
See https://discourse.llvm.org/t/rfc-deprecate-and-eventually-remove-renderscript-support/81284 for the RFC
1244 lines
47 KiB
C++
1244 lines
47 KiB
C++
//===- AArch64.cpp --------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ABIInfoImpl.h"
|
|
#include "TargetInfo.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/Basic/DiagnosticFrontend.h"
|
|
#include "llvm/TargetParser/AArch64TargetParser.h"
|
|
|
|
using namespace clang;
|
|
using namespace clang::CodeGen;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AArch64 ABI Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class AArch64ABIInfo : public ABIInfo {
|
|
AArch64ABIKind Kind;
|
|
|
|
public:
|
|
AArch64ABIInfo(CodeGenTypes &CGT, AArch64ABIKind Kind)
|
|
: ABIInfo(CGT), Kind(Kind) {}
|
|
|
|
bool isSoftFloat() const { return Kind == AArch64ABIKind::AAPCSSoft; }
|
|
|
|
private:
|
|
AArch64ABIKind getABIKind() const { return Kind; }
|
|
bool isDarwinPCS() const { return Kind == AArch64ABIKind::DarwinPCS; }
|
|
|
|
ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadicFn) const;
|
|
ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadicFn,
|
|
bool IsNamedArg, unsigned CallingConvention,
|
|
unsigned &NSRN, unsigned &NPRN) const;
|
|
llvm::Type *convertFixedToScalableVectorType(const VectorType *VT) const;
|
|
ABIArgInfo coerceIllegalVector(QualType Ty, unsigned &NSRN,
|
|
unsigned &NPRN) const;
|
|
ABIArgInfo coerceAndExpandPureScalableAggregate(
|
|
QualType Ty, bool IsNamedArg, unsigned NVec, unsigned NPred,
|
|
const SmallVectorImpl<llvm::Type *> &UnpaddedCoerceToSeq, unsigned &NSRN,
|
|
unsigned &NPRN) const;
|
|
bool isHomogeneousAggregateBaseType(QualType Ty) const override;
|
|
bool isHomogeneousAggregateSmallEnough(const Type *Ty,
|
|
uint64_t Members) const override;
|
|
bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override;
|
|
|
|
bool isIllegalVectorType(QualType Ty) const;
|
|
|
|
bool passAsPureScalableType(QualType Ty, unsigned &NV, unsigned &NP,
|
|
SmallVectorImpl<llvm::Type *> &CoerceToSeq) const;
|
|
|
|
void flattenType(llvm::Type *Ty,
|
|
SmallVectorImpl<llvm::Type *> &Flattened) const;
|
|
|
|
void computeInfo(CGFunctionInfo &FI) const override {
|
|
if (!::classifyReturnType(getCXXABI(), FI, *this))
|
|
FI.getReturnInfo() =
|
|
classifyReturnType(FI.getReturnType(), FI.isVariadic());
|
|
|
|
unsigned ArgNo = 0;
|
|
unsigned NSRN = 0, NPRN = 0;
|
|
for (auto &it : FI.arguments()) {
|
|
const bool IsNamedArg =
|
|
!FI.isVariadic() || ArgNo < FI.getRequiredArgs().getNumRequiredArgs();
|
|
++ArgNo;
|
|
it.info = classifyArgumentType(it.type, FI.isVariadic(), IsNamedArg,
|
|
FI.getCallingConvention(), NSRN, NPRN);
|
|
}
|
|
}
|
|
|
|
RValue EmitDarwinVAArg(Address VAListAddr, QualType Ty, CodeGenFunction &CGF,
|
|
AggValueSlot Slot) const;
|
|
|
|
RValue EmitAAPCSVAArg(Address VAListAddr, QualType Ty, CodeGenFunction &CGF,
|
|
AArch64ABIKind Kind, AggValueSlot Slot) const;
|
|
|
|
RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
|
|
AggValueSlot Slot) const override {
|
|
llvm::Type *BaseTy = CGF.ConvertType(Ty);
|
|
if (isa<llvm::ScalableVectorType>(BaseTy))
|
|
llvm::report_fatal_error("Passing SVE types to variadic functions is "
|
|
"currently not supported");
|
|
|
|
return Kind == AArch64ABIKind::Win64
|
|
? EmitMSVAArg(CGF, VAListAddr, Ty, Slot)
|
|
: isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF, Slot)
|
|
: EmitAAPCSVAArg(VAListAddr, Ty, CGF, Kind, Slot);
|
|
}
|
|
|
|
RValue EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
|
|
AggValueSlot Slot) const override;
|
|
|
|
bool allowBFloatArgsAndRet() const override {
|
|
return getTarget().hasBFloat16Type();
|
|
}
|
|
|
|
using ABIInfo::appendAttributeMangling;
|
|
void appendAttributeMangling(TargetClonesAttr *Attr, unsigned Index,
|
|
raw_ostream &Out) const override;
|
|
void appendAttributeMangling(StringRef AttrStr,
|
|
raw_ostream &Out) const override;
|
|
};
|
|
|
|
class AArch64SwiftABIInfo : public SwiftABIInfo {
|
|
public:
|
|
explicit AArch64SwiftABIInfo(CodeGenTypes &CGT)
|
|
: SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/true) {}
|
|
|
|
bool isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
|
|
unsigned NumElts) const override;
|
|
};
|
|
|
|
class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIKind Kind)
|
|
: TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {
|
|
SwiftInfo = std::make_unique<AArch64SwiftABIInfo>(CGT);
|
|
}
|
|
|
|
StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
|
|
return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
|
|
}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
return 31;
|
|
}
|
|
|
|
bool doesReturnSlotInterfereWithArgs() const override { return false; }
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override {
|
|
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
|
|
if (!FD)
|
|
return;
|
|
|
|
TargetInfo::BranchProtectionInfo BPI(CGM.getLangOpts());
|
|
|
|
if (const auto *TA = FD->getAttr<TargetAttr>()) {
|
|
ParsedTargetAttr Attr =
|
|
CGM.getTarget().parseTargetAttr(TA->getFeaturesStr());
|
|
if (!Attr.BranchProtection.empty()) {
|
|
StringRef Error;
|
|
(void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
|
|
Attr.CPU, BPI, Error);
|
|
assert(Error.empty());
|
|
}
|
|
}
|
|
auto *Fn = cast<llvm::Function>(GV);
|
|
setBranchProtectionFnAttributes(BPI, *Fn);
|
|
}
|
|
|
|
bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Type *Ty) const override {
|
|
if (CGF.getTarget().hasFeature("ls64")) {
|
|
auto *ST = dyn_cast<llvm::StructType>(Ty);
|
|
if (ST && ST->getNumElements() == 1) {
|
|
auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0));
|
|
if (AT && AT->getNumElements() == 8 &&
|
|
AT->getElementType()->isIntegerTy(64))
|
|
return true;
|
|
}
|
|
}
|
|
return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty);
|
|
}
|
|
|
|
void checkFunctionABI(CodeGenModule &CGM,
|
|
const FunctionDecl *Decl) const override;
|
|
|
|
void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
|
|
const FunctionDecl *Caller,
|
|
const FunctionDecl *Callee, const CallArgList &Args,
|
|
QualType ReturnType) const override;
|
|
|
|
private:
|
|
// Diagnose calls between functions with incompatible Streaming SVE
|
|
// attributes.
