Rahman Lavaee acec6419e8
[SHT_LLVM_BB_ADDR_MAP] Allow basic-block-sections and labels be used together by decoupling the handling of the two features. (#74128)
Today `-split-machine-functions` and `-fbasic-block-sections={all,list}`
cannot be combined with `-basic-block-sections=labels` (the labels
option will be ignored).
The inconsistency comes from the way basic block address map -- the
underlying mechanism for basic block labels -- encodes basic block
addresses
(https://lists.llvm.org/pipermail/llvm-dev/2020-July/143512.html).
Specifically, basic block offsets are computed relative to the function
begin symbol. This relies on functions being contiguous which is not the
case for MFS and basic block section binaries. This means Propeller
cannot use binary profiles collected from these binaries, which limits
the applicability of Propeller for iterative optimization.
    
To make the `SHT_LLVM_BB_ADDR_MAP` feature work with basic block section
binaries, we propose modifying the encoding of this section as follows.

First let us review the current encoding which emits the address of each
function and its number of basic blocks, followed by basic block entries
for each basic block.

| | |
|--|--|
| Address of the function | Function Address |
|  Number of basic blocks in this function | NumBlocks |
|  BB entry 1
|  BB entry 2
|   ...
|  BB entry #NumBlocks
    
To make this work for basic block sections, we treat each basic block
section similar to a function, except that basic block sections of the
same function must be encapsulated in the same structure so we can map
all of them to their single function.
    
We modify the encoding to first emit the number of basic block sections
(BB ranges) in the function. Then we emit the address map of each basic
block section section as before: the base address of the section, its
number of blocks, and BB entries for its basic block. The first section
in the BB address map is always the function entry section.
| | |
|--|--|
|  Number of sections for this function   | NumBBRanges |
| Section 1 begin address                     | BaseAddress[1]  |
| Number of basic blocks in section 1 | NumBlocks[1]    |
| BB entries for Section 1
|..................|
| Section #NumBBRanges begin address | BaseAddress[NumBBRanges] |
| Number of basic blocks in section #NumBBRanges |
NumBlocks[NumBBRanges] |
| BB entries for Section #NumBBRanges
    
The encoding of basic block entries remains as before with the minor
change that each basic block offset is now computed relative to the
begin symbol of its containing BB section.
    
This patch adds a new boolean codegen option `-basic-block-address-map`.
Correspondingly, the front-end flag `-fbasic-block-address-map` and LLD
flag `--lto-basic-block-address-map` are introduced.
Analogously, we add a new TargetOption field `BBAddrMap`. This means BB
address maps are either generated for all functions in the compiling
unit, or for none (depending on `TargetOptions::BBAddrMap`).
    
This patch keeps the functionality of the old
`-fbasic-block-sections=labels` option but does not remove it. A
subsequent patch will remove the obsolete option.

We refactor the `BasicBlockSections` pass by separating the BB address
map and BB sections handing to their own functions (named
`handleBBAddrMap` and `handleBBSections`). `handleBBSections` renumbers
basic blocks and places them in their assigned sections.
`handleBBAddrMap` is invoked after `handleBBSections` (if requested) and
only renumbers the blocks.
  - New tests added:
- Two tests basic-block-address-map-with-basic-block-sections.ll and
basic-block-address-map-with-mfs.ll to exercise the combination of
`-basic-block-address-map` with `-basic-block-sections=list` and
'-split-machine-functions`.
- A driver sanity test for the `-fbasic-block-address-map` option
(basic-block-address-map.c).
- An LLD test for testing the `--lto-basic-block-address-map` option.
This reuses the LLVM IR from `lld/test/ELF/lto/basic-block-sections.ll`.
- Renamed and modified the two existing codegen tests for basic block
address map (`basic-block-sections-labels-functions-sections.ll` and
`basic-block-sections-labels.ll`)
- Removed `SHT_LLVM_BB_ADDR_MAP_V0` tests. Full deprecation of
`SHT_LLVM_BB_ADDR_MAP_V0` and `SHT_LLVM_BB_ADDR_MAP` version less than 2
will happen in a separate PR in a few months.
