
We are bringing a new algorithm for function layout (reordering) based on the call graph (extracted from a profile data). The algorithm is an improvement of top of a known heuristic, C^3. It tries to co-locate hot and frequently executed together functions in the resulting ordering. Unlike C^3, it explores a larger search space and have an objective closely tied to the performance of instruction and i-TLB caches. Hence, the name CDS = Cache-Directed Sort. The algorithm can be used at the linking or post-linking (e.g., BOLT) stage. The algorithm shares some similarities with C^3 and an approach for basic block reordering (ext-tsp). It works with chains (ordered lists) of functions. Initially all chains are isolated functions. On every iteration, we pick a pair of chains whose merging yields the biggest increase in the objective, which is a weighted combination of frequency-based and distance-based locality. That is, we try to co-locate hot functions together (so they can share the cache lines) and functions frequently executed together. The merging process stops when there is only one chain left, or when merging does not improve the objective. In the latter case, the remaining chains are sorted by density in the decreasing order. **Complexity** We regularly apply the algorithm for large data-center binaries containing 10K+ (hot) functions, and the algorithm takes only a few seconds. For some extreme cases with 100K-1M nodes, the runtime is within minutes. **Perf-impact** We extensively tested the implementation extensively on a benchmark of isolated binaries and prod services. The impact is measurable for "larger" binaries that are front-end bound: the cpu time improvement (on top of C^3) is in the range of [0% .. 1%], which is a result of a reduced i-TLB miss rate (by up to 20%) and i-cache miss rate (up to 5%). Reviewed By: rahmanl Differential Revision: https://reviews.llvm.org/D152834
1472 lines
53 KiB
C++
1472 lines
53 KiB
C++
//===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The file implements "cache-aware" layout algorithms of basic blocks and
|
|
// functions in a binary.
|
|
//
|
|
// The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
|
|
// optimizing jump locality and thus processor I-cache utilization. This is
|
|
// achieved via increasing the number of fall-through jumps and co-locating
|
|
// frequently executed nodes together. The name follows the underlying
|
|
// optimization problem, Extended-TSP, which is a generalization of classical
|
|
// (maximum) Traveling Salesmen Problem.
|
|
//
|
|
// The algorithm is a greedy heuristic that works with chains (ordered lists)
|
|
// of basic blocks. Initially all chains are isolated basic blocks. On every
|
|
// iteration, we pick a pair of chains whose merging yields the biggest increase
|
|
// in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
|
|
// A pair of chains giving the maximum gain is merged into a new chain. The
|
|
// procedure stops when there is only one chain left, or when merging does not
|
|
// increase ExtTSP. In the latter case, the remaining chains are sorted by
|
|
// density in the decreasing order.
|
|
//
|
|
// An important aspect is the way two chains are merged. Unlike earlier
|
|
// algorithms (e.g., based on the approach of Pettis-Hansen), two
|
|
// chains, X and Y, are first split into three, X1, X2, and Y. Then we
|
|
// consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
|
|
// X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
|
|
// This improves the quality of the final result (the search space is larger)
|
|
// while keeping the implementation sufficiently fast.
|
|
//
|
|
// Reference:
|
|
// * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
|
|
// IEEE Transactions on Computers, 2020
|
|
// https://arxiv.org/abs/1809.04676
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/CodeLayout.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include <cmath>
|
|
#include <set>
|
|
|
|
using namespace llvm;
|
|
#define DEBUG_TYPE "code-layout"
|
|
|
|
namespace llvm {
|
|
cl::opt<bool> EnableExtTspBlockPlacement(
|
|
"enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
|
|
cl::desc("Enable machine block placement based on the ext-tsp model, "
|
|
"optimizing I-cache utilization."));
|
|
|
|
cl::opt<bool> ApplyExtTspWithoutProfile(
|
|
"ext-tsp-apply-without-profile",
|
|
cl::desc("Whether to apply ext-tsp placement for instances w/o profile"),
|
|
cl::init(true), cl::Hidden);
|
|
} // namespace llvm
|
|
|
|
// Algorithm-specific params for Ext-TSP. The values are tuned for the best
|
|
// performance of large-scale front-end bound binaries.
|
|
static cl::opt<double> ForwardWeightCond(
|
|
"ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1),
|
|
cl::desc("The weight of conditional forward jumps for ExtTSP value"));
|
|
|
|
static cl::opt<double> ForwardWeightUncond(
|
|
"ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
|
|
cl::desc("The weight of unconditional forward jumps for ExtTSP value"));
|
|
|
|
static cl::opt<double> BackwardWeightCond(
|
|
"ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1),
|
|
cl::desc("The weight of conditional backward jumps for ExtTSP value"));
|
|
|
|
static cl::opt<double> BackwardWeightUncond(
|
|
"ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
|
|
cl::desc("The weight of unconditional backward jumps for ExtTSP value"));
|
|
|
|
static cl::opt<double> FallthroughWeightCond(
|
|
"ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0),
|
|
cl::desc("The weight of conditional fallthrough jumps for ExtTSP value"));
|
|
|
|
static cl::opt<double> FallthroughWeightUncond(
|
|
"ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05),
|
|
cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value"));
|
|
|
|
static cl::opt<unsigned> ForwardDistance(
|
|
"ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024),
|
|
cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));
|
|
|
|
static cl::opt<unsigned> BackwardDistance(
|
|
"ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640),
|
|
cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));
|
|
|
|
// The maximum size of a chain created by the algorithm. The size is bounded
|
|
// so that the algorithm can efficiently process extremely large instance.
|
|
static cl::opt<unsigned>
|
|
MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(4096),
|
|
cl::desc("The maximum size of a chain to create."));
|
|
|
|
// The maximum size of a chain for splitting. Larger values of the threshold
|
|
// may yield better quality at the cost of worsen run-time.
|
|
static cl::opt<unsigned> ChainSplitThreshold(
|
|
"ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128),
|
|
cl::desc("The maximum size of a chain to apply splitting"));
|
|
|
|
// The option enables splitting (large) chains along in-coming and out-going
|
|
// jumps. This typically results in a better quality.
|
|
static cl::opt<bool> EnableChainSplitAlongJumps(
|
|
"ext-tsp-enable-chain-split-along-jumps", cl::ReallyHidden, cl::init(true),
|
|
cl::desc("The maximum size of a chain to apply splitting"));
|
|
|
|
// Algorithm-specific options for CDS.
|
|
static cl::opt<unsigned> CacheEntries("cds-cache-entries", cl::ReallyHidden,
|
|
cl::desc("The size of the cache"));
|
|
|
|
static cl::opt<unsigned> CacheSize("cds-cache-size", cl::ReallyHidden,
|
|
cl::desc("The size of a line in the cache"));
|
|
|
|
static cl::opt<double> DistancePower(
|
|
"cds-distance-power", cl::ReallyHidden,
|
|
cl::desc("The power exponent for the distance-based locality"));
|
|
|
|
static cl::opt<double> FrequencyScale(
|
|
"cds-frequency-scale", cl::ReallyHidden,
|
|
cl::desc("The scale factor for the frequency-based locality"));
|
|
|
|
namespace {
|
|
|
|
// Epsilon for comparison of doubles.
|
|
constexpr double EPS = 1e-8;
|
|
|
|
// Compute the Ext-TSP score for a given jump.
|
|
double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count,
|
|
double Weight) {
|
|
if (JumpDist > JumpMaxDist)
|
|
return 0;
|
|
double Prob = 1.0 - static_cast<double>(JumpDist) / JumpMaxDist;
|
|
return Weight * Prob * Count;
|
|
}
|
|
|
|
// Compute the Ext-TSP score for a jump between a given pair of blocks,
|
|
// using their sizes, (estimated) addresses and the jump execution count.