|
|
void checkFunctionCallABIStreaming(CodeGenModule &CGM, SourceLocation CallLoc,
|
|
const FunctionDecl *Caller,
|
|
const FunctionDecl *Callee) const;
|
|
// Diagnose calls which must pass arguments in floating-point registers when
|
|
// the selected target does not have floating-point registers.
|
|
void checkFunctionCallABISoftFloat(CodeGenModule &CGM, SourceLocation CallLoc,
|
|
const FunctionDecl *Caller,
|
|
const FunctionDecl *Callee,
|
|
const CallArgList &Args,
|
|
QualType ReturnType) const;
|
|
};
|
|
|
|
class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
|
|
public:
|
|
WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIKind K)
|
|
: AArch64TargetCodeGenInfo(CGT, K) {}
|
|
|
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
|
CodeGen::CodeGenModule &CGM) const override;
|
|
|
|
void getDependentLibraryOption(llvm::StringRef Lib,
|
|
llvm::SmallString<24> &Opt) const override {
|
|
Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
|
|
}
|
|
|
|
void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
|
|
llvm::SmallString<32> &Opt) const override {
|
|
Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
|
|
}
|
|
};
|
|
|
|
void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
|
|
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
|
|
AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
|
|
if (GV->isDeclaration())
|
|
return;
|
|
addStackProbeTargetAttributes(D, GV, CGM);
|
|
}
|
|
}
|
|
|
|
llvm::Type *
|
|
AArch64ABIInfo::convertFixedToScalableVectorType(const VectorType *VT) const {
|
|
assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
|
|
|
|
if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate) {
|
|
assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
|
|
BuiltinType::UChar &&
|
|
"unexpected builtin type for SVE predicate!");
|
|
return llvm::ScalableVectorType::get(llvm::Type::getInt1Ty(getVMContext()),
|
|
16);
|
|
}
|
|
|
|
if (VT->getVectorKind() == VectorKind::SveFixedLengthData) {
|
|
const auto *BT = VT->getElementType()->castAs<BuiltinType>();
|
|
switch (BT->getKind()) {
|
|
default:
|
|
llvm_unreachable("unexpected builtin type for SVE vector!");
|
|
|
|
case BuiltinType::SChar:
|
|
case BuiltinType::UChar:
|
|
return llvm::ScalableVectorType::get(
|
|
llvm::Type::getInt8Ty(getVMContext()), 16);
|
|
|
|
case BuiltinType::Short:
|
|
case BuiltinType::UShort:
|
|
return llvm::ScalableVectorType::get(
|
|
llvm::Type::getInt16Ty(getVMContext()), 8);
|
|
|
|
case BuiltinType::Int:
|
|
case BuiltinType::UInt:
|
|
return llvm::ScalableVectorType::get(
|
|
llvm::Type::getInt32Ty(getVMContext()), 4);
|
|
|
|
case BuiltinType::Long:
|
|
case BuiltinType::ULong:
|
|
return llvm::ScalableVectorType::get(
|
|
llvm::Type::getInt64Ty(getVMContext()), 2);
|
|
|
|
case BuiltinType::Half:
|
|
return llvm::ScalableVectorType::get(
|
|
llvm::Type::getHalfTy(getVMContext()), 8);
|
|
|
|
case BuiltinType::Float:
|
|
return llvm::ScalableVectorType::get(
|
|
llvm::Type::getFloatTy(getVMContext()), 4);
|
|
|
|
case BuiltinType::Double:
|
|
return llvm::ScalableVectorType::get(
|
|
llvm::Type::getDoubleTy(getVMContext()), 2);
|
|
|
|
case BuiltinType::BFloat16:
|
|
return llvm::ScalableVectorType::get(
|
|
llvm::Type::getBFloatTy(getVMContext()), 8);
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("expected fixed-length SVE vector");
|
|
}
|
|
|
|
ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty, unsigned &NSRN,
|
|
unsigned &NPRN) const {
|
|
assert(Ty->isVectorType() && "expected vector type!");
|
|
|
|
const auto *VT = Ty->castAs<VectorType>();
|
|
if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate) {
|
|
assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
|
|
assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
|
|
BuiltinType::UChar &&
|
|
"unexpected builtin type for SVE predicate!");
|
|
NPRN = std::min(NPRN + 1, 4u);
|
|
return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
|
|
llvm::Type::getInt1Ty(getVMContext()), 16));
|
|
}
|
|
|
|
if (VT->getVectorKind() == VectorKind::SveFixedLengthData) {
|
|
NSRN = std::min(NSRN + 1, 8u);
|
|
return ABIArgInfo::getDirect(convertFixedToScalableVectorType(VT));
|
|
}
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
// Android promotes <2 x i8> to i16, not i32
|
|
if ((isAndroid() || isOHOSFamily()) && (Size <= 16)) {
|
|
llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
if (Size <= 32) {
|
|
llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
if (Size == 64) {
|
|
NSRN = std::min(NSRN + 1, 8u);
|
|
auto *ResType =
|
|
llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
if (Size == 128) {
|
|
NSRN = std::min(NSRN + 1, 8u);
|
|
auto *ResType =
|
|
llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
|
|
return ABIArgInfo::getDirect(ResType);
|
|
}
|
|
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
}
|
|
|
|
ABIArgInfo AArch64ABIInfo::coerceAndExpandPureScalableAggregate(
|
|
QualType Ty, bool IsNamedArg, unsigned NVec, unsigned NPred,
|
|
const SmallVectorImpl<llvm::Type *> &UnpaddedCoerceToSeq, unsigned &NSRN,
|
|
unsigned &NPRN) const {
|
|
if (!IsNamedArg || NSRN + NVec > 8 || NPRN + NPred > 4)
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
NSRN += NVec;
|
|
NPRN += NPred;
|
|
|
|
llvm::Type *UnpaddedCoerceToType =
|
|
UnpaddedCoerceToSeq.size() == 1
|
|
? UnpaddedCoerceToSeq[0]
|
|
: llvm::StructType::get(CGT.getLLVMContext(), UnpaddedCoerceToSeq,
|
|
true);
|
|
|
|
SmallVector<llvm::Type *> CoerceToSeq;
|
|
flattenType(CGT.ConvertType(Ty), CoerceToSeq);
|
|
auto *CoerceToType =
|
|
llvm::StructType::get(CGT.getLLVMContext(), CoerceToSeq, false);
|
|
|
|
return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
|
|
}
|
|
|
|
ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadicFn,
|
|
bool IsNamedArg,
|
|
unsigned CallingConvention,
|
|
unsigned &NSRN,
|
|
unsigned &NPRN) const {
|
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
|
|
|
// Handle illegal vector types here.
