
One might think that by merging the equivalence classes (eqclasses) of `Sym1` and `Sym2` symbols we would end up with a `State` in which the eqclass of `Sym1` and `Sym2` should now be the same. Surprisingly, it's not //always// true. Such an example triggered the assertion enforcing this _unjustified_ invariant in https://github.com/llvm/llvm-project/issues/58677. ```lang=C++ unsigned a, b; #define assert(cond) if (!(cond)) return void f(unsigned c) { /*(1)*/ assert(c == b); /*(2)*/ assert((c | a) != a); /*(3)*/ assert(a); // a = 0 => c | 0 != 0 => c != 0 => b != 0 } ``` I believe, that this assertion hold for reasonable cases - where both `MemberSym` and `SimplifiedMemberSym` refer to live symbols. It can only fail if `SimplifiedMemberSym` refers to an already dead symbol. See the reasoning at the very end. In this context, I don't know any way of determining if a symbol is alive/dead, so I cannot refine the assertion in that way. So, I'm proposing to drop this unjustified assertion. --- Let me elaborate on why I think the assertion is wrong in its current shape. Here is a quick reminder about equivalence classes in CSA. We have 4 mappings: 1) `ClassMap`: map, associating `Symbols` with an `EquivalenceClass`. 2) `ClassMembers`: map, associating `EquivalenceClasses` with its members - basically an enumeration of the `Symbols` which are known to be equal. 3) `ConstraintRange`: map, associating `EquivalenceClasses` with the range constraint which should hold for all the members of the eqclass. 4) `DisequalityMap`: I'm omitting this, as it's irrelevant for our purposes now. Whenever we encounter/assume that two `SymbolRefs` are equal, we update the `ClassMap` so that now both `SymbolRefs` are referring to the same eqclass. This operation is known as `merge` or `union`. Each eqclass is uniquely identified by the `representative` symbol, but it could have been just a unique number or anything else - the point is that an eqclass is identified by something unique. Initially, all Symbols form - by itself - a trivial eqclass, as there are no other Symbols to which it is assumed to be equal. A trivial eqclass has //notionally// exactly one member, the representative symbol. I'm emphasizing that //notionally// because for such cases we don't store an entry in the `ClassMap` nor in the `ClassMembers` map, because it could be deduced. By `merging` two eqclasses, we essentially do what you would think it does. An important thing to highlight is that the representative symbol of the resulting eqclass will be the same as one of the two eqclasses. This operation should be commutative, so that `merge(eq1,eq2)` and `merge(eq2,eq1)` should result in the same eqclass - except for the representative symbol, which is just a unique identifier of the class, a name if you will. Using the representative symbol of `eq1` or `eq2` should have no visible effect on the analysis overall. When merging `eq1` into `eq2`, we take each of the `ClassMembers` of `eq1` and add them to the `ClassMembers` of `eq2` while we also redirect all the `Symbol` members of `eq1` to map to the `eq2` eqclass in the `ClassMap`. This way all members of `eq1` will refer to the correct eqclass. After these, `eq1` key is unreachable in the `ClassMembers`, hence we can drop it. --- Let's get back to the example. Note that when I refer to symbols `a`, `b`, `c`, I'm referring to the `SymbolRegionValue{VarRegion{.}}` - the value of that variable. After `(1)`, we will have a constraint `c == b : [1,1]` and an eqclass `c,b` with the `c` representative symbol. After `(2)`, we will have an additional constraint `c|b != a : [1,1]` with the same eqclass. We will also have disequality info about that `c|a` is disequal to `a` - and the other way around. However, after the full-expression, `c` will become dead. This kicks in the garbage collection, which transforms the state into this: - We no longer have any constraints, because only `a` is alive, for which we don't have any constraints. - We have a single (non-trivial) eqclass with a single element `b` and representative symbol `c`. (Dead symbols can be representative symbols.) - We have the same disequality info as before. At `(3)` within the false branch, `a` get perfectly constrained to zero. This kicks in the simplification, so we try to substitute (simplify) the variable in each SymExpr-tree. In our case, it means that the `c|a != a : [1,1]` constraint gets re-evaluated as `c|0 != 0 : [1,1]`, which is `c != 0 : [1,1]`. Under the hood, it means that we will call `merge(c|a, c)`. where `c` is the result of `simplifyToSVal(State, MemberSym).getAsSymbol()` inside `EquivalenceClass::simplify()`. Note that the result of `simplifyToSVal()` was a dead symbol. We shouldn't have acquired an already dead symbol. AFAIK, this is the only way we can get one at this point. Since `c` is dead, we no longer have a mapping in `ClassMap` for it; hence when we try to `find()` the eqclass of `c`, it will report that it's a trivial eqclass with the representative symbol `c`. After `merge(c|a, c)`, we will have a single (non-trivial) eqclass of `b, c|a` with the representative symbol `c|a` - because we merged the eqclass of `c` into the eqclass of `c|a`. This means that `find(c|a)` will result in the eqclass with the representative symbol `c|a`. So, we ended up having different eqclasses for `find(c|a)` and `find(c)` after `merge(c|a, c)`, firing the assertion. I believe, that this assertion hold for reasonable cases - where both `MemberSym` and `SimplifiedMemberSym` refer to live symbols. `MemberSym` should be live in all cases here, because it is from `ClassMembers` which is pruned in `removeDeadBindings()` so these must be alive. In this context, I don't know any way of determining if a symbol is alive/dead, so I cannot refine the assertion in that way. So, I'm proposing to drop this unjustified assertion. I'd like to thank @martong for helping me to conclude the investigation. It was really difficult to track down. PS: I mentioned that `merge(eq1, eq2)` should be commutative. We actually exploit this for merging the smaller eqclass into the bigger one within `EquivalenceClass::merge()`. Yea, for some reason, if you swap the operands, 3 tests break (only failures, no crashes) aside from the test which checks the state dumps. But I believe, that is a different bug and orthogonal to this one. I just wanted to mention that. - `Analysis/solver-sym-simplification-adjustment.c` - `Analysis/symbol-simplification-fixpoint-iteration-unreachable-code.cpp` - `Analysis/symbol-simplification-reassume.cpp` Fixes #58677 Reviewed By: vabridgers Differential Revision: https://reviews.llvm.org/D138037
3437 lines
130 KiB
C++
3437 lines
130 KiB
C++
//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines RangeConstraintManager, a class that tracks simple
|
|
// equality and inequality constraints on symbolic values of ProgramState.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Basic/JsonSupport.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/ImmutableSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <optional>
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
// This class can be extended with other tables which will help to reason
|
|
// about ranges more precisely.