|
|
double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
|
|
uint64_t Count, bool IsConditional) {
|
|
// Fallthrough
|
|
if (SrcAddr + SrcSize == DstAddr) {
|
|
return jumpExtTSPScore(0, 1, Count,
|
|
IsConditional ? FallthroughWeightCond
|
|
: FallthroughWeightUncond);
|
|
}
|
|
// Forward
|
|
if (SrcAddr + SrcSize < DstAddr) {
|
|
const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
|
|
return jumpExtTSPScore(Dist, ForwardDistance, Count,
|
|
IsConditional ? ForwardWeightCond
|
|
: ForwardWeightUncond);
|
|
}
|
|
// Backward
|
|
const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
|
|
return jumpExtTSPScore(Dist, BackwardDistance, Count,
|
|
IsConditional ? BackwardWeightCond
|
|
: BackwardWeightUncond);
|
|
}
|
|
|
|
/// A type of merging two chains, X and Y. The former chain is split into
|
|
/// X1 and X2 and then concatenated with Y in the order specified by the type.
|
|
enum class MergeTypeT : int { X_Y, Y_X, X1_Y_X2, Y_X2_X1, X2_X1_Y };
|
|
|
|
/// The gain of merging two chains, that is, the Ext-TSP score of the merge
|
|
/// together with the corresponding merge 'type' and 'offset'.
|
|
struct MergeGainT {
|
|
explicit MergeGainT() = default;
|
|
explicit MergeGainT(double Score, size_t MergeOffset, MergeTypeT MergeType)
|
|
: Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
|
|
|
|
double score() const { return Score; }
|
|
|
|
size_t mergeOffset() const { return MergeOffset; }
|
|
|
|
MergeTypeT mergeType() const { return MergeType; }
|
|
|
|
void setMergeType(MergeTypeT Ty) { MergeType = Ty; }
|
|
|
|
// Returns 'true' iff Other is preferred over this.
|
|
bool operator<(const MergeGainT &Other) const {
|
|
return (Other.Score > EPS && Other.Score > Score + EPS);
|
|
}
|
|
|
|
// Update the current gain if Other is preferred over this.
|
|
void updateIfLessThan(const MergeGainT &Other) {
|
|
if (*this < Other)
|
|
*this = Other;
|
|
}
|
|
|
|
private:
|
|
double Score{-1.0};
|
|
size_t MergeOffset{0};
|
|
MergeTypeT MergeType{MergeTypeT::X_Y};
|
|
};
|
|
|
|
struct JumpT;
|
|
struct ChainT;
|
|
struct ChainEdge;
|
|
|
|
/// A node in the graph, typically corresponding to a basic block in the CFG or
|
|
/// a function in the call graph.
|
|
struct NodeT {
|
|
NodeT(const NodeT &) = delete;
|
|
NodeT(NodeT &&) = default;
|
|
NodeT &operator=(const NodeT &) = delete;
|
|
NodeT &operator=(NodeT &&) = default;
|
|
|
|
explicit NodeT(size_t Index, uint64_t Size, uint64_t EC)
|
|
: Index(Index), Size(Size), ExecutionCount(EC) {}
|
|
|
|
bool isEntry() const { return Index == 0; }
|
|
|
|
// The total execution count of outgoing jumps.
|
|
uint64_t outCount() const;
|
|
|
|
// The total execution count of incoming jumps.
|
|
uint64_t inCount() const;
|
|
|
|
// The original index of the node in graph.
|
|
size_t Index{0};
|
|
// The index of the node in the current chain.
|
|
size_t CurIndex{0};
|
|
// The size of the node in the binary.
|
|
uint64_t Size{0};
|
|
// The execution count of the node in the profile data.
|
|
uint64_t ExecutionCount{0};
|
|
// The current chain of the node.
|
|
ChainT *CurChain{nullptr};
|
|
// The offset of the node in the current chain.
|
|
mutable uint64_t EstimatedAddr{0};
|
|
// Forced successor of the node in the graph.
|
|
NodeT *ForcedSucc{nullptr};
|
|
// Forced predecessor of the node in the graph.
|
|
NodeT *ForcedPred{nullptr};
|
|
// Outgoing jumps from the node.
|
|
std::vector<JumpT *> OutJumps;
|
|
// Incoming jumps to the node.
|
|
std::vector<JumpT *> InJumps;
|
|
};
|
|
|
|
/// An arc in the graph, typically corresponding to a jump between two nodes.
|
|
struct JumpT {
|
|
JumpT(const JumpT &) = delete;
|
|
JumpT(JumpT &&) = default;
|
|
JumpT &operator=(const JumpT &) = delete;
|
|
JumpT &operator=(JumpT &&) = default;
|
|
|
|
explicit JumpT(NodeT *Source, NodeT *Target, uint64_t ExecutionCount)
|
|
: Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}
|
|
|
|
// Source node of the jump.
|
|
NodeT *Source;
|
|
// Target node of the jump.
|
|
NodeT *Target;
|
|
// Execution count of the arc in the profile data.
|
|
uint64_t ExecutionCount{0};
|
|
// Whether the jump corresponds to a conditional branch.
|
|
bool IsConditional{false};
|
|
// The offset of the jump from the source node.
|
|
uint64_t Offset{0};
|
|
};
|
|
|
|
/// A chain (ordered sequence) of nodes in the graph.
|
|
struct ChainT {
|
|
ChainT(const ChainT &) = delete;
|
|
ChainT(ChainT &&) = default;
|
|
ChainT &operator=(const ChainT &) = delete;
|
|
ChainT &operator=(ChainT &&) = default;
|
|
|
|
explicit ChainT(uint64_t Id, NodeT *Node)
|
|
: Id(Id), ExecutionCount(Node->ExecutionCount), Size(Node->Size),
|
|
Nodes(1, Node) {}
|
|
|
|
size_t numBlocks() const { return Nodes.size(); }
|
|
|
|
double density() const { return static_cast<double>(ExecutionCount) / Size; }
|
|
|
|
bool isEntry() const { return Nodes[0]->Index == 0; }
|
|
|
|
bool isCold() const {
|
|
for (NodeT *Node : Nodes) {
|
|
if (Node->ExecutionCount > 0)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ChainEdge *getEdge(ChainT *Other) const {
|
|
for (const auto &[Chain, ChainEdge] : Edges) {
|
|
if (Chain == Other)
|
|
return ChainEdge;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void removeEdge(ChainT *Other) {
|
|
auto It = Edges.begin();
|
|
while (It != Edges.end()) {
|
|
if (It->first == Other) {
|
|
Edges.erase(It);
|
|
return;
|
|
}
|
|
It++;
|
|
}
|
|
}
|
|
|
|
void addEdge(ChainT *Other, ChainEdge *Edge) {
|
|
Edges.push_back(std::make_pair(Other, Edge));
|
|
}
|
|
|
|
void merge(ChainT *Other, const std::vector<NodeT *> &MergedBlocks) {
|
|
Nodes = MergedBlocks;
|
|
// Update the chain's data.
|
|
ExecutionCount += Other->ExecutionCount;
|
|
Size += Other->Size;
|
|
Id = Nodes[0]->Index;
|
|
// Update the node's data.
|
|
for (size_t Idx = 0; Idx < Nodes.size(); Idx++) {
|
|
Nodes[Idx]->CurChain = this;
|
|
Nodes[Idx]->CurIndex = Idx;
|
|
}
|
|
}
|
|
|
|
void mergeEdges(ChainT *Other);
|
|
|
|
void clear() {
|
|
Nodes.clear();
|
|
Nodes.shrink_to_fit();
|
|
Edges.clear();
|
|
Edges.shrink_to_fit();
|
|
}
|
|
|
|
// Unique chain identifier.
|
|
uint64_t Id;
|
|
// Cached ext-tsp score for the chain.
|
|
double Score{0};
|
|
// The total execution count of the chain.
|
|
uint64_t ExecutionCount{0};
|
|
// The total size of the chain.
|
|
uint64_t Size{0};
|
|
// Nodes of the chain.
|
|
std::vector<NodeT *> Nodes;
|
|
// Adjacent chains and corresponding edges (lists of jumps).
|
|
std::vector<std::pair<ChainT *, ChainEdge *>> Edges;
|
|
};
|
|
|
|
/// An edge in the graph representing jumps between two chains.
|
|
/// When nodes are merged into chains, the edges are combined too so that
|
|
/// there is always at most one edge between a pair of chains.