|
|
if (isIllegalVectorType(Ty))
|
|
return coerceIllegalVector(Ty, NSRN, NPRN);
|
|
|
|
if (!isAggregateTypeForABI(Ty)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (const auto *EIT = Ty->getAs<BitIntType>())
|
|
if (EIT->getNumBits() > 128)
|
|
return getNaturalAlignIndirect(Ty, false);
|
|
|
|
if (Ty->isVectorType())
|
|
NSRN = std::min(NSRN + 1, 8u);
|
|
else if (const auto *BT = Ty->getAs<BuiltinType>()) {
|
|
if (BT->isFloatingPoint())
|
|
NSRN = std::min(NSRN + 1, 8u);
|
|
else {
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::MFloat8x8:
|
|
case BuiltinType::MFloat8x16:
|
|
NSRN = std::min(NSRN + 1, 8u);
|
|
break;
|
|
case BuiltinType::SveBool:
|
|
case BuiltinType::SveCount:
|
|
NPRN = std::min(NPRN + 1, 4u);
|
|
break;
|
|
case BuiltinType::SveBoolx2:
|
|
NPRN = std::min(NPRN + 2, 4u);
|
|
break;
|
|
case BuiltinType::SveBoolx4:
|
|
NPRN = std::min(NPRN + 4, 4u);
|
|
break;
|
|
default:
|
|
if (BT->isSVESizelessBuiltinType())
|
|
NSRN = std::min(
|
|
NSRN + getContext().getBuiltinVectorTypeInfo(BT).NumVectors,
|
|
8u);
|
|
}
|
|
}
|
|
}
|
|
|
|
return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
|
|
? ABIArgInfo::getExtend(Ty, CGT.ConvertType(Ty))
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
// Structures with either a non-trivial destructor or a non-trivial
|
|
// copy constructor are always indirect.
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
|
|
CGCXXABI::RAA_DirectInMemory);
|
|
}
|
|
|
|
// Empty records are always ignored on Darwin, but actually passed in C++ mode
|
|
// elsewhere for GNU compatibility.
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
|
|
if (IsEmpty || Size == 0) {
|
|
if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
// GNU C mode. The only argument that gets ignored is an empty one with size
|
|
// 0.
|
|
if (IsEmpty && Size == 0)
|
|
return ABIArgInfo::getIgnore();
|
|
return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
|
|
}
|
|
|
|
// Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
bool IsWin64 = Kind == AArch64ABIKind::Win64 ||
|
|
CallingConvention == llvm::CallingConv::Win64;
|
|
bool IsWinVariadic = IsWin64 && IsVariadicFn;
|
|
// In variadic functions on Windows, all composite types are treated alike,
|
|
// no special handling of HFAs/HVAs.
|
|
if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) {
|
|
NSRN = std::min(NSRN + Members, uint64_t(8));
|
|
if (Kind != AArch64ABIKind::AAPCS)
|
|
return ABIArgInfo::getDirect(
|
|
llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
|
|
|
|
// For HFAs/HVAs, cap the argument alignment to 16, otherwise
|
|
// set it to 8 according to the AAPCS64 document.
|
|
unsigned Align =
|
|
getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
|
|
Align = (Align >= 16) ? 16 : 8;
|
|
return ABIArgInfo::getDirect(
|
|
llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0,
|
|
nullptr, true, Align);
|
|
}
|
|
|
|
// In AAPCS named arguments of a Pure Scalable Type are passed expanded in
|
|
// registers, or indirectly if there are not enough registers.
|
|
if (Kind == AArch64ABIKind::AAPCS) {
|
|
unsigned NVec = 0, NPred = 0;
|
|
SmallVector<llvm::Type *> UnpaddedCoerceToSeq;
|
|
if (passAsPureScalableType(Ty, NVec, NPred, UnpaddedCoerceToSeq) &&
|
|
(NVec + NPred) > 0)
|
|
return coerceAndExpandPureScalableAggregate(
|
|
Ty, IsNamedArg, NVec, NPred, UnpaddedCoerceToSeq, NSRN, NPRN);
|
|
}
|
|
|
|
// Aggregates <= 16 bytes are passed directly in registers or on the stack.
|
|
if (Size <= 128) {
|
|
unsigned Alignment;
|
|
if (Kind == AArch64ABIKind::AAPCS) {
|
|
Alignment = getContext().getTypeUnadjustedAlign(Ty);
|
|
Alignment = Alignment < 128 ? 64 : 128;
|
|
} else {
|
|
Alignment =
|
|
std::max(getContext().getTypeAlign(Ty),
|
|
(unsigned)getTarget().getPointerWidth(LangAS::Default));
|
|
}
|
|
Size = llvm::alignTo(Size, Alignment);
|
|
|
|
// We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
|
|
// For aggregates with 16-byte alignment, we use i128.