|
|
class OperatorRelationsTable {
|
|
static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE &&
|
|
BO_GE < BO_EQ && BO_EQ < BO_NE,
|
|
"This class relies on operators order. Rework it otherwise.");
|
|
|
|
public:
|
|
enum TriStateKind {
|
|
False = 0,
|
|
True,
|
|
Unknown,
|
|
};
|
|
|
|
private:
|
|
// CmpOpTable holds states which represent the corresponding range for
|
|
// branching an exploded graph. We can reason about the branch if there is
|
|
// a previously known fact of the existence of a comparison expression with
|
|
// operands used in the current expression.
|
|
// E.g. assuming (x < y) is true that means (x != y) is surely true.
|
|
// if (x previous_operation y) // < | != | >
|
|
// if (x operation y) // != | > | <
|
|
// tristate // True | Unknown | False
|
|
//
|
|
// CmpOpTable represents next:
|
|
// __|< |> |<=|>=|==|!=|UnknownX2|
|
|
// < |1 |0 |* |0 |0 |* |1 |
|
|
// > |0 |1 |0 |* |0 |* |1 |
|
|
// <=|1 |0 |1 |* |1 |* |0 |
|
|
// >=|0 |1 |* |1 |1 |* |0 |
|
|
// ==|0 |0 |* |* |1 |0 |1 |
|
|
// !=|1 |1 |* |* |0 |1 |0 |
|
|
//
|
|
// Columns stands for a previous operator.
|
|
// Rows stands for a current operator.
|
|
// Each row has exactly two `Unknown` cases.
|
|
// UnknownX2 means that both `Unknown` previous operators are met in code,
|
|
// and there is a special column for that, for example:
|
|
// if (x >= y)
|
|
// if (x != y)
|
|
// if (x <= y)
|
|
// False only
|
|
static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1;
|
|
const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = {
|
|
// < > <= >= == != UnknownX2
|
|
{True, False, Unknown, False, False, Unknown, True}, // <
|
|
{False, True, False, Unknown, False, Unknown, True}, // >
|
|
{True, False, True, Unknown, True, Unknown, False}, // <=
|
|
{False, True, Unknown, True, True, Unknown, False}, // >=
|
|
{False, False, Unknown, Unknown, True, False, True}, // ==
|
|
{True, True, Unknown, Unknown, False, True, False}, // !=
|
|
};
|
|
|
|
static size_t getIndexFromOp(BinaryOperatorKind OP) {
|
|
return static_cast<size_t>(OP - BO_LT);
|
|
}
|
|
|
|
public:
|
|
constexpr size_t getCmpOpCount() const { return CmpOpCount; }
|
|
|
|
static BinaryOperatorKind getOpFromIndex(size_t Index) {
|
|
return static_cast<BinaryOperatorKind>(Index + BO_LT);
|
|
}
|
|
|
|
TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP,
|
|
BinaryOperatorKind QueriedOP) const {
|
|
return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)];
|
|
}
|
|
|
|
TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const {
|
|
return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount];
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RangeSet implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
RangeSet::ContainerType RangeSet::Factory::EmptySet{};
|
|
|
|
RangeSet RangeSet::Factory::add(RangeSet LHS, RangeSet RHS) {
|
|
ContainerType Result;
|
|
Result.reserve(LHS.size() + RHS.size());
|
|
std::merge(LHS.begin(), LHS.end(), RHS.begin(), RHS.end(),
|
|
std::back_inserter(Result));
|
|
return makePersistent(std::move(Result));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::add(RangeSet Original, Range Element) {
|
|
ContainerType Result;
|
|
Result.reserve(Original.size() + 1);
|
|
|
|
const_iterator Lower = llvm::lower_bound(Original, Element);
|
|
Result.insert(Result.end(), Original.begin(), Lower);
|
|
Result.push_back(Element);
|
|
Result.insert(Result.end(), Lower, Original.end());
|
|
|
|
return makePersistent(std::move(Result));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::add(RangeSet Original, const llvm::APSInt &Point) {
|
|
return add(Original, Range(Point));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::unite(RangeSet LHS, RangeSet RHS) {
|
|
ContainerType Result = unite(*LHS.Impl, *RHS.Impl);
|
|
return makePersistent(std::move(Result));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::unite(RangeSet Original, Range R) {
|
|
ContainerType Result;
|
|
Result.push_back(R);
|
|
Result = unite(*Original.Impl, Result);
|
|
return makePersistent(std::move(Result));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt Point) {
|
|
return unite(Original, Range(ValueFactory.getValue(Point)));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt From,
|
|
llvm::APSInt To) {
|
|
return unite(Original,
|
|
Range(ValueFactory.getValue(From), ValueFactory.getValue(To)));
|
|
}
|
|
|
|
template <typename T>
|
|
void swapIterators(T &First, T &FirstEnd, T &Second, T &SecondEnd) {
|
|
std::swap(First, Second);
|
|
std::swap(FirstEnd, SecondEnd);
|
|
}
|
|
|
|
RangeSet::ContainerType RangeSet::Factory::unite(const ContainerType &LHS,
|
|
const ContainerType &RHS) {
|
|
if (LHS.empty())
|
|
return RHS;
|
|
if (RHS.empty())
|
|
return LHS;
|
|
|
|
using llvm::APSInt;
|
|
using iterator = ContainerType::const_iterator;
|
|
|
|
iterator First = LHS.begin();
|
|
iterator FirstEnd = LHS.end();
|
|
iterator Second = RHS.begin();
|
|
iterator SecondEnd = RHS.end();
|
|
APSIntType Ty = APSIntType(First->From());
|
|
const APSInt Min = Ty.getMinValue();
|
|
|
|
// Handle a corner case first when both range sets start from MIN.
