Florian Hahn dcef154b5c
[VPlan] Replace VPRegionBlock with explicit CFG before execute (NFCI). (#117506)
Building on top of https://github.com/llvm/llvm-project/pull/114305,
replace VPRegionBlocks with explicit CFG before executing.

This brings the final VPlan closer to the IR that is generated and
helps to simplify codegen.

It will also enable further simplifications of phi handling during
execution and transformations that do not have to preserve the 
canonical IV required by loop regions. This for example could include
replacing the canonical IV with an EVL based phi while completely
removing the original canonical IV.

PR: https://github.com/llvm/llvm-project/pull/117506
2025-05-24 19:17:16 +01:00

138 lines
5.2 KiB
C++

//===- VPlanUtils.cpp - VPlan-related utilities ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "VPlanUtils.h"
#include "VPlanCFG.h"
#include "VPlanPatternMatch.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
using namespace llvm;
bool vputils::onlyFirstLaneUsed(const VPValue *Def) {
return all_of(Def->users(),
[Def](const VPUser *U) { return U->onlyFirstLaneUsed(Def); });
}
bool vputils::onlyFirstPartUsed(const VPValue *Def) {
return all_of(Def->users(),
[Def](const VPUser *U) { return U->onlyFirstPartUsed(Def); });
}
VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
ScalarEvolution &SE) {
if (auto *Expanded = Plan.getSCEVExpansion(Expr))
return Expanded;
VPValue *Expanded = nullptr;
if (auto *E = dyn_cast<SCEVConstant>(Expr))
Expanded = Plan.getOrAddLiveIn(E->getValue());
else {
auto *U = dyn_cast<SCEVUnknown>(Expr);
// Skip SCEV expansion if Expr is a SCEVUnknown wrapping a non-instruction
// value. Otherwise the value may be defined in a loop and using it directly
// will break LCSSA form. The SCEV expansion takes care of preserving LCSSA
// form.
if (U && !isa<Instruction>(U->getValue())) {
Expanded = Plan.getOrAddLiveIn(U->getValue());
} else {
Expanded = new VPExpandSCEVRecipe(Expr, SE);
Plan.getEntry()->appendRecipe(Expanded->getDefiningRecipe());
}
}
Plan.addSCEVExpansion(Expr, Expanded);
return Expanded;
}
bool vputils::isHeaderMask(const VPValue *V, VPlan &Plan) {
if (isa<VPActiveLaneMaskPHIRecipe>(V))
return true;
auto IsWideCanonicalIV = [](VPValue *A) {
return isa<VPWidenCanonicalIVRecipe>(A) ||
(isa<VPWidenIntOrFpInductionRecipe>(A) &&
cast<VPWidenIntOrFpInductionRecipe>(A)->isCanonical());
};
VPValue *A, *B;
using namespace VPlanPatternMatch;
if (match(V, m_ActiveLaneMask(m_VPValue(A), m_VPValue(B))))
return B == Plan.getTripCount() &&
(match(A, m_ScalarIVSteps(m_Specific(Plan.getCanonicalIV()),
m_SpecificInt(1),
m_Specific(&Plan.getVF()))) ||
IsWideCanonicalIV(A));
return match(V, m_Binary<Instruction::ICmp>(m_VPValue(A), m_VPValue(B))) &&
IsWideCanonicalIV(A) && B == Plan.getOrCreateBackedgeTakenCount();
}
const SCEV *vputils::getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE) {
if (V->isLiveIn())
return SE.getSCEV(V->getLiveInIRValue());
// TODO: Support constructing SCEVs for more recipes as needed.
return TypeSwitch<const VPRecipeBase *, const SCEV *>(V->getDefiningRecipe())
.Case<VPExpandSCEVRecipe>(
[](const VPExpandSCEVRecipe *R) { return R->getSCEV(); })
.Default([&SE](const VPRecipeBase *) { return SE.getCouldNotCompute(); });
}
bool vputils::isUniformAcrossVFsAndUFs(VPValue *V) {
using namespace VPlanPatternMatch;
// Live-ins are uniform.
if (V->isLiveIn())
return true;
VPRecipeBase *R = V->getDefiningRecipe();
if (R && V->isDefinedOutsideLoopRegions()) {
if (match(V->getDefiningRecipe(),
m_VPInstruction<VPInstruction::CanonicalIVIncrementForPart>(
m_VPValue())))
return false;
return all_of(R->operands(), isUniformAcrossVFsAndUFs);
}
auto *CanonicalIV = R->getParent()->getPlan()->getCanonicalIV();
// Canonical IV chain is uniform.
if (V == CanonicalIV || V == CanonicalIV->getBackedgeValue())
return true;
return TypeSwitch<const VPRecipeBase *, bool>(R)
.Case<VPDerivedIVRecipe>([](const auto *R) { return true; })
.Case<VPReplicateRecipe>([](const auto *R) {
// Loads and stores that are uniform across VF lanes are handled by
// VPReplicateRecipe.IsUniform. They are also uniform across UF parts if
// all their operands are invariant.
// TODO: Further relax the restrictions.
return R->isSingleScalar() &&
(isa<LoadInst, StoreInst>(R->getUnderlyingValue())) &&
all_of(R->operands(), isUniformAcrossVFsAndUFs);
})
.Case<VPInstruction>([](const auto *VPI) {
return VPI->isScalarCast() &&
isUniformAcrossVFsAndUFs(VPI->getOperand(0));
})
.Case<VPWidenCastRecipe>([](const auto *R) {
// A cast is uniform according to its operand.
return isUniformAcrossVFsAndUFs(R->getOperand(0));
})
.Default([](const VPRecipeBase *) { // A value is considered non-uniform
// unless proven otherwise.
return false;
});
}
VPBasicBlock *vputils::getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT) {
auto DepthFirst = vp_depth_first_shallow(Plan.getEntry());
auto I = find_if(DepthFirst, [&VPDT](VPBlockBase *VPB) {
return VPBlockUtils::isHeader(VPB, VPDT);
});
return I == DepthFirst.end() ? nullptr : cast<VPBasicBlock>(*I);
}