|
|
llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
|
|
return ABIArgInfo::getDirect(
|
|
Size == Alignment ? BaseTy
|
|
: llvm::ArrayType::get(BaseTy, Size / Alignment));
|
|
}
|
|
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
}
|
|
|
|
ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
|
|
bool IsVariadicFn) const {
|
|
if (RetTy->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
if (const auto *VT = RetTy->getAs<VectorType>()) {
|
|
if (VT->getVectorKind() == VectorKind::SveFixedLengthData ||
|
|
VT->getVectorKind() == VectorKind::SveFixedLengthPredicate) {
|
|
unsigned NSRN = 0, NPRN = 0;
|
|
return coerceIllegalVector(RetTy, NSRN, NPRN);
|
|
}
|
|
}
|
|
|
|
// Large vector types should be returned via memory.
|
|
if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
|
|
return getNaturalAlignIndirect(RetTy);
|
|
|
|
if (!isAggregateTypeForABI(RetTy)) {
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
|
|
|
if (const auto *EIT = RetTy->getAs<BitIntType>())
|
|
if (EIT->getNumBits() > 128)
|
|
return getNaturalAlignIndirect(RetTy);
|
|
|
|
return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
|
|
? ABIArgInfo::getExtend(RetTy)
|
|
: ABIArgInfo::getDirect());
|
|
}
|
|
|
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
|
if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
if (isHomogeneousAggregate(RetTy, Base, Members) &&
|
|
!(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
|
|
IsVariadicFn))
|
|
// Homogeneous Floating-point Aggregates (HFAs) are returned directly.
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// In AAPCS return values of a Pure Scalable type are treated as a single
|
|
// named argument and passed expanded in registers, or indirectly if there are
|
|
// not enough registers.
|
|
if (Kind == AArch64ABIKind::AAPCS) {
|
|
unsigned NSRN = 0, NPRN = 0;
|
|
unsigned NVec = 0, NPred = 0;
|
|
SmallVector<llvm::Type *> UnpaddedCoerceToSeq;
|
|
if (passAsPureScalableType(RetTy, NVec, NPred, UnpaddedCoerceToSeq) &&
|
|
(NVec + NPred) > 0)
|
|
return coerceAndExpandPureScalableAggregate(
|
|
RetTy, /* IsNamedArg */ true, NVec, NPred, UnpaddedCoerceToSeq, NSRN,
|
|
NPRN);
|
|
}
|
|
|
|
// Aggregates <= 16 bytes are returned directly in registers or on the stack.
|
|
if (Size <= 128) {
|
|
if (Size <= 64 && getDataLayout().isLittleEndian()) {
|
|
// Composite types are returned in lower bits of a 64-bit register for LE,
|
|
// and in higher bits for BE. However, integer types are always returned
|
|
// in lower bits for both LE and BE, and they are not rounded up to
|
|
// 64-bits. We can skip rounding up of composite types for LE, but not for
|
|
// BE, otherwise composite types will be indistinguishable from integer
|
|
// types.
|
|
return ABIArgInfo::getDirect(
|
|
llvm::IntegerType::get(getVMContext(), Size));
|
|
}
|
|
|
|
unsigned Alignment = getContext().getTypeAlign(RetTy);
|
|
Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
|
|
|
|
// We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
|
|
// For aggregates with 16-byte alignment, we use i128.
|
|
if (Alignment < 128 && Size == 128) {
|
|
llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
|
|
return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
|
|
}
|
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
|
|
}
|
|
|
|
return getNaturalAlignIndirect(RetTy);
|
|
}
|
|
|
|
/// isIllegalVectorType - check whether the vector type is legal for AArch64.
|
|
bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
|
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
// Check whether VT is a fixed-length SVE vector. These types are
|
|
// represented as scalable vectors in function args/return and must be
|
|
// coerced from fixed vectors.
|
|
if (VT->getVectorKind() == VectorKind::SveFixedLengthData ||
|
|
VT->getVectorKind() == VectorKind::SveFixedLengthPredicate)
|
|
return true;
|
|
|
|
// Check whether VT is legal.
|
|
unsigned NumElements = VT->getNumElements();
|
|
uint64_t Size = getContext().getTypeSize(VT);
|
|
// NumElements should be power of 2.
|
|
if (!llvm::isPowerOf2_32(NumElements))
|
|
return true;
|
|
|
|
// arm64_32 has to be compatible with the ARM logic here, which allows huge
|
|
// vectors for some reason.
|
|
llvm::Triple Triple = getTarget().getTriple();
|
|
if (Triple.getArch() == llvm::Triple::aarch64_32 &&
|
|
Triple.isOSBinFormatMachO())
|
|
return Size <= 32;
|
|
|
|
return Size != 64 && (Size != 128 || NumElements == 1);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AArch64SwiftABIInfo::isLegalVectorType(CharUnits VectorSize,
|
|
llvm::Type *EltTy,
|
|
unsigned NumElts) const {
|
|
if (!llvm::isPowerOf2_32(NumElts))
|
|
return false;
|
|
if (VectorSize.getQuantity() != 8 &&
|
|
(VectorSize.getQuantity() != 16 || NumElts == 1))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
|
|
// For the soft-float ABI variant, no types are considered to be homogeneous
|
|
// aggregates.
|
|
if (isSoftFloat())
|
|
return false;
|
|
|
|
// Homogeneous aggregates for AAPCS64 must have base types of a floating
|
|
// point type or a short-vector type. This is the same as the 32-bit ABI,
|
|
// but with the difference that any floating-point type is allowed,
|
|
// including __fp16.
|
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
|
if (BT->isFloatingPoint() || BT->getKind() == BuiltinType::MFloat8x16 ||
|
|
BT->getKind() == BuiltinType::MFloat8x8)
|
|
return true;
|
|
} else if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
|
if (auto Kind = VT->getVectorKind();
|
|
Kind == VectorKind::SveFixedLengthData ||
|
|
Kind == VectorKind::SveFixedLengthPredicate)
|
|
return false;
|
|
|
|
unsigned VecSize = getContext().getTypeSize(VT);
|
|
if (VecSize == 64 || VecSize == 128)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
|
|
uint64_t Members) const {
|
|
return Members <= 4;
|
|
}
|
|
|
|
bool AArch64ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate()
|
|
const {
|
|
// AAPCS64 says that the rule for whether something is a homogeneous
|
|
// aggregate is applied to the output of the data layout decision. So
|
|
// anything that doesn't affect the data layout also does not affect
|
|
// homogeneity. In particular, zero-length bitfields don't stop a struct
|
|
// being homogeneous.
