating new
// nodes to host each set of calls calling the same callees. This is
// necessary for support indirect calls with ThinLTO, for which we
// synthesized CallsiteInfo records for each target. They will all have the
// same callsite stack ids and would be sharing a context node at this
// point. We need to perform separate cloning for each, which will be
// applied along with speculative devirtualization in the ThinLTO backends
// as needed. Note this does not currently support looking through tail
// calls, it is unclear if we need that for indirect call targets.
// First partition calls by callee func. Map indexed by func, value is
// struct with list of matching calls, assigned node.
if (partitionCallsByCallee(Node, AllCalls, NewCallToNode))
continue;
auto It = AllCalls.begin();
// Iterate through the calls until we find the first that matches.
for (; It != AllCalls.end(); ++It) {
auto ThisCall = *It;
bool Match = true;
for (auto EI = Node->CalleeEdges.begin(); EI != Node->CalleeEdges.end();
++EI) {
auto Edge = *EI;
if (!Edge->Callee->hasCall())
continue;
assert(NodeToCallingFunc.count(Edge->Callee));
// Check if the called function matches that of the callee node.
if (!calleesMatch(ThisCall.call(), EI, TailCallToContextNodeMap)) {
Match = false;
break;
}
}
// Found a call that matches the callee nodes, we can quit now.
if (Match) {
// If the first match is not the primary call on the Node, update it
// now. We will update the list of matching calls further below.
if (Node->Call != ThisCall) {
Node->setCall(ThisCall);
// We need to update the NonAllocationCallToContextNodeMap, but don't
// want to do this during iteration over that map, so save the calls
// that need updated entries.
NewCallToNode.push_back({ThisCall, Node});
}
break;
}
}
// We will update this list below (or leave it cleared if there was no
// match found above).
Node->MatchingCalls.clear();
// If we hit the end of the AllCalls vector, no call matching the callee
// nodes was found, clear the call information in the node.
if (It == AllCalls.end()) {
RemovedEdgesWithMismatchedCallees++;
// Work around by setting Node to have a null call, so it gets
// skipped during cloning. Otherwise assignFunctions will assert
// because its data structures are not designed to handle this case.
Node->setCall(CallInfo());
continue;
}
// Now add back any matching calls that call the same function as the
// matching primary call on Node.
for (++It; It != AllCalls.end(); ++It) {
auto ThisCall = *It;
if (!sameCallee(Node->Call.call(), ThisCall.call()))
continue;
Node->MatchingCalls.push_back(ThisCall);
}
}
// Remove all mismatched nodes identified in the above loop from the node map
// (checking whether they have a null call which is set above). For a
// MapVector like NonAllocationCallToContextNodeMap it is much more efficient
// to do the removal via remove_if than by individually erasing entries above.
// Also remove any entries if we updated the node's primary call above.
NonAllocationCallToContextNodeMap.remove_if([](const auto &it) {
return !it.second->hasCall() || it.second->Call != it.first;
});
// Add entries for any new primary calls recorded above.
for (auto &[Call, Node] : NewCallToNode)
NonAllocationCallToContextNodeMap[Call] = Node;
// Add the new nodes after the above loop so that the iteration is not
// invalidated.
for (auto &[Call, Node] : TailCallToContextNodeMap)
NonAllocationCallToContextNodeMap[Call] = Node;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::partitionCallsByCallee(
ContextNode *Node, ArrayRef<CallInfo> AllCalls,
std::vector<std::pair<CallInfo, ContextNode *>> &NewCallToNode) {
// Struct to keep track of all the calls having the same callee function,
// and the node we eventually assign to them. Eventually we will record the
// context node assigned to this group of calls.
struct CallsWithSameCallee {
std::vector<CallInfo> Calls;
ContextNode *Node = nullptr;
};
// First partition calls by callee function. Build map from each function
// to the list of matching calls.
DenseMap<const FuncTy *, CallsWithSameCallee> CalleeFuncToCallInfo;
for (auto ThisCall : AllCalls) {
auto *F = getCalleeFunc(ThisCall.call());
if (F)
CalleeFuncToCallInfo[F].Calls.push_back(ThisCall);
}
// Next, walk through all callee edges. For each callee node, get its
// containing function and see if it was recorded in the above map (meaning we
// have at least one matching call). Build another map from each callee node
// with a matching call to the structure instance created above containing all
// the calls.
DenseMap<ContextNode *, CallsWithSameCallee *> CalleeNodeToCallInfo;
for (const auto &Edge : Node->CalleeEdges) {
if (!Edge->Callee->hasCall())
continue;
const FuncTy *ProfiledCalleeFunc = NodeToCallingFunc[Edge->Callee];
if (CalleeFuncToCallInfo.contains(ProfiledCalleeFunc))
CalleeNodeToCallInfo[Edge->Callee] =
&CalleeFuncToCallInfo[ProfiledCalleeFunc];
}
// If there are entries in the second map, then there were no matching
// calls/callees, nothing to do here. Return so we can go to the handling that
// looks through tail calls.
if (CalleeNodeToCallInfo.empty())
return false;
// Walk through all callee edges again. Any and all callee edges that didn't
// match any calls (callee not in the CalleeNodeToCallInfo map) are moved to a
// new caller node (UnmatchedCalleesNode) which gets a null call so that it is
// ignored during cloning. If it is in the map, then we use the node recorded
// in that entry (creating it if needed), and move the callee edge to it.
// The first callee will use the original node instead of creating a new one.
// Note that any of the original calls on this node (in AllCalls) that didn't
// have a callee function automatically get dropped from the node as part of
// this process.
ContextNode *UnmatchedCalleesNode = nullptr;
// Track whether we already assigned original node to a callee.
bool UsedOrigNode = false;
assert(NodeToCallingFunc[Node]);
// Iterate over a copy of Node's callee edges, since we may need to remove
// edges in moveCalleeEdgeToNewCaller, and this simplifies the handling and
// makes it less error-prone.
auto CalleeEdges = Node->CalleeEdges;
for (auto &Edge : CalleeEdges) {
if (!Edge->Callee->hasCall())
continue;
// Will be updated below to point to whatever (caller) node this callee edge
// should be moved to.
ContextNode *CallerNodeToUse = nullptr;
// Handle the case where there were no matching calls first. Move this
// callee edge to the UnmatchedCalleesNode, creating it if needed.
if (!CalleeNodeToCallInfo.contains(Edge->Callee)) {
if (!UnmatchedCalleesNode)
UnmatchedCalleesNode =
createNewNode(/*IsAllocation=*/false, NodeToCallingFunc[Node]);
CallerNodeToUse = UnmatchedCalleesNode;
} else {
// Look up the information recorded for this callee node, and use the
// recorded caller node (creating it if needed).
auto *Info = CalleeNodeToCallInfo[Edge->Callee];
if (!Info->Node) {
// If we haven't assigned any callees to the original node use it.
if (!UsedOrigNode) {
Info->Node = Node;
// Clear the set of matching calls which will be updated below.
Node->MatchingCalls.clear();
UsedOrigNode = true;
} else
Info->Node =
createNewNode(/*IsAllocation=*/false, NodeToCallingFunc[Node]);
assert(!Info->Calls.empty());
// The first call becomes the primary call for this caller node, and the
// rest go in the matching calls list.
Info->Node->setCall(Info->Calls.front());
llvm::append_range(Info->Node->MatchingCalls,
llvm::drop_begin(Info->Calls));
// Save the primary call to node correspondence so that we can update
// the NonAllocationCallToContextNodeMap, which is being iterated in the
// caller of this function.
NewCallToNode.push_back({Info->Node->Call, Info->Node});
}
CallerNodeToUse = Info->Node;
}
// Don't need to move edge if we are using the original node;
if (CallerNodeToUse == Node)
continue;
moveCalleeEdgeToNewCaller(Edge, CallerNodeToUse);
}
// Now that we are done moving edges, clean up any caller edges that ended
// up with no type or context ids. During moveCalleeEdgeToNewCaller all
// caller edges from Node are replicated onto the new callers, and it
// simplifies the handling to leave them until we have moved all
// edges/context ids.
for (auto &I : CalleeNodeToCallInfo)
removeNoneTypeCallerEdges(I.second->Node);
if (UnmatchedCalleesNode)
removeNoneTypeCallerEdges(UnmatchedCalleesNode);
removeNoneTypeCallerEdges(Node);
return true;
}
uint64_t ModuleCallsiteContextGraph::getStackId(uint64_t IdOrIndex) const {
// In the Module (IR) case this is already the Id.
return IdOrIndex;
}
uint64_t IndexCallsiteContextGraph::getStackId(uint64_t IdOrIndex) const {
// In the Index case this is an index into the stack id list in the summary
// index, convert it to an Id.
return Index.getStackIdAtIndex(IdOrIndex);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::calleesMatch(
CallTy Call, EdgeIter &EI,
MapVector<CallInfo, ContextNode *> &TailCallToContextNodeMap) {
auto Edge = *EI;
const FuncTy *ProfiledCalleeFunc = NodeToCallingFunc[Edge->Callee];
const FuncTy *CallerFunc = NodeToCallingFunc[Edge->Caller];
// Will be populated in order of callee to caller if we find a chain of tail
// calls between the profiled caller and callee.
std::vector<std::pair<CallTy, FuncTy *>> FoundCalleeChain;
if (!calleeMatchesFunc(Call, ProfiledCalleeFunc, CallerFunc,
FoundCalleeChain))
return false;
// The usual case where the profiled callee matches that of the IR/summary.
if (FoundCalleeChain.empty())
return true;
auto AddEdge = [Edge, &EI](ContextNode *Caller, ContextNode *Callee) {
auto *CurEdge = Callee->findEdgeFromCaller(Caller);
// If there is already an edge between these nodes, simply update it and
// return.
if (CurEdge) {
CurEdge->ContextIds.insert_range(Edge->ContextIds);
CurEdge->AllocTypes |= Edge->AllocTypes;
return;
}
// Otherwise, create a new edge and insert it into the caller and callee
// lists.
auto NewEdge = std::make_shared<ContextEdge>(
Callee, Caller, Edge->AllocTypes, Edge->ContextIds);
Callee->CallerEdges.push_back(NewEdge);
if (Caller == Edge->Caller) {
// If we are inserting the new edge into the current edge's caller, insert
// the new edge before the current iterator position, and then increment
// back to the current edge.
EI = Caller->CalleeEdges.insert(EI, NewEdge);
++EI;
assert(*EI == Edge &&
"Iterator position not restored after insert and increment");
} else
Caller->CalleeEdges.push_back(NewEdge);
};
// Create new nodes for each found callee and connect in between the profiled
// caller and callee.
auto *CurCalleeNode = Edge->Callee;
for (auto &[NewCall, Func] : FoundCalleeChain) {
ContextNode *NewNode = nullptr;
// First check if we have already synthesized a node for this tail call.
if (TailCallToContextNodeMap.count(NewCall)) {
NewNode = TailCallToContextNodeMap[NewCall];
NewNode->AllocTypes |= Edge->AllocTypes;
} else {
FuncToCallsWithMetadata[Func].push_back({NewCall});
// Create Node and record node info.
NewNode = createNewNode(/*IsAllocation=*/false, Func, NewCall);
TailCallToContextNodeMap[NewCall] = NewNode;
NewNode->AllocTypes = Edge->AllocTypes;
}
// Hook up node to its callee node
AddEdge(NewNode, CurCalleeNode);
CurCalleeNode = NewNode;
}
// Hook up edge's original caller to new callee node.
AddEdge(Edge->Caller, CurCalleeNode);
#ifndef NDEBUG
// Save this because Edge's fields get cleared below when removed.
auto *Caller = Edge->Caller;
#endif
// Remove old edge
removeEdgeFromGraph(Edge.get(), &EI, /*CalleeIter=*/true);
// To simplify the increment of EI in the caller, subtract one from EI.
// In the final AddEdge call we would have either added a new callee edge,
// to Edge->Caller, or found an existing one. Either way we are guaranteed
// that there is at least one callee edge.
assert(!Caller->CalleeEdges.empty());
--EI;
return true;
}
bool ModuleCallsiteContextGraph::findProfiledCalleeThroughTailCalls(
const Function *ProfiledCallee, Value *CurCallee, unsigned Depth,
std::vector<std::pair<Instruction *, Function *>> &FoundCalleeChain,
bool &FoundMultipleCalleeChains) {
// Stop recursive search if we have already explored the maximum specified
// depth.
if (Depth > TailCallSearchDepth)
return false;
auto SaveCallsiteInfo = [&](Instruction *Callsite, Function *F) {
FoundCalleeChain.push_back({Callsite, F});
};
auto *CalleeFunc = dyn_cast<Function>(CurCallee);
if (!CalleeFunc) {
auto *Alias = dyn_cast<GlobalAlias>(CurCallee);
assert(Alias);
CalleeFunc = dyn_cast<Function>(Alias->getAliasee());
assert(CalleeFunc);
}
// Look for tail calls in this function, and check if they either call the
// profiled callee directly, or indirectly (via a recursive search).
// Only succeed if there is a single unique tail call chain found between the
// profiled caller and callee, otherwise we could perform incorrect cloning.
bool FoundSingleCalleeChain = false;
for (auto &BB : *CalleeFunc) {
for (auto &I : BB) {
auto *CB = dyn_cast<CallBase>(&I);
if (!CB || !CB->isTailCall())
continue;
auto *CalledValue = CB->getCalledOperand();
auto *CalledFunction = CB->getCalledFunction();
if (CalledValue && !CalledFunction) {
CalledValue = CalledValue->stripPointerCasts();
// Stripping pointer casts can reveal a called function.
CalledFunction = dyn_cast<Function>(CalledValue);
}
// Check if this is an alias to a function. If so, get the
// called aliasee for the checks below.
if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
assert(!CalledFunction &&
"Expected null called function in callsite for alias");
CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
}
if (!CalledFunction)
continue;
if (CalledFunction == ProfiledCallee) {
if (FoundSingleCalleeChain) {
FoundMultipleCalleeChains = true;
return false;
}
FoundSingleCalleeChain = true;
FoundProfiledCalleeCount++;
FoundProfiledCalleeDepth += Depth;
if (Depth > FoundProfiledCalleeMaxDepth)
FoundProfiledCalleeMaxDepth = Depth;
SaveCallsiteInfo(&I, CalleeFunc);
} else if (findProfiledCalleeThroughTailCalls(
ProfiledCallee, CalledFunction, Depth + 1,
FoundCalleeChain, FoundMultipleCalleeChains)) {
// findProfiledCalleeThroughTailCalls should not have returned
// true if FoundMultipleCalleeChains.
assert(!FoundMultipleCalleeChains);
if (FoundSingleCalleeChain) {
FoundMultipleCalleeChains = true;
return false;
}
FoundSingleCalleeChain = true;
SaveCallsiteInfo(&I, CalleeFunc);
} else if (FoundMultipleCalleeChains)
return false;
}
}
return FoundSingleCalleeChain;
}
const Function *ModuleCallsiteContextGraph::getCalleeFunc(Instruction *Call) {
auto *CB = dyn_cast<CallBase>(Call);
if (!CB->getCalledOperand() || CB->isIndirectCall())
return nullptr;
auto *CalleeVal = CB->getCalledOperand()->stripPointerCasts();
auto *Alias = dyn_cast<GlobalAlias>(CalleeVal);
if (Alias)
return dyn_cast<Function>(Alias->getAliasee());
return dyn_cast<Function>(CalleeVal);
}
bool ModuleCallsiteContextGraph::calleeMatchesFunc(
Instruction *Call, const Function *Func, const Function *CallerFunc,
std::vector<std::pair<Instruction *, Function *>> &FoundCalleeChain) {
auto *CB = dyn_cast<CallBase>(Call);
if (!CB->getCalledOperand() || CB->isIndirectCall())
return false;
auto *CalleeVal = CB->getCalledOperand()->stripPointerCasts();
auto *CalleeFunc = dyn_cast<Function>(CalleeVal);
if (CalleeFunc == Func)
return true;
auto *Alias = dyn_cast<GlobalAlias>(CalleeVal);
if (Alias && Alias->getAliasee() == Func)
return true;
// Recursively search for the profiled callee through tail calls starting with
// the actual Callee. The discovered tail call chain is saved in
// FoundCalleeChain, and we will fixup the graph to include these callsites
// after returning.