|
|
struct ChainEdge {
|
|
ChainEdge(const ChainEdge &) = delete;
|
|
ChainEdge(ChainEdge &&) = default;
|
|
ChainEdge &operator=(const ChainEdge &) = delete;
|
|
ChainEdge &operator=(ChainEdge &&) = delete;
|
|
|
|
explicit ChainEdge(JumpT *Jump)
|
|
: SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
|
|
Jumps(1, Jump) {}
|
|
|
|
ChainT *srcChain() const { return SrcChain; }
|
|
|
|
ChainT *dstChain() const { return DstChain; }
|
|
|
|
bool isSelfEdge() const { return SrcChain == DstChain; }
|
|
|
|
const std::vector<JumpT *> &jumps() const { return Jumps; }
|
|
|
|
void appendJump(JumpT *Jump) { Jumps.push_back(Jump); }
|
|
|
|
void moveJumps(ChainEdge *Other) {
|
|
Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
|
|
Other->Jumps.clear();
|
|
Other->Jumps.shrink_to_fit();
|
|
}
|
|
|
|
void changeEndpoint(ChainT *From, ChainT *To) {
|
|
if (From == SrcChain)
|
|
SrcChain = To;
|
|
if (From == DstChain)
|
|
DstChain = To;
|
|
}
|
|
|
|
bool hasCachedMergeGain(ChainT *Src, ChainT *Dst) const {
|
|
return Src == SrcChain ? CacheValidForward : CacheValidBackward;
|
|
}
|
|
|
|
MergeGainT getCachedMergeGain(ChainT *Src, ChainT *Dst) const {
|
|
return Src == SrcChain ? CachedGainForward : CachedGainBackward;
|
|
}
|
|
|
|
void setCachedMergeGain(ChainT *Src, ChainT *Dst, MergeGainT MergeGain) {
|
|
if (Src == SrcChain) {
|
|
CachedGainForward = MergeGain;
|
|
CacheValidForward = true;
|
|
} else {
|
|
CachedGainBackward = MergeGain;
|
|
CacheValidBackward = true;
|
|
}
|
|
}
|
|
|
|
void invalidateCache() {
|
|
CacheValidForward = false;
|
|
CacheValidBackward = false;
|
|
}
|
|
|
|
void setMergeGain(MergeGainT Gain) { CachedGain = Gain; }
|
|
|
|
MergeGainT getMergeGain() const { return CachedGain; }
|
|
|
|
double gain() const { return CachedGain.score(); }
|
|
|
|
private:
|
|
// Source chain.
|
|
ChainT *SrcChain{nullptr};
|
|
// Destination chain.
|
|
ChainT *DstChain{nullptr};
|
|
// Original jumps in the binary with corresponding execution counts.
|
|
std::vector<JumpT *> Jumps;
|
|
// Cached gain value for merging the pair of chains.
|
|
MergeGainT CachedGain;
|
|
|
|
// Cached gain values for merging the pair of chains. Since the gain of
|
|
// merging (Src, Dst) and (Dst, Src) might be different, we store both values
|
|
// here and a flag indicating which of the options results in a higher gain.
|
|
// Cached gain values.
|
|
MergeGainT CachedGainForward;
|
|
MergeGainT CachedGainBackward;
|
|
// Whether the cached value must be recomputed.
|
|
bool CacheValidForward{false};
|
|
bool CacheValidBackward{false};
|
|
};
|
|
|
|
uint64_t NodeT::outCount() const {
|
|
uint64_t Count = 0;
|
|
for (JumpT *Jump : OutJumps)
|
|
Count += Jump->ExecutionCount;
|
|
return Count;
|
|
}
|
|
|
|
uint64_t NodeT::inCount() const {
|
|
uint64_t Count = 0;
|
|
for (JumpT *Jump : InJumps)
|
|
Count += Jump->ExecutionCount;
|
|
return Count;
|
|
}
|
|
|
|
void ChainT::mergeEdges(ChainT *Other) {
|
|
// Update edges adjacent to chain Other.
|
|
for (const auto &[DstChain, DstEdge] : Other->Edges) {
|
|
ChainT *TargetChain = DstChain == Other ? this : DstChain;
|
|
ChainEdge *CurEdge = getEdge(TargetChain);
|
|
if (CurEdge == nullptr) {
|
|
DstEdge->changeEndpoint(Other, this);
|
|
this->addEdge(TargetChain, DstEdge);
|
|
if (DstChain != this && DstChain != Other)
|
|
DstChain->addEdge(this, DstEdge);
|
|
} else {
|
|
CurEdge->moveJumps(DstEdge);
|
|
}
|
|
// Cleanup leftover edge.
|
|
if (DstChain != Other)
|
|
DstChain->removeEdge(Other);
|
|
}
|
|
}
|
|
|
|
using NodeIter = std::vector<NodeT *>::const_iterator;
|
|
|
|
/// A wrapper around three chains of nodes; it is used to avoid extra
|
|
/// instantiation of the vectors.
|
|
struct MergedChain {
|
|
MergedChain(NodeIter Begin1, NodeIter End1, NodeIter Begin2 = NodeIter(),
|
|
NodeIter End2 = NodeIter(), NodeIter Begin3 = NodeIter(),
|
|
NodeIter End3 = NodeIter())
|
|
: Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
|
|
End3(End3) {}
|
|
|
|
template <typename F> void forEach(const F &Func) const {
|
|
for (auto It = Begin1; It != End1; It++)
|
|
Func(*It);
|
|
for (auto It = Begin2; It != End2; It++)
|
|
Func(*It);
|
|
for (auto It = Begin3; It != End3; It++)
|
|
Func(*It);
|
|
}
|
|
|
|
std::vector<NodeT *> getNodes() const {
|
|
std::vector<NodeT *> Result;
|
|
Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
|
|
std::distance(Begin3, End3));
|
|
Result.insert(Result.end(), Begin1, End1);
|
|
Result.insert(Result.end(), Begin2, End2);
|
|
Result.insert(Result.end(), Begin3, End3);
|
|
return Result;
|
|
}
|
|
|
|
const NodeT *getFirstNode() const { return *Begin1; }
|
|
|
|
private:
|
|
NodeIter Begin1;
|
|
NodeIter End1;
|
|
NodeIter Begin2;
|
|
NodeIter End2;
|
|
NodeIter Begin3;
|
|
NodeIter End3;
|
|
};
|
|
|
|
/// Merge two chains of nodes respecting a given 'type' and 'offset'.
|
|
///
|
|
/// If MergeType == 0, then the result is a concatenation of two chains.
|
|
/// Otherwise, the first chain is cut into two sub-chains at the offset,
|
|
/// and merged using all possible ways of concatenating three chains.
|
|
MergedChain mergeNodes(const std::vector<NodeT *> &X,
|
|
const std::vector<NodeT *> &Y, size_t MergeOffset,
|
|
MergeTypeT MergeType) {
|
|
// Split the first chain, X, into X1 and X2.
|
|
NodeIter BeginX1 = X.begin();
|
|
NodeIter EndX1 = X.begin() + MergeOffset;
|
|
NodeIter BeginX2 = X.begin() + MergeOffset;
|
|
NodeIter EndX2 = X.end();
|
|
NodeIter BeginY = Y.begin();
|
|
NodeIter EndY = Y.end();
|
|
|
|
// Construct a new chain from the three existing ones.
|
|
switch (MergeType) {
|
|
case MergeTypeT::X_Y:
|
|
return MergedChain(BeginX1, EndX2, BeginY, EndY);
|
|
case MergeTypeT::Y_X:
|
|
return MergedChain(BeginY, EndY, BeginX1, EndX2);
|
|
case MergeTypeT::X1_Y_X2:
|
|
return MergedChain(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
|
|
case MergeTypeT::Y_X2_X1:
|
|
return MergedChain(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
|
|
case MergeTypeT::X2_X1_Y:
|
|
return MergedChain(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
|
|
}
|
|
llvm_unreachable("unexpected chain merge type");
|
|
}
|
|
|
|
/// The implementation of the ExtTSP algorithm.
|
|
class ExtTSPImpl {
|
|
public:
|
|
ExtTSPImpl(const std::vector<uint64_t> &NodeSizes,
|
|
const std::vector<uint64_t> &NodeCounts,
|
|
const std::vector<EdgeCountT> &EdgeCounts)
|
|
: NumNodes(NodeSizes.size()) {
|
|
initialize(NodeSizes, NodeCounts, EdgeCounts);
|
|
}
|
|
|
|
/// Run the algorithm and return an optimized ordering of nodes.
