
Following on from #118638, this handles widened induction variables with EVL tail folding by setting the VF operand to be EVL, calculated in the vector body. We need to do this for correctness since with EVL tail folding the number of elements processed in the penultimate iteration may not be VF, but the runtime EVL, and we need take this into account when updating the backedge value. - Because the VF may now not be a live-in we need to move the insertion point to just after the VFs definition - We also need to avoid truncating it when it's the same size as the step type, previously this wasn't a problem for live-ins. - Also because the VF may be smaller than the IV type, since the EVL is always i32, we may need to zext it. On -march=rva23u64 -O3 we get 87.1% more loops vectorized on TSVC, and 42.8% more loops vectorized on SPEC CPU 2017
490 lines
16 KiB
C++
490 lines
16 KiB
C++
//===-- VPlanVerifier.cpp -------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file defines the class VPlanVerifier, which contains utility functions
|
|
/// to check the consistency and invariants of a VPlan.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VPlanVerifier.h"
|
|
#include "VPlan.h"
|
|
#include "VPlanCFG.h"
|
|
#include "VPlanDominatorTree.h"
|
|
#include "VPlanHelpers.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
#define DEBUG_TYPE "loop-vectorize"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class VPlanVerifier {
|
|
const VPDominatorTree &VPDT;
|
|
VPTypeAnalysis &TypeInfo;
|
|
bool VerifyLate;
|
|
|
|
SmallPtrSet<BasicBlock *, 8> WrappedIRBBs;
|
|
|
|
// Verify that phi-like recipes are at the beginning of \p VPBB, with no
|
|
// other recipes in between. Also check that only header blocks contain
|
|
// VPHeaderPHIRecipes.
|
|
bool verifyPhiRecipes(const VPBasicBlock *VPBB);
|
|
|
|
/// Verify that \p EVL is used correctly. The user must be either in
|
|
/// EVL-based recipes as a last operand or VPInstruction::Add which is
|
|
/// incoming value into EVL's recipe.
|
|
bool verifyEVLRecipe(const VPInstruction &EVL) const;
|
|
|
|
bool verifyVPBasicBlock(const VPBasicBlock *VPBB);
|
|
|
|
bool verifyBlock(const VPBlockBase *VPB);
|
|
|
|
/// Helper function that verifies the CFG invariants of the VPBlockBases
|
|
/// within
|
|
/// \p Region. Checks in this function are generic for VPBlockBases. They are
|
|
/// not specific for VPBasicBlocks or VPRegionBlocks.
|
|
bool verifyBlocksInRegion(const VPRegionBlock *Region);
|
|
|
|
/// Verify the CFG invariants of VPRegionBlock \p Region and its nested
|
|
/// VPBlockBases. Do not recurse inside nested VPRegionBlocks.
|
|
bool verifyRegion(const VPRegionBlock *Region);
|
|
|
|
/// Verify the CFG invariants of VPRegionBlock \p Region and its nested
|
|
/// VPBlockBases. Recurse inside nested VPRegionBlocks.
|
|
bool verifyRegionRec(const VPRegionBlock *Region);
|
|
|
|
public:
|
|
VPlanVerifier(VPDominatorTree &VPDT, VPTypeAnalysis &TypeInfo,
|
|
bool VerifyLate)
|
|
: VPDT(VPDT), TypeInfo(TypeInfo), VerifyLate(VerifyLate) {}
|
|
|
|
bool verify(const VPlan &Plan);
|
|
};
|
|
} // namespace
|
|
|
|
bool VPlanVerifier::verifyPhiRecipes(const VPBasicBlock *VPBB) {
|
|
auto RecipeI = VPBB->begin();
|
|
auto End = VPBB->end();
|
|
unsigned NumActiveLaneMaskPhiRecipes = 0;
|
|
bool IsHeaderVPBB = VPBlockUtils::isHeader(VPBB, VPDT);
|
|
while (RecipeI != End && RecipeI->isPhi()) {
|
|
if (isa<VPActiveLaneMaskPHIRecipe>(RecipeI))
|
|
NumActiveLaneMaskPhiRecipes++;
|
|
|
|
if (IsHeaderVPBB && !isa<VPHeaderPHIRecipe, VPWidenPHIRecipe>(*RecipeI) &&
|
|
!isa<VPInstruction>(*RecipeI) &&
|
|
cast<VPInstruction>(RecipeI)->getOpcode() == Instruction::PHI) {
|
|
errs() << "Found non-header PHI recipe in header VPBB";
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
errs() << ": ";
|
|
RecipeI->dump();
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
if (!IsHeaderVPBB && isa<VPHeaderPHIRecipe>(*RecipeI)) {
|
|
errs() << "Found header PHI recipe in non-header VPBB";
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
errs() << ": ";
|
|
RecipeI->dump();
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
// Check if the recipe operands match the number of predecessors.