// FIXME: We will currently redo the same recursive walk if we find the same
// mismatched callee from another callsite. We can improve this with more
// bookkeeping of the created chain of new nodes for each mismatch.
unsigned Depth = 1;
bool FoundMultipleCalleeChains = false;
if (!findProfiledCalleeThroughTailCalls(Func, CalleeVal, Depth,
FoundCalleeChain,
FoundMultipleCalleeChains)) {
LLVM_DEBUG(dbgs() << "Not found through unique tail call chain: "
<< Func->getName() << " from " << CallerFunc->getName()
<< " that actually called " << CalleeVal->getName()
<< (FoundMultipleCalleeChains
? " (found multiple possible chains)"
: "")
<< "\n");
if (FoundMultipleCalleeChains)
FoundProfiledCalleeNonUniquelyCount++;
return false;
}
return true;
}
bool ModuleCallsiteContextGraph::sameCallee(Instruction *Call1,
Instruction *Call2) {
auto *CB1 = cast<CallBase>(Call1);
if (!CB1->getCalledOperand() || CB1->isIndirectCall())
return false;
auto *CalleeVal1 = CB1->getCalledOperand()->stripPointerCasts();
auto *CalleeFunc1 = dyn_cast<Function>(CalleeVal1);
auto *CB2 = cast<CallBase>(Call2);
if (!CB2->getCalledOperand() || CB2->isIndirectCall())
return false;
auto *CalleeVal2 = CB2->getCalledOperand()->stripPointerCasts();
auto *CalleeFunc2 = dyn_cast<Function>(CalleeVal2);
return CalleeFunc1 == CalleeFunc2;
}
bool IndexCallsiteContextGraph::findProfiledCalleeThroughTailCalls(
ValueInfo ProfiledCallee, ValueInfo CurCallee, unsigned Depth,
std::vector<std::pair<IndexCall, FunctionSummary *>> &FoundCalleeChain,
bool &FoundMultipleCalleeChains) {
// Stop recursive search if we have already explored the maximum specified
// depth.
if (Depth > TailCallSearchDepth)
return false;
auto CreateAndSaveCallsiteInfo = [&](ValueInfo Callee, FunctionSummary *FS) {
// Make a CallsiteInfo for each discovered callee, if one hasn't already
// been synthesized.
if (!FunctionCalleesToSynthesizedCallsiteInfos.count(FS) ||
!FunctionCalleesToSynthesizedCallsiteInfos[FS].count(Callee))
// StackIds is empty (we don't have debug info available in the index for
// these callsites)
FunctionCalleesToSynthesizedCallsiteInfos[FS][Callee] =
std::make_unique<CallsiteInfo>(Callee, SmallVector<unsigned>());
CallsiteInfo *NewCallsiteInfo =
FunctionCalleesToSynthesizedCallsiteInfos[FS][Callee].get();
FoundCalleeChain.push_back({NewCallsiteInfo, FS});
};
// Look for tail calls in this function, and check if they either call the
// profiled callee directly, or indirectly (via a recursive search).
// Only succeed if there is a single unique tail call chain found between the
// profiled caller and callee, otherwise we could perform incorrect cloning.
bool FoundSingleCalleeChain = false;
for (auto &S : CurCallee.getSummaryList()) {
if (!GlobalValue::isLocalLinkage(S->linkage()) &&
!isPrevailing(CurCallee.getGUID(), S.get()))
continue;
auto *FS = dyn_cast<FunctionSummary>(S->getBaseObject());
if (!FS)
continue;
auto FSVI = CurCallee;
auto *AS = dyn_cast<AliasSummary>(S.get());
if (AS)
FSVI = AS->getAliaseeVI();
for (auto &CallEdge : FS->calls()) {
if (!CallEdge.second.hasTailCall())
continue;
if (CallEdge.first == ProfiledCallee) {
if (FoundSingleCalleeChain) {
FoundMultipleCalleeChains = true;
return false;
}
FoundSingleCalleeChain = true;
FoundProfiledCalleeCount++;
FoundProfiledCalleeDepth += Depth;
if (Depth > FoundProfiledCalleeMaxDepth)
FoundProfiledCalleeMaxDepth = Depth;
CreateAndSaveCallsiteInfo(CallEdge.first, FS);
// Add FS to FSToVIMap in case it isn't already there.
assert(!FSToVIMap.count(FS) || FSToVIMap[FS] == FSVI);
FSToVIMap[FS] = FSVI;
} else if (findProfiledCalleeThroughTailCalls(
ProfiledCallee, CallEdge.first, Depth + 1,
FoundCalleeChain, FoundMultipleCalleeChains)) {
// findProfiledCalleeThroughTailCalls should not have returned
// true if FoundMultipleCalleeChains.
assert(!FoundMultipleCalleeChains);
if (FoundSingleCalleeChain) {
FoundMultipleCalleeChains = true;
return false;
}
FoundSingleCalleeChain = true;
CreateAndSaveCallsiteInfo(CallEdge.first, FS);
// Add FS to FSToVIMap in case it isn't already there.
assert(!FSToVIMap.count(FS) || FSToVIMap[FS] == FSVI);
FSToVIMap[FS] = FSVI;
} else if (FoundMultipleCalleeChains)
return false;
}
}
return FoundSingleCalleeChain;
}
const FunctionSummary *
IndexCallsiteContextGraph::getCalleeFunc(IndexCall &Call) {
ValueInfo Callee = dyn_cast_if_present<CallsiteInfo *>(Call)->Callee;
if (Callee.getSummaryList().empty())
return nullptr;
return dyn_cast<FunctionSummary>(Callee.getSummaryList()[0]->getBaseObject());
}
bool IndexCallsiteContextGraph::calleeMatchesFunc(
IndexCall &Call, const FunctionSummary *Func,
const FunctionSummary *CallerFunc,
std::vector<std::pair<IndexCall, FunctionSummary *>> &FoundCalleeChain) {
ValueInfo Callee = dyn_cast_if_present<CallsiteInfo *>(Call)->Callee;
// If there is no summary list then this is a call to an externally defined
// symbol.
AliasSummary *Alias =
Callee.getSummaryList().empty()
? nullptr
: dyn_cast<AliasSummary>(Callee.getSummaryList()[0].get());
assert(FSToVIMap.count(Func));
auto FuncVI = FSToVIMap[Func];
if (Callee == FuncVI ||
// If callee is an alias, check the aliasee, since only function
// summary base objects will contain the stack node summaries and thus
// get a context node.
(Alias && Alias->getAliaseeVI() == FuncVI))
return true;
// Recursively search for the profiled callee through tail calls starting with
// the actual Callee. The discovered tail call chain is saved in
// FoundCalleeChain, and we will fixup the graph to include these callsites
// after returning.
// FIXME: We will currently redo the same recursive walk if we find the same
// mismatched callee from another callsite. We can improve this with more
// bookkeeping of the created chain of new nodes for each mismatch.
unsigned Depth = 1;
bool FoundMultipleCalleeChains = false;
if (!findProfiledCalleeThroughTailCalls(
FuncVI, Callee, Depth, FoundCalleeChain, FoundMultipleCalleeChains)) {
LLVM_DEBUG(dbgs() << "Not found through unique tail call chain: " << FuncVI
<< " from " << FSToVIMap[CallerFunc]
<< " that actually called " << Callee
<< (FoundMultipleCalleeChains
? " (found multiple possible chains)"
: "")
<< "\n");
if (FoundMultipleCalleeChains)
FoundProfiledCalleeNonUniquelyCount++;
return false;
}
return true;
}
bool IndexCallsiteContextGraph::sameCallee(IndexCall &Call1, IndexCall &Call2) {
ValueInfo Callee1 = dyn_cast_if_present<CallsiteInfo *>(Call1)->Callee;
ValueInfo Callee2 = dyn_cast_if_present<CallsiteInfo *>(Call2)->Callee;
return Callee1 == Callee2;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::dump()
const {
print(dbgs());
dbgs() << "\n";
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode::print(
raw_ostream &OS) const {
OS << "Node " << this << "\n";
OS << "\t";
printCall(OS);
if (Recursive)
OS << " (recursive)";
OS << "\n";
if (!MatchingCalls.empty()) {
OS << "\tMatchingCalls:\n";
for (auto &MatchingCall : MatchingCalls) {
OS << "\t";
MatchingCall.print(OS);
OS << "\n";
}
}
OS << "\tAllocTypes: " << getAllocTypeString(AllocTypes) << "\n";
OS << "\tContextIds:";
// Make a copy of the computed context ids that we can sort for stability.
auto ContextIds = getContextIds();
std::vector<uint32_t> SortedIds(ContextIds.begin(), ContextIds.end());
std::sort(SortedIds.begin(), SortedIds.end());
for (auto Id : SortedIds)
OS << " " << Id;
OS << "\n";
OS << "\tCalleeEdges:\n";
for (auto &Edge : CalleeEdges)
OS << "\t\t" << *Edge << "\n";
OS << "\tCallerEdges:\n";
for (auto &Edge : CallerEdges)
OS << "\t\t" << *Edge << "\n";
if (!Clones.empty()) {
OS << "\tClones: " << llvm::interleaved(Clones) << "\n";
} else if (CloneOf) {
OS << "\tClone of " << CloneOf << "\n";
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge::dump()
const {
print(dbgs());
dbgs() << "\n";
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextEdge::print(
raw_ostream &OS) const {
OS << "Edge from Callee " << Callee << " to Caller: " << Caller
<< (IsBackedge ? " (BE)" : "")
<< " AllocTypes: " << getAllocTypeString(AllocTypes);
OS << " ContextIds:";
std::vector<uint32_t> SortedIds(ContextIds.begin(), ContextIds.end());
std::sort(SortedIds.begin(), SortedIds.end());
for (auto Id : SortedIds)
OS << " " << Id;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::dump() const {
print(dbgs());
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::print(
raw_ostream &OS) const {
OS << "Callsite Context Graph:\n";
using GraphType = const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *;
for (const auto Node : nodes<GraphType>(this)) {
if (Node->isRemoved())
continue;
Node->print(OS);
OS << "\n";
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::printTotalSizes(
raw_ostream &OS) const {
using GraphType = const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *;
for (const auto Node : nodes<GraphType>(this)) {
if (Node->isRemoved())
continue;
if (!Node->IsAllocation)
continue;
DenseSet<uint32_t> ContextIds = Node->getContextIds();
auto AllocTypeFromCall = getAllocationCallType(Node->Call);
std::vector<uint32_t> SortedIds(ContextIds.begin(), ContextIds.end());
std::sort(SortedIds.begin(), SortedIds.end());
for (auto Id : SortedIds) {
auto TypeI = ContextIdToAllocationType.find(Id);
assert(TypeI != ContextIdToAllocationType.end());
auto CSI = ContextIdToContextSizeInfos.find(Id);
if (CSI != ContextIdToContextSizeInfos.end()) {
for (auto &Info : CSI->second) {
OS << "MemProf hinting: "
<< getAllocTypeString((uint8_t)TypeI->second)
<< " full allocation context " << Info.FullStackId
<< " with total size " << Info.TotalSize << " is "
<< getAllocTypeString(Node->AllocTypes) << " after cloning";
if (allocTypeToUse(Node->AllocTypes) != AllocTypeFromCall)
OS << " marked " << getAllocTypeString((uint8_t)AllocTypeFromCall)
<< " due to cold byte percent";
// Print the internal context id to aid debugging and visualization.
OS << " (context id " << Id << ")";
OS << "\n";
}
}
}
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::check() const {
using GraphType = const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *;
for (const auto Node : nodes<GraphType>(this)) {
checkNode<DerivedCCG, FuncTy, CallTy>(Node, /*CheckEdges=*/false);
for (auto &Edge : Node->CallerEdges)
checkEdge<DerivedCCG, FuncTy, CallTy>(Edge);
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
struct GraphTraits<const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *> {
using GraphType = const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *;
using NodeRef = const ContextNode<DerivedCCG, FuncTy, CallTy> *;
using NodePtrTy = std::unique_ptr<ContextNode<DerivedCCG, FuncTy, CallTy>>;
static NodeRef getNode(const NodePtrTy &P) { return P.get(); }
using nodes_iterator =
mapped_iterator<typename std::vector<NodePtrTy>::const_iterator,
decltype(&getNode)>;
static nodes_iterator nodes_begin(GraphType G) {
return nodes_iterator(G->NodeOwner.begin(), &getNode);
}
static nodes_iterator nodes_end(GraphType G) {
return nodes_iterator(G->NodeOwner.end(), &getNode);
}
static NodeRef getEntryNode(GraphType G) {
return G->NodeOwner.begin()->get();
}
using EdgePtrTy = std::shared_ptr<ContextEdge<DerivedCCG, FuncTy, CallTy>>;
static const ContextNode<DerivedCCG, FuncTy, CallTy> *
GetCallee(const EdgePtrTy &P) {
return P->Callee;
}
using ChildIteratorType =
mapped_iterator<typename std::vector<std::shared_ptr<ContextEdge<
DerivedCCG, FuncTy, CallTy>>>::const_iterator,
decltype(&GetCallee)>;
static ChildIteratorType child_begin(NodeRef N) {
return ChildIteratorType(N->CalleeEdges.begin(), &GetCallee);
}
static ChildIteratorType child_end(NodeRef N) {
return ChildIteratorType(N->CalleeEdges.end(), &GetCallee);
}
};
template <typename DerivedCCG, typename FuncTy, typename CallTy>
struct DOTGraphTraits<const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *>
: public DefaultDOTGraphTraits {
DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {
// If the user requested the full graph to be exported, but provided an
// allocation id, or if the user gave a context id and requested more than
// just a specific context to be exported, note that highlighting is
// enabled.
DoHighlight =
(AllocIdForDot.getNumOccurrences() && DotGraphScope == DotScope::All) ||
(ContextIdForDot.getNumOccurrences() &&
DotGraphScope != DotScope::Context);
}
using GraphType = const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *;
using GTraits = GraphTraits<GraphType>;
using NodeRef = typename GTraits::NodeRef;
using ChildIteratorType = typename GTraits::ChildIteratorType;
static std::string getNodeLabel(NodeRef Node, GraphType G) {
std::string LabelString =
(Twine("OrigId: ") + (Node->IsAllocation ? "Alloc" : "") +
Twine(Node->OrigStackOrAllocId))
.str();
LabelString += "\n";
if (Node->hasCall()) {
auto Func = G->NodeToCallingFunc.find(Node);
assert(Func != G->NodeToCallingFunc.end());
LabelString +=
G->getLabel(Func->second, Node->Call.call(), Node->Call.cloneNo());
} else {
LabelString += "null call";
if (Node->Recursive)
LabelString += " (recursive)";
else
LabelString += " (external)";
}
return LabelString;
}
static std::string getNodeAttributes(NodeRef Node, GraphType G) {
auto ContextIds = Node->getContextIds();
// If highlighting enabled, see if this node contains any of the context ids
// of interest. If so, it will use a different color and a larger fontsize
// (which makes the node larger as well).
bool Highlight = false;
if (DoHighlight) {
assert(ContextIdForDot.getNumOccurrences() ||
AllocIdForDot.getNumOccurrences());
if (ContextIdForDot.getNumOccurrences())
Highlight = ContextIds.contains(ContextIdForDot);
else
Highlight = set_intersects(ContextIds, G->DotAllocContextIds);
}
std::string AttributeString = (Twine("tooltip=\"") + getNodeId(Node) + " " +
getContextIds(ContextIds) + "\"")
.str();
// Default fontsize is 14
if (Highlight)
AttributeString += ",fontsize=\"30\"";
AttributeString +=
(Twine(",fillcolor=\"") + getColor(Node->AllocTypes, Highlight) + "\"")
.str();
if (Node->CloneOf) {
AttributeString += ",color=\"blue\"";
AttributeString += ",style=\"filled,bold,dashed\"";
} else
AttributeString += ",style=\"filled\"";
return AttributeString;
}
static std::string getEdgeAttributes(NodeRef, ChildIteratorType ChildIter,
GraphType G) {
auto &Edge = *(ChildIter.getCurrent());
// If highlighting enabled, see if this edge contains any of the context ids
// of interest. If so, it will use a different color and a heavier arrow
// size and weight (the larger weight makes the highlighted path
// straighter).
bool Highlight = false;
if (DoHighlight) {
assert(ContextIdForDot.getNumOccurrences() ||
AllocIdForDot.getNumOccurrences());
if (ContextIdForDot.getNumOccurrences())
Highlight = Edge->ContextIds.contains(ContextIdForDot);
else
Highlight = set_intersects(Edge->ContextIds, G->DotAllocContextIds);
}
auto Color = getColor(Edge->AllocTypes, Highlight);
std::string AttributeString =
(Twine("tooltip=\"") + getContextIds(Edge->ContextIds) + "\"" +
// fillcolor is the arrow head and color is the line
Twine(",fillcolor=\"") + Color + "\"" + Twine(",color=\"") + Color +
"\"")
.str();
if (Edge->IsBackedge)
AttributeString += ",style=\"dotted\"";
// Default penwidth and weight are both 1.
if (Highlight)
AttributeString += ",penwidth=\"2.0\",weight=\"2\"";
return AttributeString;
}
// Since the NodeOwners list includes nodes that are no longer connected to
// the graph, skip them here.
static bool isNodeHidden(NodeRef Node, GraphType G) {
if (Node->isRemoved())
return true;
// If a scope smaller than the full graph was requested, see if this node
// contains any of the context ids of interest.
if (DotGraphScope == DotScope::Alloc)
return !set_intersects(Node->getContextIds(), G->DotAllocContextIds);
if (DotGraphScope == DotScope::Context)
return !Node->getContextIds().contains(ContextIdForDot);
return false;
}
private:
static std::string getContextIds(const DenseSet<uint32_t> &ContextIds) {
std::string IdString = "ContextIds:";
if (ContextIds.size() < 100) {
std::vector<uint32_t> SortedIds(ContextIds.begin(), ContextIds.end());
std::sort(SortedIds.begin(), SortedIds.end());
for (auto Id : SortedIds)
IdString += (" " + Twine(Id)).str();
} else {
IdString += (" (" + Twine(ContextIds.size()) + " ids)").str();
}
return IdString;
}
static std::string getColor(uint8_t AllocTypes, bool Highlight) {
// If DoHighlight is not enabled, we want to use the highlight colors for
// NotCold and Cold, and the non-highlight color for NotCold+Cold. This is
// both compatible with the color scheme before highlighting was supported,
// and for the NotCold+Cold color the non-highlight color is a bit more
// readable.