2024-02-01 17:50:46 -08:00

926 lines
30 KiB
C++

//===- ELF.cpp - ELF object file implementation ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/ELF.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Support/DataExtractor.h"
using namespace llvm;
using namespace object;
#define STRINGIFY_ENUM_CASE(ns, name) \
case ns::name: \
return #name;
#define ELF_RELOC(name, value) STRINGIFY_ENUM_CASE(ELF, name)
StringRef llvm::object::getELFRelocationTypeName(uint32_t Machine,
uint32_t Type) {
switch (Machine) {
case ELF::EM_68K:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/M68k.def"
default:
break;
}
break;
case ELF::EM_X86_64:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
default:
break;
}
break;
case ELF::EM_386:
case ELF::EM_IAMCU:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/i386.def"
default:
break;
}
break;
case ELF::EM_MIPS:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/Mips.def"
default:
break;
}
break;
case ELF::EM_AARCH64:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
default:
break;
}
break;
case ELF::EM_ARM:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/ARM.def"
default:
break;
}
break;
case ELF::EM_ARC_COMPACT:
case ELF::EM_ARC_COMPACT2:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/ARC.def"
default:
break;
}
break;
case ELF::EM_AVR:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/AVR.def"
default:
break;
}
break;
case ELF::EM_HEXAGON:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
default:
break;
}
break;
case ELF::EM_LANAI:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
default:
break;
}
break;
case ELF::EM_PPC:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/PowerPC.def"
default:
break;
}
break;
case ELF::EM_PPC64:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/PowerPC64.def"
default:
break;
}
break;
case ELF::EM_RISCV:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
default:
break;
}
break;
case ELF::EM_S390:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/SystemZ.def"
default:
break;
}
break;
case ELF::EM_SPARC:
case ELF::EM_SPARC32PLUS:
case ELF::EM_SPARCV9:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
default:
break;
}
break;
case ELF::EM_AMDGPU:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
default:
break;
}
break;
case ELF::EM_BPF:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/BPF.def"
default:
break;
}
break;
case ELF::EM_MSP430:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
default:
break;
}
break;
case ELF::EM_VE:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/VE.def"
default:
break;
}
break;
case ELF::EM_CSKY:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/CSKY.def"
default:
break;
}
break;
case ELF::EM_LOONGARCH:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/LoongArch.def"
default:
break;
}
break;
case ELF::EM_XTENSA:
switch (Type) {
#include "llvm/BinaryFormat/ELFRelocs/Xtensa.def"
default:
break;
}
break;
default:
break;
}
return "Unknown";
}
#undef ELF_RELOC
uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
switch (Machine) {
case ELF::EM_X86_64:
return ELF::R_X86_64_RELATIVE;
case ELF::EM_386:
case ELF::EM_IAMCU:
return ELF::R_386_RELATIVE;
case ELF::EM_MIPS:
break;
case ELF::EM_AARCH64:
return ELF::R_AARCH64_RELATIVE;
case ELF::EM_ARM:
return ELF::R_ARM_RELATIVE;
case ELF::EM_ARC_COMPACT:
case ELF::EM_ARC_COMPACT2:
return ELF::R_ARC_RELATIVE;
case ELF::EM_AVR:
break;
case ELF::EM_HEXAGON:
return ELF::R_HEX_RELATIVE;
case ELF::EM_LANAI:
break;
case ELF::EM_PPC:
break;
case ELF::EM_PPC64:
return ELF::R_PPC64_RELATIVE;
case ELF::EM_RISCV:
return ELF::R_RISCV_RELATIVE;
case ELF::EM_S390:
return ELF::R_390_RELATIVE;
case ELF::EM_SPARC:
case ELF::EM_SPARC32PLUS:
case ELF::EM_SPARCV9:
return ELF::R_SPARC_RELATIVE;
case ELF::EM_CSKY:
return ELF::R_CKCORE_RELATIVE;
case ELF::EM_VE:
return ELF::R_VE_RELATIVE;
case ELF::EM_AMDGPU:
break;
case ELF::EM_BPF:
break;
case ELF::EM_LOONGARCH:
return ELF::R_LARCH_RELATIVE;
default:
break;
}
return 0;
}
StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
switch (Machine) {