|
|
// TODO Extend to other phi-like recipes.
|
|
if (auto *PhiIRI = dyn_cast<VPIRPhi>(&*RecipeI)) {
|
|
if (PhiIRI->getNumOperands() != VPBB->getNumPredecessors()) {
|
|
errs() << "Phi-like recipe with different number of operands and "
|
|
"predecessors.\n";
|
|
// TODO: Print broken recipe. At the moment printing an ill-formed
|
|
// phi-like recipe may crash.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
RecipeI++;
|
|
}
|
|
|
|
if (!VerifyLate && NumActiveLaneMaskPhiRecipes > 1) {
|
|
errs() << "There should be no more than one VPActiveLaneMaskPHIRecipe";
|
|
return false;
|
|
}
|
|
|
|
while (RecipeI != End) {
|
|
if (RecipeI->isPhi() && !isa<VPBlendRecipe>(&*RecipeI)) {
|
|
errs() << "Found phi-like recipe after non-phi recipe";
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
errs() << ": ";
|
|
RecipeI->dump();
|
|
errs() << "after\n";
|
|
std::prev(RecipeI)->dump();
|
|
#endif
|
|
return false;
|
|
}
|
|
RecipeI++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VPlanVerifier::verifyEVLRecipe(const VPInstruction &EVL) const {
|
|
if (EVL.getOpcode() != VPInstruction::ExplicitVectorLength) {
|
|
errs() << "verifyEVLRecipe should only be called on "
|
|
"VPInstruction::ExplicitVectorLength\n";
|
|
return false;
|
|
}
|
|
auto VerifyEVLUse = [&](const VPRecipeBase &R,
|
|
const unsigned ExpectedIdx) -> bool {
|
|
SmallVector<const VPValue *> Ops(R.operands());
|
|
unsigned UseCount = count(Ops, &EVL);
|
|
if (UseCount != 1 || Ops[ExpectedIdx] != &EVL) {
|
|
errs() << "EVL is used as non-last operand in EVL-based recipe\n";
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
return all_of(EVL.users(), [this, &VerifyEVLUse](VPUser *U) {
|
|
return TypeSwitch<const VPUser *, bool>(U)
|
|
.Case<VPWidenIntrinsicRecipe>([&](const VPWidenIntrinsicRecipe *S) {
|
|
return VerifyEVLUse(*S, S->getNumOperands() - 1);
|
|
})
|
|
.Case<VPWidenStoreEVLRecipe, VPReductionEVLRecipe,
|
|
VPWidenIntOrFpInductionRecipe>(
|
|
[&](const VPRecipeBase *S) { return VerifyEVLUse(*S, 2); })
|
|
.Case<VPScalarIVStepsRecipe>([&](auto *R) {
|
|
if (R->getNumOperands() != 3) {
|
|
errs() << "Unrolling with EVL tail folding not yet supported\n";
|
|
return false;
|
|
}
|
|
return VerifyEVLUse(*R, 2);
|
|
})
|
|
.Case<VPWidenLoadEVLRecipe, VPVectorEndPointerRecipe>(
|
|
[&](const VPRecipeBase *R) { return VerifyEVLUse(*R, 1); })
|
|
.Case<VPInstructionWithType>(
|
|
[&](const VPInstructionWithType *S) { return VerifyEVLUse(*S, 0); })
|
|
.Case<VPInstruction>([&](const VPInstruction *I) {
|
|
if (I->getOpcode() == Instruction::PHI)
|
|
return VerifyEVLUse(*I, 1);
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
break;
|
|
case Instruction::UIToFP:
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::Mul:
|
|
case Instruction::FMul:
|
|
// Opcodes above can only use EVL after wide inductions have been
|
|
// expanded.