if (AllocTypes == (uint8_t)AllocationType::NotCold)
// Color "brown1" actually looks like a lighter red.
return !DoHighlight || Highlight ? "brown1" : "lightpink";
if (AllocTypes == (uint8_t)AllocationType::Cold)
return !DoHighlight || Highlight ? "cyan" : "lightskyblue";
if (AllocTypes ==
((uint8_t)AllocationType::NotCold | (uint8_t)AllocationType::Cold))
return Highlight ? "magenta" : "mediumorchid1";
return "gray";
}
static std::string getNodeId(NodeRef Node) {
std::stringstream SStream;
SStream << std::hex << "N0x" << (unsigned long long)Node;
std::string Result = SStream.str();
return Result;
}
// True if we should highlight a specific context or allocation's contexts in
// the emitted graph.
static bool DoHighlight;
};
template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool DOTGraphTraits<
const CallsiteContextGraph<DerivedCCG, FuncTy, CallTy> *>::DoHighlight =
false;
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::exportToDot(
std::string Label) const {
WriteGraph(this, "", false, Label,
DotFilePathPrefix + "ccg." + Label + ".dot");
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
typename CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::ContextNode *
CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::moveEdgeToNewCalleeClone(
const std::shared_ptr<ContextEdge> &Edge,
DenseSet<uint32_t> ContextIdsToMove) {
ContextNode *Node = Edge->Callee;
assert(NodeToCallingFunc.count(Node));
ContextNode *Clone =
createNewNode(Node->IsAllocation, NodeToCallingFunc[Node], Node->Call);
Node->addClone(Clone);
Clone->MatchingCalls = Node->MatchingCalls;
moveEdgeToExistingCalleeClone(Edge, Clone, /*NewClone=*/true,
ContextIdsToMove);
return Clone;
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::
moveEdgeToExistingCalleeClone(const std::shared_ptr<ContextEdge> &Edge,
ContextNode *NewCallee, bool NewClone,
DenseSet<uint32_t> ContextIdsToMove) {
// NewCallee and Edge's current callee must be clones of the same original
// node (Edge's current callee may be the original node too).
assert(NewCallee->getOrigNode() == Edge->Callee->getOrigNode());
bool EdgeIsRecursive = Edge->Callee == Edge->Caller;
ContextNode *OldCallee = Edge->Callee;
// We might already have an edge to the new callee from earlier cloning for a
// different allocation. If one exists we will reuse it.
auto ExistingEdgeToNewCallee = NewCallee->findEdgeFromCaller(Edge->Caller);
// Callers will pass an empty ContextIdsToMove set when they want to move the
// edge. Copy in Edge's ids for simplicity.
if (ContextIdsToMove.empty())
ContextIdsToMove = Edge->getContextIds();
// If we are moving all of Edge's ids, then just move the whole Edge.
// Otherwise only move the specified subset, to a new edge if needed.
if (Edge->getContextIds().size() == ContextIdsToMove.size()) {
// First, update the alloc types on New Callee from Edge.
// Do this before we potentially clear Edge's fields below!
NewCallee->AllocTypes |= Edge->AllocTypes;
// Moving the whole Edge.
if (ExistingEdgeToNewCallee) {
// Since we already have an edge to NewCallee, simply move the ids
// onto it, and remove the existing Edge.
ExistingEdgeToNewCallee->getContextIds().insert_range(ContextIdsToMove);
ExistingEdgeToNewCallee->AllocTypes |= Edge->AllocTypes;
assert(Edge->ContextIds == ContextIdsToMove);
removeEdgeFromGraph(Edge.get());
} else {
// Otherwise just reconnect Edge to NewCallee.
Edge->Callee = NewCallee;
NewCallee->CallerEdges.push_back(Edge);
// Remove it from callee where it was previously connected.
OldCallee->eraseCallerEdge(Edge.get());
// Don't need to update Edge's context ids since we are simply
// reconnecting it.
}
} else {
// Only moving a subset of Edge's ids.
// Compute the alloc type of the subset of ids being moved.
auto CallerEdgeAllocType = computeAllocType(ContextIdsToMove);
if (ExistingEdgeToNewCallee) {
// Since we already have an edge to NewCallee, simply move the ids
// onto it.
ExistingEdgeToNewCallee->getContextIds().insert_range(ContextIdsToMove);
ExistingEdgeToNewCallee->AllocTypes |= CallerEdgeAllocType;
} else {
// Otherwise, create a new edge to NewCallee for the ids being moved.
auto NewEdge = std::make_shared<ContextEdge>(
NewCallee, Edge->Caller, CallerEdgeAllocType, ContextIdsToMove);
Edge->Caller->CalleeEdges.push_back(NewEdge);
NewCallee->CallerEdges.push_back(NewEdge);
}
// In either case, need to update the alloc types on NewCallee, and remove
// those ids and update the alloc type on the original Edge.
NewCallee->AllocTypes |= CallerEdgeAllocType;
set_subtract(Edge->ContextIds, ContextIdsToMove);
Edge->AllocTypes = computeAllocType(Edge->ContextIds);
}
// Now walk the old callee node's callee edges and move Edge's context ids
// over to the corresponding edge into the clone (which is created here if
// this is a newly created clone).
for (auto &OldCalleeEdge : OldCallee->CalleeEdges) {
ContextNode *CalleeToUse = OldCalleeEdge->Callee;
// If this is a direct recursion edge, use NewCallee (the clone) as the
// callee as well, so that any edge updated/created here is also direct
// recursive.
if (CalleeToUse == OldCallee) {
// If this is a recursive edge, see if we already moved a recursive edge
// (which would have to have been this one) - if we were only moving a
// subset of context ids it would still be on OldCallee.
if (EdgeIsRecursive) {
assert(OldCalleeEdge == Edge);
continue;
}
CalleeToUse = NewCallee;
}
// The context ids moving to the new callee are the subset of this edge's
// context ids and the context ids on the caller edge being moved.
DenseSet<uint32_t> EdgeContextIdsToMove =
set_intersection(OldCalleeEdge->getContextIds(), ContextIdsToMove);
set_subtract(OldCalleeEdge->getContextIds(), EdgeContextIdsToMove);
OldCalleeEdge->AllocTypes =
computeAllocType(OldCalleeEdge->getContextIds());
if (!NewClone) {
// Update context ids / alloc type on corresponding edge to NewCallee.
// There is a chance this may not exist if we are reusing an existing
// clone, specifically during function assignment, where we would have
// removed none type edges after creating the clone. If we can't find
// a corresponding edge there, fall through to the cloning below.
if (auto *NewCalleeEdge = NewCallee->findEdgeFromCallee(CalleeToUse)) {
NewCalleeEdge->getContextIds().insert_range(EdgeContextIdsToMove);
NewCalleeEdge->AllocTypes |= computeAllocType(EdgeContextIdsToMove);
continue;
}
}
auto NewEdge = std::make_shared<ContextEdge>(
CalleeToUse, NewCallee, computeAllocType(EdgeContextIdsToMove),
EdgeContextIdsToMove);
NewCallee->CalleeEdges.push_back(NewEdge);
NewEdge->Callee->CallerEdges.push_back(NewEdge);
}
// Recompute the node alloc type now that its callee edges have been
// updated (since we will compute from those edges).
OldCallee->AllocTypes = OldCallee->computeAllocType();
// OldCallee alloc type should be None iff its context id set is now empty.
assert((OldCallee->AllocTypes == (uint8_t)AllocationType::None) ==
OldCallee->emptyContextIds());
if (VerifyCCG) {
checkNode<DerivedCCG, FuncTy, CallTy>(OldCallee, /*CheckEdges=*/false);
checkNode<DerivedCCG, FuncTy, CallTy>(NewCallee, /*CheckEdges=*/false);
for (const auto &OldCalleeEdge : OldCallee->CalleeEdges)
checkNode<DerivedCCG, FuncTy, CallTy>(OldCalleeEdge->Callee,
/*CheckEdges=*/false);
for (const auto &NewCalleeEdge : NewCallee->CalleeEdges)
checkNode<DerivedCCG, FuncTy, CallTy>(NewCalleeEdge->Callee,
/*CheckEdges=*/false);
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::
moveCalleeEdgeToNewCaller(const std::shared_ptr<ContextEdge> &Edge,
ContextNode *NewCaller) {
auto *OldCallee = Edge->Callee;
auto *NewCallee = OldCallee;
// If this edge was direct recursive, make any new/updated edge also direct
// recursive to NewCaller.
bool Recursive = Edge->Caller == Edge->Callee;
if (Recursive)
NewCallee = NewCaller;
ContextNode *OldCaller = Edge->Caller;
OldCaller->eraseCalleeEdge(Edge.get());
// We might already have an edge to the new caller. If one exists we will
// reuse it.
auto ExistingEdgeToNewCaller = NewCaller->findEdgeFromCallee(NewCallee);
if (ExistingEdgeToNewCaller) {
// Since we already have an edge to NewCaller, simply move the ids
// onto it, and remove the existing Edge.
ExistingEdgeToNewCaller->getContextIds().insert_range(
Edge->getContextIds());
ExistingEdgeToNewCaller->AllocTypes |= Edge->AllocTypes;
Edge->ContextIds.clear();
Edge->AllocTypes = (uint8_t)AllocationType::None;
OldCallee->eraseCallerEdge(Edge.get());
} else {
// Otherwise just reconnect Edge to NewCaller.
Edge->Caller = NewCaller;
NewCaller->CalleeEdges.push_back(Edge);
if (Recursive) {
assert(NewCallee == NewCaller);
// In the case of (direct) recursive edges, we update the callee as well
// so that it becomes recursive on the new caller.
Edge->Callee = NewCallee;
NewCallee->CallerEdges.push_back(Edge);
OldCallee->eraseCallerEdge(Edge.get());
}
// Don't need to update Edge's context ids since we are simply
// reconnecting it.
}
// In either case, need to update the alloc types on New Caller.
NewCaller->AllocTypes |= Edge->AllocTypes;
// Now walk the old caller node's caller edges and move Edge's context ids
// over to the corresponding edge into the node (which is created here if
// this is a newly created node). We can tell whether this is a newly created
// node by seeing if it has any caller edges yet.
#ifndef NDEBUG
bool IsNewNode = NewCaller->CallerEdges.empty();
#endif
// If we just moved a direct recursive edge, presumably its context ids should
// also flow out of OldCaller via some other non-recursive callee edge. We
// don't want to remove the recursive context ids from other caller edges yet,
// otherwise the context ids get into an inconsistent state on OldCaller.
// We will update these context ids on the non-recursive caller edge when and
// if they are updated on the non-recursive callee.
if (!Recursive) {
for (auto &OldCallerEdge : OldCaller->CallerEdges) {
auto OldCallerCaller = OldCallerEdge->Caller;
// The context ids moving to the new caller are the subset of this edge's
// context ids and the context ids on the callee edge being moved.
DenseSet<uint32_t> EdgeContextIdsToMove = set_intersection(
OldCallerEdge->getContextIds(), Edge->getContextIds());
if (OldCaller == OldCallerCaller) {
OldCallerCaller = NewCaller;
// Don't actually move this one. The caller will move it directly via a
// call to this function with this as the Edge if it is appropriate to
// move to a diff node that has a matching callee (itself).
continue;
}
set_subtract(OldCallerEdge->getContextIds(), EdgeContextIdsToMove);
OldCallerEdge->AllocTypes =
computeAllocType(OldCallerEdge->getContextIds());
// In this function we expect that any pre-existing node already has edges
// from the same callers as the old node. That should be true in the
// current use case, where we will remove None-type edges after copying
// over all caller edges from the callee.
auto *ExistingCallerEdge = NewCaller->findEdgeFromCaller(OldCallerCaller);
// Since we would have skipped caller edges when moving a direct recursive
// edge, this may not hold true when recursive handling enabled.
assert(IsNewNode || ExistingCallerEdge || AllowRecursiveCallsites);
if (ExistingCallerEdge) {
ExistingCallerEdge->getContextIds().insert_range(EdgeContextIdsToMove);
ExistingCallerEdge->AllocTypes |=
computeAllocType(EdgeContextIdsToMove);
continue;
}
auto NewEdge = std::make_shared<ContextEdge>(
NewCaller, OldCallerCaller, computeAllocType(EdgeContextIdsToMove),
EdgeContextIdsToMove);
NewCaller->CallerEdges.push_back(NewEdge);
NewEdge->Caller->CalleeEdges.push_back(NewEdge);
}
}
// Recompute the node alloc type now that its caller edges have been
// updated (since we will compute from those edges).
OldCaller->AllocTypes = OldCaller->computeAllocType();
// OldCaller alloc type should be None iff its context id set is now empty.
assert((OldCaller->AllocTypes == (uint8_t)AllocationType::None) ==
OldCaller->emptyContextIds());
if (VerifyCCG) {
checkNode<DerivedCCG, FuncTy, CallTy>(OldCaller, /*CheckEdges=*/false);
checkNode<DerivedCCG, FuncTy, CallTy>(NewCaller, /*CheckEdges=*/false);
for (const auto &OldCallerEdge : OldCaller->CallerEdges)
checkNode<DerivedCCG, FuncTy, CallTy>(OldCallerEdge->Caller,
/*CheckEdges=*/false);
for (const auto &NewCallerEdge : NewCaller->CallerEdges)
checkNode<DerivedCCG, FuncTy, CallTy>(NewCallerEdge->Caller,
/*CheckEdges=*/false);
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::
recursivelyRemoveNoneTypeCalleeEdges(
ContextNode *Node, DenseSet<const ContextNode *> &Visited) {
auto Inserted = Visited.insert(Node);
if (!Inserted.second)
return;
removeNoneTypeCalleeEdges(Node);
for (auto *Clone : Node->Clones)
recursivelyRemoveNoneTypeCalleeEdges(Clone, Visited);
// The recursive call may remove some of this Node's caller edges.
// Iterate over a copy and skip any that were removed.
auto CallerEdges = Node->CallerEdges;
for (auto &Edge : CallerEdges) {
// Skip any that have been removed by an earlier recursive call.
if (Edge->isRemoved()) {
assert(!is_contained(Node->CallerEdges, Edge));
continue;
}
recursivelyRemoveNoneTypeCalleeEdges(Edge->Caller, Visited);
}
}
// This is the standard DFS based backedge discovery algorithm.
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::markBackedges() {
// If we are cloning recursive contexts, find and mark backedges from all root
// callers, using the typical DFS based backedge analysis.
if (!CloneRecursiveContexts)
return;
DenseSet<const ContextNode *> Visited;
DenseSet<const ContextNode *> CurrentStack;
for (auto &Entry : NonAllocationCallToContextNodeMap) {
auto *Node = Entry.second;
if (Node->isRemoved())
continue;
// It is a root if it doesn't have callers.
if (!Node->CallerEdges.empty())
continue;
markBackedges(Node, Visited, CurrentStack);
assert(CurrentStack.empty());
}
}
// Recursive helper for above markBackedges method.
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::markBackedges(
ContextNode *Node, DenseSet<const ContextNode *> &Visited,
DenseSet<const ContextNode *> &CurrentStack) {
auto I = Visited.insert(Node);
// We should only call this for unvisited nodes.
assert(I.second);
(void)I;
for (auto &CalleeEdge : Node->CalleeEdges) {
auto *Callee = CalleeEdge->Callee;
if (Visited.count(Callee)) {
// Since this was already visited we need to check if it is currently on
// the recursive stack in which case it is a backedge.
if (CurrentStack.count(Callee))
CalleeEdge->IsBackedge = true;
continue;
}
CurrentStack.insert(Callee);
markBackedges(Callee, Visited, CurrentStack);
CurrentStack.erase(Callee);
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::identifyClones() {
DenseSet<const ContextNode *> Visited;
for (auto &Entry : AllocationCallToContextNodeMap) {
Visited.clear();
identifyClones(Entry.second, Visited, Entry.second->getContextIds());
}
Visited.clear();
for (auto &Entry : AllocationCallToContextNodeMap)
recursivelyRemoveNoneTypeCalleeEdges(Entry.second, Visited);
if (VerifyCCG)
check();
}
// helper function to check an AllocType is cold or notcold or both.
bool checkColdOrNotCold(uint8_t AllocType) {
return (AllocType == (uint8_t)AllocationType::Cold) ||
(AllocType == (uint8_t)AllocationType::NotCold) ||
(AllocType ==
((uint8_t)AllocationType::Cold | (uint8_t)AllocationType::NotCold));
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::identifyClones(
ContextNode *Node, DenseSet<const ContextNode *> &Visited,
const DenseSet<uint32_t> &AllocContextIds) {
if (VerifyNodes)
checkNode<DerivedCCG, FuncTy, CallTy>(Node, /*CheckEdges=*/false);
assert(!Node->CloneOf);
// If Node as a null call, then either it wasn't found in the module (regular
// LTO) or summary index (ThinLTO), or there were other conditions blocking
// cloning (e.g. recursion, calls multiple targets, etc).
