llvm-project/mlir/lib/Transforms/Utils/LoopFusionUtils.cpp
Sumesh Udayakumaran ada580863f [mlir] Enable cleanup of single iteration reduction loops being sibling-fused maximally
Changes include the following:
    1. Single iteration reduction loops being sibling fused at innermost insertion level
     are skipped from being considered as sequential loops.
    Otherwise, the slice bounds of these loops is reset.

    2. Promote loops that are skipped in previous step into outer loops.

    3. Two utility function - buildSliceTripCountMap, getSliceIterationCount - are moved from
mlir/lib/Transforms/Utils/LoopFusionUtils.cpp to mlir/lib/Analysis/Utils.cpp

Reviewed By: bondhugula, vinayaka-polymage

Differential Revision: https://reviews.llvm.org/D104249
2021-07-16 00:07:20 +03:00

666 lines
27 KiB
C++

//===- LoopFusionUtils.cpp ---- Utilities for loop fusion ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop fusion transformation utility functions.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/LoopFusionUtils.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Operation.h"
#include "mlir/Transforms/LoopUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "loop-fusion-utils"
using namespace mlir;
// Gathers all load and store memref accesses in 'opA' into 'values', where
// 'values[memref] == true' for each store operation.
static void getLoadAndStoreMemRefAccesses(Operation *opA,
DenseMap<Value, bool> &values) {
opA->walk([&](Operation *op) {
if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
if (values.count(loadOp.getMemRef()) == 0)
values[loadOp.getMemRef()] = false;
} else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
values[storeOp.getMemRef()] = true;
}
});
}
/// Returns true if 'op' is a load or store operation which access a memref
/// accessed 'values' and at least one of the access is a store operation.
/// Returns false otherwise.
static bool isDependentLoadOrStoreOp(Operation *op,
DenseMap<Value, bool> &values) {
if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
return values.count(loadOp.getMemRef()) > 0 &&
values[loadOp.getMemRef()] == true;
} else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
return values.count(storeOp.getMemRef()) > 0;
}
return false;
}
// Returns the first operation in range ('opA', 'opB') which has a data
// dependence on 'opA'. Returns 'nullptr' of no dependence exists.
static Operation *getFirstDependentOpInRange(Operation *opA, Operation *opB) {
// Record memref values from all loads/store in loop nest rooted at 'opA'.
// Map from memref value to bool which is true if store, false otherwise.
DenseMap<Value, bool> values;
getLoadAndStoreMemRefAccesses(opA, values);
// For each 'opX' in block in range ('opA', 'opB'), check if there is a data
// dependence from 'opA' to 'opX' ('opA' and 'opX' access the same memref
// and at least one of the accesses is a store).
Operation *firstDepOp = nullptr;
for (Block::iterator it = std::next(Block::iterator(opA));
it != Block::iterator(opB); ++it) {
Operation *opX = &(*it);
opX->walk([&](Operation *op) {
if (!firstDepOp && isDependentLoadOrStoreOp(op, values))
firstDepOp = opX;
});
if (firstDepOp)
break;
}
return firstDepOp;
}
// Returns the last operation 'opX' in range ('opA', 'opB'), for which there
// exists a data dependence from 'opX' to 'opB'.
// Returns 'nullptr' of no dependence exists.
static Operation *getLastDependentOpInRange(Operation *opA, Operation *opB) {
// Record memref values from all loads/store in loop nest rooted at 'opB'.
// Map from memref value to bool which is true if store, false otherwise.
DenseMap<Value, bool> values;
getLoadAndStoreMemRefAccesses(opB, values);
// For each 'opX' in block in range ('opA', 'opB') in reverse order,
// check if there is a data dependence from 'opX' to 'opB':
// *) 'opX' and 'opB' access the same memref and at least one of the accesses
// is a store.
// *) 'opX' produces an SSA Value which is used by 'opB'.