case ELF::EM_ARM:
switch (Type) {
STRINGIFY_ENUM_CASE(ELF, SHT_ARM_EXIDX);
STRINGIFY_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
STRINGIFY_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
STRINGIFY_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
STRINGIFY_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
}
break;
case ELF::EM_HEXAGON:
switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
break;
case ELF::EM_X86_64:
switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
break;
case ELF::EM_MIPS:
case ELF::EM_MIPS_RS3_LE:
switch (Type) {
STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
}
break;
case ELF::EM_MSP430:
switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_MSP430_ATTRIBUTES); }
break;
case ELF::EM_RISCV:
switch (Type) { STRINGIFY_ENUM_CASE(ELF, SHT_RISCV_ATTRIBUTES); }
break;
case ELF::EM_AARCH64:
switch (Type) {
STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_AUTH_RELR);
STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC);
STRINGIFY_ENUM_CASE(ELF, SHT_AARCH64_MEMTAG_GLOBALS_STATIC);
}
default:
break;
}
switch (Type) {
STRINGIFY_ENUM_CASE(ELF, SHT_NULL);
STRINGIFY_ENUM_CASE(ELF, SHT_PROGBITS);
STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB);
STRINGIFY_ENUM_CASE(ELF, SHT_STRTAB);
STRINGIFY_ENUM_CASE(ELF, SHT_RELA);
STRINGIFY_ENUM_CASE(ELF, SHT_HASH);
STRINGIFY_ENUM_CASE(ELF, SHT_DYNAMIC);
STRINGIFY_ENUM_CASE(ELF, SHT_NOTE);
STRINGIFY_ENUM_CASE(ELF, SHT_NOBITS);
STRINGIFY_ENUM_CASE(ELF, SHT_REL);
STRINGIFY_ENUM_CASE(ELF, SHT_SHLIB);
STRINGIFY_ENUM_CASE(ELF, SHT_DYNSYM);
STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_EHDR);
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_PART_PHDR);
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP_V0);
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_BB_ADDR_MAP);
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_OFFLOADING);
STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LTO);
STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
default:
return "Unknown";
}
}
template <class ELFT>
std::vector<typename ELFT::Rel>
ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
// This function decodes the contents of an SHT_RELR packed relocation
// section.
//
// Proposal for adding SHT_RELR sections to generic-abi is here:
// https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
//
// The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
// like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
//
// i.e. start with an address, followed by any number of bitmaps. The address
// entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
// relocations each, at subsequent offsets following the last address entry.
//
// The bitmap entries must have 1 in the least significant bit. The assumption
// here is that an address cannot have 1 in lsb. Odd addresses are not
// supported.
//
// Excluding the least significant bit in the bitmap, each non-zero bit in
// the bitmap represents a relocation to be applied to a corresponding machine
// word that follows the base address word. The second least significant bit
// represents the machine word immediately following the initial address, and
// each bit that follows represents the next word, in linear order. As such,
// a single bitmap can encode up to 31 relocations in a 32-bit object, and
// 63 relocations in a 64-bit object.
//
// This encoding has a couple of interesting properties:
// 1. Looking at any entry, it is clear whether it's an address or a bitmap:
// even means address, odd means bitmap.
// 2. Just a simple list of addresses is a valid encoding.
Elf_Rel Rel;
Rel.r_info = 0;
Rel.setType(getRelativeRelocationType(), false);
std::vector<Elf_Rel> Relocs;
// Word type: uint32_t for Elf32, and uint64_t for Elf64.
using Addr = typename ELFT::uint;
Addr Base = 0;
for (Elf_Relr R : relrs) {
typename ELFT::uint Entry = R;
if ((Entry & 1) == 0) {
// Even entry: encodes the offset for next relocation.
Rel.r_offset = Entry;
Relocs.push_back(Rel);
// Set base offset for subsequent bitmap entries.