|
|
return true;
|
|
}
|
|
|
|
// Check if a type needs to be passed in registers as a Pure Scalable Type (as
|
|
// defined by AAPCS64). Return the number of data vectors and the number of
|
|
// predicate vectors in the type, into `NVec` and `NPred`, respectively. Upon
|
|
// return `CoerceToSeq` contains an expanded sequence of LLVM IR types, one
|
|
// element for each non-composite member. For practical purposes, limit the
|
|
// length of `CoerceToSeq` to about 12 (the maximum that could possibly fit
|
|
// in registers) and return false, the effect of which will be to pass the
|
|
// argument under the rules for a large (> 128 bytes) composite.
|
|
bool AArch64ABIInfo::passAsPureScalableType(
|
|
QualType Ty, unsigned &NVec, unsigned &NPred,
|
|
SmallVectorImpl<llvm::Type *> &CoerceToSeq) const {
|
|
if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
|
|
uint64_t NElt = AT->getZExtSize();
|
|
if (NElt == 0)
|
|
return false;
|
|
|
|
unsigned NV = 0, NP = 0;
|
|
SmallVector<llvm::Type *> EltCoerceToSeq;
|
|
if (!passAsPureScalableType(AT->getElementType(), NV, NP, EltCoerceToSeq))
|
|
return false;
|
|
|
|
if (CoerceToSeq.size() + NElt * EltCoerceToSeq.size() > 12)
|
|
return false;
|
|
|
|
for (uint64_t I = 0; I < NElt; ++I)
|
|
llvm::copy(EltCoerceToSeq, std::back_inserter(CoerceToSeq));
|
|
|
|
NVec += NElt * NV;
|
|
NPred += NElt * NP;
|
|
return true;
|
|
}
|
|
|
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
// If the record cannot be passed in registers, then it's not a PST.
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
|
|
RAA != CGCXXABI::RAA_Default)
|
|
return false;
|
|
|
|
// Pure scalable types are never unions and never contain unions.
|
|
const RecordDecl *RD = RT->getDecl();
|
|
if (RD->isUnion())
|
|
return false;
|
|
|
|
// If this is a C++ record, check the bases.
|
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
for (const auto &I : CXXRD->bases()) {
|
|
if (isEmptyRecord(getContext(), I.getType(), true))
|
|
continue;
|
|
if (!passAsPureScalableType(I.getType(), NVec, NPred, CoerceToSeq))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check members.
|
|
for (const auto *FD : RD->fields()) {
|
|
QualType FT = FD->getType();
|
|
if (isEmptyField(getContext(), FD, /* AllowArrays */ true))
|
|
continue;
|
|
if (!passAsPureScalableType(FT, NVec, NPred, CoerceToSeq))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const auto *VT = Ty->getAs<VectorType>();
|
|
if (!VT)
|
|
return false;
|
|
|
|
if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate) {
|
|
++NPred;
|
|
if (CoerceToSeq.size() + 1 > 12)
|
|
return false;
|
|
CoerceToSeq.push_back(convertFixedToScalableVectorType(VT));
|
|
return true;
|
|
}
|
|
|
|
if (VT->getVectorKind() == VectorKind::SveFixedLengthData) {
|
|
++NVec;
|
|
if (CoerceToSeq.size() + 1 > 12)
|
|
return false;
|
|
CoerceToSeq.push_back(convertFixedToScalableVectorType(VT));
|
|
return true;
|
|
}
|
|
|
|
if (!VT->isBuiltinType())
|
|
return false;
|
|
|
|
switch (cast<BuiltinType>(VT)->getKind()) {
|
|
#define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId) \
|
|
case BuiltinType::Id: \
|
|
++NVec; \
|
|
break;
|
|
#define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId) \
|
|
case BuiltinType::Id: \
|
|
++NPred; \
|
|
break;
|
|
#define SVE_TYPE(Name, Id, SingletonId)
|
|
#include "clang/Basic/AArch64SVEACLETypes.def"
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
ASTContext::BuiltinVectorTypeInfo Info =
|
|
getContext().getBuiltinVectorTypeInfo(cast<BuiltinType>(Ty));
|
|
assert(Info.NumVectors > 0 && Info.NumVectors <= 4 &&
|
|
"Expected 1, 2, 3 or 4 vectors!");
|
|
auto VTy = llvm::ScalableVectorType::get(CGT.ConvertType(Info.ElementType),
|
|
Info.EC.getKnownMinValue());
|
|
|
|
if (CoerceToSeq.size() + Info.NumVectors > 12)
|
|
return false;
|
|
std::fill_n(std::back_inserter(CoerceToSeq), Info.NumVectors, VTy);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Expand an LLVM IR type into a sequence with a element for each non-struct,
|
|
// non-array member of the type, with the exception of the padding types, which
|
|
// are retained.
|
|
void AArch64ABIInfo::flattenType(
|
|
llvm::Type *Ty, SmallVectorImpl<llvm::Type *> &Flattened) const {
|
|
|
|
if (ABIArgInfo::isPaddingForCoerceAndExpand(Ty)) {
|
|
Flattened.push_back(Ty);
|
|
return;
|
|
}
|
|
|
|
if (const auto *AT = dyn_cast<llvm::ArrayType>(Ty)) {
|
|
uint64_t NElt = AT->getNumElements();
|
|
if (NElt == 0)
|
|
return;
|
|
|
|
SmallVector<llvm::Type *> EltFlattened;
|
|
flattenType(AT->getElementType(), EltFlattened);
|
|
|
|
for (uint64_t I = 0; I < NElt; ++I)
|
|
llvm::copy(EltFlattened, std::back_inserter(Flattened));
|
|
return;
|
|
}
|
|
|
|
if (const auto *ST = dyn_cast<llvm::StructType>(Ty)) {
|
|
for (auto *ET : ST->elements())
|
|
flattenType(ET, Flattened);
|
|
return;
|
|
}
|
|
|
|
Flattened.push_back(Ty);
|
|
}
|
|
|
|
RValue AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF, AArch64ABIKind Kind,
|
|
AggValueSlot Slot) const {
|
|
// These numbers are not used for variadic arguments, hence it doesn't matter
|
|
// they don't retain their values across multiple calls to
|
|
// `classifyArgumentType` here.