Operation *lastDepOp = nullptr;
for (Block::reverse_iterator it = std::next(Block::reverse_iterator(opB));
it != Block::reverse_iterator(opA); ++it) {
Operation *opX = &(*it);
opX->walk([&](Operation *op) {
if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) {
if (isDependentLoadOrStoreOp(op, values)) {
lastDepOp = opX;
return WalkResult::interrupt();
}
return WalkResult::advance();
}
for (auto value : op->getResults()) {
for (Operation *user : value.getUsers()) {
SmallVector<AffineForOp, 4> loops;
// Check if any loop in loop nest surrounding 'user' is 'opB'.
getLoopIVs(*user, &loops);
if (llvm::is_contained(loops, cast<AffineForOp>(opB))) {
lastDepOp = opX;
return WalkResult::interrupt();
}
}
}
return WalkResult::advance();
});
if (lastDepOp)
break;
}
return lastDepOp;
}
// Computes and returns an insertion point operation, before which the
// the fused <srcForOp, dstForOp> loop nest can be inserted while preserving
// dependences. Returns nullptr if no such insertion point is found.
static Operation *getFusedLoopNestInsertionPoint(AffineForOp srcForOp,
AffineForOp dstForOp) {
bool isSrcForOpBeforeDstForOp =
srcForOp->isBeforeInBlock(dstForOp.getOperation());
auto forOpA = isSrcForOpBeforeDstForOp ? srcForOp : dstForOp;
auto forOpB = isSrcForOpBeforeDstForOp ? dstForOp : srcForOp;
auto *firstDepOpA =
getFirstDependentOpInRange(forOpA.getOperation(), forOpB.getOperation());
auto *lastDepOpB =
getLastDependentOpInRange(forOpA.getOperation(), forOpB.getOperation());
// Block:
// ...
// |-- opA
// | ...
// | lastDepOpB --|
// | ... |
// |-> firstDepOpA |
// ... |
// opB <---------
//
// Valid insertion point range: (lastDepOpB, firstDepOpA)
//
if (firstDepOpA != nullptr) {
if (lastDepOpB != nullptr) {
if (firstDepOpA->isBeforeInBlock(lastDepOpB) || firstDepOpA == lastDepOpB)
// No valid insertion point exists which preserves dependences.
return nullptr;
}
// Return insertion point in valid range closest to 'opB'.
// TODO: Consider other insertion points in valid range.
return firstDepOpA;
}
// No dependences from 'opA' to operation in range ('opA', 'opB'), return
// 'opB' insertion point.
return forOpB.getOperation();
}
// Gathers all load and store ops in loop nest rooted at 'forOp' into
// 'loadAndStoreOps'.
static bool
gatherLoadsAndStores(AffineForOp forOp,
SmallVectorImpl<Operation *> &loadAndStoreOps) {
bool hasIfOp = false;
forOp.walk([&](Operation *op) {
if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op))
loadAndStoreOps.push_back(op);
else if (isa<AffineIfOp>(op))
hasIfOp = true;
});
return !hasIfOp;
}
/// Returns the maximum loop depth at which we could fuse producer loop
/// 'srcForOp' into consumer loop 'dstForOp' without violating data dependences.
// TODO: Generalize this check for sibling and more generic fusion scenarios.
// TODO: Support forward slice fusion.
static unsigned getMaxLoopDepth(ArrayRef<Operation *> srcOps,
ArrayRef<Operation *> dstOps) {
if (dstOps.empty())
// Expected at least one memory operation.
// TODO: Revisit this case with a specific example.
return 0;
// Filter out ops in 'dstOps' that do not use the producer-consumer memref so
// that they are not considered for analysis.