Base = Entry + sizeof(Addr);
} else {
// Odd entry: encodes bitmap for relocations starting at base.
for (Addr Offset = Base; (Entry >>= 1) != 0; Offset += sizeof(Addr))
if ((Entry & 1) != 0) {
Rel.r_offset = Offset;
Relocs.push_back(Rel);
}
Base += (CHAR_BIT * sizeof(Entry) - 1) * sizeof(Addr);
}
}
return Relocs;
}
template <class ELFT>
Expected<std::vector<typename ELFT::Rela>>
ELFFile<ELFT>::android_relas(const Elf_Shdr &Sec) const {
// This function reads relocations in Android's packed relocation format,
// which is based on SLEB128 and delta encoding.
Expected<ArrayRef<uint8_t>> ContentsOrErr = getSectionContents(Sec);
if (!ContentsOrErr)
return ContentsOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentsOrErr;
if (Content.size() < 4 || Content[0] != 'A' || Content[1] != 'P' ||
Content[2] != 'S' || Content[3] != '2')
return createError("invalid packed relocation header");
DataExtractor Data(Content, isLE(), ELFT::Is64Bits ? 8 : 4);
DataExtractor::Cursor Cur(/*Offset=*/4);
uint64_t NumRelocs = Data.getSLEB128(Cur);
uint64_t Offset = Data.getSLEB128(Cur);
uint64_t Addend = 0;
if (!Cur)
return std::move(Cur.takeError());
std::vector<Elf_Rela> Relocs;
Relocs.reserve(NumRelocs);
while (NumRelocs) {
uint64_t NumRelocsInGroup = Data.getSLEB128(Cur);
if (!Cur)
return std::move(Cur.takeError());
if (NumRelocsInGroup > NumRelocs)
return createError("relocation group unexpectedly large");
NumRelocs -= NumRelocsInGroup;
uint64_t GroupFlags = Data.getSLEB128(Cur);
bool GroupedByInfo = GroupFlags & ELF::RELOCATION_GROUPED_BY_INFO_FLAG;
bool GroupedByOffsetDelta = GroupFlags & ELF::RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG;
bool GroupedByAddend = GroupFlags & ELF::RELOCATION_GROUPED_BY_ADDEND_FLAG;
bool GroupHasAddend = GroupFlags & ELF::RELOCATION_GROUP_HAS_ADDEND_FLAG;
uint64_t GroupOffsetDelta;
if (GroupedByOffsetDelta)
GroupOffsetDelta = Data.getSLEB128(Cur);
uint64_t GroupRInfo;
if (GroupedByInfo)
GroupRInfo = Data.getSLEB128(Cur);
if (GroupedByAddend && GroupHasAddend)
Addend += Data.getSLEB128(Cur);
if (!GroupHasAddend)
Addend = 0;
for (uint64_t I = 0; Cur && I != NumRelocsInGroup; ++I) {
Elf_Rela R;
Offset += GroupedByOffsetDelta ? GroupOffsetDelta : Data.getSLEB128(Cur);
R.r_offset = Offset;
R.r_info = GroupedByInfo ? GroupRInfo : Data.getSLEB128(Cur);
if (GroupHasAddend && !GroupedByAddend)
Addend += Data.getSLEB128(Cur);
R.r_addend = Addend;
Relocs.push_back(R);
}
if (!Cur)
return std::move(Cur.takeError());
}
return Relocs;
}
template <class ELFT>
std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
uint64_t Type) const {
#define DYNAMIC_STRINGIFY_ENUM(tag, value) \
case value: \
return #tag;
#define DYNAMIC_TAG(n, v)
switch (Arch) {
case ELF::EM_AARCH64:
switch (Type) {
#define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef AARCH64_DYNAMIC_TAG
}
break;
case ELF::EM_HEXAGON:
switch (Type) {
#define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef HEXAGON_DYNAMIC_TAG
}
break;
case ELF::EM_MIPS:
switch (Type) {
#define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef MIPS_DYNAMIC_TAG
}
break;
case ELF::EM_PPC:
switch (Type) {
#define PPC_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef PPC_DYNAMIC_TAG
}
break;
case ELF::EM_PPC64:
switch (Type) {
#define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef PPC64_DYNAMIC_TAG
}
break;
case ELF::EM_RISCV:
switch (Type) {
#define RISCV_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
#include "llvm/BinaryFormat/DynamicTags.def"
#undef RISCV_DYNAMIC_TAG
}
break;
}
#undef DYNAMIC_TAG
switch (Type) {
// Now handle all dynamic tags except the architecture specific ones