|
|
unsigned NSRN = 0, NPRN = 0;
|
|
ABIArgInfo AI =
|
|
classifyArgumentType(Ty, /*IsVariadicFn=*/true, /* IsNamedArg */ false,
|
|
CGF.CurFnInfo->getCallingConvention(), NSRN, NPRN);
|
|
// Empty records are ignored for parameter passing purposes.
|
|
if (AI.isIgnore())
|
|
return Slot.asRValue();
|
|
|
|
bool IsIndirect = AI.isIndirect();
|
|
|
|
llvm::Type *BaseTy = CGF.ConvertType(Ty);
|
|
if (IsIndirect)
|
|
BaseTy = llvm::PointerType::getUnqual(BaseTy);
|
|
else if (AI.getCoerceToType())
|
|
BaseTy = AI.getCoerceToType();
|
|
|
|
unsigned NumRegs = 1;
|
|
if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
|
|
BaseTy = ArrTy->getElementType();
|
|
NumRegs = ArrTy->getNumElements();
|
|
}
|
|
bool IsFPR =
|
|
!isSoftFloat() && (BaseTy->isFloatingPointTy() || BaseTy->isVectorTy());
|
|
|
|
// The AArch64 va_list type and handling is specified in the Procedure Call
|
|
// Standard, section B.4:
|
|
//
|
|
// struct {
|
|
// void *__stack;
|
|
// void *__gr_top;
|
|
// void *__vr_top;
|
|
// int __gr_offs;
|
|
// int __vr_offs;
|
|
// };
|
|
|
|
llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
|
|
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
|
|
llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
|
|
|
|
CharUnits TySize = getContext().getTypeSizeInChars(Ty);
|
|
CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
|
|
|
|
Address reg_offs_p = Address::invalid();
|
|
llvm::Value *reg_offs = nullptr;
|
|
int reg_top_index;
|
|
int RegSize = IsIndirect ? 8 : TySize.getQuantity();
|
|
if (!IsFPR) {
|
|
// 3 is the field number of __gr_offs
|
|
reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
|
|
reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
|
|
reg_top_index = 1; // field number for __gr_top
|
|
RegSize = llvm::alignTo(RegSize, 8);
|
|
} else {
|
|
// 4 is the field number of __vr_offs.
|
|
reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
|
|
reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
|
|
reg_top_index = 2; // field number for __vr_top
|
|
RegSize = 16 * NumRegs;
|
|
}
|
|
|
|
//=======================================
|
|
// Find out where argument was passed
|
|
//=======================================
|
|
|
|
// If reg_offs >= 0 we're already using the stack for this type of
|
|
// argument. We don't want to keep updating reg_offs (in case it overflows,
|
|
// though anyone passing 2GB of arguments, each at most 16 bytes, deserves
|
|
// whatever they get).
|
|
llvm::Value *UsingStack = nullptr;
|
|
UsingStack = CGF.Builder.CreateICmpSGE(
|
|
reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
|
|
|
|
CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
|
|
|
|
// Otherwise, at least some kind of argument could go in these registers, the
|
|
// question is whether this particular type is too big.
|
|
CGF.EmitBlock(MaybeRegBlock);
|
|
|
|
// Integer arguments may need to correct register alignment (for example a
|
|
// "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
|
|
// align __gr_offs to calculate the potential address.
|
|
if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
|
|
int Align = TyAlign.getQuantity();
|
|
|
|
reg_offs = CGF.Builder.CreateAdd(
|
|
reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
|
|
"align_regoffs");
|
|
reg_offs = CGF.Builder.CreateAnd(
|
|
reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
|
|
"aligned_regoffs");
|
|
}
|
|
|
|
// Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
|
|
// The fact that this is done unconditionally reflects the fact that
|
|
// allocating an argument to the stack also uses up all the remaining
|
|
// registers of the appropriate kind.
|
|
llvm::Value *NewOffset = nullptr;
|
|
NewOffset = CGF.Builder.CreateAdd(
|
|
reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
|
|
CGF.Builder.CreateStore(NewOffset, reg_offs_p);
|
|
|
|
// Now we're in a position to decide whether this argument really was in
|
|
// registers or not.
|
|
llvm::Value *InRegs = nullptr;
|
|
InRegs = CGF.Builder.CreateICmpSLE(
|
|
NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
|
|
|
|
CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
|
|
|
|
//=======================================
|
|
// Argument was in registers
|
|
//=======================================
|
|
|
|
// Now we emit the code for if the argument was originally passed in
|
|
// registers. First start the appropriate block:
|
|
CGF.EmitBlock(InRegBlock);
|
|
|
|
llvm::Value *reg_top = nullptr;
|
|
Address reg_top_p =
|
|
CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
|
|
reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
|
|
Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs),
|
|
CGF.Int8Ty, CharUnits::fromQuantity(IsFPR ? 16 : 8));
|
|
Address RegAddr = Address::invalid();
|
|
llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty), *ElementTy = MemTy;
|
|
|
|
if (IsIndirect) {
|
|
// If it's been passed indirectly (actually a struct), whatever we find from
|
|
// stored registers or on the stack will actually be a struct **.
|
|
MemTy = llvm::PointerType::getUnqual(MemTy);
|
|
}
|
|
|
|
const Type *Base = nullptr;
|
|
uint64_t NumMembers = 0;
|
|
bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
|
|
if (IsHFA && NumMembers > 1) {
|
|
// Homogeneous aggregates passed in registers will have their elements split
|
|
// and stored 16-bytes apart regardless of size (they're notionally in qN,
|
|
// qN+1, ...). We reload and store into a temporary local variable
|
|
// contiguously.
|
|
assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
|
|
auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
|
|
llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
|
|
llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
|
|
Address Tmp = CGF.CreateTempAlloca(HFATy,
|
|
std::max(TyAlign, BaseTyInfo.Align));
|
|
|
|
// On big-endian platforms, the value will be right-aligned in its slot.