DenseSet<Value> producerConsumerMemrefs;
gatherProducerConsumerMemrefs(srcOps, dstOps, producerConsumerMemrefs);
SmallVector<Operation *, 4> targetDstOps;
for (Operation *dstOp : dstOps) {
auto loadOp = dyn_cast<AffineReadOpInterface>(dstOp);
Value memref = loadOp ? loadOp.getMemRef()
: cast<AffineWriteOpInterface>(dstOp).getMemRef();
if (producerConsumerMemrefs.count(memref) > 0)
targetDstOps.push_back(dstOp);
}
assert(!targetDstOps.empty() &&
"No dependences between 'srcForOp' and 'dstForOp'?");
// Compute the innermost common loop depth for loads and stores.
unsigned loopDepth = getInnermostCommonLoopDepth(targetDstOps);
// Return common loop depth for loads if there are no store ops.
if (all_of(targetDstOps,
[&](Operation *op) { return isa<AffineReadOpInterface>(op); }))
return loopDepth;
// Check dependences on all pairs of ops in 'targetDstOps' and store the
// minimum loop depth at which a dependence is satisfied.
for (unsigned i = 0, e = targetDstOps.size(); i < e; ++i) {
auto *srcOpInst = targetDstOps[i];
MemRefAccess srcAccess(srcOpInst);
for (unsigned j = 0; j < e; ++j) {
auto *dstOpInst = targetDstOps[j];
MemRefAccess dstAccess(dstOpInst);
unsigned numCommonLoops =
getNumCommonSurroundingLoops(*srcOpInst, *dstOpInst);
for (unsigned d = 1; d <= numCommonLoops + 1; ++d) {
FlatAffineConstraints dependenceConstraints;
// TODO: Cache dependence analysis results, check cache here.
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, d, &dependenceConstraints,
/*dependenceComponents=*/nullptr);
if (hasDependence(result)) {
// Store minimum loop depth and break because we want the min 'd' at
// which there is a dependence.
loopDepth = std::min(loopDepth, d - 1);
break;
}
}
}
}
return loopDepth;
}
// TODO: Prevent fusion of loop nests with side-effecting operations.
// TODO: This pass performs some computation that is the same for all the depths
// (e.g., getMaxLoopDepth). Implement a version of this utility that processes
// all the depths at once or only the legal maximal depth for maximal fusion.
FusionResult mlir::canFuseLoops(AffineForOp srcForOp, AffineForOp dstForOp,
unsigned dstLoopDepth,
ComputationSliceState *srcSlice,
FusionStrategy fusionStrategy) {
// Return 'failure' if 'dstLoopDepth == 0'.
if (dstLoopDepth == 0) {
LLVM_DEBUG(llvm::dbgs() << "Cannot fuse loop nests at depth 0\n");
return FusionResult::FailPrecondition;
}
// Return 'failure' if 'srcForOp' and 'dstForOp' are not in the same block.
auto *block = srcForOp->getBlock();
if (block != dstForOp->getBlock()) {
LLVM_DEBUG(llvm::dbgs() << "Cannot fuse loop nests in different blocks\n");
return FusionResult::FailPrecondition;
}
// Return 'failure' if no valid insertion point for fused loop nest in 'block'
// exists which would preserve dependences.
if (!getFusedLoopNestInsertionPoint(srcForOp, dstForOp)) {
LLVM_DEBUG(llvm::dbgs() << "Fusion would violate dependences in block\n");
return FusionResult::FailBlockDependence;
}
// Check if 'srcForOp' precedes 'dstForOp' in 'block'.
bool isSrcForOpBeforeDstForOp =
srcForOp->isBeforeInBlock(dstForOp.getOperation());
// 'forOpA' executes before 'forOpB' in 'block'.
auto forOpA = isSrcForOpBeforeDstForOp ? srcForOp : dstForOp;
auto forOpB = isSrcForOpBeforeDstForOp ? dstForOp : srcForOp;
// Gather all load and store from 'forOpA' which precedes 'forOpB' in 'block'.
SmallVector<Operation *, 4> opsA;
if (!gatherLoadsAndStores(forOpA, opsA)) {
LLVM_DEBUG(llvm::dbgs() << "Fusing loops with affine.if unsupported\n");
return FusionResult::FailPrecondition;
}
// Gather all load and store from 'forOpB' which succeeds 'forOpA' in 'block'.
SmallVector<Operation *, 4> opsB;
if (!gatherLoadsAndStores(forOpB, opsB)) {
LLVM_DEBUG(llvm::dbgs() << "Fusing loops with affine.if unsupported\n");
return FusionResult::FailPrecondition;
}
// Return 'failure' if fusing loops at depth 'dstLoopDepth' wouldn't preserve
// loop dependences.