#define AARCH64_DYNAMIC_TAG(name, value)
#define MIPS_DYNAMIC_TAG(name, value)
#define HEXAGON_DYNAMIC_TAG(name, value)
#define PPC_DYNAMIC_TAG(name, value)
#define PPC64_DYNAMIC_TAG(name, value)
#define RISCV_DYNAMIC_TAG(name, value)
// Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
#define DYNAMIC_TAG_MARKER(name, value)
#define DYNAMIC_TAG(name, value) case value: return #name;
#include "llvm/BinaryFormat/DynamicTags.def"
#undef DYNAMIC_TAG
#undef AARCH64_DYNAMIC_TAG
#undef MIPS_DYNAMIC_TAG
#undef HEXAGON_DYNAMIC_TAG
#undef PPC_DYNAMIC_TAG
#undef PPC64_DYNAMIC_TAG
#undef RISCV_DYNAMIC_TAG
#undef DYNAMIC_TAG_MARKER
#undef DYNAMIC_STRINGIFY_ENUM
default:
return "<unknown:>0x" + utohexstr(Type, true);
}
}
template <class ELFT>
std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
return getDynamicTagAsString(getHeader().e_machine, Type);
}
template <class ELFT>
Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
ArrayRef<Elf_Dyn> Dyn;
auto ProgramHeadersOrError = program_headers();
if (!ProgramHeadersOrError)
return ProgramHeadersOrError.takeError();
for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
if (Phdr.p_type == ELF::PT_DYNAMIC) {
Dyn = ArrayRef(reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
Phdr.p_filesz / sizeof(Elf_Dyn));
break;
}
}
// If we can't find the dynamic section in the program headers, we just fall
// back on the sections.
if (Dyn.empty()) {
auto SectionsOrError = sections();
if (!SectionsOrError)
return SectionsOrError.takeError();
for (const Elf_Shdr &Sec : *SectionsOrError) {
if (Sec.sh_type == ELF::SHT_DYNAMIC) {
Expected<ArrayRef<Elf_Dyn>> DynOrError =
getSectionContentsAsArray<Elf_Dyn>(Sec);
if (!DynOrError)
return DynOrError.takeError();
Dyn = *DynOrError;
break;
}
}
if (!Dyn.data())
return ArrayRef<Elf_Dyn>();
}
if (Dyn.empty())
return createError("invalid empty dynamic section");
if (Dyn.back().d_tag != ELF::DT_NULL)
return createError("dynamic sections must be DT_NULL terminated");
return Dyn;
}
template <class ELFT>
Expected<const uint8_t *>
ELFFile<ELFT>::toMappedAddr(uint64_t VAddr, WarningHandler WarnHandler) const {
auto ProgramHeadersOrError = program_headers();
if (!ProgramHeadersOrError)
return ProgramHeadersOrError.takeError();
llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
if (Phdr.p_type == ELF::PT_LOAD)
LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
auto SortPred = [](const Elf_Phdr_Impl<ELFT> *A,
const Elf_Phdr_Impl<ELFT> *B) {
return A->p_vaddr < B->p_vaddr;
};
if (!llvm::is_sorted(LoadSegments, SortPred)) {
if (Error E =
WarnHandler("loadable segments are unsorted by virtual address"))
return std::move(E);
llvm::stable_sort(LoadSegments, SortPred);
}
const Elf_Phdr *const *I = llvm::upper_bound(
LoadSegments, VAddr, [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
return VAddr < Phdr->p_vaddr;
});
if (I == LoadSegments.begin())
return createError("virtual address is not in any segment: 0x" +
Twine::utohexstr(VAddr));
--I;
const Elf_Phdr &Phdr = **I;
uint64_t Delta = VAddr - Phdr.p_vaddr;
if (Delta >= Phdr.p_filesz)
return createError("virtual address is not in any segment: 0x" +
Twine::utohexstr(VAddr));
uint64_t Offset = Phdr.p_offset + Delta;
if (Offset >= getBufSize())
return createError("can't map virtual address 0x" +
Twine::utohexstr(VAddr) + " to the segment with index " +
Twine(&Phdr - (*ProgramHeadersOrError).data() + 1) +
": the segment ends at 0x" +
Twine::utohexstr(Phdr.p_offset + Phdr.p_filesz) +
", which is greater than the file size (0x" +
Twine::utohexstr(getBufSize()) + ")");
return base() + Offset;
}
// Helper to extract and decode the next ULEB128 value as unsigned int.