|
|
void run(std::vector<uint64_t> &Result) {
|
|
// Pass 1: Merge nodes with their mutually forced successors
|
|
mergeForcedPairs();
|
|
|
|
// Pass 2: Merge pairs of chains while improving the ExtTSP objective
|
|
mergeChainPairs();
|
|
|
|
// Pass 3: Merge cold nodes to reduce code size
|
|
mergeColdChains();
|
|
|
|
// Collect nodes from all chains
|
|
concatChains(Result);
|
|
}
|
|
|
|
private:
|
|
/// Initialize the algorithm's data structures.
|
|
void initialize(const std::vector<uint64_t> &NodeSizes,
|
|
const std::vector<uint64_t> &NodeCounts,
|
|
const std::vector<EdgeCountT> &EdgeCounts) {
|
|
// Initialize nodes
|
|
AllNodes.reserve(NumNodes);
|
|
for (uint64_t Idx = 0; Idx < NumNodes; Idx++) {
|
|
uint64_t Size = std::max<uint64_t>(NodeSizes[Idx], 1ULL);
|
|
uint64_t ExecutionCount = NodeCounts[Idx];
|
|
// The execution count of the entry node is set to at least one.
|
|
if (Idx == 0 && ExecutionCount == 0)
|
|
ExecutionCount = 1;
|
|
AllNodes.emplace_back(Idx, Size, ExecutionCount);
|
|
}
|
|
|
|
// Initialize jumps between nodes
|
|
SuccNodes.resize(NumNodes);
|
|
PredNodes.resize(NumNodes);
|
|
std::vector<uint64_t> OutDegree(NumNodes, 0);
|
|
AllJumps.reserve(EdgeCounts.size());
|
|
for (auto It : EdgeCounts) {
|
|
uint64_t Pred = It.first.first;
|
|
uint64_t Succ = It.first.second;
|
|
OutDegree[Pred]++;
|
|
// Ignore self-edges.
|
|
if (Pred == Succ)
|
|
continue;
|
|
|
|
SuccNodes[Pred].push_back(Succ);
|
|
PredNodes[Succ].push_back(Pred);
|
|
uint64_t ExecutionCount = It.second;
|
|
if (ExecutionCount > 0) {
|
|
NodeT &PredNode = AllNodes[Pred];
|
|
NodeT &SuccNode = AllNodes[Succ];
|
|
AllJumps.emplace_back(&PredNode, &SuccNode, ExecutionCount);
|
|
SuccNode.InJumps.push_back(&AllJumps.back());
|
|
PredNode.OutJumps.push_back(&AllJumps.back());
|
|
}
|
|
}
|
|
for (JumpT &Jump : AllJumps) {
|
|
assert(OutDegree[Jump.Source->Index] > 0);
|
|
Jump.IsConditional = OutDegree[Jump.Source->Index] > 1;
|
|
}
|
|
|
|
// Initialize chains.
|
|
AllChains.reserve(NumNodes);
|
|
HotChains.reserve(NumNodes);
|
|
for (NodeT &Node : AllNodes) {
|
|
AllChains.emplace_back(Node.Index, &Node);
|
|
Node.CurChain = &AllChains.back();
|
|
if (Node.ExecutionCount > 0)
|
|
HotChains.push_back(&AllChains.back());
|
|
}
|
|
|
|
// Initialize chain edges.
|
|
AllEdges.reserve(AllJumps.size());
|
|
for (NodeT &PredNode : AllNodes) {
|
|
for (JumpT *Jump : PredNode.OutJumps) {
|
|
NodeT *SuccNode = Jump->Target;
|
|
ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
|
|
// this edge is already present in the graph.
|
|
if (CurEdge != nullptr) {
|
|
assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
|
|
CurEdge->appendJump(Jump);
|
|
continue;
|
|
}
|
|
// this is a new edge.
|
|
AllEdges.emplace_back(Jump);
|
|
PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
|
|
SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// For a pair of nodes, A and B, node B is the forced successor of A,
|
|
/// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
|
|
/// to B are from A. Such nodes should be adjacent in the optimal ordering;
|
|
/// the method finds and merges such pairs of nodes.
|
|
void mergeForcedPairs() {
|
|
// Find fallthroughs based on edge weights.
|
|
for (NodeT &Node : AllNodes) {
|
|
if (SuccNodes[Node.Index].size() == 1 &&
|
|
PredNodes[SuccNodes[Node.Index][0]].size() == 1 &&
|
|
SuccNodes[Node.Index][0] != 0) {
|
|
size_t SuccIndex = SuccNodes[Node.Index][0];
|
|
Node.ForcedSucc = &AllNodes[SuccIndex];
|
|
AllNodes[SuccIndex].ForcedPred = &Node;
|
|
}
|
|
}
|
|
|
|
// There might be 'cycles' in the forced dependencies, since profile
|
|
// data isn't 100% accurate. Typically this is observed in loops, when the
|
|
// loop edges are the hottest successors for the basic blocks of the loop.
|
|
// Break the cycles by choosing the node with the smallest index as the
|
|
// head. This helps to keep the original order of the loops, which likely
|
|
// have already been rotated in the optimized manner.
|
|
for (NodeT &Node : AllNodes) {
|
|
if (Node.ForcedSucc == nullptr || Node.ForcedPred == nullptr)
|
|
continue;
|
|
|
|
NodeT *SuccNode = Node.ForcedSucc;
|
|
while (SuccNode != nullptr && SuccNode != &Node) {
|
|
SuccNode = SuccNode->ForcedSucc;
|
|
}
|
|
if (SuccNode == nullptr)
|
|
continue;
|
|
// Break the cycle.
|
|
AllNodes[Node.ForcedPred->Index].ForcedSucc = nullptr;
|
|
Node.ForcedPred = nullptr;
|
|
}
|
|
|
|
// Merge nodes with their fallthrough successors.
|
|
for (NodeT &Node : AllNodes) {
|
|
if (Node.ForcedPred == nullptr && Node.ForcedSucc != nullptr) {
|
|
const NodeT *CurBlock = &Node;
|
|
while (CurBlock->ForcedSucc != nullptr) {
|
|
const NodeT *NextBlock = CurBlock->ForcedSucc;
|
|
mergeChains(Node.CurChain, NextBlock->CurChain, 0, MergeTypeT::X_Y);
|
|
CurBlock = NextBlock;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Merge pairs of chains while improving the ExtTSP objective.
|
|
void mergeChainPairs() {
|
|
/// Deterministically compare pairs of chains.
|
|
auto compareChainPairs = [](const ChainT *A1, const ChainT *B1,
|
|
const ChainT *A2, const ChainT *B2) {
|
|
if (A1 != A2)
|
|
return A1->Id < A2->Id;
|
|
return B1->Id < B2->Id;
|
|
};
|
|
|
|
while (HotChains.size() > 1) {
|
|
ChainT *BestChainPred = nullptr;
|
|
ChainT *BestChainSucc = nullptr;
|
|
MergeGainT BestGain;
|
|
// Iterate over all pairs of chains.
|
|
for (ChainT *ChainPred : HotChains) {
|
|
// Get candidates for merging with the current chain.
|
|
for (const auto &[ChainSucc, Edge] : ChainPred->Edges) {
|
|
// Ignore loop edges.
|
|
if (ChainPred == ChainSucc)
|
|
continue;
|
|
|
|
// Stop early if the combined chain violates the maximum allowed size.
|
|
if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize)
|
|
continue;
|
|
|
|
// Compute the gain of merging the two chains.
|
|
MergeGainT CurGain = getBestMergeGain(ChainPred, ChainSucc, Edge);
|
|
if (CurGain.score() <= EPS)
|
|
continue;
|
|
|
|
if (BestGain < CurGain ||
|
|
(std::abs(CurGain.score() - BestGain.score()) < EPS &&
|
|
compareChainPairs(ChainPred, ChainSucc, BestChainPred,
|
|
BestChainSucc))) {
|
|
BestGain = CurGain;
|
|
BestChainPred = ChainPred;
|
|
BestChainSucc = ChainSucc;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Stop merging when there is no improvement.
|
|
if (BestGain.score() <= EPS)
|
|
break;
|
|
|
|
// Merge the best pair of chains.