// TODO: Enable this check for sibling and more generic loop fusion
// strategies.
if (fusionStrategy.getStrategy() == FusionStrategy::ProducerConsumer) {
// TODO: 'getMaxLoopDepth' does not support forward slice fusion.
assert(isSrcForOpBeforeDstForOp && "Unexpected forward slice fusion");
if (getMaxLoopDepth(opsA, opsB) < dstLoopDepth) {
LLVM_DEBUG(llvm::dbgs() << "Fusion would violate loop dependences\n");
return FusionResult::FailFusionDependence;
}
}
// Calculate the number of common loops surrounding 'srcForOp' and 'dstForOp'.
unsigned numCommonLoops = mlir::getNumCommonSurroundingLoops(
*srcForOp.getOperation(), *dstForOp.getOperation());
// Filter out ops in 'opsA' to compute the slice union based on the
// assumptions made by the fusion strategy.
SmallVector<Operation *, 4> strategyOpsA;
switch (fusionStrategy.getStrategy()) {
case FusionStrategy::Generic:
// Generic fusion. Take into account all the memory operations to compute
// the slice union.
strategyOpsA.append(opsA.begin(), opsA.end());
break;
case FusionStrategy::ProducerConsumer:
// Producer-consumer fusion (AffineLoopFusion pass) only takes into
// account stores in 'srcForOp' to compute the slice union.
for (Operation *op : opsA) {
if (isa<AffineWriteOpInterface>(op))
strategyOpsA.push_back(op);
}
break;
case FusionStrategy::Sibling:
// Sibling fusion (AffineLoopFusion pass) only takes into account the loads
// to 'memref' in 'srcForOp' to compute the slice union.
for (Operation *op : opsA) {
auto load = dyn_cast<AffineReadOpInterface>(op);
if (load && load.getMemRef() == fusionStrategy.getSiblingFusionMemRef())
strategyOpsA.push_back(op);
}
break;
}
// Compute union of computation slices computed between all pairs of ops
// from 'forOpA' and 'forOpB'.
SliceComputationResult sliceComputationResult =
mlir::computeSliceUnion(strategyOpsA, opsB, dstLoopDepth, numCommonLoops,
isSrcForOpBeforeDstForOp, srcSlice);
if (sliceComputationResult.value == SliceComputationResult::GenericFailure) {
LLVM_DEBUG(llvm::dbgs() << "computeSliceUnion failed\n");
return FusionResult::FailPrecondition;
}
if (sliceComputationResult.value ==
SliceComputationResult::IncorrectSliceFailure) {
LLVM_DEBUG(llvm::dbgs() << "Incorrect slice computation\n");
return FusionResult::FailIncorrectSlice;
}
return FusionResult::Success;
}
/// Patch the loop body of a forOp that is a single iteration reduction loop
/// into its containing block.
LogicalResult promoteSingleIterReductionLoop(AffineForOp forOp,
bool siblingFusionUser) {
// Check if the reduction loop is a single iteration loop.
Optional<uint64_t> tripCount = getConstantTripCount(forOp);
if (!tripCount || tripCount.getValue() != 1)
return failure();
auto iterOperands = forOp.getIterOperands();
auto *parentOp = forOp->getParentOp();
if (!isa<AffineForOp>(parentOp))
return failure();
auto newOperands = forOp.getBody()->getTerminator()->getOperands();
OpBuilder b(parentOp);
// Replace the parent loop and add iteroperands and results from the `forOp`.
AffineForOp parentForOp = forOp->getParentOfType<AffineForOp>();
AffineForOp newLoop = replaceForOpWithNewYields(
b, parentForOp, iterOperands, newOperands, forOp.getRegionIterArgs());
// For sibling-fusion users, collect operations that use the results of the
// `forOp` outside the new parent loop that has absorbed all its iter args
// and operands. These operations will be moved later after the results
// have been replaced.