// Returns zero and sets ULEBSizeErr if the ULEB128 value exceeds the unsigned
// int limit.
// Also returns zero if ULEBSizeErr is already in an error state.
// ULEBSizeErr is an out variable if an error occurs.
template <typename IntTy, std::enable_if_t<std::is_unsigned_v<IntTy>, int> = 0>
static IntTy readULEB128As(DataExtractor &Data, DataExtractor::Cursor &Cur,
Error &ULEBSizeErr) {
// Bail out and do not extract data if ULEBSizeErr is already set.
if (ULEBSizeErr)
return 0;
uint64_t Offset = Cur.tell();
uint64_t Value = Data.getULEB128(Cur);
if (Value > std::numeric_limits<IntTy>::max()) {
ULEBSizeErr = createError("ULEB128 value at offset 0x" +
Twine::utohexstr(Offset) + " exceeds UINT" +
Twine(std::numeric_limits<IntTy>::digits) +
"_MAX (0x" + Twine::utohexstr(Value) + ")");
return 0;
}
return static_cast<IntTy>(Value);
}
template <typename ELFT>
static Expected<std::vector<BBAddrMap>>
decodeBBAddrMapImpl(const ELFFile<ELFT> &EF,
const typename ELFFile<ELFT>::Elf_Shdr &Sec,
const typename ELFFile<ELFT>::Elf_Shdr *RelaSec,
std::vector<PGOAnalysisMap> *PGOAnalyses) {
bool IsRelocatable = EF.getHeader().e_type == ELF::ET_REL;
// This DenseMap maps the offset of each function (the location of the
// reference to the function in the SHT_LLVM_BB_ADDR_MAP section) to the
// addend (the location of the function in the text section).
llvm::DenseMap<uint64_t, uint64_t> FunctionOffsetTranslations;
if (IsRelocatable && RelaSec) {
assert(RelaSec &&
"Can't read a SHT_LLVM_BB_ADDR_MAP section in a relocatable "
"object file without providing a relocation section.");
Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas = EF.relas(*RelaSec);
if (!Relas)
return createError("unable to read relocations for section " +
describe(EF, Sec) + ": " +
toString(Relas.takeError()));
for (typename ELFFile<ELFT>::Elf_Rela Rela : *Relas)
FunctionOffsetTranslations[Rela.r_offset] = Rela.r_addend;
}
auto GetAddressForRelocation =
[&](unsigned RelocationOffsetInSection) -> Expected<unsigned> {
auto FOTIterator =
FunctionOffsetTranslations.find(RelocationOffsetInSection);
if (FOTIterator == FunctionOffsetTranslations.end()) {
return createError("failed to get relocation data for offset: " +
Twine::utohexstr(RelocationOffsetInSection) +
" in section " + describe(EF, Sec));
}
return FOTIterator->second;
};
Expected<ArrayRef<uint8_t>> ContentsOrErr = EF.getSectionContents(Sec);
if (!ContentsOrErr)
return ContentsOrErr.takeError();
ArrayRef<uint8_t> Content = *ContentsOrErr;
DataExtractor Data(Content, EF.isLE(), ELFT::Is64Bits ? 8 : 4);
std::vector<BBAddrMap> FunctionEntries;
DataExtractor::Cursor Cur(0);
Error ULEBSizeErr = Error::success();
Error MetadataDecodeErr = Error::success();
// Helper lampda to extract the (possiblly relocatable) address stored at Cur.