|
|
if (!VerifyLate) {
|
|
errs() << "EVL used by unexpected VPInstruction\n";
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
errs() << "EVL used by unexpected VPInstruction\n";
|
|
return false;
|
|
}
|
|
if (I->getNumUsers() != 1) {
|
|
errs() << "EVL is used in VPInstruction with multiple users\n";
|
|
return false;
|
|
}
|
|
if (!VerifyLate && !isa<VPEVLBasedIVPHIRecipe>(*I->users().begin())) {
|
|
errs() << "Result of VPInstruction::Add with EVL operand is "
|
|
"not used by VPEVLBasedIVPHIRecipe\n";
|
|
return false;
|
|
}
|
|
return true;
|
|
})
|
|
.Default([&](const VPUser *U) {
|
|
errs() << "EVL has unexpected user\n";
|
|
return false;
|
|
});
|
|
});
|
|
}
|
|
|
|
bool VPlanVerifier::verifyVPBasicBlock(const VPBasicBlock *VPBB) {
|
|
if (!verifyPhiRecipes(VPBB))
|
|
return false;
|
|
|
|
// Verify that defs in VPBB dominate all their uses.
|
|
DenseMap<const VPRecipeBase *, unsigned> RecipeNumbering;
|
|
unsigned Cnt = 0;
|
|
for (const VPRecipeBase &R : *VPBB)
|
|
RecipeNumbering[&R] = Cnt++;
|
|
|
|
for (const VPRecipeBase &R : *VPBB) {
|
|
if (isa<VPIRInstruction>(&R) && !isa<VPIRBasicBlock>(VPBB)) {
|
|
errs() << "VPIRInstructions ";
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
R.dump();
|
|
errs() << " ";
|
|
#endif
|
|
errs() << "not in a VPIRBasicBlock!\n";
|
|
return false;
|
|
}
|
|
for (const VPValue *V : R.definedValues()) {
|
|
// Verify that we can infer a scalar type for each defined value. With
|
|
// assertions enabled, inferScalarType will perform some consistency
|
|
// checks during type inference.
|
|
if (!TypeInfo.inferScalarType(V)) {
|
|
errs() << "Failed to infer scalar type!\n";
|
|
return false;
|
|
}
|
|
|
|
for (const VPUser *U : V->users()) {
|
|
auto *UI = cast<VPRecipeBase>(U);
|
|
if (auto *Phi = dyn_cast<VPPhiAccessors>(UI)) {
|
|
for (unsigned Idx = 0; Idx != Phi->getNumIncoming(); ++Idx) {
|
|
VPValue *IncomingVPV = Phi->getIncomingValue(Idx);
|
|
if (IncomingVPV != V)
|
|
continue;
|
|
|
|
const VPBasicBlock *IncomingVPBB = Phi->getIncomingBlock(Idx);
|
|
if (VPDT.dominates(VPBB, IncomingVPBB))
|
|
continue;
|
|
|
|
errs() << "Incoming def at index " << Idx
|
|
<< " does not dominate incoming block!\n";
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
VPSlotTracker Tracker(VPBB->getPlan());
|
|
IncomingVPV->getDefiningRecipe()->print(errs(), " ", Tracker);
|
|
errs() << "\n does not dominate " << IncomingVPBB->getName()
|
|
<< " for\n";
|
|
UI->print(errs(), " ", Tracker);
|
|
#endif
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
// TODO: Also verify VPPredInstPHIRecipe.
|
|
if (isa<VPPredInstPHIRecipe>(UI))
|
|
continue;
|
|
|
|
// If the user is in the same block, check it comes after R in the
|
|
// block.