SetVector<Operation *> forwardSlice;
if (siblingFusionUser) {
for (unsigned i = 0, e = forOp.getNumResults(); i != e; ++i) {
SetVector<Operation *> tmpForwardSlice;
getForwardSlice(forOp.getResult(i), &tmpForwardSlice);
forwardSlice.set_union(tmpForwardSlice);
}
}
// Update the results of the `forOp` in the new loop.
for (unsigned i = 0, e = forOp.getNumResults(); i != e; ++i) {
forOp.getResult(i).replaceAllUsesWith(
newLoop.getResult(i + parentOp->getNumResults()));
}
// For sibling-fusion users, move operations that use the results of the
// `forOp` outside the new parent loop
if (siblingFusionUser) {
topologicalSort(forwardSlice);
for (Operation *op : llvm::reverse(forwardSlice))
op->moveAfter(newLoop);
}
// Replace the induction variable.
auto iv = forOp.getInductionVar();
iv.replaceAllUsesWith(newLoop.getInductionVar());
// Replace the iter args.
auto forOpIterArgs = forOp.getRegionIterArgs();
for (auto it : llvm::zip(forOpIterArgs, newLoop.getRegionIterArgs().take_back(
forOpIterArgs.size()))) {
std::get<0>(it).replaceAllUsesWith(std::get<1>(it));
}
// Move the loop body operations, except for its terminator, to the loop's
// containing block.
forOp.getBody()->back().erase();
auto *parentBlock = forOp->getBlock();
parentBlock->getOperations().splice(Block::iterator(forOp),
forOp.getBody()->getOperations());
forOp.erase();
parentForOp.erase();
return success();
}
/// Fuses 'srcForOp' into 'dstForOp' with destination loop block insertion point
/// and source slice loop bounds specified in 'srcSlice'.
void mlir::fuseLoops(AffineForOp srcForOp, AffineForOp dstForOp,
const ComputationSliceState &srcSlice,
bool isInnermostSiblingInsertion) {
// Clone 'srcForOp' into 'dstForOp' at 'srcSlice->insertPoint'.
OpBuilder b(srcSlice.insertPoint->getBlock(), srcSlice.insertPoint);
BlockAndValueMapping mapper;
b.clone(*srcForOp, mapper);
// Update 'sliceLoopNest' upper and lower bounds from computed 'srcSlice'.
SmallVector<AffineForOp, 4> sliceLoops;
for (unsigned i = 0, e = srcSlice.ivs.size(); i < e; ++i) {
auto loopIV = mapper.lookupOrNull(srcSlice.ivs[i]);
if (!loopIV)
continue;
auto forOp = getForInductionVarOwner(loopIV);
sliceLoops.push_back(forOp);
if (AffineMap lbMap = srcSlice.lbs[i]) {
auto lbOperands = srcSlice.lbOperands[i];
canonicalizeMapAndOperands(&lbMap, &lbOperands);
forOp.setLowerBound(lbOperands, lbMap);
}
if (AffineMap ubMap = srcSlice.ubs[i]) {
auto ubOperands = srcSlice.ubOperands[i];
canonicalizeMapAndOperands(&ubMap, &ubOperands);
forOp.setUpperBound(ubOperands, ubMap);
}
}
llvm::SmallDenseMap<Operation *, uint64_t, 8> sliceTripCountMap;
auto srcIsUnitSlice = [&]() {
return (buildSliceTripCountMap(srcSlice, &sliceTripCountMap) &&
(getSliceIterationCount(sliceTripCountMap) == 1));
};
// Fix up and if possible, eliminate single iteration loops.
for (AffineForOp forOp : sliceLoops) {
if (isLoopParallelAndContainsReduction(forOp) &&
isInnermostSiblingInsertion && srcIsUnitSlice())
// Patch reduction loop - only ones that are sibling-fused with the
// destination loop - into the parent loop.
(void)promoteSingleIterReductionLoop(forOp, true);
else
// Promote any single iteration slice loops.