// Do this here so that we don't try to recursively clone callers below, which
// isn't useful at least for this node.
if (!Node->hasCall())
return;
// No need to look at any callers if allocation type already unambiguous.
if (hasSingleAllocType(Node->AllocTypes))
return;
#ifndef NDEBUG
auto Insert =
#endif
Visited.insert(Node);
// We should not have visited this node yet.
assert(Insert.second);
// The recursive call to identifyClones may delete the current edge from the
// CallerEdges vector. Make a copy and iterate on that, simpler than passing
// in an iterator and having recursive call erase from it. Other edges may
// also get removed during the recursion, which will have null Callee and
// Caller pointers (and are deleted later), so we skip those below.
{
auto CallerEdges = Node->CallerEdges;
for (auto &Edge : CallerEdges) {
// Skip any that have been removed by an earlier recursive call.
if (Edge->isRemoved()) {
assert(!is_contained(Node->CallerEdges, Edge));
continue;
}
// Defer backedges. See comments further below where these edges are
// handled during the cloning of this Node.
if (Edge->IsBackedge) {
// We should only mark these if cloning recursive contexts, where we
// need to do this deferral.
assert(CloneRecursiveContexts);
continue;
}
// Ignore any caller we previously visited via another edge.
if (!Visited.count(Edge->Caller) && !Edge->Caller->CloneOf) {
identifyClones(Edge->Caller, Visited, AllocContextIds);
}
}
}
// Check if we reached an unambiguous call or have have only a single caller.
if (hasSingleAllocType(Node->AllocTypes) || Node->CallerEdges.size() <= 1)
return;
// We need to clone.
// Try to keep the original version as alloc type NotCold. This will make
// cases with indirect calls or any other situation with an unknown call to
// the original function get the default behavior. We do this by sorting the
// CallerEdges of the Node we will clone by alloc type.
//
// Give NotCold edge the lowest sort priority so those edges are at the end of
// the caller edges vector, and stay on the original version (since the below
// code clones greedily until it finds all remaining edges have the same type
// and leaves the remaining ones on the original Node).
//
// We shouldn't actually have any None type edges, so the sorting priority for
// that is arbitrary, and we assert in that case below.
const unsigned AllocTypeCloningPriority[] = {/*None*/ 3, /*NotCold*/ 4,
/*Cold*/ 1,
/*NotColdCold*/ 2};
llvm::stable_sort(Node->CallerEdges,
[&](const std::shared_ptr<ContextEdge> &A,
const std::shared_ptr<ContextEdge> &B) {
// Nodes with non-empty context ids should be sorted
// before those with empty context ids.
if (A->ContextIds.empty())
// Either B ContextIds are non-empty (in which case we
// should return false because B < A), or B ContextIds
// are empty, in which case they are equal, and we
// should maintain the original relative ordering.
return false;
if (B->ContextIds.empty())
return true;
if (A->AllocTypes == B->AllocTypes)
// Use the first context id for each edge as a
// tie-breaker.
return *A->ContextIds.begin() < *B->ContextIds.begin();
return AllocTypeCloningPriority[A->AllocTypes] <
AllocTypeCloningPriority[B->AllocTypes];
});
assert(Node->AllocTypes != (uint8_t)AllocationType::None);
DenseSet<uint32_t> RecursiveContextIds;
assert(AllowRecursiveContexts || !CloneRecursiveContexts);
// If we are allowing recursive callsites, but have also disabled recursive
// contexts, look for context ids that show up in multiple caller edges.
if (AllowRecursiveCallsites && !AllowRecursiveContexts) {
DenseSet<uint32_t> AllCallerContextIds;
for (auto &CE : Node->CallerEdges) {
// Resize to the largest set of caller context ids, since we know the
// final set will be at least that large.
AllCallerContextIds.reserve(CE->getContextIds().size());
for (auto Id : CE->getContextIds())
if (!AllCallerContextIds.insert(Id).second)
RecursiveContextIds.insert(Id);
}
}
// Iterate until we find no more opportunities for disambiguating the alloc
// types via cloning. In most cases this loop will terminate once the Node
// has a single allocation type, in which case no more cloning is needed.
// Iterate over a copy of Node's caller edges, since we may need to remove
// edges in the moveEdgeTo* methods, and this simplifies the handling and
// makes it less error-prone.
auto CallerEdges = Node->CallerEdges;
for (auto &CallerEdge : CallerEdges) {
// Skip any that have been removed by an earlier recursive call.
if (CallerEdge->isRemoved()) {
assert(!is_contained(Node->CallerEdges, CallerEdge));
continue;
}
assert(CallerEdge->Callee == Node);
// See if cloning the prior caller edge left this node with a single alloc
// type or a single caller. In that case no more cloning of Node is needed.
if (hasSingleAllocType(Node->AllocTypes) || Node->CallerEdges.size() <= 1)
break;
// If the caller was not successfully matched to a call in the IR/summary,
// there is no point in trying to clone for it as we can't update that call.
if (!CallerEdge->Caller->hasCall())
continue;
// Only need to process the ids along this edge pertaining to the given
// allocation.
auto CallerEdgeContextsForAlloc =
set_intersection(CallerEdge->getContextIds(), AllocContextIds);
if (!RecursiveContextIds.empty())
CallerEdgeContextsForAlloc =
set_difference(CallerEdgeContextsForAlloc, RecursiveContextIds);
if (CallerEdgeContextsForAlloc.empty())
continue;
auto CallerAllocTypeForAlloc = computeAllocType(CallerEdgeContextsForAlloc);
// Compute the node callee edge alloc types corresponding to the context ids
// for this caller edge.
std::vector<uint8_t> CalleeEdgeAllocTypesForCallerEdge;
CalleeEdgeAllocTypesForCallerEdge.reserve(Node->CalleeEdges.size());
for (auto &CalleeEdge : Node->CalleeEdges)
CalleeEdgeAllocTypesForCallerEdge.push_back(intersectAllocTypes(
CalleeEdge->getContextIds(), CallerEdgeContextsForAlloc));
// Don't clone if doing so will not disambiguate any alloc types amongst
// caller edges (including the callee edges that would be cloned).
// Otherwise we will simply move all edges to the clone.
//
// First check if by cloning we will disambiguate the caller allocation
// type from node's allocation type. Query allocTypeToUse so that we don't
// bother cloning to distinguish NotCold+Cold from NotCold. Note that
// neither of these should be None type.
//
// Then check if by cloning node at least one of the callee edges will be
// disambiguated by splitting out different context ids.
//
// However, always do the cloning if this is a backedge, in which case we
// have not yet cloned along this caller edge.
assert(CallerEdge->AllocTypes != (uint8_t)AllocationType::None);
assert(Node->AllocTypes != (uint8_t)AllocationType::None);
if (!CallerEdge->IsBackedge &&
allocTypeToUse(CallerAllocTypeForAlloc) ==
allocTypeToUse(Node->AllocTypes) &&
allocTypesMatch<DerivedCCG, FuncTy, CallTy>(
CalleeEdgeAllocTypesForCallerEdge, Node->CalleeEdges)) {
continue;
}
if (CallerEdge->IsBackedge) {
// We should only mark these if cloning recursive contexts, where we
// need to do this deferral.
assert(CloneRecursiveContexts);
DeferredBackedges++;
}
// If this is a backedge, we now do recursive cloning starting from its
// caller since we may have moved unambiguous caller contexts to a clone
// of this Node in a previous iteration of the current loop, giving more
// opportunity for cloning through the backedge. Because we sorted the
// caller edges earlier so that cold caller edges are first, we would have
// visited and cloned this node for any unamibiguously cold non-recursive
// callers before any ambiguous backedge callers. Note that we don't do this
// if the caller is already cloned or visited during cloning (e.g. via a
// different context path from the allocation).
// TODO: Can we do better in the case where the caller was already visited?
if (CallerEdge->IsBackedge && !CallerEdge->Caller->CloneOf &&
!Visited.count(CallerEdge->Caller)) {
const auto OrigIdCount = CallerEdge->getContextIds().size();
// Now do the recursive cloning of this backedge's caller, which was
// deferred earlier.
identifyClones(CallerEdge->Caller, Visited, CallerEdgeContextsForAlloc);
removeNoneTypeCalleeEdges(CallerEdge->Caller);
// See if the recursive call to identifyClones moved the context ids to a
// new edge from this node to a clone of caller, and switch to looking at
// that new edge so that we clone Node for the new caller clone.
bool UpdatedEdge = false;
if (OrigIdCount > CallerEdge->getContextIds().size()) {
for (auto E : Node->CallerEdges) {
// Only interested in clones of the current edges caller.
if (E->Caller->CloneOf != CallerEdge->Caller)
continue;
// See if this edge contains any of the context ids originally on the
// current caller edge.
auto CallerEdgeContextsForAllocNew =
set_intersection(CallerEdgeContextsForAlloc, E->getContextIds());
if (CallerEdgeContextsForAllocNew.empty())
continue;
// Make sure we don't pick a previously existing caller edge of this
// Node, which would be processed on a different iteration of the
// outer loop over the saved CallerEdges.
if (llvm::is_contained(CallerEdges, E))
continue;
// The CallerAllocTypeForAlloc and CalleeEdgeAllocTypesForCallerEdge
// are updated further below for all cases where we just invoked
// identifyClones recursively.
CallerEdgeContextsForAlloc.swap(CallerEdgeContextsForAllocNew);
CallerEdge = E;
UpdatedEdge = true;
break;
}
}
// If cloning removed this edge (and we didn't update it to a new edge
// above), we're done with this edge. It's possible we moved all of the
// context ids to an existing clone, in which case there's no need to do
// further processing for them.
if (CallerEdge->isRemoved())
continue;
// Now we need to update the information used for the cloning decisions
// further below, as we may have modified edges and their context ids.
// Note if we changed the CallerEdge above we would have already updated
// the context ids.
if (!UpdatedEdge) {
CallerEdgeContextsForAlloc = set_intersection(
CallerEdgeContextsForAlloc, CallerEdge->getContextIds());
if (CallerEdgeContextsForAlloc.empty())
continue;
}
// Update the other information that depends on the edges and on the now
// updated CallerEdgeContextsForAlloc.
CallerAllocTypeForAlloc = computeAllocType(CallerEdgeContextsForAlloc);
CalleeEdgeAllocTypesForCallerEdge.clear();
for (auto &CalleeEdge : Node->CalleeEdges) {
CalleeEdgeAllocTypesForCallerEdge.push_back(intersectAllocTypes(
CalleeEdge->getContextIds(), CallerEdgeContextsForAlloc));
}
}
// First see if we can use an existing clone. Check each clone and its
// callee edges for matching alloc types.
ContextNode *Clone = nullptr;
for (auto *CurClone : Node->Clones) {
if (allocTypeToUse(CurClone->AllocTypes) !=
allocTypeToUse(CallerAllocTypeForAlloc))
continue;
bool BothSingleAlloc = hasSingleAllocType(CurClone->AllocTypes) &&
hasSingleAllocType(CallerAllocTypeForAlloc);
// The above check should mean that if both have single alloc types that
// they should be equal.
assert(!BothSingleAlloc ||
CurClone->AllocTypes == CallerAllocTypeForAlloc);
// If either both have a single alloc type (which are the same), or if the
// clone's callee edges have the same alloc types as those for the current
// allocation on Node's callee edges (CalleeEdgeAllocTypesForCallerEdge),
// then we can reuse this clone.
if (BothSingleAlloc || allocTypesMatchClone<DerivedCCG, FuncTy, CallTy>(
CalleeEdgeAllocTypesForCallerEdge, CurClone)) {
Clone = CurClone;
break;
}
}
// The edge iterator is adjusted when we move the CallerEdge to the clone.
if (Clone)
moveEdgeToExistingCalleeClone(CallerEdge, Clone, /*NewClone=*/false,
CallerEdgeContextsForAlloc);
else
Clone = moveEdgeToNewCalleeClone(CallerEdge, CallerEdgeContextsForAlloc);
// Sanity check that no alloc types on clone or its edges are None.
assert(Clone->AllocTypes != (uint8_t)AllocationType::None);
}
// We should still have some context ids on the original Node.
assert(!Node->emptyContextIds());
// Sanity check that no alloc types on node or edges are None.
assert(Node->AllocTypes != (uint8_t)AllocationType::None);
if (VerifyNodes)
checkNode<DerivedCCG, FuncTy, CallTy>(Node, /*CheckEdges=*/false);
}
void ModuleCallsiteContextGraph::updateAllocationCall(
CallInfo &Call, AllocationType AllocType) {
std::string AllocTypeString = getAllocTypeAttributeString(AllocType);
auto A = llvm::Attribute::get(Call.call()->getFunction()->getContext(),
"memprof", AllocTypeString);
cast<CallBase>(Call.call())->addFnAttr(A);
OREGetter(Call.call()->getFunction())
.emit(OptimizationRemark(DEBUG_TYPE, "MemprofAttribute", Call.call())
<< ore::NV("AllocationCall", Call.call()) << " in clone "
<< ore::NV("Caller", Call.call()->getFunction())
<< " marked with memprof allocation attribute "
<< ore::NV("Attribute", AllocTypeString));
}
void IndexCallsiteContextGraph::updateAllocationCall(CallInfo &Call,
AllocationType AllocType) {
auto *AI = cast<AllocInfo *>(Call.call());
assert(AI);
assert(AI->Versions.size() > Call.cloneNo());
AI->Versions[Call.cloneNo()] = (uint8_t)AllocType;
}
AllocationType
ModuleCallsiteContextGraph::getAllocationCallType(const CallInfo &Call) const {
const auto *CB = cast<CallBase>(Call.call());
if (!CB->getAttributes().hasFnAttr("memprof"))
return AllocationType::None;
return CB->getAttributes().getFnAttr("memprof").getValueAsString() == "cold"
? AllocationType::Cold
: AllocationType::NotCold;
}
AllocationType
IndexCallsiteContextGraph::getAllocationCallType(const CallInfo &Call) const {
const auto *AI = cast<AllocInfo *>(Call.call());
assert(AI->Versions.size() > Call.cloneNo());
return (AllocationType)AI->Versions[Call.cloneNo()];
}
void ModuleCallsiteContextGraph::updateCall(CallInfo &CallerCall,
FuncInfo CalleeFunc) {
if (CalleeFunc.cloneNo() > 0)
cast<CallBase>(CallerCall.call())->setCalledFunction(CalleeFunc.func());
OREGetter(CallerCall.call()->getFunction())
.emit(OptimizationRemark(DEBUG_TYPE, "MemprofCall", CallerCall.call())
<< ore::NV("Call", CallerCall.call()) << " in clone "
<< ore::NV("Caller", CallerCall.call()->getFunction())
<< " assigned to call function clone "
<< ore::NV("Callee", CalleeFunc.func()));
}
void IndexCallsiteContextGraph::updateCall(CallInfo &CallerCall,
FuncInfo CalleeFunc) {
auto *CI = cast<CallsiteInfo *>(CallerCall.call());
assert(CI &&
"Caller cannot be an allocation which should not have profiled calls");
assert(CI->Clones.size() > CallerCall.cloneNo());
CI->Clones[CallerCall.cloneNo()] = CalleeFunc.cloneNo();
}
CallsiteContextGraph<ModuleCallsiteContextGraph, Function,
Instruction *>::FuncInfo
ModuleCallsiteContextGraph::cloneFunctionForCallsite(
FuncInfo &Func, CallInfo &Call, std::map<CallInfo, CallInfo> &CallMap,
std::vector<CallInfo> &CallsWithMetadataInFunc, unsigned CloneNo) {
// Use existing LLVM facilities for cloning and obtaining Call in clone
ValueToValueMapTy VMap;
auto *NewFunc = CloneFunction(Func.func(), VMap);
std::string Name = getMemProfFuncName(Func.func()->getName(), CloneNo);
assert(!Func.func()->getParent()->getFunction(Name));
NewFunc->setName(Name);
if (auto *SP = NewFunc->getSubprogram())
SP->replaceLinkageName(
MDString::get(NewFunc->getParent()->getContext(), Name));
for (auto &Inst : CallsWithMetadataInFunc) {
// This map always has the initial version in it.
assert(Inst.cloneNo() == 0);
CallMap[Inst] = {cast<Instruction>(VMap[Inst.call()]), CloneNo};
}
OREGetter(Func.func())
.emit(OptimizationRemark(DEBUG_TYPE, "MemprofClone", Func.func())
<< "created clone " << ore::NV("NewFunction", NewFunc));
return {NewFunc, CloneNo};
}
CallsiteContextGraph<IndexCallsiteContextGraph, FunctionSummary,
IndexCall>::FuncInfo
IndexCallsiteContextGraph::cloneFunctionForCallsite(
FuncInfo &Func, CallInfo &Call, std::map<CallInfo, CallInfo> &CallMap,
std::vector<CallInfo> &CallsWithMetadataInFunc, unsigned CloneNo) {
// Check how many clones we have of Call (and therefore function).
// The next clone number is the current size of versions array.