|
|
// This helps to avoid complicated conditions below. Specifically, this
|
|
// particular check for `MIN` is not needed in the loop below every time
|
|
// when we do `Second->From() - One` operation.
|
|
if (Min == First->From() && Min == Second->From()) {
|
|
if (First->To() > Second->To()) {
|
|
// [ First ]--->
|
|
// [ Second ]----->
|
|
// MIN^
|
|
// The Second range is entirely inside the First one.
|
|
|
|
// Check if Second is the last in its RangeSet.
|
|
if (++Second == SecondEnd)
|
|
// [ First ]--[ First + 1 ]--->
|
|
// [ Second ]--------------------->
|
|
// MIN^
|
|
// The Union is equal to First's RangeSet.
|
|
return LHS;
|
|
} else {
|
|
// case 1: [ First ]----->
|
|
// case 2: [ First ]--->
|
|
// [ Second ]--->
|
|
// MIN^
|
|
// The First range is entirely inside or equal to the Second one.
|
|
|
|
// Check if First is the last in its RangeSet.
|
|
if (++First == FirstEnd)
|
|
// [ First ]----------------------->
|
|
// [ Second ]--[ Second + 1 ]---->
|
|
// MIN^
|
|
// The Union is equal to Second's RangeSet.
|
|
return RHS;
|
|
}
|
|
}
|
|
|
|
const APSInt One = Ty.getValue(1);
|
|
ContainerType Result;
|
|
|
|
// This is called when there are no ranges left in one of the ranges.
|
|
// Append the rest of the ranges from another range set to the Result
|
|
// and return with that.
|
|
const auto AppendTheRest = [&Result](iterator I, iterator E) {
|
|
Result.append(I, E);
|
|
return Result;
|
|
};
|
|
|
|
while (true) {
|
|
// We want to keep the following invariant at all times:
|
|
// ---[ First ------>
|
|
// -----[ Second --->
|
|
if (First->From() > Second->From())
|
|
swapIterators(First, FirstEnd, Second, SecondEnd);
|
|
|
|
// The Union definitely starts with First->From().
|
|
// ----------[ First ------>
|
|
// ------------[ Second --->
|
|
// ----------[ Union ------>
|
|
// UnionStart^
|
|
const llvm::APSInt &UnionStart = First->From();
|
|
|
|
// Loop where the invariant holds.
|
|
while (true) {
|
|
// Skip all enclosed ranges.
|
|
// ---[ First ]--->
|
|
// -----[ Second ]--[ Second + 1 ]--[ Second + N ]----->
|
|
while (First->To() >= Second->To()) {
|
|
// Check if Second is the last in its RangeSet.
|
|
if (++Second == SecondEnd) {
|
|
// Append the Union.
|
|
// ---[ Union ]--->
|
|
// -----[ Second ]----->
|
|
// --------[ First ]--->
|
|
// UnionEnd^
|
|
Result.emplace_back(UnionStart, First->To());
|
|
// ---[ Union ]----------------->
|
|
// --------------[ First + 1]--->
|
|
// Append all remaining ranges from the First's RangeSet.
|
|
return AppendTheRest(++First, FirstEnd);
|
|
}
|
|
}
|
|
|
|
// Check if First and Second are disjoint. It means that we find
|
|
// the end of the Union. Exit the loop and append the Union.
|
|
// ---[ First ]=------------->
|
|
// ------------=[ Second ]--->
|
|
// ----MinusOne^
|
|
if (First->To() < Second->From() - One)
|
|
break;
|
|
|
|
// First is entirely inside the Union. Go next.
|
|
// ---[ Union ----------->
|
|
// ---- [ First ]-------->
|
|
// -------[ Second ]----->
|
|
// Check if First is the last in its RangeSet.
|
|
if (++First == FirstEnd) {
|
|
// Append the Union.
|
|
// ---[ Union ]--->
|
|
// -----[ First ]------->
|
|
// --------[ Second ]--->
|
|
// UnionEnd^
|
|
Result.emplace_back(UnionStart, Second->To());
|
|
// ---[ Union ]------------------>
|
|
// --------------[ Second + 1]--->
|
|
// Append all remaining ranges from the Second's RangeSet.
|
|
return AppendTheRest(++Second, SecondEnd);
|
|
}
|
|
|
|
// We know that we are at one of the two cases:
|
|
// case 1: --[ First ]--------->
|
|
// case 2: ----[ First ]------->
|
|
// --------[ Second ]---------->
|
|
// In both cases First starts after Second->From().
|
|
// Make sure that the loop invariant holds.
|
|
swapIterators(First, FirstEnd, Second, SecondEnd);
|
|
}
|
|
|
|
// Here First and Second are disjoint.
|
|
// Append the Union.
|
|
// ---[ Union ]--------------->
|
|
// -----------------[ Second ]--->
|
|
// ------[ First ]--------------->
|
|
// UnionEnd^
|
|
Result.emplace_back(UnionStart, First->To());
|
|
|
|
// Check if First is the last in its RangeSet.
|
|
if (++First == FirstEnd)
|
|
// ---[ Union ]--------------->
|
|
// --------------[ Second ]--->
|
|
// Append all remaining ranges from the Second's RangeSet.
|
|
return AppendTheRest(Second, SecondEnd);
|
|
}
|
|
|
|
llvm_unreachable("Normally, we should not reach here");
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::getRangeSet(Range From) {
|
|
ContainerType Result;
|
|
Result.push_back(From);
|
|
return makePersistent(std::move(Result));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::makePersistent(ContainerType &&From) {
|
|
llvm::FoldingSetNodeID ID;
|
|
void *InsertPos;
|
|
|
|
From.Profile(ID);
|
|
ContainerType *Result = Cache.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!Result) {
|
|
// It is cheaper to fully construct the resulting range on stack
|
|
// and move it to the freshly allocated buffer if we don't have
|
|
// a set like this already.