auto ExtractAddress = [&]() -> Expected<typename ELFFile<ELFT>::uintX_t> {
uint64_t RelocationOffsetInSection = Cur.tell();
auto Address =
static_cast<typename ELFFile<ELFT>::uintX_t>(Data.getAddress(Cur));
if (!Cur)
return Cur.takeError();
if (!IsRelocatable)
return Address;
assert(Address == 0);
Expected<unsigned> AddressOrErr =
GetAddressForRelocation(RelocationOffsetInSection);
if (!AddressOrErr)
return AddressOrErr.takeError();
return *AddressOrErr;
};
uint8_t Version = 0;
uint8_t Feature = 0;
BBAddrMap::Features FeatEnable{};
while (!ULEBSizeErr && !MetadataDecodeErr && Cur &&
Cur.tell() < Content.size()) {
if (Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP) {
Version = Data.getU8(Cur);
if (!Cur)
break;
if (Version > 2)
return createError("unsupported SHT_LLVM_BB_ADDR_MAP version: " +
Twine(static_cast<int>(Version)));
Feature = Data.getU8(Cur); // Feature byte
if (!Cur)
break;
auto FeatEnableOrErr = BBAddrMap::Features::decode(Feature);
if (!FeatEnableOrErr)
return FeatEnableOrErr.takeError();
FeatEnable = *FeatEnableOrErr;
if (Feature != 0 && Version < 2 && Cur)
return createError(
"version should be >= 2 for SHT_LLVM_BB_ADDR_MAP when "
"PGO features are enabled: version = " +
Twine(static_cast<int>(Version)) +
" feature = " + Twine(static_cast<int>(Feature)));
}
uint32_t NumBlocksInBBRange = 0;
uint32_t NumBBRanges = 1;
typename ELFFile<ELFT>::uintX_t RangeBaseAddress = 0;
std::vector<BBAddrMap::BBEntry> BBEntries;
if (FeatEnable.MultiBBRange) {
NumBBRanges = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
if (!Cur || ULEBSizeErr)
break;
if (!NumBBRanges)
return createError("invalid zero number of BB ranges at offset " +
Twine::utohexstr(Cur.tell()) + " in " +
describe(EF, Sec));
} else {
auto AddressOrErr = ExtractAddress();
if (!AddressOrErr)
return AddressOrErr.takeError();
RangeBaseAddress = *AddressOrErr;
NumBlocksInBBRange = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
}
std::vector<BBAddrMap::BBRangeEntry> BBRangeEntries;
uint32_t TotalNumBlocks = 0;
for (uint32_t BBRangeIndex = 0; BBRangeIndex < NumBBRanges;
++BBRangeIndex) {
uint32_t PrevBBEndOffset = 0;
if (FeatEnable.MultiBBRange) {
auto AddressOrErr = ExtractAddress();
if (!AddressOrErr)
return AddressOrErr.takeError();
RangeBaseAddress = *AddressOrErr;
NumBlocksInBBRange = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
}
for (uint32_t BlockIndex = 0; !MetadataDecodeErr && !ULEBSizeErr && Cur &&
(BlockIndex < NumBlocksInBBRange);
++BlockIndex) {
uint32_t ID = Version >= 2
? readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr)
: BlockIndex;
uint32_t Offset = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
uint32_t Size = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
uint32_t MD = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
if (Version >= 1) {
// Offset is calculated relative to the end of the previous BB.