// Confirm this matches the CloneNo provided by the caller, which is based on
// the number of function clones we have.
assert(CloneNo == (isa<AllocInfo *>(Call.call())
? cast<AllocInfo *>(Call.call())->Versions.size()
: cast<CallsiteInfo *>(Call.call())->Clones.size()));
// Walk all the instructions in this function. Create a new version for
// each (by adding an entry to the Versions/Clones summary array), and copy
// over the version being called for the function clone being cloned here.
// Additionally, add an entry to the CallMap for the new function clone,
// mapping the original call (clone 0, what is in CallsWithMetadataInFunc)
// to the new call clone.
for (auto &Inst : CallsWithMetadataInFunc) {
// This map always has the initial version in it.
assert(Inst.cloneNo() == 0);
if (auto *AI = dyn_cast<AllocInfo *>(Inst.call())) {
assert(AI->Versions.size() == CloneNo);
// We assign the allocation type later (in updateAllocationCall), just add
// an entry for it here.
AI->Versions.push_back(0);
} else {
auto *CI = cast<CallsiteInfo *>(Inst.call());
assert(CI && CI->Clones.size() == CloneNo);
// We assign the clone number later (in updateCall), just add an entry for
// it here.
CI->Clones.push_back(0);
}
CallMap[Inst] = {Inst.call(), CloneNo};
}
return {Func.func(), CloneNo};
}
// We perform cloning for each allocation node separately. However, this
// sometimes results in a situation where the same node calls multiple
// clones of the same callee, created for different allocations. This
// causes issues when assigning functions to these clones, as each node can
// in reality only call a single callee clone.
//
// To address this, before assigning functions, merge callee clone nodes as
// needed using a post order traversal from the allocations. We attempt to
// use existing clones as the merge node when legal, and to share them
// among callers with the same properties (callers calling the same set of
// callee clone nodes for the same allocations).
//
// Without this fix, in some cases incorrect function assignment will lead
// to calling the wrong allocation clone.
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::mergeClones() {
if (!MergeClones)
return;
// Generate a map from context id to the associated allocation node for use
// when merging clones.
DenseMap<uint32_t, ContextNode *> ContextIdToAllocationNode;
for (auto &Entry : AllocationCallToContextNodeMap) {
auto *Node = Entry.second;
for (auto Id : Node->getContextIds())
ContextIdToAllocationNode[Id] = Node->getOrigNode();
for (auto *Clone : Node->Clones) {
for (auto Id : Clone->getContextIds())
ContextIdToAllocationNode[Id] = Clone->getOrigNode();
}
}
// Post order traversal starting from allocations to ensure each callsite
// calls a single clone of its callee. Callee nodes that are clones of each
// other are merged (via new merge nodes if needed) to achieve this.
DenseSet<const ContextNode *> Visited;
for (auto &Entry : AllocationCallToContextNodeMap) {
auto *Node = Entry.second;
mergeClones(Node, Visited, ContextIdToAllocationNode);
// Make a copy so the recursive post order traversal that may create new
// clones doesn't mess up iteration. Note that the recursive traversal
// itself does not call mergeClones on any of these nodes, which are all
// (clones of) allocations.
auto Clones = Node->Clones;
for (auto *Clone : Clones)
mergeClones(Clone, Visited, ContextIdToAllocationNode);
}
if (DumpCCG) {
dbgs() << "CCG after merging:\n";
dbgs() << *this;
}
if (ExportToDot)
exportToDot("aftermerge");
if (VerifyCCG) {
check();
}
}
// Recursive helper for above mergeClones method.
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::mergeClones(
ContextNode *Node, DenseSet<const ContextNode *> &Visited,
DenseMap<uint32_t, ContextNode *> &ContextIdToAllocationNode) {
auto Inserted = Visited.insert(Node);
if (!Inserted.second)
return;
// Make a copy since the recursive call may move a caller edge to a new
// callee, messing up the iterator.
auto CallerEdges = Node->CallerEdges;
for (auto CallerEdge : CallerEdges) {
// Skip any caller edge moved onto a different callee during recursion.
if (CallerEdge->Callee != Node)
continue;
mergeClones(CallerEdge->Caller, Visited, ContextIdToAllocationNode);
}
// Merge for this node after we handle its callers.
mergeNodeCalleeClones(Node, Visited, ContextIdToAllocationNode);
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::mergeNodeCalleeClones(
ContextNode *Node, DenseSet<const ContextNode *> &Visited,
DenseMap<uint32_t, ContextNode *> &ContextIdToAllocationNode) {
// Ignore Node if we moved all of its contexts to clones.
if (Node->emptyContextIds())
return;
// First identify groups of clones among Node's callee edges, by building
// a map from each callee base node to the associated callee edges from Node.
MapVector<ContextNode *, std::vector<std::shared_ptr<ContextEdge>>>
OrigNodeToCloneEdges;
for (const auto &E : Node->CalleeEdges) {
auto *Callee = E->Callee;
if (!Callee->CloneOf && Callee->Clones.empty())
continue;
ContextNode *Base = Callee->getOrigNode();
OrigNodeToCloneEdges[Base].push_back(E);
}
// Helper for callee edge sorting below. Return true if A's callee has fewer
// caller edges than B, or if A is a clone and B is not, or if A's first
// context id is smaller than B's.
auto CalleeCallerEdgeLessThan = [](const std::shared_ptr<ContextEdge> &A,
const std::shared_ptr<ContextEdge> &B) {
if (A->Callee->CallerEdges.size() != B->Callee->CallerEdges.size())
return A->Callee->CallerEdges.size() < B->Callee->CallerEdges.size();
if (A->Callee->CloneOf && !B->Callee->CloneOf)
return true;
else if (!A->Callee->CloneOf && B->Callee->CloneOf)
return false;
// Use the first context id for each edge as a
// tie-breaker.
return *A->ContextIds.begin() < *B->ContextIds.begin();
};
// Process each set of callee clones called by Node, performing the needed
// merging.
for (auto Entry : OrigNodeToCloneEdges) {
// CalleeEdges is the set of edges from Node reaching callees that are
// mutual clones of each other.
auto &CalleeEdges = Entry.second;
auto NumCalleeClones = CalleeEdges.size();
// A single edge means there is no merging needed.
if (NumCalleeClones == 1)
continue;
// Sort the CalleeEdges calling this group of clones in ascending order of
// their caller edge counts, putting the original non-clone node first in
// cases of a tie. This simplifies finding an existing node to use as the
// merge node.
llvm::stable_sort(CalleeEdges, CalleeCallerEdgeLessThan);
/// Find other callers of the given set of callee edges that can
/// share the same callee merge node. See the comments at this method
/// definition for details.
DenseSet<ContextNode *> OtherCallersToShareMerge;
findOtherCallersToShareMerge(Node, CalleeEdges, ContextIdToAllocationNode,
OtherCallersToShareMerge);
// Now do the actual merging. Identify existing or create a new MergeNode
// during the first iteration. Move each callee over, along with edges from
// other callers we've determined above can share the same merge node.
ContextNode *MergeNode = nullptr;
DenseMap<ContextNode *, unsigned> CallerToMoveCount;
for (auto CalleeEdge : CalleeEdges) {
auto *OrigCallee = CalleeEdge->Callee;
// If we don't have a MergeNode yet (only happens on the first iteration,
// as a new one will be created when we go to move the first callee edge
// over as needed), see if we can use this callee.
if (!MergeNode) {
// If there are no other callers, simply use this callee.
if (CalleeEdge->Callee->CallerEdges.size() == 1) {
MergeNode = OrigCallee;
NonNewMergedNodes++;
continue;
}
// Otherwise, if we have identified other caller nodes that can share
// the merge node with Node, see if all of OrigCallee's callers are
// going to share the same merge node. In that case we can use callee
// (since all of its callers would move to the new merge node).
if (!OtherCallersToShareMerge.empty()) {
bool MoveAllCallerEdges = true;
for (auto CalleeCallerE : OrigCallee->CallerEdges) {
if (CalleeCallerE == CalleeEdge)
continue;
if (!OtherCallersToShareMerge.contains(CalleeCallerE->Caller)) {
MoveAllCallerEdges = false;
break;
}
}
// If we are going to move all callers over, we can use this callee as
// the MergeNode.
if (MoveAllCallerEdges) {
MergeNode = OrigCallee;
NonNewMergedNodes++;
continue;
}
}
}
// Move this callee edge, creating a new merge node if necessary.
if (MergeNode) {
assert(MergeNode != OrigCallee);
moveEdgeToExistingCalleeClone(CalleeEdge, MergeNode,
/*NewClone*/ false);
} else {
MergeNode = moveEdgeToNewCalleeClone(CalleeEdge);
NewMergedNodes++;
}
// Now move all identified edges from other callers over to the merge node
// as well.
if (!OtherCallersToShareMerge.empty()) {
// Make and iterate over a copy of OrigCallee's caller edges because
// some of these will be moved off of the OrigCallee and that would mess
// up the iteration from OrigCallee.
auto OrigCalleeCallerEdges = OrigCallee->CallerEdges;
for (auto &CalleeCallerE : OrigCalleeCallerEdges) {
if (CalleeCallerE == CalleeEdge)
continue;
if (!OtherCallersToShareMerge.contains(CalleeCallerE->Caller))
continue;
CallerToMoveCount[CalleeCallerE->Caller]++;
moveEdgeToExistingCalleeClone(CalleeCallerE, MergeNode,
/*NewClone*/ false);
}
}
removeNoneTypeCalleeEdges(OrigCallee);
removeNoneTypeCalleeEdges(MergeNode);
}
}
}
// Look for other nodes that have edges to the same set of callee
// clones as the current Node. Those can share the eventual merge node
// (reducing cloning and binary size overhead) iff:
// - they have edges to the same set of callee clones
// - each callee edge reaches a subset of the same allocations as Node's
// corresponding edge to the same callee clone.
// The second requirement is to ensure that we don't undo any of the
// necessary cloning to distinguish contexts with different allocation
// behavior.
// FIXME: This is somewhat conservative, as we really just need to ensure
// that they don't reach the same allocations as contexts on edges from Node
// going to any of the *other* callee clones being merged. However, that
// requires more tracking and checking to get right.
template <typename DerivedCCG, typename FuncTy, typename CallTy>
void CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::
findOtherCallersToShareMerge(
ContextNode *Node,
std::vector<std::shared_ptr<ContextEdge>> &CalleeEdges,
DenseMap<uint32_t, ContextNode *> &ContextIdToAllocationNode,
DenseSet<ContextNode *> &OtherCallersToShareMerge) {
auto NumCalleeClones = CalleeEdges.size();
// This map counts how many edges to the same callee clone exist for other
// caller nodes of each callee clone.
DenseMap<ContextNode *, unsigned> OtherCallersToSharedCalleeEdgeCount;
// Counts the number of other caller nodes that have edges to all callee
// clones that don't violate the allocation context checking.
unsigned PossibleOtherCallerNodes = 0;
// We only need to look at other Caller nodes if the first callee edge has
// multiple callers (recall they are sorted in ascending order above).
if (CalleeEdges[0]->Callee->CallerEdges.size() < 2)
return;
// For each callee edge:
// - Collect the count of other caller nodes calling the same callees.
// - Collect the alloc nodes reached by contexts on each callee edge.
DenseMap<ContextEdge *, DenseSet<ContextNode *>> CalleeEdgeToAllocNodes;
for (auto CalleeEdge : CalleeEdges) {
assert(CalleeEdge->Callee->CallerEdges.size() > 1);
// For each other caller of the same callee, increment the count of
// edges reaching the same callee clone.
for (auto CalleeCallerEdges : CalleeEdge->Callee->CallerEdges) {
if (CalleeCallerEdges->Caller == Node) {
assert(CalleeCallerEdges == CalleeEdge);
continue;
}
OtherCallersToSharedCalleeEdgeCount[CalleeCallerEdges->Caller]++;
// If this caller edge now reaches all of the same callee clones,
// increment the count of candidate other caller nodes.
if (OtherCallersToSharedCalleeEdgeCount[CalleeCallerEdges->Caller] ==
NumCalleeClones)
PossibleOtherCallerNodes++;
}
// Collect the alloc nodes reached by contexts on each callee edge, for
// later analysis.
for (auto Id : CalleeEdge->getContextIds()) {
auto *Alloc = ContextIdToAllocationNode.lookup(Id);
if (!Alloc) {
// FIXME: unclear why this happens occasionally, presumably
// imperfect graph updates possibly with recursion.
MissingAllocForContextId++;
continue;
}
CalleeEdgeToAllocNodes[CalleeEdge.get()].insert(Alloc);
}
}
// Now walk the callee edges again, and make sure that for each candidate
// caller node all of its edges to the callees reach the same allocs (or
// a subset) as those along the corresponding callee edge from Node.
for (auto CalleeEdge : CalleeEdges) {
assert(CalleeEdge->Callee->CallerEdges.size() > 1);
// Stop if we do not have any (more) candidate other caller nodes.
if (!PossibleOtherCallerNodes)
break;
auto &CurCalleeAllocNodes = CalleeEdgeToAllocNodes[CalleeEdge.get()];
// Check each other caller of this callee clone.
for (auto &CalleeCallerE : CalleeEdge->Callee->CallerEdges) {
// Not interested in the callee edge from Node itself.
if (CalleeCallerE == CalleeEdge)
continue;
// Skip any callers that didn't have callee edges to all the same
// callee clones.
if (OtherCallersToSharedCalleeEdgeCount[CalleeCallerE->Caller] !=
NumCalleeClones)
continue;
// Make sure that each context along edge from candidate caller node
// reaches an allocation also reached by this callee edge from Node.
for (auto Id : CalleeCallerE->getContextIds()) {
auto *Alloc = ContextIdToAllocationNode.lookup(Id);
if (!Alloc)
continue;
// If not, simply reset the map entry to 0 so caller is ignored, and
// reduce the count of candidate other caller nodes.
if (!CurCalleeAllocNodes.contains(Alloc)) {
OtherCallersToSharedCalleeEdgeCount[CalleeCallerE->Caller] = 0;
PossibleOtherCallerNodes--;
break;
}
}
}
}
if (!PossibleOtherCallerNodes)
return;
// Build the set of other caller nodes that can use the same callee merge
// node.
for (auto &[OtherCaller, Count] : OtherCallersToSharedCalleeEdgeCount) {
if (Count != NumCalleeClones)
continue;
OtherCallersToShareMerge.insert(OtherCaller);
}
}
// This method assigns cloned callsites to functions, cloning the functions as
// needed. The assignment is greedy and proceeds roughly as follows:
//
// For each function Func:
// For each call with graph Node having clones:
// Initialize ClonesWorklist to Node and its clones
// Initialize NodeCloneCount to 0
// While ClonesWorklist is not empty:
// Clone = pop front ClonesWorklist
// NodeCloneCount++
// If Func has been cloned less than NodeCloneCount times:
// If NodeCloneCount is 1:
// Assign Clone to original Func
// Continue
// Create a new function clone
// If other callers not assigned to call a function clone yet:
// Assign them to call new function clone
// Continue
// Assign any other caller calling the cloned version to new clone
//
// For each caller of Clone:
// If caller is assigned to call a specific function clone:
// If we cannot assign Clone to that function clone:
// Create new callsite Clone NewClone
// Add NewClone to ClonesWorklist
// Continue
// Assign Clone to existing caller's called function clone
// Else:
// If Clone not already assigned to a function clone:
// Assign to first function clone without assignment
// Assign caller to selected function clone
template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::assignFunctions() {
bool Changed = false;
mergeClones();
// Keep track of the assignment of nodes (callsites) to function clones they
// call.
DenseMap<ContextNode *, FuncInfo> CallsiteToCalleeFuncCloneMap;
// Update caller node to call function version CalleeFunc, by recording the
// assignment in CallsiteToCalleeFuncCloneMap.
auto RecordCalleeFuncOfCallsite = [&](ContextNode *Caller,
const FuncInfo &CalleeFunc) {
assert(Caller->hasCall());
CallsiteToCalleeFuncCloneMap[Caller] = CalleeFunc;
};
// Walk all functions for which we saw calls with memprof metadata, and handle
// cloning for each of its calls.
for (auto &[Func, CallsWithMetadata] : FuncToCallsWithMetadata) {
FuncInfo OrigFunc(Func);
// Map from each clone of OrigFunc to a map of remappings of each call of
// interest (from original uncloned call to the corresponding cloned call in
// that function clone).
std::map<FuncInfo, std::map<CallInfo, CallInfo>> FuncClonesToCallMap;
for (auto &Call : CallsWithMetadata) {
ContextNode *Node = getNodeForInst(Call);
// Skip call if we do not have a node for it (all uses of its stack ids
// were either on inlined chains or pruned from the MIBs), or if we did
// not create any clones for it.
if (!Node || Node->Clones.empty())
continue;
assert(Node->hasCall() &&
"Not having a call should have prevented cloning");
// Track the assignment of function clones to clones of the current
// callsite Node being handled.
std::map<FuncInfo, ContextNode *> FuncCloneToCurNodeCloneMap;
// Assign callsite version CallsiteClone to function version FuncClone,
// and also assign (possibly cloned) Call to CallsiteClone.
auto AssignCallsiteCloneToFuncClone = [&](const FuncInfo &FuncClone,
CallInfo &Call,
ContextNode *CallsiteClone,
bool IsAlloc) {
// Record the clone of callsite node assigned to this function clone.
