llvm-project/lldb/source/Plugins/DynamicLoader/Darwin-Kernel/DynamicLoaderDarwinKernel.cpp
Frederic Riss acbf0058e9 Lock accesses to OptionValueFileSpecList objects
Before a Debugger gets a Target, target settings are routed to a global set
of settings. Even without this, some part of the LLDB which exist independently
of the Debugger object (the Module cache, the Symbol vendors, ...) access
directly the global default store for those settings.

Of course, if you modify one of those global settings while they are being read,
bad things happen. We see this quite a bit with FileSpecList settings. In
particular, we see many cases where one debug session changes
target.exec-search-paths while another session starts up and it crashes when
one of those accesses invalid FileSpecs.

This patch addresses the specific FileSpecList issue by adding locking to
OptionValueFileSpecList and never returning by reference.

Reviewers: clayborg

Subscribers: lldb-commits

Differential Revision: https://reviews.llvm.org/D60468

llvm-svn: 359028
2019-04-23 20:17:04 +00:00

1582 lines
58 KiB
C++

//===-- DynamicLoaderDarwinKernel.cpp -----------------------------*- C++
//-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Plugins/Platform/MacOSX/PlatformDarwinKernel.h"
#include "lldb/Breakpoint/StoppointCallbackContext.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Interpreter/OptionValueProperties.h"
#include "lldb/Symbol/LocateSymbolFile.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/OperatingSystem.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadPlanRunToAddress.h"
#include "lldb/Utility/DataBuffer.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/State.h"
#include "DynamicLoaderDarwinKernel.h"
#include <memory>
#include <algorithm>
//#define ENABLE_DEBUG_PRINTF // COMMENT THIS LINE OUT PRIOR TO CHECKIN
#ifdef ENABLE_DEBUG_PRINTF
#include <stdio.h>
#define DEBUG_PRINTF(fmt, ...) printf(fmt, ##__VA_ARGS__)
#else
#define DEBUG_PRINTF(fmt, ...)
#endif
using namespace lldb;
using namespace lldb_private;
// Progressively greater amounts of scanning we will allow For some targets
// very early in startup, we can't do any random reads of memory or we can
// crash the device so a setting is needed that can completely disable the
// KASLR scans.
enum KASLRScanType {
eKASLRScanNone = 0, // No reading into the inferior at all
eKASLRScanLowgloAddresses, // Check one word of memory for a possible kernel
// addr, then see if a kernel is there
eKASLRScanNearPC, // Scan backwards from the current $pc looking for kernel;
// checking at 96 locations total
eKASLRScanExhaustiveScan // Scan through the entire possible kernel address
// range looking for a kernel
};
static constexpr OptionEnumValueElement g_kaslr_kernel_scan_enum_values[] = {
{eKASLRScanNone, "none",
"Do not read memory looking for a Darwin kernel when attaching."},
{eKASLRScanLowgloAddresses, "basic", "Check for the Darwin kernel's load "
"addr in the lowglo page "
"(boot-args=debug) only."},
{eKASLRScanNearPC, "fast-scan", "Scan near the pc value on attach to find "
"the Darwin kernel's load address."},
{eKASLRScanExhaustiveScan, "exhaustive-scan",
"Scan through the entire potential address range of Darwin kernel (only "
"on 32-bit targets)."}};
static constexpr PropertyDefinition g_properties[] = {
{"load-kexts", OptionValue::eTypeBoolean, true, true, NULL, {},
"Automatically loads kext images when attaching to a kernel."},
{"scan-type", OptionValue::eTypeEnum, true, eKASLRScanNearPC, NULL,
OptionEnumValues(g_kaslr_kernel_scan_enum_values),
"Control how many reads lldb will make while searching for a Darwin "
"kernel on attach."}};
enum { ePropertyLoadKexts, ePropertyScanType };
class DynamicLoaderDarwinKernelProperties : public Properties {
public:
static ConstString &GetSettingName() {
static ConstString g_setting_name("darwin-kernel");
return g_setting_name;
}
DynamicLoaderDarwinKernelProperties() : Properties() {
m_collection_sp = std::make_shared<OptionValueProperties>(GetSettingName());
m_collection_sp->Initialize(g_properties);
}
virtual ~DynamicLoaderDarwinKernelProperties() {}
bool GetLoadKexts() const {
const uint32_t idx = ePropertyLoadKexts;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
NULL, idx, g_properties[idx].default_uint_value != 0);
}
KASLRScanType GetScanType() const {
const uint32_t idx = ePropertyScanType;
return (KASLRScanType)m_collection_sp->GetPropertyAtIndexAsEnumeration(
NULL, idx, g_properties[idx].default_uint_value);
}
};
typedef std::shared_ptr<DynamicLoaderDarwinKernelProperties>
DynamicLoaderDarwinKernelPropertiesSP;
static const DynamicLoaderDarwinKernelPropertiesSP &GetGlobalProperties() {
static DynamicLoaderDarwinKernelPropertiesSP g_settings_sp;
if (!g_settings_sp)
g_settings_sp = std::make_shared<DynamicLoaderDarwinKernelProperties>();
return g_settings_sp;
}
// Create an instance of this class. This function is filled into the plugin
// info class that gets handed out by the plugin factory and allows the lldb to
// instantiate an instance of this class.
DynamicLoader *DynamicLoaderDarwinKernel::CreateInstance(Process *process,
bool force) {
if (!force) {
// If the user provided an executable binary and it is not a kernel, this
// plugin should not create an instance.
Module *exe_module = process->GetTarget().GetExecutableModulePointer();
if (exe_module) {
ObjectFile *object_file = exe_module->GetObjectFile();
if (object_file) {
if (object_file->GetStrata() != ObjectFile::eStrataKernel) {
return NULL;
}
}
}
// If the target's architecture does not look like an Apple environment,
// this plugin should not create an instance.
const llvm::Triple &triple_ref =
process->GetTarget().GetArchitecture().GetTriple();
switch (triple_ref.getOS()) {
case llvm::Triple::Darwin:
case llvm::Triple::MacOSX:
case llvm::Triple::IOS:
case llvm::Triple::TvOS:
case llvm::Triple::WatchOS:
// NEED_BRIDGEOS_TRIPLE case llvm::Triple::BridgeOS:
if (triple_ref.getVendor() != llvm::Triple::Apple) {
return NULL;
}
break;
// If we have triple like armv7-unknown-unknown, we should try looking for
// a Darwin kernel.
case llvm::Triple::UnknownOS:
break;
default:
return NULL;
break;
}
}
// At this point if there is an ExecutableModule, it is a kernel and the
// Target is some variant of an Apple system. If the Process hasn't provided
// the kernel load address, we need to look around in memory to find it.
const addr_t kernel_load_address = SearchForDarwinKernel(process);
if (CheckForKernelImageAtAddress(kernel_load_address, process).IsValid()) {
process->SetCanRunCode(false);
return new DynamicLoaderDarwinKernel(process, kernel_load_address);
}
return NULL;
}
lldb::addr_t
DynamicLoaderDarwinKernel::SearchForDarwinKernel(Process *process) {
addr_t kernel_load_address = process->GetImageInfoAddress();
if (kernel_load_address == LLDB_INVALID_ADDRESS) {
kernel_load_address = SearchForKernelAtSameLoadAddr(process);
if (kernel_load_address == LLDB_INVALID_ADDRESS) {
kernel_load_address = SearchForKernelWithDebugHints(process);
if (kernel_load_address == LLDB_INVALID_ADDRESS) {
kernel_load_address = SearchForKernelNearPC(process);
if (kernel_load_address == LLDB_INVALID_ADDRESS) {
kernel_load_address = SearchForKernelViaExhaustiveSearch(process);
}
}
}
}
return kernel_load_address;
}
// Check if the kernel binary is loaded in memory without a slide. First verify
// that the ExecutableModule is a kernel before we proceed. Returns the address
// of the kernel if one was found, else LLDB_INVALID_ADDRESS.