|
|
Result = construct(std::move(From));
|
|
Cache.InsertNode(Result, InsertPos);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
RangeSet::ContainerType *RangeSet::Factory::construct(ContainerType &&From) {
|
|
void *Buffer = Arena.Allocate();
|
|
return new (Buffer) ContainerType(std::move(From));
|
|
}
|
|
|
|
const llvm::APSInt &RangeSet::getMinValue() const {
|
|
assert(!isEmpty());
|
|
return begin()->From();
|
|
}
|
|
|
|
const llvm::APSInt &RangeSet::getMaxValue() const {
|
|
assert(!isEmpty());
|
|
return std::prev(end())->To();
|
|
}
|
|
|
|
bool clang::ento::RangeSet::isUnsigned() const {
|
|
assert(!isEmpty());
|
|
return begin()->From().isUnsigned();
|
|
}
|
|
|
|
uint32_t clang::ento::RangeSet::getBitWidth() const {
|
|
assert(!isEmpty());
|
|
return begin()->From().getBitWidth();
|
|
}
|
|
|
|
APSIntType clang::ento::RangeSet::getAPSIntType() const {
|
|
assert(!isEmpty());
|
|
return APSIntType(begin()->From());
|
|
}
|
|
|
|
bool RangeSet::containsImpl(llvm::APSInt &Point) const {
|
|
if (isEmpty() || !pin(Point))
|
|
return false;
|
|
|
|
Range Dummy(Point);
|
|
const_iterator It = llvm::upper_bound(*this, Dummy);
|
|
if (It == begin())
|
|
return false;
|
|
|
|
return std::prev(It)->Includes(Point);
|
|
}
|
|
|
|
bool RangeSet::pin(llvm::APSInt &Point) const {
|
|
APSIntType Type(getMinValue());
|
|
if (Type.testInRange(Point, true) != APSIntType::RTR_Within)
|
|
return false;
|
|
|
|
Type.apply(Point);
|
|
return true;
|
|
}
|
|
|
|
bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
|
|
// This function has nine cases, the cartesian product of range-testing
|
|
// both the upper and lower bounds against the symbol's type.
|
|
// Each case requires a different pinning operation.
|
|
// The function returns false if the described range is entirely outside
|
|
// the range of values for the associated symbol.
|
|
APSIntType Type(getMinValue());
|
|
APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
|
|
APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
|
|
|
|
switch (LowerTest) {
|
|
case APSIntType::RTR_Below:
|
|
switch (UpperTest) {
|
|
case APSIntType::RTR_Below:
|
|
// The entire range is outside the symbol's set of possible values.
|
|
// If this is a conventionally-ordered range, the state is infeasible.
|
|
if (Lower <= Upper)
|
|
return false;
|
|
|
|
// However, if the range wraps around, it spans all possible values.
|
|
Lower = Type.getMinValue();
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
case APSIntType::RTR_Within:
|
|
// The range starts below what's possible but ends within it. Pin.
|
|
Lower = Type.getMinValue();
|
|
Type.apply(Upper);
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
// The range spans all possible values for the symbol. Pin.
|
|
Lower = Type.getMinValue();
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
}
|
|
break;
|
|
case APSIntType::RTR_Within:
|
|
switch (UpperTest) {
|
|
case APSIntType::RTR_Below:
|
|
// The range wraps around, but all lower values are not possible.
|
|
Type.apply(Lower);
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
case APSIntType::RTR_Within:
|
|
// The range may or may not wrap around, but both limits are valid.
|
|
Type.apply(Lower);
|
|
Type.apply(Upper);
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
// The range starts within what's possible but ends above it. Pin.
|
|
Type.apply(Lower);
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
}
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
switch (UpperTest) {
|
|
case APSIntType::RTR_Below:
|
|
// The range wraps but is outside the symbol's set of possible values.
|
|
return false;
|
|
case APSIntType::RTR_Within:
|
|
// The range starts above what's possible but ends within it (wrap).
|
|
Lower = Type.getMinValue();
|
|
Type.apply(Upper);
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
// The entire range is outside the symbol's set of possible values.
|
|
// If this is a conventionally-ordered range, the state is infeasible.
|
|
if (Lower <= Upper)
|
|
return false;
|
|
|
|
// However, if the range wraps around, it spans all possible values.
|
|
Lower = Type.getMinValue();
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::intersect(RangeSet What, llvm::APSInt Lower,
|
|
llvm::APSInt Upper) {
|
|
if (What.isEmpty() || !What.pin(Lower, Upper))
|
|
return getEmptySet();
|
|
|
|
ContainerType DummyContainer;
|
|
|
|
if (Lower <= Upper) {
|
|
// [Lower, Upper] is a regular range.
|
|
//
|
|
// Shortcut: check that there is even a possibility of the intersection
|
|
// by checking the two following situations:
|
|
//
|
|
// <---[ What ]---[------]------>
|
|
// Lower Upper
|
|
// -or-
|
|
// <----[------]----[ What ]---->
|
|
// Lower Upper
|
|
if (What.getMaxValue() < Lower || Upper < What.getMinValue())
|
|
return getEmptySet();
|
|
|
|
DummyContainer.push_back(
|
|
Range(ValueFactory.getValue(Lower), ValueFactory.getValue(Upper)));
|
|
} else {
|
|
// [Lower, Upper] is an inverted range, i.e. [MIN, Upper] U [Lower, MAX]
|
|
//
|
|
// Shortcut: check that there is even a possibility of the intersection
|
|
// by checking the following situation:
|
|
//
|
|
// <------]---[ What ]---[------>
|
|
// Upper Lower
|
|
if (What.getMaxValue() < Lower && Upper < What.getMinValue())
|
|
return getEmptySet();
|
|
|
|
DummyContainer.push_back(
|
|
Range(ValueFactory.getMinValue(Upper), ValueFactory.getValue(Upper)));
|
|
DummyContainer.push_back(
|
|
Range(ValueFactory.getValue(Lower), ValueFactory.getMaxValue(Lower)));
|
|
}
|
|
|
|
return intersect(*What.Impl, DummyContainer);
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::intersect(const RangeSet::ContainerType &LHS,
|
|
const RangeSet::ContainerType &RHS) {
|
|
ContainerType Result;
|
|
Result.reserve(std::max(LHS.size(), RHS.size()));
|
|
|
|
const_iterator First = LHS.begin(), Second = RHS.begin(),
|
|
FirstEnd = LHS.end(), SecondEnd = RHS.end();
|
|
|
|
// If we ran out of ranges in one set, but not in the other,
|
|
// it means that those elements are definitely not in the
|
|
// intersection.