|
|
mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
|
|
BestGain.mergeType());
|
|
}
|
|
}
|
|
|
|
/// Merge remaining nodes into chains w/o taking jump counts into
|
|
/// consideration. This allows to maintain the original node order in the
|
|
/// absence of profile data.
|
|
void mergeColdChains() {
|
|
for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
|
|
// Iterating in reverse order to make sure original fallthrough jumps are
|
|
// merged first; this might be beneficial for code size.
|
|
size_t NumSuccs = SuccNodes[SrcBB].size();
|
|
for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
|
|
size_t DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
|
|
ChainT *SrcChain = AllNodes[SrcBB].CurChain;
|
|
ChainT *DstChain = AllNodes[DstBB].CurChain;
|
|
if (SrcChain != DstChain && !DstChain->isEntry() &&
|
|
SrcChain->Nodes.back()->Index == SrcBB &&
|
|
DstChain->Nodes.front()->Index == DstBB &&
|
|
SrcChain->isCold() == DstChain->isCold()) {
|
|
mergeChains(SrcChain, DstChain, 0, MergeTypeT::X_Y);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Compute the Ext-TSP score for a given node order and a list of jumps.
|
|
double extTSPScore(const MergedChain &MergedBlocks,
|
|
const std::vector<JumpT *> &Jumps) const {
|
|
if (Jumps.empty())
|
|
return 0.0;
|
|
uint64_t CurAddr = 0;
|
|
MergedBlocks.forEach([&](const NodeT *Node) {
|
|
Node->EstimatedAddr = CurAddr;
|
|
CurAddr += Node->Size;
|
|
});
|
|
|
|
double Score = 0;
|
|
for (JumpT *Jump : Jumps) {
|
|
const NodeT *SrcBlock = Jump->Source;
|
|
const NodeT *DstBlock = Jump->Target;
|
|
Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
|
|
DstBlock->EstimatedAddr, Jump->ExecutionCount,
|
|
Jump->IsConditional);
|
|
}
|
|
return Score;
|
|
}
|
|
|
|
/// Compute the gain of merging two chains.
|
|
///
|
|
/// The function considers all possible ways of merging two chains and
|
|
/// computes the one having the largest increase in ExtTSP objective. The
|
|
/// result is a pair with the first element being the gain and the second
|
|
/// element being the corresponding merging type.
|
|
MergeGainT getBestMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
|
|
ChainEdge *Edge) const {
|
|
if (Edge->hasCachedMergeGain(ChainPred, ChainSucc)) {
|
|
return Edge->getCachedMergeGain(ChainPred, ChainSucc);
|
|
}
|
|
|
|
// Precompute jumps between ChainPred and ChainSucc.
|
|
auto Jumps = Edge->jumps();
|
|
ChainEdge *EdgePP = ChainPred->getEdge(ChainPred);
|
|
if (EdgePP != nullptr) {
|
|
Jumps.insert(Jumps.end(), EdgePP->jumps().begin(), EdgePP->jumps().end());
|
|
}
|
|
assert(!Jumps.empty() && "trying to merge chains w/o jumps");
|
|
|
|
// This object holds the best chosen gain of merging two chains.
|
|
MergeGainT Gain = MergeGainT();
|
|
|
|
/// Given a merge offset and a list of merge types, try to merge two chains
|
|
/// and update Gain with a better alternative.
|
|
auto tryChainMerging = [&](size_t Offset,
|
|
const std::vector<MergeTypeT> &MergeTypes) {
|
|
// Skip merging corresponding to concatenation w/o splitting.
|
|
if (Offset == 0 || Offset == ChainPred->Nodes.size())
|
|
return;
|
|
// Skip merging if it breaks Forced successors.
|
|
NodeT *Node = ChainPred->Nodes[Offset - 1];
|
|
if (Node->ForcedSucc != nullptr)
|
|
return;
|
|
// Apply the merge, compute the corresponding gain, and update the best
|
|
// value, if the merge is beneficial.
|
|
for (const MergeTypeT &MergeType : MergeTypes) {
|
|
Gain.updateIfLessThan(
|
|
computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
|
|
}
|
|
};
|
|
|
|
// Try to concatenate two chains w/o splitting.
|
|
Gain.updateIfLessThan(
|
|
computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeT::X_Y));
|
|
|
|
if (EnableChainSplitAlongJumps) {
|
|
// Attach (a part of) ChainPred before the first node of ChainSucc.
|
|
for (JumpT *Jump : ChainSucc->Nodes.front()->InJumps) {
|
|
const NodeT *SrcBlock = Jump->Source;
|
|
if (SrcBlock->CurChain != ChainPred)
|
|
continue;
|
|
size_t Offset = SrcBlock->CurIndex + 1;
|
|
tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::X2_X1_Y});
|
|
}
|
|
|
|
// Attach (a part of) ChainPred after the last node of ChainSucc.
|
|
for (JumpT *Jump : ChainSucc->Nodes.back()->OutJumps) {
|
|
const NodeT *DstBlock = Jump->Source;
|
|
if (DstBlock->CurChain != ChainPred)
|
|
continue;
|
|
size_t Offset = DstBlock->CurIndex;
|
|
tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1});
|
|
}
|
|
}
|
|
|
|
// Try to break ChainPred in various ways and concatenate with ChainSucc.
|
|
if (ChainPred->Nodes.size() <= ChainSplitThreshold) {
|
|
for (size_t Offset = 1; Offset < ChainPred->Nodes.size(); Offset++) {
|
|
// Try to split the chain in different ways. In practice, applying
|
|
// X2_Y_X1 merging is almost never provides benefits; thus, we exclude
|
|
// it from consideration to reduce the search space.
|
|
tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1,
|
|
MergeTypeT::X2_X1_Y});
|
|
}
|
|
}
|
|
Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
|
|
return Gain;
|
|
}
|
|
|
|
/// Compute the score gain of merging two chains, respecting a given
|
|
/// merge 'type' and 'offset'.
|
|
///
|
|
/// The two chains are not modified in the method.
|
|
MergeGainT computeMergeGain(const ChainT *ChainPred, const ChainT *ChainSucc,
|
|
const std::vector<JumpT *> &Jumps,
|
|
size_t MergeOffset, MergeTypeT MergeType) const {
|
|
auto MergedBlocks =
|
|
mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
|
|
|
|
// Do not allow a merge that does not preserve the original entry point.
|
|
if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
|
|
!MergedBlocks.getFirstNode()->isEntry())
|
|
return MergeGainT();
|
|
|
|
// The gain for the new chain.
|
|
auto NewGainScore = extTSPScore(MergedBlocks, Jumps) - ChainPred->Score;
|
|
return MergeGainT(NewGainScore, MergeOffset, MergeType);
|
|
}
|
|
|
|
/// Merge chain From into chain Into, update the list of active chains,
|
|
/// adjacency information, and the corresponding cached values.
|
|
void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
|
|
MergeTypeT MergeType) {
|
|
assert(Into != From && "a chain cannot be merged with itself");
|
|
|
|
// Merge the nodes.
|
|
MergedChain MergedNodes =
|
|
mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
|
|
Into->merge(From, MergedNodes.getNodes());
|
|
|
|
// Merge the edges.
|
|
Into->mergeEdges(From);
|
|
From->clear();
|
|
|
|
// Update cached ext-tsp score for the new chain.
|
|
ChainEdge *SelfEdge = Into->getEdge(Into);
|
|
if (SelfEdge != nullptr) {
|
|
MergedNodes = MergedChain(Into->Nodes.begin(), Into->Nodes.end());
|
|
Into->Score = extTSPScore(MergedNodes, SelfEdge->jumps());
|
|
}
|
|
|
|
// Remove the chain from the list of active chains.
|
|
llvm::erase_value(HotChains, From);
|
|
|
|
// Invalidate caches.
|
|
for (auto EdgeIt : Into->Edges)
|
|
EdgeIt.second->invalidateCache();
|
|
}
|
|
|
|
/// Concatenate all chains into the final order.
|
|
void concatChains(std::vector<uint64_t> &Order) {
|
|
// Collect chains and calculate density stats for their sorting.