lldb::addr_t
DynamicLoaderDarwinKernel::SearchForKernelAtSameLoadAddr(Process *process) {
Module *exe_module = process->GetTarget().GetExecutableModulePointer();
if (exe_module == NULL)
return LLDB_INVALID_ADDRESS;
ObjectFile *exe_objfile = exe_module->GetObjectFile();
if (exe_objfile == NULL)
return LLDB_INVALID_ADDRESS;
if (exe_objfile->GetType() != ObjectFile::eTypeExecutable ||
exe_objfile->GetStrata() != ObjectFile::eStrataKernel)
return LLDB_INVALID_ADDRESS;
if (!exe_objfile->GetBaseAddress().IsValid())
return LLDB_INVALID_ADDRESS;
if (CheckForKernelImageAtAddress(
exe_objfile->GetBaseAddress().GetFileAddress(), process) ==
exe_module->GetUUID())
return exe_objfile->GetBaseAddress().GetFileAddress();
return LLDB_INVALID_ADDRESS;
}
// If the debug flag is included in the boot-args nvram setting, the kernel's
// load address will be noted in the lowglo page at a fixed address Returns the
// address of the kernel if one was found, else LLDB_INVALID_ADDRESS.
lldb::addr_t
DynamicLoaderDarwinKernel::SearchForKernelWithDebugHints(Process *process) {
if (GetGlobalProperties()->GetScanType() == eKASLRScanNone)
return LLDB_INVALID_ADDRESS;
Status read_err;
addr_t kernel_addresses_64[] = {
0xfffffff000004010ULL, // newest arm64 devices
0xffffff8000004010ULL, // 2014-2015-ish arm64 devices
0xffffff8000002010ULL, // oldest arm64 devices
LLDB_INVALID_ADDRESS};
addr_t kernel_addresses_32[] = {0xffff0110, // 2016 and earlier armv7 devices
0xffff1010, LLDB_INVALID_ADDRESS};
uint8_t uval[8];
if (process->GetAddressByteSize() == 8) {
for (size_t i = 0; kernel_addresses_64[i] != LLDB_INVALID_ADDRESS; i++) {
if (process->ReadMemoryFromInferior (kernel_addresses_64[i], uval, 8, read_err) == 8)
{
DataExtractor data (&uval, 8, process->GetByteOrder(), process->GetAddressByteSize());
offset_t offset = 0;
uint64_t addr = data.GetU64 (&offset);
if (CheckForKernelImageAtAddress(addr, process).IsValid()) {
return addr;
}
}
}
}
if (process->GetAddressByteSize() == 4) {
for (size_t i = 0; kernel_addresses_32[i] != LLDB_INVALID_ADDRESS; i++) {
if (process->ReadMemoryFromInferior (kernel_addresses_32[i], uval, 4, read_err) == 4)
{
DataExtractor data (&uval, 4, process->GetByteOrder(), process->GetAddressByteSize());
offset_t offset = 0;
uint32_t addr = data.GetU32 (&offset);
if (CheckForKernelImageAtAddress(addr, process).IsValid()) {
return addr;
}
}
}
}
return LLDB_INVALID_ADDRESS;
}
// If the kernel is currently executing when lldb attaches, and we don't have a
// better way of finding the kernel's load address, try searching backwards
// from the current pc value looking for the kernel's Mach header in memory.
// Returns the address of the kernel if one was found, else
// LLDB_INVALID_ADDRESS.
lldb::addr_t
DynamicLoaderDarwinKernel::SearchForKernelNearPC(Process *process) {
if (GetGlobalProperties()->GetScanType() == eKASLRScanNone ||
GetGlobalProperties()->GetScanType() == eKASLRScanLowgloAddresses) {
return LLDB_INVALID_ADDRESS;
}
ThreadSP thread = process->GetThreadList().GetSelectedThread();
if (thread.get() == NULL)
return LLDB_INVALID_ADDRESS;
addr_t pc = thread->GetRegisterContext()->GetPC(LLDB_INVALID_ADDRESS);
int ptrsize = process->GetTarget().GetArchitecture().GetAddressByteSize();
// The kernel is always loaded in high memory, if the top bit is zero,
// this isn't a kernel.
if (ptrsize == 8) {
if ((pc & (1ULL << 63)) == 0) {
return LLDB_INVALID_ADDRESS;
}
} else {
if ((pc & (1ULL << 31)) == 0) {
return LLDB_INVALID_ADDRESS;
}
}
if (pc == LLDB_INVALID_ADDRESS)
return LLDB_INVALID_ADDRESS;
int pagesize = 0x4000; // 16k pages on 64-bit targets
if (ptrsize == 4)
pagesize = 0x1000; // 4k pages on 32-bit targets
// The kernel will be loaded on a page boundary.
// Round the current pc down to the nearest page boundary.
addr_t addr = pc & ~(pagesize - 1ULL);
// Search backwards for 32 megabytes, or first memory read error.
while (pc - addr < 32 * 0x100000) {
bool read_error;
if (CheckForKernelImageAtAddress(addr, process, &read_error).IsValid())
return addr;
// Stop scanning on the first read error we encounter; we've walked
// past this executable block of memory.
if (read_error == true)
break;
addr -= pagesize;
}
return LLDB_INVALID_ADDRESS;
}
// Scan through the valid address range for a kernel binary. This is uselessly
// slow in 64-bit environments so we don't even try it. This scan is not
// enabled by default even for 32-bit targets. Returns the address of the
// kernel if one was found, else LLDB_INVALID_ADDRESS.
lldb::addr_t DynamicLoaderDarwinKernel::SearchForKernelViaExhaustiveSearch(
Process *process) {
if (GetGlobalProperties()->GetScanType() != eKASLRScanExhaustiveScan) {
return LLDB_INVALID_ADDRESS;
}
addr_t kernel_range_low, kernel_range_high;
if (process->GetTarget().GetArchitecture().GetAddressByteSize() == 8) {
kernel_range_low = 1ULL << 63;
kernel_range_high = UINT64_MAX;
} else {
kernel_range_low = 1ULL << 31;
kernel_range_high = UINT32_MAX;
}
// Stepping through memory at one-megabyte resolution looking for a kernel
// rarely works (fast enough) with a 64-bit address space -- for now, let's
// not even bother. We may be attaching to something which *isn't* a kernel
// and we don't want to spin for minutes on-end looking for a kernel.
if (process->GetTarget().GetArchitecture().GetAddressByteSize() == 8)
return LLDB_INVALID_ADDRESS;
addr_t addr = kernel_range_low;
while (addr >= kernel_range_low && addr < kernel_range_high) {
// x86_64 kernels are at offset 0
if (CheckForKernelImageAtAddress(addr, process).IsValid())
return addr;
// 32-bit arm kernels are at offset 0x1000 (one 4k page)
if (CheckForKernelImageAtAddress(addr + 0x1000, process).IsValid())
return addr + 0x1000;
// 64-bit arm kernels are at offset 0x4000 (one 16k page)
if (CheckForKernelImageAtAddress(addr + 0x4000, process).IsValid())
return addr + 0x4000;
addr += 0x100000;
}
return LLDB_INVALID_ADDRESS;
}
// Read the mach_header struct out of memory and return it.