FuncCloneToCurNodeCloneMap[FuncClone] = CallsiteClone;
assert(FuncClonesToCallMap.count(FuncClone));
std::map<CallInfo, CallInfo> &CallMap = FuncClonesToCallMap[FuncClone];
CallInfo CallClone(Call);
if (auto It = CallMap.find(Call); It != CallMap.end())
CallClone = It->second;
CallsiteClone->setCall(CallClone);
// Need to do the same for all matching calls.
for (auto &MatchingCall : Node->MatchingCalls) {
CallInfo CallClone(MatchingCall);
if (auto It = CallMap.find(MatchingCall); It != CallMap.end())
CallClone = It->second;
// Updates the call in the list.
MatchingCall = CallClone;
}
};
// Keep track of the clones of callsite Node that need to be assigned to
// function clones. This list may be expanded in the loop body below if we
// find additional cloning is required.
std::deque<ContextNode *> ClonesWorklist;
// Ignore original Node if we moved all of its contexts to clones.
if (!Node->emptyContextIds())
ClonesWorklist.push_back(Node);
llvm::append_range(ClonesWorklist, Node->Clones);
// Now walk through all of the clones of this callsite Node that we need,
// and determine the assignment to a corresponding clone of the current
// function (creating new function clones as needed).
unsigned NodeCloneCount = 0;
while (!ClonesWorklist.empty()) {
ContextNode *Clone = ClonesWorklist.front();
ClonesWorklist.pop_front();
NodeCloneCount++;
if (VerifyNodes)
checkNode<DerivedCCG, FuncTy, CallTy>(Clone);
// Need to create a new function clone if we have more callsite clones
// than existing function clones, which would have been assigned to an
// earlier clone in the list (we assign callsite clones to function
// clones greedily).
if (FuncClonesToCallMap.size() < NodeCloneCount) {
// If this is the first callsite copy, assign to original function.
if (NodeCloneCount == 1) {
// Since FuncClonesToCallMap is empty in this case, no clones have
// been created for this function yet, and no callers should have
// been assigned a function clone for this callee node yet.
assert(llvm::none_of(
Clone->CallerEdges, [&](const std::shared_ptr<ContextEdge> &E) {
return CallsiteToCalleeFuncCloneMap.count(E->Caller);
}));
// Initialize with empty call map, assign Clone to original function
// and its callers, and skip to the next clone.
FuncClonesToCallMap[OrigFunc] = {};
AssignCallsiteCloneToFuncClone(
OrigFunc, Call, Clone,
AllocationCallToContextNodeMap.count(Call));
for (auto &CE : Clone->CallerEdges) {
// Ignore any caller that does not have a recorded callsite Call.
if (!CE->Caller->hasCall())
continue;
RecordCalleeFuncOfCallsite(CE->Caller, OrigFunc);
}
continue;
}
// First locate which copy of OrigFunc to clone again. If a caller
// of this callsite clone was already assigned to call a particular
// function clone, we need to redirect all of those callers to the
// new function clone, and update their other callees within this
// function.
FuncInfo PreviousAssignedFuncClone;
auto EI = llvm::find_if(
Clone->CallerEdges, [&](const std::shared_ptr<ContextEdge> &E) {
return CallsiteToCalleeFuncCloneMap.count(E->Caller);
});
bool CallerAssignedToCloneOfFunc = false;
if (EI != Clone->CallerEdges.end()) {
const std::shared_ptr<ContextEdge> &Edge = *EI;
PreviousAssignedFuncClone =
CallsiteToCalleeFuncCloneMap[Edge->Caller];
CallerAssignedToCloneOfFunc = true;
}
// Clone function and save it along with the CallInfo map created
// during cloning in the FuncClonesToCallMap.
std::map<CallInfo, CallInfo> NewCallMap;
unsigned CloneNo = FuncClonesToCallMap.size();
assert(CloneNo > 0 && "Clone 0 is the original function, which "
"should already exist in the map");
FuncInfo NewFuncClone = cloneFunctionForCallsite(
OrigFunc, Call, NewCallMap, CallsWithMetadata, CloneNo);
FuncClonesToCallMap.emplace(NewFuncClone, std::move(NewCallMap));
FunctionClonesAnalysis++;
Changed = true;
// If no caller callsites were already assigned to a clone of this
// function, we can simply assign this clone to the new func clone
// and update all callers to it, then skip to the next clone.
if (!CallerAssignedToCloneOfFunc) {
AssignCallsiteCloneToFuncClone(
NewFuncClone, Call, Clone,
AllocationCallToContextNodeMap.count(Call));
for (auto &CE : Clone->CallerEdges) {
// Ignore any caller that does not have a recorded callsite Call.
if (!CE->Caller->hasCall())
continue;
RecordCalleeFuncOfCallsite(CE->Caller, NewFuncClone);
}
continue;
}
// We may need to do additional node cloning in this case.
// Reset the CallsiteToCalleeFuncCloneMap entry for any callers
// that were previously assigned to call PreviousAssignedFuncClone,
// to record that they now call NewFuncClone.
// The none type edge removal may remove some of this Clone's caller
// edges, if it is reached via another of its caller's callees.
// Iterate over a copy and skip any that were removed.
auto CallerEdges = Clone->CallerEdges;
for (auto CE : CallerEdges) {
// Skip any that have been removed on an earlier iteration.
if (CE->isRemoved()) {
assert(!is_contained(Clone->CallerEdges, CE));
continue;
}
assert(CE);
// Ignore any caller that does not have a recorded callsite Call.
if (!CE->Caller->hasCall())
continue;
if (!CallsiteToCalleeFuncCloneMap.count(CE->Caller) ||
// We subsequently fall through to later handling that
// will perform any additional cloning required for
// callers that were calling other function clones.
CallsiteToCalleeFuncCloneMap[CE->Caller] !=
PreviousAssignedFuncClone)
continue;
RecordCalleeFuncOfCallsite(CE->Caller, NewFuncClone);
// If we are cloning a function that was already assigned to some
// callers, then essentially we are creating new callsite clones
// of the other callsites in that function that are reached by those
// callers. Clone the other callees of the current callsite's caller
// that were already assigned to PreviousAssignedFuncClone
// accordingly. This is important since we subsequently update the
// calls from the nodes in the graph and their assignments to callee
// functions recorded in CallsiteToCalleeFuncCloneMap.
// The none type edge removal may remove some of this caller's
// callee edges, if it is reached via another of its callees.
// Iterate over a copy and skip any that were removed.
auto CalleeEdges = CE->Caller->CalleeEdges;
for (auto CalleeEdge : CalleeEdges) {
// Skip any that have been removed on an earlier iteration when
// cleaning up newly None type callee edges.
if (CalleeEdge->isRemoved()) {
assert(!is_contained(CE->Caller->CalleeEdges, CalleeEdge));
continue;
}
assert(CalleeEdge);
ContextNode *Callee = CalleeEdge->Callee;
// Skip the current callsite, we are looking for other
// callsites Caller calls, as well as any that does not have a
// recorded callsite Call.
if (Callee == Clone || !Callee->hasCall())
continue;
// Skip direct recursive calls. We don't need/want to clone the
// caller node again, and this loop will not behave as expected if
// we tried.
if (Callee == CalleeEdge->Caller)
continue;
ContextNode *NewClone = moveEdgeToNewCalleeClone(CalleeEdge);
removeNoneTypeCalleeEdges(NewClone);
// Moving the edge may have resulted in some none type
// callee edges on the original Callee.
removeNoneTypeCalleeEdges(Callee);
assert(NewClone->AllocTypes != (uint8_t)AllocationType::None);
// If the Callee node was already assigned to call a specific
// function version, make sure its new clone is assigned to call
// that same function clone.
if (CallsiteToCalleeFuncCloneMap.count(Callee))
RecordCalleeFuncOfCallsite(
NewClone, CallsiteToCalleeFuncCloneMap[Callee]);
// Update NewClone with the new Call clone of this callsite's Call
// created for the new function clone created earlier.
// Recall that we have already ensured when building the graph
// that each caller can only call callsites within the same
// function, so we are guaranteed that Callee Call is in the
// current OrigFunc.
// CallMap is set up as indexed by original Call at clone 0.
CallInfo OrigCall(Callee->getOrigNode()->Call);
OrigCall.setCloneNo(0);
std::map<CallInfo, CallInfo> &CallMap =
FuncClonesToCallMap[NewFuncClone];
assert(CallMap.count(OrigCall));
CallInfo NewCall(CallMap[OrigCall]);
assert(NewCall);
NewClone->setCall(NewCall);
// Need to do the same for all matching calls.
for (auto &MatchingCall : NewClone->MatchingCalls) {
CallInfo OrigMatchingCall(MatchingCall);
OrigMatchingCall.setCloneNo(0);
assert(CallMap.count(OrigMatchingCall));
CallInfo NewCall(CallMap[OrigMatchingCall]);
assert(NewCall);
// Updates the call in the list.
MatchingCall = NewCall;
}
}
}
// Fall through to handling below to perform the recording of the
// function for this callsite clone. This enables handling of cases
// where the callers were assigned to different clones of a function.
}
// See if we can use existing function clone. Walk through
// all caller edges to see if any have already been assigned to
// a clone of this callsite's function. If we can use it, do so. If not,
// because that function clone is already assigned to a different clone
// of this callsite, then we need to clone again.
// Basically, this checking is needed to handle the case where different
// caller functions/callsites may need versions of this function
// containing different mixes of callsite clones across the different
// callsites within the function. If that happens, we need to create
// additional function clones to handle the various combinations.
//
// Keep track of any new clones of this callsite created by the
// following loop, as well as any existing clone that we decided to
// assign this clone to.
std::map<FuncInfo, ContextNode *> FuncCloneToNewCallsiteCloneMap;
FuncInfo FuncCloneAssignedToCurCallsiteClone;
// Iterate over a copy of Clone's caller edges, since we may need to
// remove edges in the moveEdgeTo* methods, and this simplifies the
// handling and makes it less error-prone.
auto CloneCallerEdges = Clone->CallerEdges;
for (auto &Edge : CloneCallerEdges) {
// Skip removed edges (due to direct recursive edges updated when
// updating callee edges when moving an edge and subsequently
// removed by call to removeNoneTypeCalleeEdges on the Clone).
if (Edge->isRemoved())
continue;
// Ignore any caller that does not have a recorded callsite Call.
if (!Edge->Caller->hasCall())
continue;
// If this caller already assigned to call a version of OrigFunc, need
// to ensure we can assign this callsite clone to that function clone.
if (CallsiteToCalleeFuncCloneMap.count(Edge->Caller)) {
FuncInfo FuncCloneCalledByCaller =
CallsiteToCalleeFuncCloneMap[Edge->Caller];
// First we need to confirm that this function clone is available
// for use by this callsite node clone.
//
// While FuncCloneToCurNodeCloneMap is built only for this Node and
// its callsite clones, one of those callsite clones X could have
// been assigned to the same function clone called by Edge's caller
// - if Edge's caller calls another callsite within Node's original
// function, and that callsite has another caller reaching clone X.
// We need to clone Node again in this case.
if ((FuncCloneToCurNodeCloneMap.count(FuncCloneCalledByCaller) &&
FuncCloneToCurNodeCloneMap[FuncCloneCalledByCaller] !=
Clone) ||
// Detect when we have multiple callers of this callsite that
// have already been assigned to specific, and different, clones
// of OrigFunc (due to other unrelated callsites in Func they
// reach via call contexts). Is this Clone of callsite Node
// assigned to a different clone of OrigFunc? If so, clone Node
// again.
(FuncCloneAssignedToCurCallsiteClone &&
FuncCloneAssignedToCurCallsiteClone !=
FuncCloneCalledByCaller)) {
// We need to use a different newly created callsite clone, in
// order to assign it to another new function clone on a
// subsequent iteration over the Clones array (adjusted below).
// Note we specifically do not reset the
// CallsiteToCalleeFuncCloneMap entry for this caller, so that
// when this new clone is processed later we know which version of
// the function to copy (so that other callsite clones we have
// assigned to that function clone are properly cloned over). See
// comments in the function cloning handling earlier.
// Check if we already have cloned this callsite again while
// walking through caller edges, for a caller calling the same
// function clone. If so, we can move this edge to that new clone
// rather than creating yet another new clone.
if (FuncCloneToNewCallsiteCloneMap.count(
FuncCloneCalledByCaller)) {
ContextNode *NewClone =
FuncCloneToNewCallsiteCloneMap[FuncCloneCalledByCaller];
moveEdgeToExistingCalleeClone(Edge, NewClone);
// Cleanup any none type edges cloned over.
removeNoneTypeCalleeEdges(NewClone);
} else {
// Create a new callsite clone.
ContextNode *NewClone = moveEdgeToNewCalleeClone(Edge);
removeNoneTypeCalleeEdges(NewClone);
FuncCloneToNewCallsiteCloneMap[FuncCloneCalledByCaller] =
NewClone;
// Add to list of clones and process later.
ClonesWorklist.push_back(NewClone);
assert(NewClone->AllocTypes != (uint8_t)AllocationType::None);
}
// Moving the caller edge may have resulted in some none type
// callee edges.
removeNoneTypeCalleeEdges(Clone);
// We will handle the newly created callsite clone in a subsequent
// iteration over this Node's Clones.
continue;
}
// Otherwise, we can use the function clone already assigned to this
// caller.
if (!FuncCloneAssignedToCurCallsiteClone) {
FuncCloneAssignedToCurCallsiteClone = FuncCloneCalledByCaller;
// Assign Clone to FuncCloneCalledByCaller
AssignCallsiteCloneToFuncClone(
FuncCloneCalledByCaller, Call, Clone,
AllocationCallToContextNodeMap.count(Call));
} else
// Don't need to do anything - callsite is already calling this
// function clone.
assert(FuncCloneAssignedToCurCallsiteClone ==
FuncCloneCalledByCaller);
} else {
// We have not already assigned this caller to a version of
// OrigFunc. Do the assignment now.
// First check if we have already assigned this callsite clone to a
// clone of OrigFunc for another caller during this iteration over
// its caller edges.
if (!FuncCloneAssignedToCurCallsiteClone) {
// Find first function in FuncClonesToCallMap without an assigned
// clone of this callsite Node. We should always have one
// available at this point due to the earlier cloning when the
// FuncClonesToCallMap size was smaller than the clone number.
for (auto &CF : FuncClonesToCallMap) {
if (!FuncCloneToCurNodeCloneMap.count(CF.first)) {
FuncCloneAssignedToCurCallsiteClone = CF.first;
break;
}
}
assert(FuncCloneAssignedToCurCallsiteClone);
// Assign Clone to FuncCloneAssignedToCurCallsiteClone
AssignCallsiteCloneToFuncClone(
FuncCloneAssignedToCurCallsiteClone, Call, Clone,
AllocationCallToContextNodeMap.count(Call));
} else
assert(FuncCloneToCurNodeCloneMap
[FuncCloneAssignedToCurCallsiteClone] == Clone);
// Update callers to record function version called.
RecordCalleeFuncOfCallsite(Edge->Caller,
FuncCloneAssignedToCurCallsiteClone);
}
}
}
if (VerifyCCG) {
checkNode<DerivedCCG, FuncTy, CallTy>(Node);
for (const auto &PE : Node->CalleeEdges)
checkNode<DerivedCCG, FuncTy, CallTy>(PE->Callee);
for (const auto &CE : Node->CallerEdges)
checkNode<DerivedCCG, FuncTy, CallTy>(CE->Caller);
for (auto *Clone : Node->Clones) {
checkNode<DerivedCCG, FuncTy, CallTy>(Clone);
for (const auto &PE : Clone->CalleeEdges)
checkNode<DerivedCCG, FuncTy, CallTy>(PE->Callee);
for (const auto &CE : Clone->CallerEdges)
checkNode<DerivedCCG, FuncTy, CallTy>(CE->Caller);
}
}
}
}
uint8_t BothTypes =
(uint8_t)AllocationType::Cold | (uint8_t)AllocationType::NotCold;
auto UpdateCalls = [&](ContextNode *Node,
DenseSet<const ContextNode *> &Visited,
auto &&UpdateCalls) {
auto Inserted = Visited.insert(Node);
if (!Inserted.second)
return;
for (auto *Clone : Node->Clones)
UpdateCalls(Clone, Visited, UpdateCalls);
for (auto &Edge : Node->CallerEdges)
UpdateCalls(Edge->Caller, Visited, UpdateCalls);
// Skip if either no call to update, or if we ended up with no context ids
// (we moved all edges onto other clones).
if (!Node->hasCall() || Node->emptyContextIds())
return;
if (Node->IsAllocation) {
auto AT = allocTypeToUse(Node->AllocTypes);
// If the allocation type is ambiguous, and more aggressive hinting
// has been enabled via the MinClonedColdBytePercent flag, see if this
// allocation should be hinted cold anyway because its fraction cold bytes
// allocated is at least the given threshold.
if (Node->AllocTypes == BothTypes && MinClonedColdBytePercent < 100 &&
!ContextIdToContextSizeInfos.empty()) {
uint64_t TotalCold = 0;
uint64_t Total = 0;
for (auto Id : Node->getContextIds()) {
auto TypeI = ContextIdToAllocationType.find(Id);
assert(TypeI != ContextIdToAllocationType.end());
auto CSI = ContextIdToContextSizeInfos.find(Id);
if (CSI != ContextIdToContextSizeInfos.end()) {
for (auto &Info : CSI->second) {
Total += Info.TotalSize;
if (TypeI->second == AllocationType::Cold)
TotalCold += Info.TotalSize;
}
}
}
if (TotalCold * 100 >= Total * MinClonedColdBytePercent)
AT = AllocationType::Cold;
}
updateAllocationCall(Node->Call, AT);
assert(Node->MatchingCalls.empty());
return;
}
if (!CallsiteToCalleeFuncCloneMap.count(Node))
return;
auto CalleeFunc = CallsiteToCalleeFuncCloneMap[Node];
updateCall(Node->Call, CalleeFunc);
// Update all the matching calls as well.
for (auto &Call : Node->MatchingCalls)
updateCall(Call, CalleeFunc);
};
// Performs DFS traversal starting from allocation nodes to update calls to
// reflect cloning decisions recorded earlier. For regular LTO this will
// update the actual calls in the IR to call the appropriate function clone
// (and add attributes to allocation calls), whereas for ThinLTO the decisions
// are recorded in the summary entries.