|
|
std::vector<const ChainT *> SortedChains;
|
|
DenseMap<const ChainT *, double> ChainDensity;
|
|
for (ChainT &Chain : AllChains) {
|
|
if (!Chain.Nodes.empty()) {
|
|
SortedChains.push_back(&Chain);
|
|
// Using doubles to avoid overflow of ExecutionCounts.
|
|
double Size = 0;
|
|
double ExecutionCount = 0;
|
|
for (NodeT *Node : Chain.Nodes) {
|
|
Size += static_cast<double>(Node->Size);
|
|
ExecutionCount += static_cast<double>(Node->ExecutionCount);
|
|
}
|
|
assert(Size > 0 && "a chain of zero size");
|
|
ChainDensity[&Chain] = ExecutionCount / Size;
|
|
}
|
|
}
|
|
|
|
// Sorting chains by density in the decreasing order.
|
|
std::sort(SortedChains.begin(), SortedChains.end(),
|
|
[&](const ChainT *L, const ChainT *R) {
|
|
// Place the entry point is at the beginning of the order.
|
|
if (L->isEntry() != R->isEntry())
|
|
return L->isEntry();
|
|
|
|
const double DL = ChainDensity[L];
|
|
const double DR = ChainDensity[R];
|
|
// Compare by density and break ties by chain identifiers.
|
|
return (DL != DR) ? (DL > DR) : (L->Id < R->Id);
|
|
return std::make_tuple(-DL, L->Id) <
|
|
std::make_tuple(-DR, R->Id);
|
|
});
|
|
|
|
// Collect the nodes in the order specified by their chains.
|
|
Order.reserve(NumNodes);
|
|
for (const ChainT *Chain : SortedChains) {
|
|
for (NodeT *Node : Chain->Nodes) {
|
|
Order.push_back(Node->Index);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// The number of nodes in the graph.
|
|
const size_t NumNodes;
|
|
|
|
/// Successors of each node.
|
|
std::vector<std::vector<uint64_t>> SuccNodes;
|
|
|
|
/// Predecessors of each node.
|
|
std::vector<std::vector<uint64_t>> PredNodes;
|
|
|
|
/// All nodes (basic blocks) in the graph.
|
|
std::vector<NodeT> AllNodes;
|
|
|
|
/// All jumps between the nodes.
|
|
std::vector<JumpT> AllJumps;
|
|
|
|
/// All chains of nodes.
|
|
std::vector<ChainT> AllChains;
|
|
|
|
/// All edges between the chains.
|
|
std::vector<ChainEdge> AllEdges;
|
|
|
|
/// Active chains. The vector gets updated at runtime when chains are merged.
|
|
std::vector<ChainT *> HotChains;
|
|
};
|
|
|
|
/// The implementation of the Cache-Directed Sort (CDS) algorithm for ordering
|
|
/// functions represented by a call graph.
|
|
class CDSortImpl {
|
|
public:
|
|
CDSortImpl(const CDSortConfig &Config, const std::vector<uint64_t> &NodeSizes,
|
|
const std::vector<uint64_t> &NodeCounts,
|
|
const std::vector<EdgeCountT> &EdgeCounts,
|
|
const std::vector<uint64_t> &EdgeOffsets)
|
|
: Config(Config), NumNodes(NodeSizes.size()) {
|
|
initialize(NodeSizes, NodeCounts, EdgeCounts, EdgeOffsets);
|
|
}
|
|
|
|
/// Run the algorithm and return an ordered set of function clusters.
|
|
void run(std::vector<uint64_t> &Result) {
|
|
// Merge pairs of chains while improving the objective.
|
|
mergeChainPairs();
|
|
|
|
LLVM_DEBUG(dbgs() << "Cache-directed function sorting reduced the number"
|
|
<< " of chains from " << NumNodes << " to "
|
|
<< HotChains.size() << "\n");
|
|
|
|
// Collect nodes from all the chains.
|
|
concatChains(Result);
|
|
}
|
|
|
|
private:
|
|
/// Initialize the algorithm's data structures.
|
|
void initialize(const std::vector<uint64_t> &NodeSizes,
|
|
const std::vector<uint64_t> &NodeCounts,
|
|
const std::vector<EdgeCountT> &EdgeCounts,
|
|
const std::vector<uint64_t> &EdgeOffsets) {
|
|
// Initialize nodes.
|
|
AllNodes.reserve(NumNodes);
|
|
for (uint64_t Node = 0; Node < NumNodes; Node++) {
|
|
uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL);
|
|
uint64_t ExecutionCount = NodeCounts[Node];
|
|
AllNodes.emplace_back(Node, Size, ExecutionCount);
|
|
TotalSamples += ExecutionCount;
|
|
if (ExecutionCount > 0)
|
|
TotalSize += Size;
|
|
}
|
|
|
|
// Initialize jumps between the nodes.
|
|
SuccNodes.resize(NumNodes);
|
|
PredNodes.resize(NumNodes);
|
|
AllJumps.reserve(EdgeCounts.size());
|
|
for (size_t I = 0; I < EdgeCounts.size(); I++) {
|
|
auto It = EdgeCounts[I];
|
|
uint64_t Pred = It.first.first;
|
|
uint64_t Succ = It.first.second;
|
|
// Ignore recursive calls.
|
|
if (Pred == Succ)
|
|
continue;
|
|
|
|
SuccNodes[Pred].push_back(Succ);
|
|
PredNodes[Succ].push_back(Pred);
|
|
uint64_t ExecutionCount = It.second;
|
|
if (ExecutionCount > 0) {
|
|
NodeT &PredNode = AllNodes[Pred];
|
|
NodeT &SuccNode = AllNodes[Succ];
|
|
AllJumps.emplace_back(&PredNode, &SuccNode, ExecutionCount);
|
|
AllJumps.back().Offset = EdgeOffsets[I];
|
|
SuccNode.InJumps.push_back(&AllJumps.back());
|
|
PredNode.OutJumps.push_back(&AllJumps.back());
|
|
}
|
|
}
|
|
|
|
// Initialize chains.
|
|
AllChains.reserve(NumNodes);
|
|
HotChains.reserve(NumNodes);
|
|
for (NodeT &Node : AllNodes) {
|
|
// Adjust execution counts.
|
|
Node.ExecutionCount = std::max(Node.ExecutionCount, Node.inCount());
|
|
Node.ExecutionCount = std::max(Node.ExecutionCount, Node.outCount());
|
|
// Create chain.
|
|
AllChains.emplace_back(Node.Index, &Node);
|
|
Node.CurChain = &AllChains.back();
|
|
if (Node.ExecutionCount > 0)
|
|
HotChains.push_back(&AllChains.back());
|
|
}
|
|
|
|
// Initialize chain edges.
|
|
AllEdges.reserve(AllJumps.size());
|
|
for (NodeT &PredNode : AllNodes) {
|
|
for (JumpT *Jump : PredNode.OutJumps) {
|
|
NodeT *SuccNode = Jump->Target;
|
|
ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
|
|
// this edge is already present in the graph.
|
|
if (CurEdge != nullptr) {
|
|
assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
|
|
CurEdge->appendJump(Jump);
|
|
continue;
|
|
}
|
|
// this is a new edge.
|
|
AllEdges.emplace_back(Jump);
|
|
PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
|
|
SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Merge pairs of chains while there is an improvement in the objective.
|
|
void mergeChainPairs() {
|
|
// Create a priority queue containing all edges ordered by the merge gain.
|
|
auto GainComparator = [](ChainEdge *L, ChainEdge *R) {
|
|
return std::make_tuple(-L->gain(), L->srcChain()->Id, L->dstChain()->Id) <
|
|
std::make_tuple(-R->gain(), R->srcChain()->Id, R->dstChain()->Id);
|
|
};
|
|
std::set<ChainEdge *, decltype(GainComparator)> Queue(GainComparator);
|
|
|
|
// Insert the edges into the queue.
|
|
for (ChainT *ChainPred : HotChains) {
|
|
for (const auto &[Chain, Edge] : ChainPred->Edges) {
|
|
// Ignore self-edges.
|
|
if (Edge->isSelfEdge())
|
|
continue;
|
|
// Ignore already processed edges.
|
|
if (Edge->gain() != -1.0)
|
|
continue;
|
|
|
|
// Compute the gain of merging the two chains.