// Returns true if the mach_header was successfully read,
// Returns false if there was a problem reading the header, or it was not
// a Mach-O header.
bool
DynamicLoaderDarwinKernel::ReadMachHeader(addr_t addr, Process *process, llvm::MachO::mach_header &header,
bool *read_error) {
Status error;
if (read_error)
*read_error = false;
// Read the mach header and see whether it looks like a kernel
if (process->DoReadMemory (addr, &header, sizeof(header), error) !=
sizeof(header)) {
if (read_error)
*read_error = true;
return false;
}
const uint32_t magicks[] = { llvm::MachO::MH_MAGIC_64, llvm::MachO::MH_MAGIC, llvm::MachO::MH_CIGAM, llvm::MachO::MH_CIGAM_64};
bool found_matching_pattern = false;
for (size_t i = 0; i < llvm::array_lengthof (magicks); i++)
if (::memcmp (&header.magic, &magicks[i], sizeof (uint32_t)) == 0)
found_matching_pattern = true;
if (!found_matching_pattern)
return false;
if (header.magic == llvm::MachO::MH_CIGAM ||
header.magic == llvm::MachO::MH_CIGAM_64) {
header.magic = llvm::ByteSwap_32(header.magic);
header.cputype = llvm::ByteSwap_32(header.cputype);
header.cpusubtype = llvm::ByteSwap_32(header.cpusubtype);
header.filetype = llvm::ByteSwap_32(header.filetype);
header.ncmds = llvm::ByteSwap_32(header.ncmds);
header.sizeofcmds = llvm::ByteSwap_32(header.sizeofcmds);
header.flags = llvm::ByteSwap_32(header.flags);
}
return true;
}
// Given an address in memory, look to see if there is a kernel image at that
// address.
// Returns a UUID; if a kernel was not found at that address, UUID.IsValid()
// will be false.
lldb_private::UUID
DynamicLoaderDarwinKernel::CheckForKernelImageAtAddress(lldb::addr_t addr,
Process *process,
bool *read_error) {
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER));
if (addr == LLDB_INVALID_ADDRESS) {
if (read_error)
*read_error = true;
return UUID();
}
if (log)
log->Printf("DynamicLoaderDarwinKernel::CheckForKernelImageAtAddress: "
"looking for kernel binary at 0x%" PRIx64,
addr);
llvm::MachO::mach_header header;
if (!ReadMachHeader(addr, process, header, read_error))
return UUID();
// First try a quick test -- read the first 4 bytes and see if there is a
// valid Mach-O magic field there
// (the first field of the mach_header/mach_header_64 struct).
// A kernel is an executable which does not have the dynamic link object flag
// set.
if (header.filetype == llvm::MachO::MH_EXECUTE &&
(header.flags & llvm::MachO::MH_DYLDLINK) == 0) {
// Create a full module to get the UUID
ModuleSP memory_module_sp =
process->ReadModuleFromMemory(FileSpec("temp_mach_kernel"), addr);
if (!memory_module_sp.get())
return UUID();
ObjectFile *exe_objfile = memory_module_sp->GetObjectFile();
if (exe_objfile == NULL) {
if (log)
log->Printf("DynamicLoaderDarwinKernel::CheckForKernelImageAtAddress "
"found a binary at 0x%" PRIx64
" but could not create an object file from memory",
addr);
return UUID();
}
if (exe_objfile->GetType() == ObjectFile::eTypeExecutable &&
exe_objfile->GetStrata() == ObjectFile::eStrataKernel) {
ArchSpec kernel_arch(eArchTypeMachO, header.cputype, header.cpusubtype);
if (!process->GetTarget().GetArchitecture().IsCompatibleMatch(
kernel_arch)) {
process->GetTarget().SetArchitecture(kernel_arch);
}
if (log) {
std::string uuid_str;
if (memory_module_sp->GetUUID().IsValid()) {
uuid_str = "with UUID ";
uuid_str += memory_module_sp->GetUUID().GetAsString();
} else {
uuid_str = "and no LC_UUID found in load commands ";
}
log->Printf(
"DynamicLoaderDarwinKernel::CheckForKernelImageAtAddress: "
"kernel binary image found at 0x%" PRIx64 " with arch '%s' %s",
addr, kernel_arch.GetTriple().str().c_str(), uuid_str.c_str());
}
return memory_module_sp->GetUUID();
}
}
return UUID();
}
// Constructor
DynamicLoaderDarwinKernel::DynamicLoaderDarwinKernel(Process *process,
lldb::addr_t kernel_addr)
: DynamicLoader(process), m_kernel_load_address(kernel_addr), m_kernel(),
m_kext_summary_header_ptr_addr(), m_kext_summary_header_addr(),
m_kext_summary_header(), m_known_kexts(), m_mutex(),
m_break_id(LLDB_INVALID_BREAK_ID) {
Status error;
PlatformSP platform_sp(
Platform::Create(PlatformDarwinKernel::GetPluginNameStatic(), error));
// Only select the darwin-kernel Platform if we've been asked to load kexts.
// It can take some time to scan over all of the kext info.plists and that
// shouldn't be done if kext loading is explicitly disabled.
if (platform_sp.get() && GetGlobalProperties()->GetLoadKexts()) {
process->GetTarget().SetPlatform(platform_sp);
}
}
// Destructor
DynamicLoaderDarwinKernel::~DynamicLoaderDarwinKernel() { Clear(true); }
void DynamicLoaderDarwinKernel::UpdateIfNeeded() {
LoadKernelModuleIfNeeded();
SetNotificationBreakpointIfNeeded();
}
/// Called after attaching a process.
///
/// Allow DynamicLoader plug-ins to execute some code after
/// attaching to a process.
void DynamicLoaderDarwinKernel::DidAttach() {
PrivateInitialize(m_process);
UpdateIfNeeded();
}
/// Called after attaching a process.
///
/// Allow DynamicLoader plug-ins to execute some code after
/// attaching to a process.
void DynamicLoaderDarwinKernel::DidLaunch() {
PrivateInitialize(m_process);
UpdateIfNeeded();
}
// Clear out the state of this class.