(void)promoteIfSingleIteration(forOp);
}
}
/// Collect loop nest statistics (eg. loop trip count and operation count)
/// in 'stats' for loop nest rooted at 'forOp'. Returns true on success,
/// returns false otherwise.
bool mlir::getLoopNestStats(AffineForOp forOpRoot, LoopNestStats *stats) {
auto walkResult = forOpRoot.walk([&](AffineForOp forOp) {
auto *childForOp = forOp.getOperation();
auto *parentForOp = forOp->getParentOp();
if (!llvm::isa<FuncOp>(parentForOp)) {
if (!isa<AffineForOp>(parentForOp)) {
LLVM_DEBUG(llvm::dbgs() << "Expected parent AffineForOp\n");
return WalkResult::interrupt();
}
// Add mapping to 'forOp' from its parent AffineForOp.
stats->loopMap[parentForOp].push_back(forOp);
}
// Record the number of op operations in the body of 'forOp'.
unsigned count = 0;
stats->opCountMap[childForOp] = 0;
for (auto &op : *forOp.getBody()) {
if (!isa<AffineForOp, AffineIfOp>(op))
++count;
}
stats->opCountMap[childForOp] = count;
// Record trip count for 'forOp'. Set flag if trip count is not
// constant.
Optional<uint64_t> maybeConstTripCount = getConstantTripCount(forOp);
if (!maybeConstTripCount.hasValue()) {
// Currently only constant trip count loop nests are supported.
LLVM_DEBUG(llvm::dbgs() << "Non-constant trip count unsupported\n");
return WalkResult::interrupt();
}
stats->tripCountMap[childForOp] = maybeConstTripCount.getValue();
return WalkResult::advance();
});
return !walkResult.wasInterrupted();
}
// Computes the total cost of the loop nest rooted at 'forOp'.
// Currently, the total cost is computed by counting the total operation
// instance count (i.e. total number of operations in the loop bodyloop
// operation count * loop trip count) for the entire loop nest.
// If 'tripCountOverrideMap' is non-null, overrides the trip count for loops
// specified in the map when computing the total op instance count.
// NOTEs: 1) This is used to compute the cost of computation slices, which are
// sliced along the iteration dimension, and thus reduce the trip count.
// If 'computeCostMap' is non-null, the total op count for forOps specified
// in the map is increased (not overridden) by adding the op count from the
// map to the existing op count for the for loop. This is done before
// multiplying by the loop's trip count, and is used to model the cost of
// inserting a sliced loop nest of known cost into the loop's body.
// 2) This is also used to compute the cost of fusing a slice of some loop nest
// within another loop.
static int64_t getComputeCostHelper(
Operation *forOp, LoopNestStats &stats,
llvm::SmallDenseMap<Operation *, uint64_t, 8> *tripCountOverrideMap,
DenseMap<Operation *, int64_t> *computeCostMap) {
// 'opCount' is the total number operations in one iteration of 'forOp' body,
// minus terminator op which is a no-op.
int64_t opCount = stats.opCountMap[forOp] - 1;
if (stats.loopMap.count(forOp) > 0) {
for (auto childForOp : stats.loopMap[forOp]) {
opCount += getComputeCostHelper(childForOp.getOperation(), stats,
tripCountOverrideMap, computeCostMap);
}
}
// Add in additional op instances from slice (if specified in map).
if (computeCostMap != nullptr) {
auto it = computeCostMap->find(forOp);
if (it != computeCostMap->end()) {
opCount += it->second;
}
}
// Override trip count (if specified in map).
int64_t tripCount = stats.tripCountMap[forOp];
if (tripCountOverrideMap != nullptr) {
auto it = tripCountOverrideMap->find(forOp);
if (it != tripCountOverrideMap->end()) {
tripCount = it->second;
}
}
// Returns the total number of dynamic instances of operations in loop body.
return tripCount * opCount;
}
/// Computes the total cost of the loop nest rooted at 'forOp' using 'stats'.