|
|
int Offset = 0;
|
|
if (CGF.CGM.getDataLayout().isBigEndian() &&
|
|
BaseTyInfo.Width.getQuantity() < 16)
|
|
Offset = 16 - BaseTyInfo.Width.getQuantity();
|
|
|
|
for (unsigned i = 0; i < NumMembers; ++i) {
|
|
CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
|
|
Address LoadAddr =
|
|
CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
|
|
LoadAddr = LoadAddr.withElementType(BaseTy);
|
|
|
|
Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
|
|
|
|
llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
|
|
CGF.Builder.CreateStore(Elem, StoreAddr);
|
|
}
|
|
|
|
RegAddr = Tmp.withElementType(MemTy);
|
|
} else {
|
|
// Otherwise the object is contiguous in memory.
|
|
|
|
// It might be right-aligned in its slot.
|
|
CharUnits SlotSize = BaseAddr.getAlignment();
|
|
if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
|
|
(IsHFA || !isAggregateTypeForABI(Ty)) &&
|
|
TySize < SlotSize) {
|
|
CharUnits Offset = SlotSize - TySize;
|
|
BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
|
|
}
|
|
|
|
RegAddr = BaseAddr.withElementType(MemTy);
|
|
}
|
|
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
//=======================================
|
|
// Argument was on the stack
|
|
//=======================================
|
|
CGF.EmitBlock(OnStackBlock);
|
|
|
|
Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
|
|
llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
|
|
|
|
// Again, stack arguments may need realignment. In this case both integer and
|
|
// floating-point ones might be affected.
|
|
if (!IsIndirect && TyAlign.getQuantity() > 8) {
|
|
OnStackPtr = emitRoundPointerUpToAlignment(CGF, OnStackPtr, TyAlign);
|
|
}
|
|
Address OnStackAddr = Address(OnStackPtr, CGF.Int8Ty,
|
|
std::max(CharUnits::fromQuantity(8), TyAlign));
|
|
|
|
// All stack slots are multiples of 8 bytes.
|
|
CharUnits StackSlotSize = CharUnits::fromQuantity(8);
|
|
CharUnits StackSize;
|
|
if (IsIndirect)
|
|
StackSize = StackSlotSize;
|
|
else
|
|
StackSize = TySize.alignTo(StackSlotSize);
|
|
|
|
llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
|
|
llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP(
|
|
CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack");
|
|
|
|
// Write the new value of __stack for the next call to va_arg
|
|
CGF.Builder.CreateStore(NewStack, stack_p);
|
|
|
|
if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
|
|
TySize < StackSlotSize) {
|
|
CharUnits Offset = StackSlotSize - TySize;
|
|
OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
|
|
}
|
|
|
|
OnStackAddr = OnStackAddr.withElementType(MemTy);
|
|
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
//=======================================
|
|
// Tidy up
|
|
//=======================================
|
|
CGF.EmitBlock(ContBlock);
|
|
|
|
Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, OnStackAddr,
|
|
OnStackBlock, "vaargs.addr");
|
|
|
|
if (IsIndirect)
|
|
return CGF.EmitLoadOfAnyValue(
|
|
CGF.MakeAddrLValue(
|
|
Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), ElementTy,
|
|
TyAlign),
|
|
Ty),
|
|
Slot);
|
|
|
|
return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(ResAddr, Ty), Slot);
|
|
}
|
|
|
|
RValue AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
|
|
CodeGenFunction &CGF,
|
|
AggValueSlot Slot) const {
|
|
// The backend's lowering doesn't support va_arg for aggregates or
|
|
// illegal vector types. Lower VAArg here for these cases and use
|
|
// the LLVM va_arg instruction for everything else.
|
|
if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
|
|
return CGF.EmitLoadOfAnyValue(
|
|
CGF.MakeAddrLValue(
|
|
EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()), Ty),
|
|
Slot);
|
|
|
|
uint64_t PointerSize = getTarget().getPointerWidth(LangAS::Default) / 8;
|
|
CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
|
|
|
|
// Empty records are ignored for parameter passing purposes.
|
|
if (isEmptyRecord(getContext(), Ty, true))
|
|
return Slot.asRValue();
|
|
|
|
// The size of the actual thing passed, which might end up just
|
|
// being a pointer for indirect types.
|
|
auto TyInfo = getContext().getTypeInfoInChars(Ty);
|
|
|
|
// Arguments bigger than 16 bytes which aren't homogeneous
|
|
// aggregates should be passed indirectly.
|
|
bool IsIndirect = false;
|
|
if (TyInfo.Width.getQuantity() > 16) {
|
|
const Type *Base = nullptr;
|
|
uint64_t Members = 0;
|
|
IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
|
|
}
|
|
|
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, SlotSize,
|
|
/*AllowHigherAlign*/ true, Slot);
|
|
}
|
|
|
|
RValue AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty, AggValueSlot Slot) const {
|
|
bool IsIndirect = false;
|
|
|
|
// Composites larger than 16 bytes are passed by reference.
|
|
if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128)
|
|
IsIndirect = true;
|
|
|
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
|
|
CGF.getContext().getTypeInfoInChars(Ty),
|
|
CharUnits::fromQuantity(8),
|
|
/*allowHigherAlign*/ false, Slot);
|
|
}
|
|
|
|
static bool isStreamingCompatible(const FunctionDecl *F) {
|
|
if (const auto *T = F->getType()->getAs<FunctionProtoType>())
|
|
return T->getAArch64SMEAttributes() &
|
|
FunctionType::SME_PStateSMCompatibleMask;
|
|
return false;
|
|
}
|
|
|
|
// Report an error if an argument or return value of type Ty would need to be
|
|
// passed in a floating-point register.
|
|
static void diagnoseIfNeedsFPReg(DiagnosticsEngine &Diags,
|
|
const StringRef ABIName,
|
|
const AArch64ABIInfo &ABIInfo,
|
|
const QualType &Ty, const NamedDecl *D,
|
|
SourceLocation loc) {
|
|
const Type *HABase = nullptr;
|
|
uint64_t HAMembers = 0;
|
|
if (Ty->isFloatingType() || Ty->isVectorType() ||
|
|
ABIInfo.isHomogeneousAggregate(Ty, HABase, HAMembers)) {
|
|
Diags.Report(loc, diag::err_target_unsupported_type_for_abi)
|
|
<< D->getDeclName() << Ty << ABIName;
|
|
}
|
|
}
|
|
|
|
// If we are using a hard-float ABI, but do not have floating point registers,
|
|
// then report an error for any function arguments or returns which would be
|
|
// passed in floating-pint registers.