DenseSet<const ContextNode *> Visited;
for (auto &Entry : AllocationCallToContextNodeMap)
UpdateCalls(Entry.second, Visited, UpdateCalls);
return Changed;
}
static SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> createFunctionClones(
Function &F, unsigned NumClones, Module &M, OptimizationRemarkEmitter &ORE,
std::map<const Function *, SmallPtrSet<const GlobalAlias *, 1>>
&FuncToAliasMap) {
// The first "clone" is the original copy, we should only call this if we
// needed to create new clones.
assert(NumClones > 1);
SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
VMaps.reserve(NumClones - 1);
FunctionsClonedThinBackend++;
for (unsigned I = 1; I < NumClones; I++) {
VMaps.emplace_back(std::make_unique<ValueToValueMapTy>());
auto *NewF = CloneFunction(&F, *VMaps.back());
FunctionClonesThinBackend++;
// Strip memprof and callsite metadata from clone as they are no longer
// needed.
for (auto &BB : *NewF) {
for (auto &Inst : BB) {
Inst.setMetadata(LLVMContext::MD_memprof, nullptr);
Inst.setMetadata(LLVMContext::MD_callsite, nullptr);
}
}
std::string Name = getMemProfFuncName(F.getName(), I);
auto *PrevF = M.getFunction(Name);
if (PrevF) {
// We might have created this when adjusting callsite in another
// function. It should be a declaration.
assert(PrevF->isDeclaration());
NewF->takeName(PrevF);
PrevF->replaceAllUsesWith(NewF);
PrevF->eraseFromParent();
} else
NewF->setName(Name);
if (auto *SP = NewF->getSubprogram())
SP->replaceLinkageName(
MDString::get(NewF->getParent()->getContext(), Name));
ORE.emit(OptimizationRemark(DEBUG_TYPE, "MemprofClone", &F)
<< "created clone " << ore::NV("NewFunction", NewF));
// Now handle aliases to this function, and clone those as well.
if (!FuncToAliasMap.count(&F))
continue;
for (auto *A : FuncToAliasMap[&F]) {
std::string Name = getMemProfFuncName(A->getName(), I);
auto *PrevA = M.getNamedAlias(Name);
auto *NewA = GlobalAlias::create(A->getValueType(),
A->getType()->getPointerAddressSpace(),
A->getLinkage(), Name, NewF);
NewA->copyAttributesFrom(A);
if (PrevA) {
// We might have created this when adjusting callsite in another
// function. It should be a declaration.
assert(PrevA->isDeclaration());
NewA->takeName(PrevA);
PrevA->replaceAllUsesWith(NewA);
PrevA->eraseFromParent();
}
}
}
return VMaps;
}
// Locate the summary for F. This is complicated by the fact that it might
// have been internalized or promoted.
static ValueInfo findValueInfoForFunc(const Function &F, const Module &M,
const ModuleSummaryIndex *ImportSummary,
const Function *CallingFunc = nullptr) {
// FIXME: Ideally we would retain the original GUID in some fashion on the
// function (e.g. as metadata), but for now do our best to locate the
// summary without that information.
ValueInfo TheFnVI = ImportSummary->getValueInfo(F.getGUID());
if (!TheFnVI)
// See if theFn was internalized, by checking index directly with
// original name (this avoids the name adjustment done by getGUID() for
// internal symbols).
TheFnVI = ImportSummary->getValueInfo(
GlobalValue::getGUIDAssumingExternalLinkage(F.getName()));
if (TheFnVI)
return TheFnVI;
// Now query with the original name before any promotion was performed.
StringRef OrigName =
ModuleSummaryIndex::getOriginalNameBeforePromote(F.getName());
// When this pass is enabled, we always add thinlto_src_file provenance
// metadata to imported function definitions, which allows us to recreate the
// original internal symbol's GUID.
auto SrcFileMD = F.getMetadata("thinlto_src_file");
// If this is a call to an imported/promoted local for which we didn't import
// the definition, the metadata will not exist on the declaration. However,
// since we are doing this early, before any inlining in the LTO backend, we
// can simply look at the metadata on the calling function which must have
// been from the same module if F was an internal symbol originally.
if (!SrcFileMD && F.isDeclaration()) {
// We would only call this for a declaration for a direct callsite, in which
// case the caller would have provided the calling function pointer.
assert(CallingFunc);
SrcFileMD = CallingFunc->getMetadata("thinlto_src_file");
// If this is a promoted local (OrigName != F.getName()), since this is a
// declaration, it must be imported from a different module and therefore we
// should always find the metadata on its calling function. Any call to a
// promoted local that came from this module should still be a definition.
assert(SrcFileMD || OrigName == F.getName());
}
StringRef SrcFile = M.getSourceFileName();
if (SrcFileMD)
SrcFile = dyn_cast<MDString>(SrcFileMD->getOperand(0))->getString();
std::string OrigId = GlobalValue::getGlobalIdentifier(
OrigName, GlobalValue::InternalLinkage, SrcFile);
TheFnVI = ImportSummary->getValueInfo(
GlobalValue::getGUIDAssumingExternalLinkage(OrigId));
// Internal func in original module may have gotten a numbered suffix if we
// imported an external function with the same name. This happens
// automatically during IR linking for naming conflicts. It would have to
// still be internal in that case (otherwise it would have been renamed on
// promotion in which case we wouldn't have a naming conflict).
if (!TheFnVI && OrigName == F.getName() && F.hasLocalLinkage() &&
F.getName().contains('.')) {
OrigName = F.getName().rsplit('.').first;
OrigId = GlobalValue::getGlobalIdentifier(
OrigName, GlobalValue::InternalLinkage, SrcFile);
TheFnVI = ImportSummary->getValueInfo(
GlobalValue::getGUIDAssumingExternalLinkage(OrigId));
}
// The only way we may not have a VI is if this is a declaration created for
// an imported reference. For distributed ThinLTO we may not have a VI for
// such declarations in the distributed summary.
assert(TheFnVI || F.isDeclaration());
return TheFnVI;
}
bool MemProfContextDisambiguation::initializeIndirectCallPromotionInfo(
Module &M) {
ICallAnalysis = std::make_unique<ICallPromotionAnalysis>();
Symtab = std::make_unique<InstrProfSymtab>();
// Don't add canonical names, to avoid multiple functions to the symtab
// when they both have the same root name with "." suffixes stripped.
// If we pick the wrong one then this could lead to incorrect ICP and calling
// a memprof clone that we don't actually create (resulting in linker unsats).
// What this means is that the GUID of the function (or its PGOFuncName
// metadata) *must* match that in the VP metadata to allow promotion.
// In practice this should not be a limitation, since local functions should
// have PGOFuncName metadata and global function names shouldn't need any
// special handling (they should not get the ".llvm.*" suffix that the
// canonicalization handling is attempting to strip).
if (Error E = Symtab->create(M, /*InLTO=*/true, /*AddCanonical=*/false)) {
std::string SymtabFailure = toString(std::move(E));
M.getContext().emitError("Failed to create symtab: " + SymtabFailure);
return false;
}
return true;
}
#ifndef NDEBUG
// Sanity check that the MIB stack ids match between the summary and
// instruction metadata.
static void checkAllocContextIds(
const AllocInfo &AllocNode, const MDNode *MemProfMD,
const CallStack<MDNode, MDNode::op_iterator> &CallsiteContext,
const ModuleSummaryIndex *ImportSummary) {
auto MIBIter = AllocNode.MIBs.begin();
for (auto &MDOp : MemProfMD->operands()) {
assert(MIBIter != AllocNode.MIBs.end());
auto StackIdIndexIter = MIBIter->StackIdIndices.begin();
auto *MIBMD = cast<const MDNode>(MDOp);
MDNode *StackMDNode = getMIBStackNode(MIBMD);
assert(StackMDNode);
CallStack<MDNode, MDNode::op_iterator> StackContext(StackMDNode);
auto ContextIterBegin =
StackContext.beginAfterSharedPrefix(CallsiteContext);
// Skip the checking on the first iteration.
uint64_t LastStackContextId =
(ContextIterBegin != StackContext.end() && *ContextIterBegin == 0) ? 1
: 0;
for (auto ContextIter = ContextIterBegin; ContextIter != StackContext.end();
++ContextIter) {
// If this is a direct recursion, simply skip the duplicate
// entries, to be consistent with how the summary ids were
// generated during ModuleSummaryAnalysis.
if (LastStackContextId == *ContextIter)
continue;
LastStackContextId = *ContextIter;
assert(StackIdIndexIter != MIBIter->StackIdIndices.end());
assert(ImportSummary->getStackIdAtIndex(*StackIdIndexIter) ==
*ContextIter);
StackIdIndexIter++;
}
MIBIter++;
}
}
#endif
bool MemProfContextDisambiguation::applyImport(Module &M) {
assert(ImportSummary);
bool Changed = false;
// We also need to clone any aliases that reference cloned functions, because
// the modified callsites may invoke via the alias. Keep track of the aliases
// for each function.
std::map<const Function *, SmallPtrSet<const GlobalAlias *, 1>>
FuncToAliasMap;
for (auto &A : M.aliases()) {
auto *Aliasee = A.getAliaseeObject();
if (auto *F = dyn_cast<Function>(Aliasee))
FuncToAliasMap[F].insert(&A);
}
if (!initializeIndirectCallPromotionInfo(M))
return false;
for (auto &F : M) {
if (F.isDeclaration() || isMemProfClone(F))
continue;
OptimizationRemarkEmitter ORE(&F);
SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
bool ClonesCreated = false;
unsigned NumClonesCreated = 0;
auto CloneFuncIfNeeded = [&](unsigned NumClones) {
// We should at least have version 0 which is the original copy.
assert(NumClones > 0);
// If only one copy needed use original.
if (NumClones == 1)
return;
// If we already performed cloning of this function, confirm that the
// requested number of clones matches (the thin link should ensure the
// number of clones for each constituent callsite is consistent within
// each function), before returning.
if (ClonesCreated) {
assert(NumClonesCreated == NumClones);
return;
}
VMaps = createFunctionClones(F, NumClones, M, ORE, FuncToAliasMap);
// The first "clone" is the original copy, which doesn't have a VMap.
assert(VMaps.size() == NumClones - 1);
Changed = true;
ClonesCreated = true;
NumClonesCreated = NumClones;
};
auto CloneCallsite = [&](const CallsiteInfo &StackNode, CallBase *CB,
Function *CalledFunction) {
// Perform cloning if not yet done.
CloneFuncIfNeeded(/*NumClones=*/StackNode.Clones.size());
assert(!isMemProfClone(*CalledFunction));
// Because we update the cloned calls by calling setCalledOperand (see
// comment below), out of an abundance of caution make sure the called
// function was actually the called operand (or its aliasee). We also
// strip pointer casts when looking for calls (to match behavior during
// summary generation), however, with opaque pointers in theory this
// should not be an issue. Note we still clone the current function
// (containing this call) above, as that could be needed for its callers.
auto *GA = dyn_cast_or_null<GlobalAlias>(CB->getCalledOperand());
if (CalledFunction != CB->getCalledOperand() &&
(!GA || CalledFunction != GA->getAliaseeObject())) {
SkippedCallsCloning++;
return;
}
// Update the calls per the summary info.
// Save orig name since it gets updated in the first iteration
// below.
auto CalleeOrigName = CalledFunction->getName();
for (unsigned J = 0; J < StackNode.Clones.size(); J++) {
// Do nothing if this version calls the original version of its
// callee.
if (!StackNode.Clones[J])
continue;
auto NewF = M.getOrInsertFunction(
getMemProfFuncName(CalleeOrigName, StackNode.Clones[J]),
CalledFunction->getFunctionType());
CallBase *CBClone;
// Copy 0 is the original function.
if (!J)
CBClone = CB;
else
CBClone = cast<CallBase>((*VMaps[J - 1])[CB]);
// Set the called operand directly instead of calling setCalledFunction,
// as the latter mutates the function type on the call. In rare cases
// we may have a slightly different type on a callee function
// declaration due to it being imported from a different module with
// incomplete types. We really just want to change the name of the
// function to the clone, and not make any type changes.
CBClone->setCalledOperand(NewF.getCallee());
ORE.emit(OptimizationRemark(DEBUG_TYPE, "MemprofCall", CBClone)
<< ore::NV("Call", CBClone) << " in clone "
<< ore::NV("Caller", CBClone->getFunction())
<< " assigned to call function clone "
<< ore::NV("Callee", NewF.getCallee()));
}
};
// Locate the summary for F.
ValueInfo TheFnVI = findValueInfoForFunc(F, M, ImportSummary);
// If not found, this could be an imported local (see comment in
// findValueInfoForFunc). Skip for now as it will be cloned in its original
// module (where it would have been promoted to global scope so should
// satisfy any reference in this module).
if (!TheFnVI)
continue;
auto *GVSummary =
ImportSummary->findSummaryInModule(TheFnVI, M.getModuleIdentifier());
if (!GVSummary) {
// Must have been imported, use the summary which matches the definition。
// (might be multiple if this was a linkonce_odr).
auto SrcModuleMD = F.getMetadata("thinlto_src_module");
assert(SrcModuleMD &&
"enable-import-metadata is needed to emit thinlto_src_module");
StringRef SrcModule =
dyn_cast<MDString>(SrcModuleMD->getOperand(0))->getString();
for (auto &GVS : TheFnVI.getSummaryList()) {
if (GVS->modulePath() == SrcModule) {
GVSummary = GVS.get();
break;
}
}
assert(GVSummary && GVSummary->modulePath() == SrcModule);
}
// If this was an imported alias skip it as we won't have the function
// summary, and it should be cloned in the original module.
if (isa<AliasSummary>(GVSummary))
continue;
auto *FS = cast<FunctionSummary>(GVSummary->getBaseObject());
if (FS->allocs().empty() && FS->callsites().empty())
continue;
auto SI = FS->callsites().begin();
auto AI = FS->allocs().begin();
// To handle callsite infos synthesized for tail calls which have missing
// frames in the profiled context, map callee VI to the synthesized callsite
// info.
DenseMap<ValueInfo, CallsiteInfo> MapTailCallCalleeVIToCallsite;
// Iterate the callsites for this function in reverse, since we place all
// those synthesized for tail calls at the end.
for (auto CallsiteIt = FS->callsites().rbegin();
CallsiteIt != FS->callsites().rend(); CallsiteIt++) {
auto &Callsite = *CallsiteIt;
// Stop as soon as we see a non-synthesized callsite info (see comment
// above loop). All the entries added for discovered tail calls have empty
// stack ids.
if (!Callsite.StackIdIndices.empty())
break;
MapTailCallCalleeVIToCallsite.insert({Callsite.Callee, Callsite});
}
// Keeps track of needed ICP for the function.
SmallVector<ICallAnalysisData> ICallAnalysisInfo;
// Assume for now that the instructions are in the exact same order
// as when the summary was created, but confirm this is correct by
// matching the stack ids.
for (auto &BB : F) {
for (auto &I : BB) {
auto *CB = dyn_cast<CallBase>(&I);
// Same handling as when creating module summary.
if (!mayHaveMemprofSummary(CB))
continue;
auto *CalledValue = CB->getCalledOperand();
auto *CalledFunction = CB->getCalledFunction();
if (CalledValue && !CalledFunction) {
CalledValue = CalledValue->stripPointerCasts();
// Stripping pointer casts can reveal a called function.
CalledFunction = dyn_cast<Function>(CalledValue);
}
// Check if this is an alias to a function. If so, get the
// called aliasee for the checks below.
if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
assert(!CalledFunction &&
"Expected null called function in callsite for alias");
CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
}
CallStack<MDNode, MDNode::op_iterator> CallsiteContext(
I.getMetadata(LLVMContext::MD_callsite));
auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof);
// Include allocs that were already assigned a memprof function
// attribute in the statistics.
if (CB->getAttributes().hasFnAttr("memprof")) {
assert(!MemProfMD);
CB->getAttributes().getFnAttr("memprof").getValueAsString() == "cold"
? AllocTypeColdThinBackend++
: AllocTypeNotColdThinBackend++;
OrigAllocsThinBackend++;
AllocVersionsThinBackend++;
if (!MaxAllocVersionsThinBackend)
MaxAllocVersionsThinBackend = 1;
continue;
}
if (MemProfMD) {
// Consult the next alloc node.
assert(AI != FS->allocs().end());
auto &AllocNode = *(AI++);
#ifndef NDEBUG
checkAllocContextIds(AllocNode, MemProfMD, CallsiteContext,
ImportSummary);
#endif
// Perform cloning if not yet done.