void DynamicLoaderDarwinKernel::Clear(bool clear_process) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
if (m_process->IsAlive() && LLDB_BREAK_ID_IS_VALID(m_break_id))
m_process->ClearBreakpointSiteByID(m_break_id);
if (clear_process)
m_process = NULL;
m_kernel.Clear();
m_known_kexts.clear();
m_kext_summary_header_ptr_addr.Clear();
m_kext_summary_header_addr.Clear();
m_break_id = LLDB_INVALID_BREAK_ID;
}
bool DynamicLoaderDarwinKernel::KextImageInfo::LoadImageAtFileAddress(
Process *process) {
if (IsLoaded())
return true;
if (m_module_sp) {
bool changed = false;
if (m_module_sp->SetLoadAddress(process->GetTarget(), 0, true, changed))
m_load_process_stop_id = process->GetStopID();
}
return false;
}
void DynamicLoaderDarwinKernel::KextImageInfo::SetModule(ModuleSP module_sp) {
m_module_sp = module_sp;
if (module_sp.get() && module_sp->GetObjectFile()) {
if (module_sp->GetObjectFile()->GetType() == ObjectFile::eTypeExecutable &&
module_sp->GetObjectFile()->GetStrata() == ObjectFile::eStrataKernel) {
m_kernel_image = true;
} else {
m_kernel_image = false;
}
}
}
ModuleSP DynamicLoaderDarwinKernel::KextImageInfo::GetModule() {
return m_module_sp;
}
void DynamicLoaderDarwinKernel::KextImageInfo::SetLoadAddress(
addr_t load_addr) {
m_load_address = load_addr;
}
addr_t DynamicLoaderDarwinKernel::KextImageInfo::GetLoadAddress() const {
return m_load_address;
}
uint64_t DynamicLoaderDarwinKernel::KextImageInfo::GetSize() const {
return m_size;
}
void DynamicLoaderDarwinKernel::KextImageInfo::SetSize(uint64_t size) {
m_size = size;
}
uint32_t DynamicLoaderDarwinKernel::KextImageInfo::GetProcessStopId() const {
return m_load_process_stop_id;
}
void DynamicLoaderDarwinKernel::KextImageInfo::SetProcessStopId(
uint32_t stop_id) {
m_load_process_stop_id = stop_id;
}
bool DynamicLoaderDarwinKernel::KextImageInfo::
operator==(const KextImageInfo &rhs) {
if (m_uuid.IsValid() || rhs.GetUUID().IsValid()) {
return m_uuid == rhs.GetUUID();
}
return m_name == rhs.GetName() && m_load_address == rhs.GetLoadAddress();
}
void DynamicLoaderDarwinKernel::KextImageInfo::SetName(const char *name) {
m_name = name;
}
std::string DynamicLoaderDarwinKernel::KextImageInfo::GetName() const {
return m_name;
}
void DynamicLoaderDarwinKernel::KextImageInfo::SetUUID(const UUID &uuid) {
m_uuid = uuid;
}
UUID DynamicLoaderDarwinKernel::KextImageInfo::GetUUID() const {
return m_uuid;
}
// Given the m_load_address from the kext summaries, and a UUID, try to create
// an in-memory Module at that address. Require that the MemoryModule have a
// matching UUID and detect if this MemoryModule is a kernel or a kext.
//
// Returns true if m_memory_module_sp is now set to a valid Module.
bool DynamicLoaderDarwinKernel::KextImageInfo::ReadMemoryModule(
Process *process) {
Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST);
if (m_memory_module_sp.get() != NULL)
return true;
if (m_load_address == LLDB_INVALID_ADDRESS)
return false;
FileSpec file_spec(m_name.c_str());
llvm::MachO::mach_header mh;
size_t size_to_read = 512;
if (ReadMachHeader(m_load_address, process, mh)) {
if (mh.magic == llvm::MachO::MH_CIGAM || mh.magic == llvm::MachO::MH_MAGIC)
size_to_read = sizeof(llvm::MachO::mach_header) + mh.sizeofcmds;
if (mh.magic == llvm::MachO::MH_CIGAM_64 ||
mh.magic == llvm::MachO::MH_MAGIC_64)
size_to_read = sizeof(llvm::MachO::mach_header_64) + mh.sizeofcmds;
}
ModuleSP memory_module_sp =
process->ReadModuleFromMemory(file_spec, m_load_address, size_to_read);
if (memory_module_sp.get() == NULL)
return false;
bool is_kernel = false;
if (memory_module_sp->GetObjectFile()) {
if (memory_module_sp->GetObjectFile()->GetType() ==
ObjectFile::eTypeExecutable &&
memory_module_sp->GetObjectFile()->GetStrata() ==
ObjectFile::eStrataKernel) {
is_kernel = true;
} else if (memory_module_sp->GetObjectFile()->GetType() ==
ObjectFile::eTypeSharedLibrary) {
is_kernel = false;
}
}
// If this is a kext, and the kernel specified what UUID we should find at
// this load address, require that the memory module have a matching UUID or
// something has gone wrong and we should discard it.
if (m_uuid.IsValid()) {
if (m_uuid != memory_module_sp->GetUUID()) {
if (log) {
log->Printf("KextImageInfo::ReadMemoryModule the kernel said to find "
"uuid %s at 0x%" PRIx64
" but instead we found uuid %s, throwing it away",
m_uuid.GetAsString().c_str(), m_load_address,
memory_module_sp->GetUUID().GetAsString().c_str());
}
return false;
}
}
// If the in-memory Module has a UUID, let's use that.
if (!m_uuid.IsValid() && memory_module_sp->GetUUID().IsValid()) {
m_uuid = memory_module_sp->GetUUID();
}
m_memory_module_sp = memory_module_sp;
m_kernel_image = is_kernel;
if (is_kernel) {
if (log) {
// This is unusual and probably not intended
log->Printf("KextImageInfo::ReadMemoryModule read the kernel binary out "
"of memory");
}
if (memory_module_sp->GetArchitecture().IsValid()) {
process->GetTarget().SetArchitecture(memory_module_sp->GetArchitecture());
}
if (m_uuid.IsValid()) {
ModuleSP exe_module_sp = process->GetTarget().GetExecutableModule();
if (exe_module_sp.get() && exe_module_sp->GetUUID().IsValid()) {
if (m_uuid != exe_module_sp->GetUUID()) {
// The user specified a kernel binary that has a different UUID than
// the kernel actually running in memory. This never ends well;
// clear the user specified kernel binary from the Target.
m_module_sp.reset();
ModuleList user_specified_kernel_list;
user_specified_kernel_list.Append(exe_module_sp);
process->GetTarget().GetImages().Remove(user_specified_kernel_list);
}
}
}
}
return true;
}
bool DynamicLoaderDarwinKernel::KextImageInfo::IsKernel() const {
return m_kernel_image;
}
void DynamicLoaderDarwinKernel::KextImageInfo::SetIsKernel(bool is_kernel) {
m_kernel_image = is_kernel;
}
bool DynamicLoaderDarwinKernel::KextImageInfo::LoadImageUsingMemoryModule(
Process *process) {
if (IsLoaded())
return true;
Target &target = process->GetTarget();
// kexts will have a uuid from the table.
// for the kernel, we'll need to read the load commands out of memory to get it.
if (m_uuid.IsValid() == false) {
if (ReadMemoryModule(process) == false) {
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER));
if (log)
log->Printf("Unable to read '%s' from memory at address 0x%" PRIx64
" to get the segment load addresses.",
m_name.c_str(), m_load_address);
return false;
}
}
if (IsKernel() && m_uuid.IsValid()) {
Stream *s = target.GetDebugger().GetOutputFile().get();
if (s) {
s->Printf("Kernel UUID: %s\n",
m_uuid.GetAsString().c_str());
s->Printf("Load Address: 0x%" PRIx64 "\n", m_load_address);
}
}
if (!m_module_sp) {
// See if the kext has already been loaded into the target, probably by the
// user doing target modules add.
const ModuleList &target_images = target.GetImages();
m_module_sp = target_images.FindModule(m_uuid);
// Search for the kext on the local filesystem via the UUID
if (!m_module_sp && m_uuid.IsValid()) {
ModuleSpec module_spec;
module_spec.GetUUID() = m_uuid;
module_spec.GetArchitecture() = target.GetArchitecture();
// For the kernel, we really do need an on-disk file copy of the binary
// to do anything useful. This will force a clal to
if (IsKernel()) {
if (Symbols::DownloadObjectAndSymbolFile(module_spec, true)) {
if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
m_module_sp = std::make_shared<Module>(module_spec.GetFileSpec(),
target.GetArchitecture());
if (m_module_sp.get() &&
m_module_sp->MatchesModuleSpec(module_spec)) {
ModuleList loaded_module_list;
loaded_module_list.Append(m_module_sp);
target.ModulesDidLoad(loaded_module_list);
}
}
}
}
// If the current platform is PlatformDarwinKernel, create a ModuleSpec
// with the filename set to be the bundle ID for this kext, e.g.