|
|
void AArch64TargetCodeGenInfo::checkFunctionABI(
|
|
CodeGenModule &CGM, const FunctionDecl *FuncDecl) const {
|
|
const AArch64ABIInfo &ABIInfo = getABIInfo<AArch64ABIInfo>();
|
|
const TargetInfo &TI = ABIInfo.getContext().getTargetInfo();
|
|
|
|
if (!TI.hasFeature("fp") && !ABIInfo.isSoftFloat()) {
|
|
diagnoseIfNeedsFPReg(CGM.getDiags(), TI.getABI(), ABIInfo,
|
|
FuncDecl->getReturnType(), FuncDecl,
|
|
FuncDecl->getLocation());
|
|
for (ParmVarDecl *PVD : FuncDecl->parameters()) {
|
|
diagnoseIfNeedsFPReg(CGM.getDiags(), TI.getABI(), ABIInfo, PVD->getType(),
|
|
PVD, FuncDecl->getLocation());
|
|
}
|
|
}
|
|
}
|
|
|
|
void AArch64TargetCodeGenInfo::checkFunctionCallABIStreaming(
|
|
CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
|
|
const FunctionDecl *Callee) const {
|
|
if (!Caller || !Callee || !Callee->hasAttr<AlwaysInlineAttr>())
|
|
return;
|
|
|
|
bool CallerIsStreaming =
|
|
IsArmStreamingFunction(Caller, /*IncludeLocallyStreaming=*/true);
|
|
bool CalleeIsStreaming =
|
|
IsArmStreamingFunction(Callee, /*IncludeLocallyStreaming=*/true);
|
|
bool CallerIsStreamingCompatible = isStreamingCompatible(Caller);
|
|
bool CalleeIsStreamingCompatible = isStreamingCompatible(Callee);
|
|
|
|
if (!CalleeIsStreamingCompatible &&
|
|
(CallerIsStreaming != CalleeIsStreaming || CallerIsStreamingCompatible))
|
|
CGM.getDiags().Report(
|
|
CallLoc, CalleeIsStreaming
|
|
? diag::err_function_always_inline_attribute_mismatch
|
|
: diag::warn_function_always_inline_attribute_mismatch)
|
|
<< Caller->getDeclName() << Callee->getDeclName() << "streaming";
|
|
if (auto *NewAttr = Callee->getAttr<ArmNewAttr>())
|
|
if (NewAttr->isNewZA())
|
|
CGM.getDiags().Report(CallLoc, diag::err_function_always_inline_new_za)
|
|
<< Callee->getDeclName();
|
|
}
|
|
|
|
// If the target does not have floating-point registers, but we are using a
|
|
// hard-float ABI, there is no way to pass floating-point, vector or HFA values
|
|
// to functions, so we report an error.
|
|
void AArch64TargetCodeGenInfo::checkFunctionCallABISoftFloat(
|
|
CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
|
|
const FunctionDecl *Callee, const CallArgList &Args,
|
|
QualType ReturnType) const {
|
|
const AArch64ABIInfo &ABIInfo = getABIInfo<AArch64ABIInfo>();
|
|
const TargetInfo &TI = ABIInfo.getContext().getTargetInfo();
|
|
|
|
if (!Caller || TI.hasFeature("fp") || ABIInfo.isSoftFloat())
|
|
return;
|
|
|
|
diagnoseIfNeedsFPReg(CGM.getDiags(), TI.getABI(), ABIInfo, ReturnType,
|
|
Callee ? Callee : Caller, CallLoc);
|
|
|
|
for (const CallArg &Arg : Args)
|
|
diagnoseIfNeedsFPReg(CGM.getDiags(), TI.getABI(), ABIInfo, Arg.getType(),
|
|
Callee ? Callee : Caller, CallLoc);
|
|
}
|
|
|
|
void AArch64TargetCodeGenInfo::checkFunctionCallABI(CodeGenModule &CGM,
|
|
SourceLocation CallLoc,
|
|
const FunctionDecl *Caller,
|
|
const FunctionDecl *Callee,
|
|
const CallArgList &Args,
|
|
QualType ReturnType) const {
|
|
checkFunctionCallABIStreaming(CGM, CallLoc, Caller, Callee);
|
|
checkFunctionCallABISoftFloat(CGM, CallLoc, Caller, Callee, Args, ReturnType);
|
|
}
|
|
|
|
void AArch64ABIInfo::appendAttributeMangling(TargetClonesAttr *Attr,
|
|
unsigned Index,
|
|
raw_ostream &Out) const {
|
|
appendAttributeMangling(Attr->getFeatureStr(Index), Out);
|
|
}
|
|
|
|
void AArch64ABIInfo::appendAttributeMangling(StringRef AttrStr,
|
|
raw_ostream &Out) const {
|
|
if (AttrStr == "default") {
|
|
Out << ".default";
|
|
return;
|
|
}
|
|
|
|
Out << "._";
|
|
SmallVector<StringRef, 8> Features;
|
|
AttrStr.split(Features, "+");
|
|
for (auto &Feat : Features)
|
|
Feat = Feat.trim();
|
|
|
|
llvm::sort(Features, [](const StringRef LHS, const StringRef RHS) {
|
|
return LHS.compare(RHS) < 0;
|
|
});
|
|
|
|
llvm::SmallDenseSet<StringRef, 8> UniqueFeats;
|
|
for (auto &Feat : Features)
|
|
if (auto Ext = llvm::AArch64::parseFMVExtension(Feat))
|
|
if (UniqueFeats.insert(Ext->Name).second)
|
|
Out << 'M' << Ext->Name;
|
|
}
|
|
|
|
std::unique_ptr<TargetCodeGenInfo>
|
|
CodeGen::createAArch64TargetCodeGenInfo(CodeGenModule &CGM,
|
|
AArch64ABIKind Kind) {
|
|
return std::make_unique<AArch64TargetCodeGenInfo>(CGM.getTypes(), Kind);
|
|
}
|
|
|
|
std::unique_ptr<TargetCodeGenInfo>
|
|
CodeGen::createWindowsAArch64TargetCodeGenInfo(CodeGenModule &CGM,
|
|
AArch64ABIKind K) {
|
|
return std::make_unique<WindowsAArch64TargetCodeGenInfo>(CGM.getTypes(), K);
|
|
}
|