Offset += PrevBBEndOffset;
PrevBBEndOffset = Offset + Size;
}
Expected<BBAddrMap::BBEntry::Metadata> MetadataOrErr =
BBAddrMap::BBEntry::Metadata::decode(MD);
if (!MetadataOrErr) {
MetadataDecodeErr = MetadataOrErr.takeError();
break;
}
BBEntries.push_back({ID, Offset, Size, *MetadataOrErr});
}
TotalNumBlocks += BBEntries.size();
BBRangeEntries.push_back({RangeBaseAddress, std::move(BBEntries)});
}
FunctionEntries.push_back({std::move(BBRangeEntries)});
if (PGOAnalyses || FeatEnable.hasPGOAnalysis()) {
// Function entry count
uint64_t FuncEntryCount =
FeatEnable.FuncEntryCount
? readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr)
: 0;
std::vector<PGOAnalysisMap::PGOBBEntry> PGOBBEntries;
for (uint32_t BlockIndex = 0;
FeatEnable.hasPGOAnalysisBBData() && !MetadataDecodeErr &&
!ULEBSizeErr && Cur && (BlockIndex < TotalNumBlocks);
++BlockIndex) {
// Block frequency
uint64_t BBF = FeatEnable.BBFreq
? readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr)
: 0;
// Branch probability
llvm::SmallVector<PGOAnalysisMap::PGOBBEntry::SuccessorEntry, 2>
Successors;
if (FeatEnable.BrProb) {
auto SuccCount = readULEB128As<uint64_t>(Data, Cur, ULEBSizeErr);
for (uint64_t I = 0; I < SuccCount; ++I) {
uint32_t BBID = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
uint32_t BrProb = readULEB128As<uint32_t>(Data, Cur, ULEBSizeErr);
if (PGOAnalyses)
Successors.push_back({BBID, BranchProbability::getRaw(BrProb)});
}
}
if (PGOAnalyses)
PGOBBEntries.push_back({BlockFrequency(BBF), std::move(Successors)});
}
if (PGOAnalyses)
PGOAnalyses->push_back(
{FuncEntryCount, std::move(PGOBBEntries), FeatEnable});
}
}
// Either Cur is in the error state, or we have an error in ULEBSizeErr or
// MetadataDecodeErr (but not both), but we join all errors here to be safe.
if (!Cur || ULEBSizeErr || MetadataDecodeErr)
return joinErrors(joinErrors(Cur.takeError(), std::move(ULEBSizeErr)),
std::move(MetadataDecodeErr));
return FunctionEntries;
}
template <class ELFT>
Expected<std::vector<BBAddrMap>>
ELFFile<ELFT>::decodeBBAddrMap(const Elf_Shdr &Sec, const Elf_Shdr *RelaSec,
std::vector<PGOAnalysisMap> *PGOAnalyses) const {
size_t OriginalPGOSize = PGOAnalyses ? PGOAnalyses->size() : 0;
auto AddrMapsOrErr = decodeBBAddrMapImpl(*this, Sec, RelaSec, PGOAnalyses);
// remove new analyses when an error occurs
if (!AddrMapsOrErr && PGOAnalyses)
PGOAnalyses->resize(OriginalPGOSize);
return std::move(AddrMapsOrErr);
}
template <class ELFT>
Expected<
MapVector<const typename ELFT::Shdr *, const typename ELFT::Shdr *>>
ELFFile<ELFT>::getSectionAndRelocations(
std::function<Expected<bool>(const Elf_Shdr &)> IsMatch) const {
MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
Error Errors = Error::success();
for (const Elf_Shdr &Sec : cantFail(this->sections())) {
Expected<bool> DoesSectionMatch = IsMatch(Sec);
if (!DoesSectionMatch) {
Errors = joinErrors(std::move(Errors), DoesSectionMatch.takeError());
continue;
}
if (*DoesSectionMatch) {
if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
.second)
continue;
}
if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
continue;
Expected<const Elf_Shdr *> RelSecOrErr = this->getSection(Sec.sh_info);
if (!RelSecOrErr) {
Errors = joinErrors(std::move(Errors),
createError(describe(*this, Sec) +
": failed to get a relocated section: " +
toString(RelSecOrErr.takeError())));
continue;
}
const Elf_Shdr *ContentsSec = *RelSecOrErr;
Expected<bool> DoesRelTargetMatch = IsMatch(*ContentsSec);
if (!DoesRelTargetMatch) {
Errors = joinErrors(std::move(Errors), DoesRelTargetMatch.takeError());
continue;
}
if (*DoesRelTargetMatch)
SecToRelocMap[ContentsSec] = &Sec;
}
if(Errors)
return std::move(Errors);
return SecToRelocMap;
}
template class llvm::object::ELFFile<ELF32LE>;
template class llvm::object::ELFFile<ELF32BE>;
template class llvm::object::ELFFile<ELF64LE>;
template class llvm::object::ELFFile<ELF64BE>;