/// Currently, the total cost is computed by counting the total operation
/// instance count (i.e. total number of operations in the loop body * loop
/// trip count) for the entire loop nest.
int64_t mlir::getComputeCost(AffineForOp forOp, LoopNestStats &stats) {
return getComputeCostHelper(forOp.getOperation(), stats,
/*tripCountOverrideMap=*/nullptr,
/*computeCostMap=*/nullptr);
}
/// Computes and returns in 'computeCost', the total compute cost of fusing the
/// 'slice' of the loop nest rooted at 'srcForOp' into 'dstForOp'. Currently,
/// the total cost is computed by counting the total operation instance count
/// (i.e. total number of operations in the loop body * loop trip count) for
/// the entire loop nest.
bool mlir::getFusionComputeCost(AffineForOp srcForOp, LoopNestStats &srcStats,
AffineForOp dstForOp, LoopNestStats &dstStats,
const ComputationSliceState &slice,
int64_t *computeCost) {
llvm::SmallDenseMap<Operation *, uint64_t, 8> sliceTripCountMap;
DenseMap<Operation *, int64_t> computeCostMap;
// Build trip count map for computation slice.
if (!buildSliceTripCountMap(slice, &sliceTripCountMap))
return false;
// Checks whether a store to load forwarding will happen.
int64_t sliceIterationCount = getSliceIterationCount(sliceTripCountMap);
assert(sliceIterationCount > 0);
bool storeLoadFwdGuaranteed = (sliceIterationCount == 1);
auto *insertPointParent = slice.insertPoint->getParentOp();
// The store and loads to this memref will disappear.
// TODO: Add load coalescing to memref data flow opt pass.
if (storeLoadFwdGuaranteed) {
// Subtract from operation count the loads/store we expect load/store
// forwarding to remove.
unsigned storeCount = 0;
llvm::SmallDenseSet<Value, 4> storeMemrefs;
srcForOp.walk([&](Operation *op) {
if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
storeMemrefs.insert(storeOp.getMemRef());
++storeCount;
}
});
// Subtract out any store ops in single-iteration src slice loop nest.
if (storeCount > 0)
computeCostMap[insertPointParent] = -storeCount;
// Subtract out any load users of 'storeMemrefs' nested below
// 'insertPointParent'.
for (auto value : storeMemrefs) {
for (auto *user : value.getUsers()) {
if (auto loadOp = dyn_cast<AffineReadOpInterface>(user)) {
SmallVector<AffineForOp, 4> loops;
// Check if any loop in loop nest surrounding 'user' is
// 'insertPointParent'.
getLoopIVs(*user, &loops);
if (llvm::is_contained(loops, cast<AffineForOp>(insertPointParent))) {
if (auto forOp =
dyn_cast_or_null<AffineForOp>(user->getParentOp())) {
if (computeCostMap.count(forOp) == 0)
computeCostMap[forOp] = 0;
computeCostMap[forOp] -= 1;
}
}
}
}
}
}
// Compute op instance count for the src loop nest with iteration slicing.
int64_t sliceComputeCost = getComputeCostHelper(
srcForOp.getOperation(), srcStats, &sliceTripCountMap, &computeCostMap);
// Compute cost of fusion for this depth.
computeCostMap[insertPointParent] = sliceComputeCost;
*computeCost =
getComputeCostHelper(dstForOp.getOperation(), dstStats,
/*tripCountOverrideMap=*/nullptr, &computeCostMap);
return true;
}
/// Returns in 'producerConsumerMemrefs' the memrefs involved in a
/// producer-consumer dependence between write ops in 'srcOps' and read ops in
/// 'dstOps'.
void mlir::gatherProducerConsumerMemrefs(
ArrayRef<Operation *> srcOps, ArrayRef<Operation *> dstOps,
DenseSet<Value> &producerConsumerMemrefs) {
// Gather memrefs from stores in 'srcOps'.
DenseSet<Value> srcStoreMemRefs;
for (Operation *op : srcOps)
if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op))
srcStoreMemRefs.insert(storeOp.getMemRef());
// Compute the intersection between memrefs from stores in 'srcOps' and
// memrefs from loads in 'dstOps'.
for (Operation *op : dstOps)
if (auto loadOp = dyn_cast<AffineReadOpInterface>(op))
if (srcStoreMemRefs.count(loadOp.getMemRef()) > 0)
producerConsumerMemrefs.insert(loadOp.getMemRef());
}