Matt Arsenault ae56b6712d RuntimeLibcalls: Add entries for stackprotector globals
Add entries for_stack_chk_guard, __ssp_canary_word, __security_cookie,
and __guard_local. As far as I can tell these are all just different
names for the same shaped functionality on different systems.

These aren't really functions, but special global variable names. They
should probably be treated the same way; all the same contexts that
need to know about emittable function names also need to know about
this. This avoids a special case check in IRSymtab.

This isn't a complete change, there's a lot more cleanup which
should be done. The stack protector configuration system is a
complete mess. There are multiple overlapping controls, used in
3 different places. Some of the target control implementations overlap
with conditions used in the emission points, and some use correlated
but not identical conditions in different contexts.

i.e. useLoadStackGuardNode, getIRStackGuard, getSSPStackGuardCheck and
insertSSPDeclarations are all used in inconsistent ways so I don't know
if I've tracked the intention of the system correctly.

The PowerPC test change is a bug fix on linux. Previously the manual
conditions were based around !isOSOpenBSD, which is not the condition
where __stack_chk_guard are used. Now getSDagStackGuard returns the
proper global reference, resulting in LOAD_STACK_GUARD getting a
MachineMemOperand which allows scheduling.
2025-08-22 20:18:30 +09:00
2025-04-14 16:54:14 +08:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.
Readme 5.3 GiB
Languages
LLVM 42%
C++ 30.8%
C 13%
Assembly 9.5%
MLIR 1.4%
Other 2.9%