// "com.apple.filesystems.msdosfs", and ask the platform to find it.
PlatformSP platform_sp(target.GetPlatform());
if (!m_module_sp && platform_sp) {
ConstString platform_name(platform_sp->GetPluginName());
static ConstString g_platform_name(
PlatformDarwinKernel::GetPluginNameStatic());
if (platform_name == g_platform_name) {
ModuleSpec kext_bundle_module_spec(module_spec);
FileSpec kext_filespec(m_name.c_str());
FileSpecList search_paths = target.GetExecutableSearchPaths();
kext_bundle_module_spec.GetFileSpec() = kext_filespec;
platform_sp->GetSharedModule(
kext_bundle_module_spec, process, m_module_sp,
&search_paths, NULL, NULL);
}
}
// Ask the Target to find this file on the local system, if possible.
// This will search in the list of currently-loaded files, look in the
// standard search paths on the system, and on a Mac it will try calling
// the DebugSymbols framework with the UUID to find the binary via its
// search methods.
if (!m_module_sp) {
m_module_sp = target.GetOrCreateModule(module_spec, true /* notify */);
}
if (IsKernel() && !m_module_sp) {
Stream *s = target.GetDebugger().GetOutputFile().get();
if (s) {
s->Printf("WARNING: Unable to locate kernel binary on the debugger "
"system.\n");
}
}
}
// If we managed to find a module, append it to the target's list of
// images. If we also have a memory module, require that they have matching
// UUIDs
if (m_module_sp) {
if (m_uuid.IsValid() && m_module_sp->GetUUID() == m_uuid) {
target.GetImages().AppendIfNeeded(m_module_sp);
if (IsKernel() &&
target.GetExecutableModulePointer() != m_module_sp.get()) {
target.SetExecutableModule(m_module_sp, eLoadDependentsNo);
}
}
}
}
// If we've found a binary, read the load commands out of memory so we
// can set the segment load addresses.
if (m_module_sp)
ReadMemoryModule (process);
static ConstString g_section_name_LINKEDIT("__LINKEDIT");
if (m_memory_module_sp && m_module_sp) {
if (m_module_sp->GetUUID() == m_memory_module_sp->GetUUID()) {
ObjectFile *ondisk_object_file = m_module_sp->GetObjectFile();
ObjectFile *memory_object_file = m_memory_module_sp->GetObjectFile();
if (memory_object_file && ondisk_object_file) {
// The memory_module for kexts may have an invalid __LINKEDIT seg; skip
// it.
const bool ignore_linkedit = !IsKernel();
SectionList *ondisk_section_list = ondisk_object_file->GetSectionList();
SectionList *memory_section_list = memory_object_file->GetSectionList();
if (memory_section_list && ondisk_section_list) {
const uint32_t num_ondisk_sections = ondisk_section_list->GetSize();
// There may be CTF sections in the memory image so we can't always
// just compare the number of sections (which are actually segments
// in mach-o parlance)
uint32_t sect_idx = 0;
// Use the memory_module's addresses for each section to set the file
// module's load address as appropriate. We don't want to use a
// single slide value for the entire kext - different segments may be
// slid different amounts by the kext loader.
uint32_t num_sections_loaded = 0;
for (sect_idx = 0; sect_idx < num_ondisk_sections; ++sect_idx) {
SectionSP ondisk_section_sp(
ondisk_section_list->GetSectionAtIndex(sect_idx));
if (ondisk_section_sp) {
// Don't ever load __LINKEDIT as it may or may not be actually
// mapped into memory and there is no current way to tell.
// I filed rdar://problem/12851706 to track being able to tell
// if the __LINKEDIT is actually mapped, but until then, we need
// to not load the __LINKEDIT
if (ignore_linkedit &&
ondisk_section_sp->GetName() == g_section_name_LINKEDIT)
continue;
const Section *memory_section =
memory_section_list
->FindSectionByName(ondisk_section_sp->GetName())
.get();
if (memory_section) {
target.SetSectionLoadAddress(ondisk_section_sp,
memory_section->GetFileAddress());
++num_sections_loaded;
}
}
}
if (num_sections_loaded > 0)
m_load_process_stop_id = process->GetStopID();
else
m_module_sp.reset(); // No sections were loaded
} else
m_module_sp.reset(); // One or both section lists
} else
m_module_sp.reset(); // One or both object files missing
} else
m_module_sp.reset(); // UUID mismatch
}
bool is_loaded = IsLoaded();
if (is_loaded && m_module_sp && IsKernel()) {
Stream *s = target.GetDebugger().GetOutputFile().get();
if (s) {
ObjectFile *kernel_object_file = m_module_sp->GetObjectFile();
if (kernel_object_file) {
addr_t file_address =
kernel_object_file->GetBaseAddress().GetFileAddress();
if (m_load_address != LLDB_INVALID_ADDRESS &&
file_address != LLDB_INVALID_ADDRESS) {
s->Printf("Kernel slid 0x%" PRIx64 " in memory.\n",
m_load_address - file_address);
}
}
{
s->Printf("Loaded kernel file %s\n",
m_module_sp->GetFileSpec().GetPath().c_str());
}
s->Flush();
}
}
return is_loaded;
}
uint32_t DynamicLoaderDarwinKernel::KextImageInfo::GetAddressByteSize() {
if (m_memory_module_sp)
return m_memory_module_sp->GetArchitecture().GetAddressByteSize();
if (m_module_sp)
return m_module_sp->GetArchitecture().GetAddressByteSize();
return 0;
}
lldb::ByteOrder DynamicLoaderDarwinKernel::KextImageInfo::GetByteOrder() {
if (m_memory_module_sp)
return m_memory_module_sp->GetArchitecture().GetByteOrder();
if (m_module_sp)
return m_module_sp->GetArchitecture().GetByteOrder();
return endian::InlHostByteOrder();
}
lldb_private::ArchSpec
DynamicLoaderDarwinKernel::KextImageInfo::GetArchitecture() const {
if (m_memory_module_sp)
return m_memory_module_sp->GetArchitecture();
if (m_module_sp)
return m_module_sp->GetArchitecture();
return lldb_private::ArchSpec();
}
// Load the kernel module and initialize the "m_kernel" member. Return true
// _only_ if the kernel is loaded the first time through (subsequent calls to
// this function should return false after the kernel has been already loaded).