|
|
while (First != FirstEnd && Second != SecondEnd) {
|
|
// We want to keep the following invariant at all times:
|
|
//
|
|
// ----[ First ---------------------->
|
|
// --------[ Second ----------------->
|
|
if (Second->From() < First->From())
|
|
swapIterators(First, FirstEnd, Second, SecondEnd);
|
|
|
|
// Loop where the invariant holds:
|
|
do {
|
|
// Check for the following situation:
|
|
//
|
|
// ----[ First ]--------------------->
|
|
// ---------------[ Second ]--------->
|
|
//
|
|
// which means that...
|
|
if (Second->From() > First->To()) {
|
|
// ...First is not in the intersection.
|
|
//
|
|
// We should move on to the next range after First and break out of the
|
|
// loop because the invariant might not be true.
|
|
++First;
|
|
break;
|
|
}
|
|
|
|
// We have a guaranteed intersection at this point!
|
|
// And this is the current situation:
|
|
//
|
|
// ----[ First ]----------------->
|
|
// -------[ Second ------------------>
|
|
//
|
|
// Additionally, it definitely starts with Second->From().
|
|
const llvm::APSInt &IntersectionStart = Second->From();
|
|
|
|
// It is important to know which of the two ranges' ends
|
|
// is greater. That "longer" range might have some other
|
|
// intersections, while the "shorter" range might not.
|
|
if (Second->To() > First->To()) {
|
|
// Here we make a decision to keep First as the "longer"
|
|
// range.
|
|
swapIterators(First, FirstEnd, Second, SecondEnd);
|
|
}
|
|
|
|
// At this point, we have the following situation:
|
|
//
|
|
// ---- First ]-------------------->
|
|
// ---- Second ]--[ Second+1 ---------->
|
|
//
|
|
// We don't know the relationship between First->From and
|
|
// Second->From and we don't know whether Second+1 intersects
|
|
// with First.
|
|
//
|
|
// However, we know that [IntersectionStart, Second->To] is
|
|
// a part of the intersection...
|
|
Result.push_back(Range(IntersectionStart, Second->To()));
|
|
++Second;
|
|
// ...and that the invariant will hold for a valid Second+1
|
|
// because First->From <= Second->To < (Second+1)->From.
|
|
} while (Second != SecondEnd);
|
|
}
|
|
|
|
if (Result.empty())
|
|
return getEmptySet();
|
|
|
|
return makePersistent(std::move(Result));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::intersect(RangeSet LHS, RangeSet RHS) {
|
|
// Shortcut: let's see if the intersection is even possible.
|
|
if (LHS.isEmpty() || RHS.isEmpty() || LHS.getMaxValue() < RHS.getMinValue() ||
|
|
RHS.getMaxValue() < LHS.getMinValue())
|
|
return getEmptySet();
|
|
|
|
return intersect(*LHS.Impl, *RHS.Impl);
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::intersect(RangeSet LHS, llvm::APSInt Point) {
|
|
if (LHS.containsImpl(Point))
|
|
return getRangeSet(ValueFactory.getValue(Point));
|
|
|
|
return getEmptySet();
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::negate(RangeSet What) {
|
|
if (What.isEmpty())
|
|
return getEmptySet();
|
|
|
|
const llvm::APSInt SampleValue = What.getMinValue();
|
|
const llvm::APSInt &MIN = ValueFactory.getMinValue(SampleValue);
|
|
const llvm::APSInt &MAX = ValueFactory.getMaxValue(SampleValue);
|
|
|
|
ContainerType Result;
|
|
Result.reserve(What.size() + (SampleValue == MIN));
|
|
|
|
// Handle a special case for MIN value.
|
|
const_iterator It = What.begin();
|
|
const_iterator End = What.end();
|
|
|
|
const llvm::APSInt &From = It->From();
|
|
const llvm::APSInt &To = It->To();
|
|
|
|
if (From == MIN) {
|
|
// If the range [From, To] is [MIN, MAX], then result is also [MIN, MAX].
|
|
if (To == MAX) {
|
|
return What;
|
|
}
|
|
|
|
const_iterator Last = std::prev(End);
|
|
|
|
// Try to find and unite the following ranges:
|
|
// [MIN, MIN] & [MIN + 1, N] => [MIN, N].
|
|
if (Last->To() == MAX) {
|
|
// It means that in the original range we have ranges
|
|
// [MIN, A], ... , [B, MAX]
|
|
// And the result should be [MIN, -B], ..., [-A, MAX]
|
|
Result.emplace_back(MIN, ValueFactory.getValue(-Last->From()));
|
|
// We already negated Last, so we can skip it.
|
|
End = Last;
|
|
} else {
|
|
// Add a separate range for the lowest value.
|
|
Result.emplace_back(MIN, MIN);
|
|
}
|
|
|
|
// Skip adding the second range in case when [From, To] are [MIN, MIN].
|
|
if (To != MIN) {
|
|
Result.emplace_back(ValueFactory.getValue(-To), MAX);
|
|
}
|
|
|
|
// Skip the first range in the loop.
|
|
++It;
|
|
}
|
|
|
|
// Negate all other ranges.
|
|
for (; It != End; ++It) {
|
|
// Negate int values.