|
|
if (UI->getParent() == VPBB) {
|
|
if (RecipeNumbering[UI] >= RecipeNumbering[&R])
|
|
continue;
|
|
} else {
|
|
if (VPDT.dominates(VPBB, UI->getParent()))
|
|
continue;
|
|
}
|
|
|
|
errs() << "Use before def!\n";
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
VPSlotTracker Tracker(VPBB->getPlan());
|
|
UI->print(errs(), " ", Tracker);
|
|
errs() << "\n before\n";
|
|
R.print(errs(), " ", Tracker);
|
|
errs() << "\n";
|
|
#endif
|
|
return false;
|
|
}
|
|
}
|
|
if (const auto *EVL = dyn_cast<VPInstruction>(&R)) {
|
|
if (EVL->getOpcode() == VPInstruction::ExplicitVectorLength &&
|
|
!verifyEVLRecipe(*EVL)) {
|
|
errs() << "EVL VPValue is not used correctly\n";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto *IRBB = dyn_cast<VPIRBasicBlock>(VPBB);
|
|
if (!IRBB)
|
|
return true;
|
|
|
|
if (!WrappedIRBBs.insert(IRBB->getIRBasicBlock()).second) {
|
|
errs() << "Same IR basic block used by multiple wrapper blocks!\n";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Utility function that checks whether \p VPBlockVec has duplicate
|
|
/// VPBlockBases.
|
|
static bool hasDuplicates(const SmallVectorImpl<VPBlockBase *> &VPBlockVec) {
|
|
SmallDenseSet<const VPBlockBase *, 8> VPBlockSet;
|
|
for (const auto *Block : VPBlockVec) {
|
|
if (!VPBlockSet.insert(Block).second)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool VPlanVerifier::verifyBlock(const VPBlockBase *VPB) {
|
|
auto *VPBB = dyn_cast<VPBasicBlock>(VPB);
|
|
// Check block's condition bit.
|
|
if (!isa<VPIRBasicBlock>(VPB)) {
|
|
if (VPB->getNumSuccessors() > 1 ||
|
|
(VPBB && VPBB->getParent() && VPBB->isExiting() &&
|
|
!VPBB->getParent()->isReplicator())) {
|
|
if (!VPBB || !VPBB->getTerminator()) {
|
|
errs() << "Block has multiple successors but doesn't "
|
|
"have a proper branch recipe!\n";
|
|
return false;
|
|
}
|
|
} else {
|
|
if (VPBB && VPBB->getTerminator()) {
|
|
errs() << "Unexpected branch recipe!\n";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check block's successors.
|
|
const auto &Successors = VPB->getSuccessors();
|
|
// There must be only one instance of a successor in block's successor list.
|
|
// TODO: This won't work for switch statements.
|
|
if (hasDuplicates(Successors)) {
|
|
errs() << "Multiple instances of the same successor.\n";
|
|
return false;
|
|
}
|
|
|
|
for (const VPBlockBase *Succ : Successors) {
|
|
// There must be a bi-directional link between block and successor.
|
|
const auto &SuccPreds = Succ->getPredecessors();
|
|
if (!is_contained(SuccPreds, VPB)) {
|
|
errs() << "Missing predecessor link.\n";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check block's predecessors.
|
|
const auto &Predecessors = VPB->getPredecessors();
|
|
// There must be only one instance of a predecessor in block's predecessor
|
|
// list.
|
|
// TODO: This won't work for switch statements.
|
|
if (hasDuplicates(Predecessors)) {
|
|
errs() << "Multiple instances of the same predecessor.\n";
|
|
return false;
|
|
}
|
|
|
|
for (const VPBlockBase *Pred : Predecessors) {
|
|
// Block and predecessor must be inside the same region.
|
|
if (Pred->getParent() != VPB->getParent()) {
|
|
errs() << "Predecessor is not in the same region.\n";
|
|
return false;
|
|
}
|
|
|
|
// There must be a bi-directional link between block and predecessor.
|
|
const auto &PredSuccs = Pred->getSuccessors();
|
|
if (!is_contained(PredSuccs, VPB)) {
|
|
errs() << "Missing successor link.\n";
|
|
return false;
|
|
}
|
|
}
|
|
return !VPBB || verifyVPBasicBlock(VPBB);
|
|
}
|
|
|
|
bool VPlanVerifier::verifyBlocksInRegion(const VPRegionBlock *Region) {
|
|
for (const VPBlockBase *VPB : vp_depth_first_shallow(Region->getEntry())) {
|
|
// Check block's parent.