void DynamicLoaderDarwinKernel::LoadKernelModuleIfNeeded() {
if (!m_kext_summary_header_ptr_addr.IsValid()) {
m_kernel.Clear();
m_kernel.SetModule(m_process->GetTarget().GetExecutableModule());
m_kernel.SetIsKernel(true);
ConstString kernel_name("mach_kernel");
if (m_kernel.GetModule().get() && m_kernel.GetModule()->GetObjectFile() &&
!m_kernel.GetModule()
->GetObjectFile()
->GetFileSpec()
.GetFilename()
.IsEmpty()) {
kernel_name =
m_kernel.GetModule()->GetObjectFile()->GetFileSpec().GetFilename();
}
m_kernel.SetName(kernel_name.AsCString());
if (m_kernel.GetLoadAddress() == LLDB_INVALID_ADDRESS) {
m_kernel.SetLoadAddress(m_kernel_load_address);
if (m_kernel.GetLoadAddress() == LLDB_INVALID_ADDRESS &&
m_kernel.GetModule()) {
// We didn't get a hint from the process, so we will try the kernel at
// the address that it exists at in the file if we have one
ObjectFile *kernel_object_file = m_kernel.GetModule()->GetObjectFile();
if (kernel_object_file) {
addr_t load_address =
kernel_object_file->GetBaseAddress().GetLoadAddress(
&m_process->GetTarget());
addr_t file_address =
kernel_object_file->GetBaseAddress().GetFileAddress();
if (load_address != LLDB_INVALID_ADDRESS && load_address != 0) {
m_kernel.SetLoadAddress(load_address);
if (load_address != file_address) {
// Don't accidentally relocate the kernel to the File address --
// the Load address has already been set to its actual in-memory
// address. Mark it as IsLoaded.
m_kernel.SetProcessStopId(m_process->GetStopID());
}
} else {
m_kernel.SetLoadAddress(file_address);
}
}
}
}
if (m_kernel.GetLoadAddress() != LLDB_INVALID_ADDRESS) {
if (!m_kernel.LoadImageUsingMemoryModule(m_process)) {
m_kernel.LoadImageAtFileAddress(m_process);
}
}
// The operating system plugin gets loaded and initialized in
// LoadImageUsingMemoryModule when we discover the kernel dSYM. For a core
// file in particular, that's the wrong place to do this, since we haven't
// fixed up the section addresses yet. So let's redo it here.
LoadOperatingSystemPlugin(false);
if (m_kernel.IsLoaded() && m_kernel.GetModule()) {
static ConstString kext_summary_symbol("gLoadedKextSummaries");
const Symbol *symbol =
m_kernel.GetModule()->FindFirstSymbolWithNameAndType(
kext_summary_symbol, eSymbolTypeData);
if (symbol) {
m_kext_summary_header_ptr_addr = symbol->GetAddress();
// Update all image infos
ReadAllKextSummaries();
}
} else {
m_kernel.Clear();
}
}
}
// Static callback function that gets called when our DYLD notification
// breakpoint gets hit. We update all of our image infos and then let our super
// class DynamicLoader class decide if we should stop or not (based on global
// preference).
bool DynamicLoaderDarwinKernel::BreakpointHitCallback(
void *baton, StoppointCallbackContext *context, user_id_t break_id,
user_id_t break_loc_id) {
return static_cast<DynamicLoaderDarwinKernel *>(baton)->BreakpointHit(
context, break_id, break_loc_id);
}
bool DynamicLoaderDarwinKernel::BreakpointHit(StoppointCallbackContext *context,
user_id_t break_id,
user_id_t break_loc_id) {
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER));
if (log)
log->Printf("DynamicLoaderDarwinKernel::BreakpointHit (...)\n");
ReadAllKextSummaries();
if (log)
PutToLog(log);
return GetStopWhenImagesChange();
}
bool DynamicLoaderDarwinKernel::ReadKextSummaryHeader() {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
// the all image infos is already valid for this process stop ID
if (m_kext_summary_header_ptr_addr.IsValid()) {
const uint32_t addr_size = m_kernel.GetAddressByteSize();
const ByteOrder byte_order = m_kernel.GetByteOrder();
Status error;
// Read enough bytes for a "OSKextLoadedKextSummaryHeader" structure which
// is currently 4 uint32_t and a pointer.
uint8_t buf[24];
DataExtractor data(buf, sizeof(buf), byte_order, addr_size);
const size_t count = 4 * sizeof(uint32_t) + addr_size;
const bool prefer_file_cache = false;
if (m_process->GetTarget().ReadPointerFromMemory(
m_kext_summary_header_ptr_addr, prefer_file_cache, error,
m_kext_summary_header_addr)) {
// We got a valid address for our kext summary header and make sure it
// isn't NULL
if (m_kext_summary_header_addr.IsValid() &&
m_kext_summary_header_addr.GetFileAddress() != 0) {
const size_t bytes_read = m_process->GetTarget().ReadMemory(
m_kext_summary_header_addr, prefer_file_cache, buf, count, error);
if (bytes_read == count) {
lldb::offset_t offset = 0;
m_kext_summary_header.version = data.GetU32(&offset);
if (m_kext_summary_header.version > 128) {
Stream *s =
m_process->GetTarget().GetDebugger().GetOutputFile().get();
s->Printf("WARNING: Unable to read kext summary header, got "
"improbable version number %u\n",
m_kext_summary_header.version);
// If we get an improbably large version number, we're probably
// getting bad memory.
m_kext_summary_header_addr.Clear();
return false;
}
if (m_kext_summary_header.version >= 2) {
m_kext_summary_header.entry_size = data.GetU32(&offset);
if (m_kext_summary_header.entry_size > 4096) {
// If we get an improbably large entry_size, we're probably
// getting bad memory.
Stream *s =
m_process->GetTarget().GetDebugger().GetOutputFile().get();
s->Printf("WARNING: Unable to read kext summary header, got "
"improbable entry_size %u\n",
m_kext_summary_header.entry_size);
m_kext_summary_header_addr.Clear();
return false;
}
} else {
// Versions less than 2 didn't have an entry size, it was hard
// coded
m_kext_summary_header.entry_size =
KERNEL_MODULE_ENTRY_SIZE_VERSION_1;
}
m_kext_summary_header.entry_count = data.GetU32(&offset);
if (m_kext_summary_header.entry_count > 10000) {
// If we get an improbably large number of kexts, we're probably
// getting bad memory.
Stream *s =
m_process->GetTarget().GetDebugger().GetOutputFile().get();
s->Printf("WARNING: Unable to read kext summary header, got "
"improbable number of kexts %u\n",
m_kext_summary_header.entry_count);
m_kext_summary_header_addr.Clear();
return false;
}
return true;
}
}
}
}
m_kext_summary_header_addr.Clear();
return false;
}
// We've either (a) just attached to a new kernel, or (b) the kexts-changed
// breakpoint was hit and we need to figure out what kexts have been added or
// removed. Read the kext summaries from the inferior kernel memory, compare
// them against the m_known_kexts vector and update the m_known_kexts vector as
// needed to keep in sync with the inferior.
bool DynamicLoaderDarwinKernel::ParseKextSummaries(
const Address &kext_summary_addr, uint32_t count) {
KextImageInfo::collection kext_summaries;
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER));
if (log)
log->Printf("Kexts-changed breakpoint hit, there are %d kexts currently.\n",
count);
std::lock_guard<std::recursive_mutex> guard(m_mutex);
if (!ReadKextSummaries(kext_summary_addr, count, kext_summaries))
return false;
// read the plugin.dynamic-loader.darwin-kernel.load-kexts setting -- if the
// user requested no kext loading, don't print any messages about kexts &
// don't try to read them.