|
|
MergeGainT Gain = getBestMergeGain(Edge);
|
|
Edge->setMergeGain(Gain);
|
|
|
|
if (Edge->gain() > EPS)
|
|
Queue.insert(Edge);
|
|
}
|
|
}
|
|
|
|
// Merge the chains while the gain of merging is positive.
|
|
while (!Queue.empty()) {
|
|
// Extract the best (top) edge for merging.
|
|
ChainEdge *BestEdge = *Queue.begin();
|
|
Queue.erase(Queue.begin());
|
|
// Ignore self-edges.
|
|
if (BestEdge->isSelfEdge())
|
|
continue;
|
|
// Ignore edges with non-positive gains.
|
|
if (BestEdge->gain() <= EPS)
|
|
continue;
|
|
|
|
ChainT *BestSrcChain = BestEdge->srcChain();
|
|
ChainT *BestDstChain = BestEdge->dstChain();
|
|
|
|
// Remove outdated edges from the queue.
|
|
for (const auto &[Chain, ChainEdge] : BestSrcChain->Edges)
|
|
Queue.erase(ChainEdge);
|
|
for (const auto &[Chain, ChainEdge] : BestDstChain->Edges)
|
|
Queue.erase(ChainEdge);
|
|
|
|
// Merge the best pair of chains.
|
|
MergeGainT BestGain = BestEdge->getMergeGain();
|
|
mergeChains(BestSrcChain, BestDstChain, BestGain.mergeOffset(),
|
|
BestGain.mergeType());
|
|
|
|
// Insert newly created edges into the queue.
|
|
for (const auto &[Chain, Edge] : BestSrcChain->Edges) {
|
|
// Ignore loop edges.
|
|
if (Edge->isSelfEdge())
|
|
continue;
|
|
|
|
// Compute the gain of merging the two chains.
|
|
MergeGainT Gain = getBestMergeGain(Edge);
|
|
Edge->setMergeGain(Gain);
|
|
|
|
if (Edge->gain() > EPS)
|
|
Queue.insert(Edge);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Compute the gain of merging two chains.
|
|
///
|
|
/// The function considers all possible ways of merging two chains and
|
|
/// computes the one having the largest increase in ExtTSP objective. The
|
|
/// result is a pair with the first element being the gain and the second
|
|
/// element being the corresponding merging type.
|
|
MergeGainT getBestMergeGain(ChainEdge *Edge) const {
|
|
// Precompute jumps between ChainPred and ChainSucc.
|
|
auto Jumps = Edge->jumps();
|
|
assert(!Jumps.empty() && "trying to merge chains w/o jumps");
|
|
ChainT *SrcChain = Edge->srcChain();
|
|
ChainT *DstChain = Edge->dstChain();
|
|
|
|
// This object holds the best currently chosen gain of merging two chains.
|
|
MergeGainT Gain = MergeGainT();
|
|
|
|
/// Given a list of merge types, try to merge two chains and update Gain
|
|
/// with a better alternative.
|
|
auto tryChainMerging = [&](const std::vector<MergeTypeT> &MergeTypes) {
|
|
// Apply the merge, compute the corresponding gain, and update the best
|
|
// value, if the merge is beneficial.
|
|
for (const MergeTypeT &MergeType : MergeTypes) {
|
|
MergeGainT NewGain =
|
|
computeMergeGain(SrcChain, DstChain, Jumps, MergeType);
|
|
|
|
// When forward and backward gains are the same, prioritize merging that
|
|
// preserves the original order of the functions in the binary.
|
|
if (std::abs(Gain.score() - NewGain.score()) < EPS) {
|
|
if ((MergeType == MergeTypeT::X_Y && SrcChain->Id < DstChain->Id) ||
|
|
(MergeType == MergeTypeT::Y_X && SrcChain->Id > DstChain->Id)) {
|
|
Gain = NewGain;
|
|
}
|
|
} else if (NewGain.score() > Gain.score() + EPS) {
|
|
Gain = NewGain;
|
|
}
|
|
}
|
|
};
|
|
|
|
// Try to concatenate two chains w/o splitting.
|
|
tryChainMerging({MergeTypeT::X_Y, MergeTypeT::Y_X});
|
|
|
|
return Gain;
|
|
}
|
|
|
|
/// Compute the score gain of merging two chains, respecting a given type.
|
|
///
|
|
/// The two chains are not modified in the method.
|
|
MergeGainT computeMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
|
|
const std::vector<JumpT *> &Jumps,
|
|
MergeTypeT MergeType) const {
|
|
// This doesn't depend on the ordering of the nodes
|
|
double FreqGain = freqBasedLocalityGain(ChainPred, ChainSucc);
|
|
|
|
// Merge offset is always 0, as the chains are not split.
|
|
size_t MergeOffset = 0;
|
|
auto MergedBlocks =
|
|
mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
|
|
double DistGain = distBasedLocalityGain(MergedBlocks, Jumps);
|
|
|
|
double GainScore = DistGain + Config.FrequencyScale * FreqGain;
|
|
// Scale the result to increase the importance of merging short chains.
|
|
if (GainScore >= 0.0)
|
|
GainScore /= std::min(ChainPred->Size, ChainSucc->Size);
|
|
|
|
return MergeGainT(GainScore, MergeOffset, MergeType);
|
|
}
|
|
|
|
/// Compute the change of the frequency locality after merging the chains.
|
|
double freqBasedLocalityGain(ChainT *ChainPred, ChainT *ChainSucc) const {
|
|
auto missProbability = [&](double ChainDensity) {
|
|
double PageSamples = ChainDensity * Config.CacheSize;
|
|
if (PageSamples >= TotalSamples)
|
|
return 0.0;
|
|
double P = PageSamples / TotalSamples;
|
|
return pow(1.0 - P, static_cast<double>(Config.CacheEntries));
|
|
};
|
|
|
|
// Cache misses on the chains before merging.
|
|
double CurScore =
|
|
ChainPred->ExecutionCount * missProbability(ChainPred->density()) +
|
|
ChainSucc->ExecutionCount * missProbability(ChainSucc->density());
|
|
|
|
// Cache misses on the merged chain
|
|
double MergedCounts = ChainPred->ExecutionCount + ChainSucc->ExecutionCount;
|
|
double MergedSize = ChainPred->Size + ChainSucc->Size;
|
|
double MergedDensity = static_cast<double>(MergedCounts) / MergedSize;
|
|
double NewScore = MergedCounts * missProbability(MergedDensity);
|
|
|
|
return CurScore - NewScore;
|
|
}
|
|
|
|
/// Compute the distance locality for a jump / call.
|
|
double distScore(uint64_t SrcAddr, uint64_t DstAddr, uint64_t Count) const {
|
|
uint64_t Dist = SrcAddr <= DstAddr ? DstAddr - SrcAddr : SrcAddr - DstAddr;
|
|
double D = Dist == 0 ? 0.1 : static_cast<double>(Dist);
|
|
return static_cast<double>(Count) * std::pow(D, -Config.DistancePower);
|
|
}
|
|
|
|
/// Compute the change of the distance locality after merging the chains.
|
|
double distBasedLocalityGain(const MergedChain &MergedBlocks,
|
|
const std::vector<JumpT *> &Jumps) const {
|
|
if (Jumps.empty())
|
|
return 0.0;
|
|
uint64_t CurAddr = 0;
|
|
MergedBlocks.forEach([&](const NodeT *Node) {
|
|
Node->EstimatedAddr = CurAddr;
|
|
CurAddr += Node->Size;
|
|
});
|
|
|
|
double CurScore = 0;
|
|
double NewScore = 0;
|
|
for (const JumpT *Arc : Jumps) {
|
|
uint64_t SrcAddr = Arc->Source->EstimatedAddr + Arc->Offset;
|
|
uint64_t DstAddr = Arc->Target->EstimatedAddr;
|
|
NewScore += distScore(SrcAddr, DstAddr, Arc->ExecutionCount);
|
|
CurScore += distScore(0, TotalSize, Arc->ExecutionCount);
|
|
}
|
|
return NewScore - CurScore;
|
|
}
|
|
|
|
/// Merge chain From into chain Into, update the list of active chains,
|
|
/// adjacency information, and the corresponding cached values.
