llvm-project/bolt/unittests/Core/BinaryContext.cpp
JohnLee1243 ae51ec84bb
[Bolt] Solving pie support issue (#65494)
Now PIE is default supported after clang 14. It cause parsing error when
using perf2bolt. The reason is the base address can not get correctly.
Fix the method of geting base address. If SegInfo.Alignment is not equal
to pagesize, alignDown(SegInfo.FileOffset, SegInfo.Alignment) can not
equal to FileOffset. So the SegInfo.FileOffset and FileOffset should be
aligned by SegInfo.Alignment first and then judge whether they are
equal.
The .text segment's offset from base address in VAS is aligned by
pagesize. So MMapAddress's offset from base address is
alignDown(SegInfo.Address, pagesize) instead of
alignDown(SegInfo.Address, SegInfo.Alignment). So the base address
calculate way should be changed.

Co-authored-by: Li Zhuohang <lizhuohang3@huawei.com>
2023-11-16 15:05:06 +08:00

147 lines
4.9 KiB
C++

#include "bolt/Core/BinaryContext.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/TargetSelect.h"
#include "gtest/gtest.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace bolt;
namespace {
struct BinaryContextTester : public testing::TestWithParam<Triple::ArchType> {
void SetUp() override {
initalizeLLVM();
prepareElf();
initializeBOLT();
}
protected:
void initalizeLLVM() {
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmParsers();
llvm::InitializeAllDisassemblers();
llvm::InitializeAllTargets();
llvm::InitializeAllAsmPrinters();
}
void prepareElf() {
memcpy(ElfBuf, "\177ELF", 4);
ELF64LE::Ehdr *EHdr = reinterpret_cast<typename ELF64LE::Ehdr *>(ElfBuf);
EHdr->e_ident[llvm::ELF::EI_CLASS] = llvm::ELF::ELFCLASS64;
EHdr->e_ident[llvm::ELF::EI_DATA] = llvm::ELF::ELFDATA2LSB;
EHdr->e_machine = GetParam() == Triple::aarch64 ? EM_AARCH64 : EM_X86_64;
MemoryBufferRef Source(StringRef(ElfBuf, sizeof(ElfBuf)), "ELF");
ObjFile = cantFail(ObjectFile::createObjectFile(Source));
}
void initializeBOLT() {
BC = cantFail(BinaryContext::createBinaryContext(
ObjFile.get(), true, DWARFContext::create(*ObjFile.get())));
ASSERT_FALSE(!BC);
}
char ElfBuf[sizeof(typename ELF64LE::Ehdr)] = {};
std::unique_ptr<ObjectFile> ObjFile;
std::unique_ptr<BinaryContext> BC;
};
} // namespace
#ifdef X86_AVAILABLE
INSTANTIATE_TEST_SUITE_P(X86, BinaryContextTester,
::testing::Values(Triple::x86_64));
#endif
#ifdef AARCH64_AVAILABLE
INSTANTIATE_TEST_SUITE_P(AArch64, BinaryContextTester,
::testing::Values(Triple::aarch64));
TEST_P(BinaryContextTester, FlushPendingRelocCALL26) {
if (GetParam() != Triple::aarch64)
GTEST_SKIP();
// This test checks that encodeValueAArch64 used by flushPendingRelocations
// returns correctly encoded values for CALL26 relocation for both backward
// and forward branches.
//
// The offsets layout is:
// 4: func1
// 8: bl func1
// 12: bl func2
// 16: func2
char Data[20] = {};
BinarySection &BS = BC->registerOrUpdateSection(
".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC,
(uint8_t *)Data, sizeof(Data), 4);
MCSymbol *RelSymbol1 = BC->getOrCreateGlobalSymbol(4, "Func1");
ASSERT_TRUE(RelSymbol1);
BS.addRelocation(8, RelSymbol1, ELF::R_AARCH64_CALL26, 0, 0, true);
MCSymbol *RelSymbol2 = BC->getOrCreateGlobalSymbol(16, "Func2");
ASSERT_TRUE(RelSymbol2);
BS.addRelocation(12, RelSymbol2, ELF::R_AARCH64_CALL26, 0, 0, true);
std::error_code EC;
SmallVector<char> Vect(sizeof(Data));
raw_svector_ostream OS(Vect);
BS.flushPendingRelocations(OS, [&](const MCSymbol *S) {
return S == RelSymbol1 ? 4 : S == RelSymbol2 ? 16 : 0;
});
const uint8_t Func1Call[4] = {255, 255, 255, 151};
const uint8_t Func2Call[4] = {1, 0, 0, 148};
EXPECT_FALSE(memcmp(Func1Call, &Vect[8], 4)) << "Wrong backward call value\n";
EXPECT_FALSE(memcmp(Func2Call, &Vect[12], 4)) << "Wrong forward call value\n";
}
#endif
TEST_P(BinaryContextTester, BaseAddress) {
// Check that base address calculation is correct for a binary with the
// following segment layout:
BC->SegmentMapInfo[0] = SegmentInfo{0, 0x10e8c2b4, 0, 0x10e8c2b4, 0x1000};
BC->SegmentMapInfo[0x10e8d2b4] =
SegmentInfo{0x10e8d2b4, 0x3952faec, 0x10e8c2b4, 0x3952faec, 0x1000};
BC->SegmentMapInfo[0x4a3bddc0] =
SegmentInfo{0x4a3bddc0, 0x148e828, 0x4a3bbdc0, 0x148e828, 0x1000};
BC->SegmentMapInfo[0x4b84d5e8] =
SegmentInfo{0x4b84d5e8, 0x294f830, 0x4b84a5e8, 0x3d3820, 0x1000};
std::optional<uint64_t> BaseAddress =
BC->getBaseAddressForMapping(0x7f13f5556000, 0x10e8c000);
ASSERT_TRUE(BaseAddress.has_value());
ASSERT_EQ(*BaseAddress, 0x7f13e46c9000ULL);
BaseAddress = BC->getBaseAddressForMapping(0x7f13f5556000, 0x137a000);
ASSERT_FALSE(BaseAddress.has_value());
}
TEST_P(BinaryContextTester, BaseAddress2) {
// Check that base address calculation is correct for a binary if the
// alignment in ELF file are different from pagesize.
// The segment layout is as follows:
BC->SegmentMapInfo[0] = SegmentInfo{0, 0x2177c, 0, 0x2177c, 0x10000};
BC->SegmentMapInfo[0x31860] =
SegmentInfo{0x31860, 0x370, 0x21860, 0x370, 0x10000};
BC->SegmentMapInfo[0x41c20] =
SegmentInfo{0x41c20, 0x1f8, 0x21c20, 0x1f8, 0x10000};
BC->SegmentMapInfo[0x54e18] =
SegmentInfo{0x54e18, 0x51, 0x24e18, 0x51, 0x10000};
std::optional<uint64_t> BaseAddress =
BC->getBaseAddressForMapping(0xaaaaea444000, 0x21000);
ASSERT_TRUE(BaseAddress.has_value());
ASSERT_EQ(*BaseAddress, 0xaaaaea413000ULL);
BaseAddress = BC->getBaseAddressForMapping(0xaaaaea444000, 0x11000);
ASSERT_FALSE(BaseAddress.has_value());
}