CloneFuncIfNeeded(/*NumClones=*/AllocNode.Versions.size());
OrigAllocsThinBackend++;
AllocVersionsThinBackend += AllocNode.Versions.size();
if (MaxAllocVersionsThinBackend < AllocNode.Versions.size())
MaxAllocVersionsThinBackend = AllocNode.Versions.size();
// If there is only one version that means we didn't end up
// considering this function for cloning, and in that case the alloc
// will still be none type or should have gotten the default NotCold.
// Skip that after calling clone helper since that does some sanity
// checks that confirm we haven't decided yet that we need cloning.
// We might have a single version that is cold due to the
// MinClonedColdBytePercent heuristic, make sure we don't skip in that
// case.
if (AllocNode.Versions.size() == 1 &&
(AllocationType)AllocNode.Versions[0] != AllocationType::Cold) {
assert((AllocationType)AllocNode.Versions[0] ==
AllocationType::NotCold ||
(AllocationType)AllocNode.Versions[0] ==
AllocationType::None);
UnclonableAllocsThinBackend++;
continue;
}
// All versions should have a singular allocation type.
assert(llvm::none_of(AllocNode.Versions, [](uint8_t Type) {
return Type == ((uint8_t)AllocationType::NotCold |
(uint8_t)AllocationType::Cold);
}));
// Update the allocation types per the summary info.
for (unsigned J = 0; J < AllocNode.Versions.size(); J++) {
// Ignore any that didn't get an assigned allocation type.
if (AllocNode.Versions[J] == (uint8_t)AllocationType::None)
continue;
AllocationType AllocTy = (AllocationType)AllocNode.Versions[J];
AllocTy == AllocationType::Cold ? AllocTypeColdThinBackend++
: AllocTypeNotColdThinBackend++;
std::string AllocTypeString = getAllocTypeAttributeString(AllocTy);
auto A = llvm::Attribute::get(F.getContext(), "memprof",
AllocTypeString);
CallBase *CBClone;
// Copy 0 is the original function.
if (!J)
CBClone = CB;
else
// Since VMaps are only created for new clones, we index with
// clone J-1 (J==0 is the original clone and does not have a VMaps
// entry).
CBClone = cast<CallBase>((*VMaps[J - 1])[CB]);
CBClone->addFnAttr(A);
ORE.emit(OptimizationRemark(DEBUG_TYPE, "MemprofAttribute", CBClone)
<< ore::NV("AllocationCall", CBClone) << " in clone "
<< ore::NV("Caller", CBClone->getFunction())
<< " marked with memprof allocation attribute "
<< ore::NV("Attribute", AllocTypeString));
}
} else if (!CallsiteContext.empty()) {
if (!CalledFunction) {
#ifndef NDEBUG
// We should have skipped inline assembly calls.
auto *CI = dyn_cast<CallInst>(CB);
assert(!CI || !CI->isInlineAsm());
#endif
// We should have skipped direct calls via a Constant.
assert(CalledValue && !isa<Constant>(CalledValue));
// This is an indirect call, see if we have profile information and
// whether any clones were recorded for the profiled targets (that
// we synthesized CallsiteInfo summary records for when building the
// index).
auto NumClones =
recordICPInfo(CB, FS->callsites(), SI, ICallAnalysisInfo);
// Perform cloning if not yet done. This is done here in case
// we don't need to do ICP, but might need to clone this
// function as it is the target of other cloned calls.
if (NumClones)
CloneFuncIfNeeded(NumClones);
}
else {
// Consult the next callsite node.
assert(SI != FS->callsites().end());
auto &StackNode = *(SI++);
#ifndef NDEBUG
// Sanity check that the stack ids match between the summary and
// instruction metadata.
auto StackIdIndexIter = StackNode.StackIdIndices.begin();
for (auto StackId : CallsiteContext) {
assert(StackIdIndexIter != StackNode.StackIdIndices.end());
assert(ImportSummary->getStackIdAtIndex(*StackIdIndexIter) ==
StackId);
StackIdIndexIter++;
}
#endif
CloneCallsite(StackNode, CB, CalledFunction);
}
} else if (CB->isTailCall() && CalledFunction) {
// Locate the synthesized callsite info for the callee VI, if any was
// created, and use that for cloning.
ValueInfo CalleeVI =
findValueInfoForFunc(*CalledFunction, M, ImportSummary, &F);
if (CalleeVI && MapTailCallCalleeVIToCallsite.count(CalleeVI)) {
auto Callsite = MapTailCallCalleeVIToCallsite.find(CalleeVI);
assert(Callsite != MapTailCallCalleeVIToCallsite.end());
CloneCallsite(Callsite->second, CB, CalledFunction);
}
}
}
}
// Now do any promotion required for cloning.
performICP(M, FS->callsites(), VMaps, ICallAnalysisInfo, ORE);
}
// We skip some of the functions and instructions above, so remove all the
// metadata in a single sweep here.
for (auto &F : M) {
// We can skip memprof clones because createFunctionClones already strips
// the metadata from the newly created clones.
if (F.isDeclaration() || isMemProfClone(F))
continue;
for (auto &BB : F) {
for (auto &I : BB) {
if (!isa<CallBase>(I))
continue;
I.setMetadata(LLVMContext::MD_memprof, nullptr);
I.setMetadata(LLVMContext::MD_callsite, nullptr);
}
}
}
return Changed;
}
unsigned MemProfContextDisambiguation::recordICPInfo(
CallBase *CB, ArrayRef<CallsiteInfo> AllCallsites,
ArrayRef<CallsiteInfo>::iterator &SI,
SmallVector<ICallAnalysisData> &ICallAnalysisInfo) {
// First see if we have profile information for this indirect call.
uint32_t NumCandidates;
uint64_t TotalCount;
auto CandidateProfileData =
ICallAnalysis->getPromotionCandidatesForInstruction(CB, TotalCount,
NumCandidates);
if (CandidateProfileData.empty())
return 0;
// Iterate through all of the candidate profiled targets along with the
// CallsiteInfo summary records synthesized for them when building the index,
// and see if any are cloned and/or refer to clones.
bool ICPNeeded = false;
unsigned NumClones = 0;
size_t CallsiteInfoStartIndex = std::distance(AllCallsites.begin(), SI);
for (const auto &Candidate : CandidateProfileData) {
#ifndef NDEBUG
auto CalleeValueInfo =
#endif
ImportSummary->getValueInfo(Candidate.Value);
// We might not have a ValueInfo if this is a distributed
// ThinLTO backend and decided not to import that function.
assert(!CalleeValueInfo || SI->Callee == CalleeValueInfo);
assert(SI != AllCallsites.end());
auto &StackNode = *(SI++);
// See if any of the clones of the indirect callsite for this
// profiled target should call a cloned version of the profiled
// target. We only need to do the ICP here if so.
ICPNeeded |= llvm::any_of(StackNode.Clones,
[](unsigned CloneNo) { return CloneNo != 0; });
// Every callsite in the same function should have been cloned the same
// number of times.
assert(!NumClones || NumClones == StackNode.Clones.size());
NumClones = StackNode.Clones.size();
}
if (!ICPNeeded)
return NumClones;
// Save information for ICP, which is performed later to avoid messing up the
// current function traversal.
ICallAnalysisInfo.push_back({CB, CandidateProfileData.vec(), NumCandidates,
TotalCount, CallsiteInfoStartIndex});
return NumClones;
}
void MemProfContextDisambiguation::performICP(
Module &M, ArrayRef<CallsiteInfo> AllCallsites,
ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
ArrayRef<ICallAnalysisData> ICallAnalysisInfo,
OptimizationRemarkEmitter &ORE) {
// Now do any promotion required for cloning. Specifically, for each
// recorded ICP candidate (which was only recorded because one clone of that
// candidate should call a cloned target), we perform ICP (speculative
// devirtualization) for each clone of the callsite, and update its callee
// to the appropriate clone. Note that the ICP compares against the original
// version of the target, which is what is in the vtable.
for (auto &Info : ICallAnalysisInfo) {
auto *CB = Info.CB;
auto CallsiteIndex = Info.CallsiteInfoStartIndex;
auto TotalCount = Info.TotalCount;
unsigned NumPromoted = 0;
unsigned NumClones = 0;
for (auto &Candidate : Info.CandidateProfileData) {
auto &StackNode = AllCallsites[CallsiteIndex++];
// All calls in the same function must have the same number of clones.
assert(!NumClones || NumClones == StackNode.Clones.size());
NumClones = StackNode.Clones.size();
// See if the target is in the module. If it wasn't imported, it is
// possible that this profile could have been collected on a different
// target (or version of the code), and we need to be conservative
// (similar to what is done in the ICP pass).
Function *TargetFunction = Symtab->getFunction(Candidate.Value);
if (TargetFunction == nullptr ||
// Any ThinLTO global dead symbol removal should have already
// occurred, so it should be safe to promote when the target is a
// declaration.
// TODO: Remove internal option once more fully tested.
(MemProfRequireDefinitionForPromotion &&
TargetFunction->isDeclaration())) {
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", CB)
<< "Memprof cannot promote indirect call: target with md5sum "
<< ore::NV("target md5sum", Candidate.Value) << " not found";
});
// FIXME: See if we can use the new declaration importing support to
// at least get the declarations imported for this case. Hot indirect
// targets should have been imported normally, however.
continue;
}
// Check if legal to promote
const char *Reason = nullptr;
if (!isLegalToPromote(*CB, TargetFunction, &Reason)) {
ORE.emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", CB)
<< "Memprof cannot promote indirect call to "
<< ore::NV("TargetFunction", TargetFunction)
<< " with count of " << ore::NV("TotalCount", TotalCount)
<< ": " << Reason;
});
continue;
}
assert(!isMemProfClone(*TargetFunction));
// Handle each call clone, applying ICP so that each clone directly
// calls the specified callee clone, guarded by the appropriate ICP
// check.
CallBase *CBClone = CB;
for (unsigned J = 0; J < NumClones; J++) {
// Copy 0 is the original function.
if (J > 0)
CBClone = cast<CallBase>((*VMaps[J - 1])[CB]);
// We do the promotion using the original name, so that the comparison
// is against the name in the vtable. Then just below, change the new
// direct call to call the cloned function.
auto &DirectCall =
pgo::promoteIndirectCall(*CBClone, TargetFunction, Candidate.Count,
TotalCount, isSamplePGO, &ORE);
auto *TargetToUse = TargetFunction;
// Call original if this version calls the original version of its
// callee.
if (StackNode.Clones[J]) {
TargetToUse =
cast<Function>(M.getOrInsertFunction(
getMemProfFuncName(TargetFunction->getName(),
StackNode.Clones[J]),
TargetFunction->getFunctionType())
.getCallee());
}
DirectCall.setCalledFunction(TargetToUse);
// During matching we generate synthetic VP metadata for indirect calls
// not already having any, from the memprof profile's callee GUIDs. If
// we subsequently promote and inline those callees, we currently lose
// the ability to generate this synthetic VP metadata. Optionally apply
// a noinline attribute to promoted direct calls, where the threshold is
// set to capture synthetic VP metadata targets which get a count of 1.
if (MemProfICPNoInlineThreshold &&
Candidate.Count < MemProfICPNoInlineThreshold)
DirectCall.setIsNoInline();
ORE.emit(OptimizationRemark(DEBUG_TYPE, "MemprofCall", CBClone)
<< ore::NV("Call", CBClone) << " in clone "
<< ore::NV("Caller", CBClone->getFunction())
<< " promoted and assigned to call function clone "
<< ore::NV("Callee", TargetToUse));
}
// Update TotalCount (all clones should get same count above)
TotalCount -= Candidate.Count;
NumPromoted++;
}
// Adjust the MD.prof metadata for all clones, now that we have the new
// TotalCount and the number promoted.
CallBase *CBClone = CB;
for (unsigned J = 0; J < NumClones; J++) {
// Copy 0 is the original function.
if (J > 0)
CBClone = cast<CallBase>((*VMaps[J - 1])[CB]);
// First delete the old one.
CBClone->setMetadata(LLVMContext::MD_prof, nullptr);
// If all promoted, we don't need the MD.prof metadata.
// Otherwise we need update with the un-promoted records back.
if (TotalCount != 0)
annotateValueSite(
M, *CBClone, ArrayRef(Info.CandidateProfileData).slice(NumPromoted),
TotalCount, IPVK_IndirectCallTarget, Info.NumCandidates);
}
}
}
template <typename DerivedCCG, typename FuncTy, typename CallTy>
bool CallsiteContextGraph<DerivedCCG, FuncTy, CallTy>::process() {
if (DumpCCG) {
dbgs() << "CCG before cloning:\n";
dbgs() << *this;
}
if (ExportToDot)
exportToDot("postbuild");
if (VerifyCCG) {
check();
}
identifyClones();
if (VerifyCCG) {
check();
}
if (DumpCCG) {
dbgs() << "CCG after cloning:\n";
dbgs() << *this;
}
if (ExportToDot)
exportToDot("cloned");
bool Changed = assignFunctions();
if (DumpCCG) {
dbgs() << "CCG after assigning function clones:\n";
dbgs() << *this;
}
if (ExportToDot)
exportToDot("clonefuncassign");
if (MemProfReportHintedSizes)
printTotalSizes(errs());
return Changed;
}
bool MemProfContextDisambiguation::processModule(
Module &M,
llvm::function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
// If we have an import summary, then the cloning decisions were made during
// the thin link on the index. Apply them and return.
if (ImportSummary)
return applyImport(M);
// TODO: If/when other types of memprof cloning are enabled beyond just for
// hot and cold, we will need to change this to individually control the
// AllocationType passed to addStackNodesForMIB during CCG construction.
// Note that we specifically check this after applying imports above, so that
// the option isn't needed to be passed to distributed ThinLTO backend
// clang processes, which won't necessarily have visibility into the linker
// dependences. Instead the information is communicated from the LTO link to
// the backends via the combined summary index.
if (!SupportsHotColdNew)
return false;
ModuleCallsiteContextGraph CCG(M, OREGetter);
return CCG.process();
}
MemProfContextDisambiguation::MemProfContextDisambiguation(
const ModuleSummaryIndex *Summary, bool isSamplePGO)
: ImportSummary(Summary), isSamplePGO(isSamplePGO) {
// Check the dot graph printing options once here, to make sure we have valid
// and expected combinations.
if (DotGraphScope == DotScope::Alloc && !AllocIdForDot.getNumOccurrences())
llvm::report_fatal_error(
"-memprof-dot-scope=alloc requires -memprof-dot-alloc-id");
if (DotGraphScope == DotScope::Context &&
!ContextIdForDot.getNumOccurrences())
llvm::report_fatal_error(
"-memprof-dot-scope=context requires -memprof-dot-context-id");
if (DotGraphScope == DotScope::All && AllocIdForDot.getNumOccurrences() &&
ContextIdForDot.getNumOccurrences())
llvm::report_fatal_error(
"-memprof-dot-scope=all can't have both -memprof-dot-alloc-id and "
"-memprof-dot-context-id");
if (ImportSummary) {
// The MemProfImportSummary should only be used for testing ThinLTO
// distributed backend handling via opt, in which case we don't have a
// summary from the pass pipeline.
assert(MemProfImportSummary.empty());
return;
}
if (MemProfImportSummary.empty())
return;
auto ReadSummaryFile =
errorOrToExpected(MemoryBuffer::getFile(MemProfImportSummary));
if (!ReadSummaryFile) {
logAllUnhandledErrors(ReadSummaryFile.takeError(), errs(),
"Error loading file '" + MemProfImportSummary +
"': ");
return;
}
auto ImportSummaryForTestingOrErr = getModuleSummaryIndex(**ReadSummaryFile);
if (!ImportSummaryForTestingOrErr) {
logAllUnhandledErrors(ImportSummaryForTestingOrErr.takeError(), errs(),
"Error parsing file '" + MemProfImportSummary +
"': ");
return;
}
ImportSummaryForTesting = std::move(*ImportSummaryForTestingOrErr);
ImportSummary = ImportSummaryForTesting.get();
}
PreservedAnalyses MemProfContextDisambiguation::run(Module &M,
ModuleAnalysisManager &AM) {
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
};
if (!processModule(M, OREGetter))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
void MemProfContextDisambiguation::run(
ModuleSummaryIndex &Index,
llvm::function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing) {
// TODO: If/when other types of memprof cloning are enabled beyond just for
// hot and cold, we will need to change this to individually control the
// AllocationType passed to addStackNodesForMIB during CCG construction.
// The index was set from the option, so these should be in sync.
assert(Index.withSupportsHotColdNew() == SupportsHotColdNew);
if (!SupportsHotColdNew)
return;
IndexCallsiteContextGraph CCG(Index, isPrevailing);
CCG.process();
}