|
|
const llvm::APSInt &NewFrom = ValueFactory.getValue(-It->To());
|
|
const llvm::APSInt &NewTo = ValueFactory.getValue(-It->From());
|
|
|
|
// Add a negated range.
|
|
Result.emplace_back(NewFrom, NewTo);
|
|
}
|
|
|
|
llvm::sort(Result);
|
|
return makePersistent(std::move(Result));
|
|
}
|
|
|
|
// Convert range set to the given integral type using truncation and promotion.
|
|
// This works similar to APSIntType::apply function but for the range set.
|
|
RangeSet RangeSet::Factory::castTo(RangeSet What, APSIntType Ty) {
|
|
// Set is empty or NOOP (aka cast to the same type).
|
|
if (What.isEmpty() || What.getAPSIntType() == Ty)
|
|
return What;
|
|
|
|
const bool IsConversion = What.isUnsigned() != Ty.isUnsigned();
|
|
const bool IsTruncation = What.getBitWidth() > Ty.getBitWidth();
|
|
const bool IsPromotion = What.getBitWidth() < Ty.getBitWidth();
|
|
|
|
if (IsTruncation)
|
|
return makePersistent(truncateTo(What, Ty));
|
|
|
|
// Here we handle 2 cases:
|
|
// - IsConversion && !IsPromotion.
|
|
// In this case we handle changing a sign with same bitwidth: char -> uchar,
|
|
// uint -> int. Here we convert negatives to positives and positives which
|
|
// is out of range to negatives. We use convertTo function for that.
|
|
// - IsConversion && IsPromotion && !What.isUnsigned().
|
|
// In this case we handle changing a sign from signeds to unsigneds with
|
|
// higher bitwidth: char -> uint, int-> uint64. The point is that we also
|
|
// need convert negatives to positives and use convertTo function as well.
|
|
// For example, we don't need such a convertion when converting unsigned to
|
|
// signed with higher bitwidth, because all the values of unsigned is valid
|
|
// for the such signed.
|
|
if (IsConversion && (!IsPromotion || !What.isUnsigned()))
|
|
return makePersistent(convertTo(What, Ty));
|
|
|
|
assert(IsPromotion && "Only promotion operation from unsigneds left.");
|
|
return makePersistent(promoteTo(What, Ty));
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::castTo(RangeSet What, QualType T) {
|
|
assert(T->isIntegralOrEnumerationType() && "T shall be an integral type.");
|
|
return castTo(What, ValueFactory.getAPSIntType(T));
|
|
}
|
|
|
|
RangeSet::ContainerType RangeSet::Factory::truncateTo(RangeSet What,
|
|
APSIntType Ty) {
|
|
using llvm::APInt;
|
|
using llvm::APSInt;
|
|
ContainerType Result;
|
|
ContainerType Dummy;
|
|
// CastRangeSize is an amount of all possible values of cast type.
|
|
// Example: `char` has 256 values; `short` has 65536 values.
|
|
// But in fact we use `amount of values` - 1, because
|
|
// we can't keep `amount of values of UINT64` inside uint64_t.
|
|
// E.g. 256 is an amount of all possible values of `char` and we can't keep
|
|
// it inside `char`.
|
|
// And it's OK, it's enough to do correct calculations.
|
|
uint64_t CastRangeSize = APInt::getMaxValue(Ty.getBitWidth()).getZExtValue();
|
|
for (const Range &R : What) {
|
|
// Get bounds of the given range.
|
|
APSInt FromInt = R.From();
|
|
APSInt ToInt = R.To();
|
|
// CurrentRangeSize is an amount of all possible values of the current
|
|
// range minus one.
|
|
uint64_t CurrentRangeSize = (ToInt - FromInt).getZExtValue();
|
|
// This is an optimization for a specific case when this Range covers
|
|
// the whole range of the target type.
|
|
Dummy.clear();
|
|
if (CurrentRangeSize >= CastRangeSize) {
|
|
Dummy.emplace_back(ValueFactory.getMinValue(Ty),
|
|
ValueFactory.getMaxValue(Ty));
|
|
Result = std::move(Dummy);
|
|
break;
|
|
}
|
|
// Cast the bounds.
|
|
Ty.apply(FromInt);
|
|
Ty.apply(ToInt);
|
|
const APSInt &PersistentFrom = ValueFactory.getValue(FromInt);
|
|
const APSInt &PersistentTo = ValueFactory.getValue(ToInt);
|
|
if (FromInt > ToInt) {
|
|
Dummy.emplace_back(ValueFactory.getMinValue(Ty), PersistentTo);
|
|
Dummy.emplace_back(PersistentFrom, ValueFactory.getMaxValue(Ty));
|
|
} else
|
|
Dummy.emplace_back(PersistentFrom, PersistentTo);
|
|
// Every range retrieved after truncation potentialy has garbage values.
|
|
// So, we have to unite every next range with the previouses.
|
|
Result = unite(Result, Dummy);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
// Divide the convertion into two phases (presented as loops here).
|
|
// First phase(loop) works when casted values go in ascending order.
|
|
// E.g. char{1,3,5,127} -> uint{1,3,5,127}
|
|
// Interrupt the first phase and go to second one when casted values start
|
|
// go in descending order. That means that we crossed over the middle of
|
|
// the type value set (aka 0 for signeds and MAX/2+1 for unsigneds).
|
|
// For instance:
|
|
// 1: uchar{1,3,5,128,255} -> char{1,3,5,-128,-1}
|
|
// Here we put {1,3,5} to one array and {-128, -1} to another
|
|
// 2: char{-128,-127,-1,0,1,2} -> uchar{128,129,255,0,1,3}
|
|
// Here we put {128,129,255} to one array and {0,1,3} to another.
|
|
// After that we unite both arrays.