|
|
if (VPB->getParent() != Region) {
|
|
errs() << "VPBlockBase has wrong parent\n";
|
|
return false;
|
|
}
|
|
|
|
if (!verifyBlock(VPB))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VPlanVerifier::verifyRegion(const VPRegionBlock *Region) {
|
|
const VPBlockBase *Entry = Region->getEntry();
|
|
const VPBlockBase *Exiting = Region->getExiting();
|
|
|
|
// Entry and Exiting shouldn't have any predecessor/successor, respectively.
|
|
if (Entry->getNumPredecessors() != 0) {
|
|
errs() << "region entry block has predecessors\n";
|
|
return false;
|
|
}
|
|
if (Exiting->getNumSuccessors() != 0) {
|
|
errs() << "region exiting block has successors\n";
|
|
return false;
|
|
}
|
|
|
|
return verifyBlocksInRegion(Region);
|
|
}
|
|
|
|
bool VPlanVerifier::verifyRegionRec(const VPRegionBlock *Region) {
|
|
// Recurse inside nested regions and check all blocks inside the region.
|
|
return verifyRegion(Region) &&
|
|
all_of(vp_depth_first_shallow(Region->getEntry()),
|
|
[this](const VPBlockBase *VPB) {
|
|
const auto *SubRegion = dyn_cast<VPRegionBlock>(VPB);
|
|
return !SubRegion || verifyRegionRec(SubRegion);
|
|
});
|
|
}
|
|
|
|
bool VPlanVerifier::verify(const VPlan &Plan) {
|
|
if (any_of(vp_depth_first_shallow(Plan.getEntry()),
|
|
[this](const VPBlockBase *VPB) { return !verifyBlock(VPB); }))
|
|
return false;
|
|
|
|
const VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
|
|
// TODO: Verify all blocks using vp_depth_first_deep iterators.
|
|
if (!TopRegion)
|
|
return true;
|
|
|
|
if (!verifyRegionRec(TopRegion))
|
|
return false;
|
|
|
|
if (TopRegion->getParent()) {
|
|
errs() << "VPlan Top Region should have no parent.\n";
|
|
return false;
|
|
}
|
|
|
|
const VPBasicBlock *Entry = dyn_cast<VPBasicBlock>(TopRegion->getEntry());
|
|
if (!Entry) {
|
|
errs() << "VPlan entry block is not a VPBasicBlock\n";
|
|
return false;
|
|
}
|
|
|
|
if (!isa<VPCanonicalIVPHIRecipe>(&*Entry->begin())) {
|
|
errs() << "VPlan vector loop header does not start with a "
|
|
"VPCanonicalIVPHIRecipe\n";
|
|
return false;
|
|
}
|
|
|
|
const VPBasicBlock *Exiting = dyn_cast<VPBasicBlock>(TopRegion->getExiting());
|
|
if (!Exiting) {
|
|
errs() << "VPlan exiting block is not a VPBasicBlock\n";
|
|
return false;
|
|
}
|
|
|
|
if (Exiting->empty()) {
|
|
errs() << "VPlan vector loop exiting block must end with BranchOnCount or "
|
|
"BranchOnCond VPInstruction but is empty\n";
|
|
return false;
|
|
}
|
|
|
|
auto *LastInst = dyn_cast<VPInstruction>(std::prev(Exiting->end()));
|
|
if (!LastInst || (LastInst->getOpcode() != VPInstruction::BranchOnCount &&
|
|
LastInst->getOpcode() != VPInstruction::BranchOnCond)) {
|
|
errs() << "VPlan vector loop exit must end with BranchOnCount or "
|
|
"BranchOnCond VPInstruction\n";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool llvm::verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate) {
|
|
VPDominatorTree VPDT;
|
|
VPDT.recalculate(const_cast<VPlan &>(Plan));
|
|
VPTypeAnalysis TypeInfo(Plan);
|
|
VPlanVerifier Verifier(VPDT, TypeInfo, VerifyLate);
|
|
return Verifier.verify(Plan);
|
|
}
|