const bool load_kexts = GetGlobalProperties()->GetLoadKexts();
// By default, all kexts we've loaded in the past are marked as "remove" and
// all of the kexts we just found out about from ReadKextSummaries are marked
// as "add".
std::vector<bool> to_be_removed(m_known_kexts.size(), true);
std::vector<bool> to_be_added(count, true);
int number_of_new_kexts_being_added = 0;
int number_of_old_kexts_being_removed = m_known_kexts.size();
const uint32_t new_kexts_size = kext_summaries.size();
const uint32_t old_kexts_size = m_known_kexts.size();
// The m_known_kexts vector may have entries that have been Cleared, or are a
// kernel.
for (uint32_t old_kext = 0; old_kext < old_kexts_size; old_kext++) {
bool ignore = false;
KextImageInfo &image_info = m_known_kexts[old_kext];
if (image_info.IsKernel()) {
ignore = true;
} else if (image_info.GetLoadAddress() == LLDB_INVALID_ADDRESS &&
!image_info.GetModule()) {
ignore = true;
}
if (ignore) {
number_of_old_kexts_being_removed--;
to_be_removed[old_kext] = false;
}
}
// Scan over the list of kexts we just read from the kernel, note those that
// need to be added and those already loaded.
for (uint32_t new_kext = 0; new_kext < new_kexts_size; new_kext++) {
bool add_this_one = true;
for (uint32_t old_kext = 0; old_kext < old_kexts_size; old_kext++) {
if (m_known_kexts[old_kext] == kext_summaries[new_kext]) {
// We already have this kext, don't re-load it.
to_be_added[new_kext] = false;
// This kext is still present, do not remove it.
to_be_removed[old_kext] = false;
number_of_old_kexts_being_removed--;
add_this_one = false;
break;
}
}
// If this "kext" entry is actually an alias for the kernel -- the kext was
// compiled into the kernel or something -- then we don't want to load the
// kernel's text section at a different address. Ignore this kext entry.
if (kext_summaries[new_kext].GetUUID().IsValid() &&
m_kernel.GetUUID().IsValid() &&
kext_summaries[new_kext].GetUUID() == m_kernel.GetUUID()) {
to_be_added[new_kext] = false;
break;
}
if (add_this_one) {
number_of_new_kexts_being_added++;
}
}
if (number_of_new_kexts_being_added == 0 &&
number_of_old_kexts_being_removed == 0)
return true;
Stream *s = m_process->GetTarget().GetDebugger().GetOutputFile().get();
if (s && load_kexts) {
if (number_of_new_kexts_being_added > 0 &&
number_of_old_kexts_being_removed > 0) {
s->Printf("Loading %d kext modules and unloading %d kext modules ",
number_of_new_kexts_being_added,
number_of_old_kexts_being_removed);
} else if (number_of_new_kexts_being_added > 0) {
s->Printf("Loading %d kext modules ", number_of_new_kexts_being_added);
} else if (number_of_old_kexts_being_removed > 0) {
s->Printf("Unloading %d kext modules ",
number_of_old_kexts_being_removed);
}
}
if (log) {
if (load_kexts) {
log->Printf("DynamicLoaderDarwinKernel::ParseKextSummaries: %d kexts "
"added, %d kexts removed",
number_of_new_kexts_being_added,
number_of_old_kexts_being_removed);
} else {
log->Printf(
"DynamicLoaderDarwinKernel::ParseKextSummaries kext loading is "
"disabled, else would have %d kexts added, %d kexts removed",
number_of_new_kexts_being_added, number_of_old_kexts_being_removed);
}
}
// Build up a list of <kext-name, uuid> for any kexts that fail to load
std::vector<std::pair<std::string, UUID>> kexts_failed_to_load;
if (number_of_new_kexts_being_added > 0) {
ModuleList loaded_module_list;
const uint32_t num_of_new_kexts = kext_summaries.size();
for (uint32_t new_kext = 0; new_kext < num_of_new_kexts; new_kext++) {
if (to_be_added[new_kext]) {
KextImageInfo &image_info = kext_summaries[new_kext];
bool kext_successfully_added = true;
if (load_kexts) {
if (!image_info.LoadImageUsingMemoryModule(m_process)) {
kexts_failed_to_load.push_back(std::pair<std::string, UUID>(
kext_summaries[new_kext].GetName(),
kext_summaries[new_kext].GetUUID()));
image_info.LoadImageAtFileAddress(m_process);
kext_successfully_added = false;
}
}
m_known_kexts.push_back(image_info);
if (image_info.GetModule() &&
m_process->GetStopID() == image_info.GetProcessStopId())
loaded_module_list.AppendIfNeeded(image_info.GetModule());
if (s && load_kexts) {
if (kext_successfully_added)
s->Printf(".");
else
s->Printf("-");
}
if (log)
kext_summaries[new_kext].PutToLog(log);
}
}
m_process->GetTarget().ModulesDidLoad(loaded_module_list);
}
if (number_of_old_kexts_being_removed > 0) {
ModuleList loaded_module_list;
const uint32_t num_of_old_kexts = m_known_kexts.size();
for (uint32_t old_kext = 0; old_kext < num_of_old_kexts; old_kext++) {
ModuleList unloaded_module_list;
if (to_be_removed[old_kext]) {
KextImageInfo &image_info = m_known_kexts[old_kext];
// You can't unload the kernel.
if (!image_info.IsKernel()) {
if (image_info.GetModule()) {
unloaded_module_list.AppendIfNeeded(image_info.GetModule());
}
if (s)
s->Printf(".");
image_info.Clear();
// should pull it out of the KextImageInfos vector but that would
// mutate the list and invalidate the to_be_removed bool vector;
// leaving it in place once Cleared() is relatively harmless.