|
|
// NOTE: We don't just concatenate the arrays, because they may have
|
|
// adjacent ranges, e.g.:
|
|
// 1: char(-128, 127) -> uchar -> arr1(128, 255), arr2(0, 127) ->
|
|
// unite -> uchar(0, 255)
|
|
// 2: uchar(0, 1)U(254, 255) -> char -> arr1(0, 1), arr2(-2, -1) ->
|
|
// unite -> uchar(-2, 1)
|
|
RangeSet::ContainerType RangeSet::Factory::convertTo(RangeSet What,
|
|
APSIntType Ty) {
|
|
using llvm::APInt;
|
|
using llvm::APSInt;
|
|
using Bounds = std::pair<const APSInt &, const APSInt &>;
|
|
ContainerType AscendArray;
|
|
ContainerType DescendArray;
|
|
auto CastRange = [Ty, &VF = ValueFactory](const Range &R) -> Bounds {
|
|
// Get bounds of the given range.
|
|
APSInt FromInt = R.From();
|
|
APSInt ToInt = R.To();
|
|
// Cast the bounds.
|
|
Ty.apply(FromInt);
|
|
Ty.apply(ToInt);
|
|
return {VF.getValue(FromInt), VF.getValue(ToInt)};
|
|
};
|
|
// Phase 1. Fill the first array.
|
|
APSInt LastConvertedInt = Ty.getMinValue();
|
|
const auto *It = What.begin();
|
|
const auto *E = What.end();
|
|
while (It != E) {
|
|
Bounds NewBounds = CastRange(*(It++));
|
|
// If values stop going acsending order, go to the second phase(loop).
|
|
if (NewBounds.first < LastConvertedInt) {
|
|
DescendArray.emplace_back(NewBounds.first, NewBounds.second);
|
|
break;
|
|
}
|
|
// If the range contains a midpoint, then split the range.
|
|
// E.g. char(-5, 5) -> uchar(251, 5)
|
|
// Here we shall add a range (251, 255) to the first array and (0, 5) to the
|
|
// second one.
|
|
if (NewBounds.first > NewBounds.second) {
|
|
DescendArray.emplace_back(ValueFactory.getMinValue(Ty), NewBounds.second);
|
|
AscendArray.emplace_back(NewBounds.first, ValueFactory.getMaxValue(Ty));
|
|
} else
|
|
// Values are going acsending order.
|
|
AscendArray.emplace_back(NewBounds.first, NewBounds.second);
|
|
LastConvertedInt = NewBounds.first;
|
|
}
|
|
// Phase 2. Fill the second array.
|
|
while (It != E) {
|
|
Bounds NewBounds = CastRange(*(It++));
|
|
DescendArray.emplace_back(NewBounds.first, NewBounds.second);
|
|
}
|
|
// Unite both arrays.
|
|
return unite(AscendArray, DescendArray);
|
|
}
|
|
|
|
/// Promotion from unsigneds to signeds/unsigneds left.
|
|
RangeSet::ContainerType RangeSet::Factory::promoteTo(RangeSet What,
|
|
APSIntType Ty) {
|
|
ContainerType Result;
|
|
// We definitely know the size of the result set.
|
|
Result.reserve(What.size());
|
|
|
|
// Each unsigned value fits every larger type without any changes,
|
|
// whether the larger type is signed or unsigned. So just promote and push
|
|
// back each range one by one.
|
|
for (const Range &R : What) {
|
|
// Get bounds of the given range.
|
|
llvm::APSInt FromInt = R.From();
|
|
llvm::APSInt ToInt = R.To();
|
|
// Cast the bounds.
|
|
Ty.apply(FromInt);
|
|
Ty.apply(ToInt);
|
|
Result.emplace_back(ValueFactory.getValue(FromInt),
|
|
ValueFactory.getValue(ToInt));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
RangeSet RangeSet::Factory::deletePoint(RangeSet From,
|
|
const llvm::APSInt &Point) {
|
|
if (!From.contains(Point))
|
|
return From;
|
|
|
|
llvm::APSInt Upper = Point;
|
|
llvm::APSInt Lower = Point;
|
|
|
|
++Upper;
|
|
--Lower;
|
|
|
|
// Notice that the lower bound is greater than the upper bound.
|
|
return intersect(From, Upper, Lower);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void Range::dump(raw_ostream &OS) const {
|
|
OS << '[' << toString(From(), 10) << ", " << toString(To(), 10) << ']';
|
|
}
|
|
LLVM_DUMP_METHOD void Range::dump() const { dump(llvm::errs()); }
|
|
|
|
LLVM_DUMP_METHOD void RangeSet::dump(raw_ostream &OS) const {
|
|
OS << "{ ";
|
|
llvm::interleaveComma(*this, OS, [&OS](const Range &R) { R.dump(OS); });
|
|
OS << " }";
|
|
}
|
|
LLVM_DUMP_METHOD void RangeSet::dump() const { dump(llvm::errs()); }
|
|
|
|
REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(SymbolSet, SymbolRef)
|
|
|
|
namespace {
|
|
class EquivalenceClass;
|
|
} // end anonymous namespace
|
|
|
|
REGISTER_MAP_WITH_PROGRAMSTATE(ClassMap, SymbolRef, EquivalenceClass)
|
|
REGISTER_MAP_WITH_PROGRAMSTATE(ClassMembers, EquivalenceClass, SymbolSet)
|
|
REGISTER_MAP_WITH_PROGRAMSTATE(ConstraintRange, EquivalenceClass, RangeSet)
|
|
|
|
REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ClassSet, EquivalenceClass)
|
|
REGISTER_MAP_WITH_PROGRAMSTATE(DisequalityMap, EquivalenceClass, ClassSet)
|
|
|
|
namespace {
|
|
/// This class encapsulates a set of symbols equal to each other.
|
|
///
|
|
/// The main idea of the approach requiring such classes is in narrowing
|
|
/// and sharing constraints between symbols within the class. Also we can
|
|
/// conclude that there is no practical need in storing constraints for
|
|
/// every member of the class separately.
|
|
///
|
|
/// Main terminology:
|
|
///
|
|
/// * "Equivalence class" is an object of this class, which can be efficiently
|
|
/// compared to other classes. It represents the whole class without
|
|
/// storing the actual in it. The members of the class however can be
|
|
/// retrieved from the state.