|
|
void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
|
|
MergeTypeT MergeType) {
|
|
assert(Into != From && "a chain cannot be merged with itself");
|
|
|
|
// Merge the nodes.
|
|
MergedChain MergedNodes =
|
|
mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
|
|
Into->merge(From, MergedNodes.getNodes());
|
|
|
|
// Merge the edges.
|
|
Into->mergeEdges(From);
|
|
From->clear();
|
|
|
|
// Remove the chain from the list of active chains.
|
|
llvm::erase_value(HotChains, From);
|
|
}
|
|
|
|
/// Concatenate all chains into the final order.
|
|
void concatChains(std::vector<uint64_t> &Order) {
|
|
// Collect chains and calculate density stats for their sorting.
|
|
std::vector<const ChainT *> SortedChains;
|
|
DenseMap<const ChainT *, double> ChainDensity;
|
|
for (ChainT &Chain : AllChains) {
|
|
if (!Chain.Nodes.empty()) {
|
|
SortedChains.push_back(&Chain);
|
|
// Using doubles to avoid overflow of ExecutionCounts.
|
|
double Size = 0;
|
|
double ExecutionCount = 0;
|
|
for (NodeT *Node : Chain.Nodes) {
|
|
Size += static_cast<double>(Node->Size);
|
|
ExecutionCount += static_cast<double>(Node->ExecutionCount);
|
|
}
|
|
assert(Size > 0 && "a chain of zero size");
|
|
ChainDensity[&Chain] = ExecutionCount / Size;
|
|
}
|
|
}
|
|
|
|
// Sort chains by density in the decreasing order.
|
|
std::sort(SortedChains.begin(), SortedChains.end(),
|
|
[&](const ChainT *L, const ChainT *R) {
|
|
const double DL = ChainDensity[L];
|
|
const double DR = ChainDensity[R];
|
|
// Compare by density and break ties by chain identifiers.
|
|
return std::make_tuple(-DL, L->Id) <
|
|
std::make_tuple(-DR, R->Id);
|
|
});
|
|
|
|
// Collect the nodes in the order specified by their chains.
|
|
Order.reserve(NumNodes);
|
|
for (const ChainT *Chain : SortedChains)
|
|
for (NodeT *Node : Chain->Nodes)
|
|
Order.push_back(Node->Index);
|
|
}
|
|
|
|
private:
|
|
/// Config for the algorithm.
|
|
const CDSortConfig Config;
|
|
|
|
/// The number of nodes in the graph.
|
|
const size_t NumNodes;
|
|
|
|
/// Successors of each node.
|
|
std::vector<std::vector<uint64_t>> SuccNodes;
|
|
|
|
/// Predecessors of each node.
|
|
std::vector<std::vector<uint64_t>> PredNodes;
|
|
|
|
/// All nodes (functions) in the graph.
|
|
std::vector<NodeT> AllNodes;
|
|
|
|
/// All jumps (function calls) between the nodes.
|
|
std::vector<JumpT> AllJumps;
|
|
|
|
/// All chains of nodes.
|
|
std::vector<ChainT> AllChains;
|
|
|
|
/// All edges between the chains.
|
|
std::vector<ChainEdge> AllEdges;
|
|
|
|
/// Active chains. The vector gets updated at runtime when chains are merged.
|
|
std::vector<ChainT *> HotChains;
|
|
|
|
/// The total number of samples in the graph.
|
|
uint64_t TotalSamples{0};
|
|
|
|
/// The total size of the nodes in the graph.
|
|
uint64_t TotalSize{0};
|
|
};
|
|
|
|
} // end of anonymous namespace
|
|
|
|
std::vector<uint64_t>
|
|
llvm::applyExtTspLayout(const std::vector<uint64_t> &NodeSizes,
|
|
const std::vector<uint64_t> &NodeCounts,
|
|
const std::vector<EdgeCountT> &EdgeCounts) {
|
|
// Verify correctness of the input data.
|
|
assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
|
|
assert(NodeSizes.size() > 2 && "Incorrect input");
|
|
|
|
// Apply the reordering algorithm.
|
|
ExtTSPImpl Alg(NodeSizes, NodeCounts, EdgeCounts);
|
|
std::vector<uint64_t> Result;
|
|
Alg.run(Result);
|
|
|
|
// Verify correctness of the output.
|
|
assert(Result.front() == 0 && "Original entry point is not preserved");
|
|
assert(Result.size() == NodeSizes.size() && "Incorrect size of layout");
|
|
return Result;
|
|
}
|
|
|
|
double llvm::calcExtTspScore(const std::vector<uint64_t> &Order,
|
|
const std::vector<uint64_t> &NodeSizes,
|
|
const std::vector<uint64_t> &NodeCounts,
|
|
const std::vector<EdgeCountT> &EdgeCounts) {
|
|
// Estimate addresses of the blocks in memory.
|
|
std::vector<uint64_t> Addr(NodeSizes.size(), 0);
|
|
for (size_t Idx = 1; Idx < Order.size(); Idx++) {
|
|
Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
|
|
}
|
|
std::vector<uint64_t> OutDegree(NodeSizes.size(), 0);
|
|
for (auto It : EdgeCounts) {
|
|
uint64_t Pred = It.first.first;
|
|
OutDegree[Pred]++;
|
|
}
|
|
|
|
// Increase the score for each jump.
|
|
double Score = 0;
|
|
for (auto It : EdgeCounts) {
|
|
uint64_t Pred = It.first.first;
|
|
uint64_t Succ = It.first.second;
|
|
uint64_t Count = It.second;
|
|
bool IsConditional = OutDegree[Pred] > 1;
|
|
Score += ::extTSPScore(Addr[Pred], NodeSizes[Pred], Addr[Succ], Count,
|
|
IsConditional);
|
|
}
|
|
return Score;
|
|
}
|
|
|
|
double llvm::calcExtTspScore(const std::vector<uint64_t> &NodeSizes,
|
|
const std::vector<uint64_t> &NodeCounts,
|
|
const std::vector<EdgeCountT> &EdgeCounts) {
|
|
std::vector<uint64_t> Order(NodeSizes.size());
|
|
for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
|
|
Order[Idx] = Idx;
|
|
}
|
|
return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
|
|
}
|
|
|
|
std::vector<uint64_t>
|
|
llvm::applyCDSLayout(const CDSortConfig &Config,
|
|
const std::vector<uint64_t> &FuncSizes,
|
|
const std::vector<uint64_t> &FuncCounts,
|
|
const std::vector<EdgeCountT> &CallCounts,
|
|
const std::vector<uint64_t> &CallOffsets) {
|
|
// Verify correctness of the input data.
|
|
assert(FuncCounts.size() == FuncSizes.size() && "Incorrect input");
|
|
|
|
// Apply the reordering algorithm.
|
|
CDSortImpl Alg(Config, FuncSizes, FuncCounts, CallCounts, CallOffsets);
|
|
std::vector<uint64_t> Result;
|
|
Alg.run(Result);
|
|
|
|
// Verify correctness of the output.
|
|
assert(Result.size() == FuncSizes.size() && "Incorrect size of layout");
|
|
return Result;
|
|
}
|
|
|
|
std::vector<uint64_t>
|
|
llvm::applyCDSLayout(const std::vector<uint64_t> &FuncSizes,
|
|
const std::vector<uint64_t> &FuncCounts,
|
|
const std::vector<EdgeCountT> &CallCounts,
|
|
const std::vector<uint64_t> &CallOffsets) {
|
|
CDSortConfig Config;
|
|
// Populate the config from the command-line options.
|
|
if (CacheEntries.getNumOccurrences() > 0)
|
|
Config.CacheEntries = CacheEntries;
|
|
if (CacheSize.getNumOccurrences() > 0)
|
|
Config.CacheSize = CacheSize;
|
|
if (DistancePower.getNumOccurrences() > 0)
|
|
Config.DistancePower = DistancePower;
|
|
if (FrequencyScale.getNumOccurrences() > 0)
|
|
Config.FrequencyScale = FrequencyScale;
|
|
return applyCDSLayout(Config, FuncSizes, FuncCounts, CallCounts, CallOffsets);
|
|
}
|