}
}
m_process->GetTarget().ModulesDidUnload(unloaded_module_list, false);
}
}
if (s && load_kexts) {
s->Printf(" done.\n");
if (kexts_failed_to_load.size() > 0 && number_of_new_kexts_being_added > 0) {
s->Printf("Failed to load %d of %d kexts:\n",
(int)kexts_failed_to_load.size(),
number_of_new_kexts_being_added);
// print a sorted list of <kext-name, uuid> kexts which failed to load
unsigned longest_name = 0;
std::sort(kexts_failed_to_load.begin(), kexts_failed_to_load.end());
for (const auto &ku : kexts_failed_to_load) {
if (ku.first.size() > longest_name)
longest_name = ku.first.size();
}
for (const auto &ku : kexts_failed_to_load) {
std::string uuid;
if (ku.second.IsValid())
uuid = ku.second.GetAsString();
s->Printf (" %-*s %s\n", longest_name, ku.first.c_str(), uuid.c_str());
}
}
s->Flush();
}
return true;
}
uint32_t DynamicLoaderDarwinKernel::ReadKextSummaries(
const Address &kext_summary_addr, uint32_t image_infos_count,
KextImageInfo::collection &image_infos) {
const ByteOrder endian = m_kernel.GetByteOrder();
const uint32_t addr_size = m_kernel.GetAddressByteSize();
image_infos.resize(image_infos_count);
const size_t count = image_infos.size() * m_kext_summary_header.entry_size;
DataBufferHeap data(count, 0);
Status error;
const bool prefer_file_cache = false;
const size_t bytes_read = m_process->GetTarget().ReadMemory(
kext_summary_addr, prefer_file_cache, data.GetBytes(), data.GetByteSize(),
error);
if (bytes_read == count) {
DataExtractor extractor(data.GetBytes(), data.GetByteSize(), endian,
addr_size);
uint32_t i = 0;
for (uint32_t kext_summary_offset = 0;
i < image_infos.size() &&
extractor.ValidOffsetForDataOfSize(kext_summary_offset,
m_kext_summary_header.entry_size);
++i, kext_summary_offset += m_kext_summary_header.entry_size) {
lldb::offset_t offset = kext_summary_offset;
const void *name_data =
extractor.GetData(&offset, KERNEL_MODULE_MAX_NAME);
if (name_data == NULL)
break;
image_infos[i].SetName((const char *)name_data);
UUID uuid = UUID::fromOptionalData(extractor.GetData(&offset, 16), 16);
image_infos[i].SetUUID(uuid);
image_infos[i].SetLoadAddress(extractor.GetU64(&offset));
image_infos[i].SetSize(extractor.GetU64(&offset));
}
if (i < image_infos.size())
image_infos.resize(i);
} else {
image_infos.clear();
}
return image_infos.size();
}
bool DynamicLoaderDarwinKernel::ReadAllKextSummaries() {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
if (ReadKextSummaryHeader()) {
if (m_kext_summary_header.entry_count > 0 &&
m_kext_summary_header_addr.IsValid()) {
Address summary_addr(m_kext_summary_header_addr);
summary_addr.Slide(m_kext_summary_header.GetSize());
if (!ParseKextSummaries(summary_addr,
m_kext_summary_header.entry_count)) {
m_known_kexts.clear();
}
return true;
}
}
return false;
}
// Dump an image info structure to the file handle provided.
void DynamicLoaderDarwinKernel::KextImageInfo::PutToLog(Log *log) const {
if (m_load_address == LLDB_INVALID_ADDRESS) {
LLDB_LOG(log, "uuid={0} name=\"{1}\" (UNLOADED)", m_uuid.GetAsString(),
m_name);
} else {
LLDB_LOG(log, "addr={0:x+16} size={1:x+16} uuid={2} name=\"{3}\"",
m_load_address, m_size, m_uuid.GetAsString(), m_name);
}
}
// Dump the _dyld_all_image_infos members and all current image infos that we
// have parsed to the file handle provided.
void DynamicLoaderDarwinKernel::PutToLog(Log *log) const {
if (log == NULL)
return;
std::lock_guard<std::recursive_mutex> guard(m_mutex);
log->Printf("gLoadedKextSummaries = 0x%16.16" PRIx64
" { version=%u, entry_size=%u, entry_count=%u }",
m_kext_summary_header_addr.GetFileAddress(),
m_kext_summary_header.version, m_kext_summary_header.entry_size,
m_kext_summary_header.entry_count);
size_t i;
const size_t count = m_known_kexts.size();
if (count > 0) {
log->PutCString("Loaded:");
for (i = 0; i < count; i++)
m_known_kexts[i].PutToLog(log);
}
}
void DynamicLoaderDarwinKernel::PrivateInitialize(Process *process) {
DEBUG_PRINTF("DynamicLoaderDarwinKernel::%s() process state = %s\n",
__FUNCTION__, StateAsCString(m_process->GetState()));
Clear(true);
m_process = process;
}
void DynamicLoaderDarwinKernel::SetNotificationBreakpointIfNeeded() {
if (m_break_id == LLDB_INVALID_BREAK_ID && m_kernel.GetModule()) {
DEBUG_PRINTF("DynamicLoaderDarwinKernel::%s() process state = %s\n",
__FUNCTION__, StateAsCString(m_process->GetState()));
const bool internal_bp = true;
const bool hardware = false;
const LazyBool skip_prologue = eLazyBoolNo;
FileSpecList module_spec_list;
module_spec_list.Append(m_kernel.GetModule()->GetFileSpec());
Breakpoint *bp =
m_process->GetTarget()
.CreateBreakpoint(&module_spec_list, NULL,
"OSKextLoadedKextSummariesUpdated",
eFunctionNameTypeFull, eLanguageTypeUnknown, 0,
skip_prologue, internal_bp, hardware)
.get();
bp->SetCallback(DynamicLoaderDarwinKernel::BreakpointHitCallback, this,
true);
m_break_id = bp->GetID();
}
}
// Member function that gets called when the process state changes.
void DynamicLoaderDarwinKernel::PrivateProcessStateChanged(Process *process,
StateType state) {
DEBUG_PRINTF("DynamicLoaderDarwinKernel::%s(%s)\n", __FUNCTION__,
StateAsCString(state));
switch (state) {
case eStateConnected:
case eStateAttaching:
case eStateLaunching:
case eStateInvalid:
case eStateUnloaded:
case eStateExited:
case eStateDetached:
Clear(false);
break;
case eStateStopped:
UpdateIfNeeded();
break;
case eStateRunning:
case eStateStepping:
case eStateCrashed:
case eStateSuspended:
break;
}
}
ThreadPlanSP
DynamicLoaderDarwinKernel::GetStepThroughTrampolinePlan(Thread &thread,
bool stop_others) {
ThreadPlanSP thread_plan_sp;
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP));
if (log)
log->Printf("Could not find symbol for step through.");
return thread_plan_sp;
}
Status DynamicLoaderDarwinKernel::CanLoadImage() {
Status error;
error.SetErrorString(
"always unsafe to load or unload shared libraries in the darwin kernel");
return error;
}
void DynamicLoaderDarwinKernel::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
GetPluginDescriptionStatic(), CreateInstance,
DebuggerInitialize);
}
void DynamicLoaderDarwinKernel::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
void DynamicLoaderDarwinKernel::DebuggerInitialize(
lldb_private::Debugger &debugger) {
if (!PluginManager::GetSettingForDynamicLoaderPlugin(
debugger, DynamicLoaderDarwinKernelProperties::GetSettingName())) {
const bool is_global_setting = true;
PluginManager::CreateSettingForDynamicLoaderPlugin(
debugger, GetGlobalProperties()->GetValueProperties(),
ConstString("Properties for the DynamicLoaderDarwinKernel plug-in."),
is_global_setting);
}
}
lldb_private::ConstString DynamicLoaderDarwinKernel::GetPluginNameStatic() {
static ConstString g_name("darwin-kernel");
return g_name;
}
const char *DynamicLoaderDarwinKernel::GetPluginDescriptionStatic() {
return "Dynamic loader plug-in that watches for shared library loads/unloads "
"in the MacOSX kernel.";
}
// PluginInterface protocol
lldb_private::ConstString DynamicLoaderDarwinKernel::GetPluginName() {
return GetPluginNameStatic();
}
uint32_t DynamicLoaderDarwinKernel::GetPluginVersion() { return 1; }
lldb::ByteOrder
DynamicLoaderDarwinKernel::GetByteOrderFromMagic(uint32_t magic) {
switch (magic) {
case llvm::MachO::MH_MAGIC:
case llvm::MachO::MH_MAGIC_64:
return endian::InlHostByteOrder();
case llvm::MachO::MH_CIGAM:
case llvm::MachO::MH_CIGAM_64:
if (endian::InlHostByteOrder() == lldb::eByteOrderBig)
return lldb::eByteOrderLittle;
else
return lldb::eByteOrderBig;
default:
break;
}
return lldb::eByteOrderInvalid;
}