|
|
///
|
|
/// * "Class members" are the symbols corresponding to the class. This means
|
|
/// that A == B for every member symbols A and B from the class. Members of
|
|
/// each class are stored in the state.
|
|
///
|
|
/// * "Trivial class" is a class that has and ever had only one same symbol.
|
|
///
|
|
/// * "Merge operation" merges two classes into one. It is the main operation
|
|
/// to produce non-trivial classes.
|
|
/// If, at some point, we can assume that two symbols from two distinct
|
|
/// classes are equal, we can merge these classes.
|
|
class EquivalenceClass : public llvm::FoldingSetNode {
|
|
public:
|
|
/// Find equivalence class for the given symbol in the given state.
|
|
[[nodiscard]] static inline EquivalenceClass find(ProgramStateRef State,
|
|
SymbolRef Sym);
|
|
|
|
/// Merge classes for the given symbols and return a new state.
|
|
[[nodiscard]] static inline ProgramStateRef merge(RangeSet::Factory &F,
|
|
ProgramStateRef State,
|
|
SymbolRef First,
|
|
SymbolRef Second);
|
|
// Merge this class with the given class and return a new state.
|
|
[[nodiscard]] inline ProgramStateRef
|
|
merge(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other);
|
|
|
|
/// Return a set of class members for the given state.
|
|
[[nodiscard]] inline SymbolSet getClassMembers(ProgramStateRef State) const;
|
|
|
|
/// Return true if the current class is trivial in the given state.
|
|
/// A class is trivial if and only if there is not any member relations stored
|
|
/// to it in State/ClassMembers.
|
|
/// An equivalence class with one member might seem as it does not hold any
|
|
/// meaningful information, i.e. that is a tautology. However, during the
|
|
/// removal of dead symbols we do not remove classes with one member for
|
|
/// resource and performance reasons. Consequently, a class with one member is
|
|
/// not necessarily trivial. It could happen that we have a class with two
|
|
/// members and then during the removal of dead symbols we remove one of its
|
|
/// members. In this case, the class is still non-trivial (it still has the
|
|
/// mappings in ClassMembers), even though it has only one member.
|
|
[[nodiscard]] inline bool isTrivial(ProgramStateRef State) const;
|
|
|
|
/// Return true if the current class is trivial and its only member is dead.
|
|
[[nodiscard]] inline bool isTriviallyDead(ProgramStateRef State,
|
|
SymbolReaper &Reaper) const;
|
|
|
|
[[nodiscard]] static inline ProgramStateRef
|
|
markDisequal(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First,
|
|
SymbolRef Second);
|
|
[[nodiscard]] static inline ProgramStateRef
|
|
markDisequal(RangeSet::Factory &F, ProgramStateRef State,
|
|
EquivalenceClass First, EquivalenceClass Second);
|
|
[[nodiscard]] inline ProgramStateRef
|
|
markDisequal(RangeSet::Factory &F, ProgramStateRef State,
|
|
EquivalenceClass Other) const;
|
|
[[nodiscard]] static inline ClassSet getDisequalClasses(ProgramStateRef State,
|
|
SymbolRef Sym);
|
|
[[nodiscard]] inline ClassSet getDisequalClasses(ProgramStateRef State) const;
|
|
[[nodiscard]] inline ClassSet
|
|
getDisequalClasses(DisequalityMapTy Map, ClassSet::Factory &Factory) const;
|
|
|
|
[[nodiscard]] static inline std::optional<bool>
|
|
areEqual(ProgramStateRef State, EquivalenceClass First,
|
|
EquivalenceClass Second);
|
|
[[nodiscard]] static inline std::optional<bool>
|
|
areEqual(ProgramStateRef State, SymbolRef First, SymbolRef Second);
|
|
|
|
/// Remove one member from the class.
|
|
[[nodiscard]] ProgramStateRef removeMember(ProgramStateRef State,
|
|
const SymbolRef Old);
|
|
|
|
/// Iterate over all symbols and try to simplify them.
|
|
[[nodiscard]] static inline ProgramStateRef simplify(SValBuilder &SVB,
|
|
RangeSet::Factory &F,
|
|
ProgramStateRef State,
|
|
EquivalenceClass Class);
|
|
|
|
void dumpToStream(ProgramStateRef State, raw_ostream &os) const;
|
|
LLVM_DUMP_METHOD void dump(ProgramStateRef State) const {
|
|
dumpToStream(State, llvm::errs());
|
|
}
|
|
|
|
/// Check equivalence data for consistency.
|
|
[[nodiscard]] LLVM_ATTRIBUTE_UNUSED static bool
|
|
isClassDataConsistent(ProgramStateRef State);
|
|
|
|
[[nodiscard]] QualType getType() const {
|
|
return getRepresentativeSymbol()->getType();
|
|
}
|
|
|
|
EquivalenceClass() = delete;
|
|
EquivalenceClass(const EquivalenceClass &) = default;
|
|
EquivalenceClass &operator=(const EquivalenceClass &) = delete;
|
|
EquivalenceClass(EquivalenceClass &&) = default;
|
|
EquivalenceClass &operator=(EquivalenceClass &&) = delete;
|
|
|
|
bool operator==(const EquivalenceClass &Other) const {
|
|
return ID == Other.ID;
|
|
}
|
|
bool operator<(const EquivalenceClass &Other) const { return ID < Other.ID; }
|
|
bool operator!=(const EquivalenceClass &Other) const {
|
|
return !operator==(Other);
|
|
}
|
|
|
|
static void Profile(llvm::FoldingSetNodeID &ID, uintptr_t CID) {
|
|
ID.AddInteger(CID);
|
|
}
|
|
|
|
void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, this->ID); }
|
|
|
|
private:
|
|
/* implicit */ EquivalenceClass(SymbolRef Sym)
|
|
: ID(reinterpret_cast<uintptr_t>(Sym)) {}
|
|
|
|
/// This function is intended to be used ONLY within the class.
|
|
/// The fact that ID is a pointer to a symbol is an implementation detail
|
|
/// and should stay that way.
|
|
/// In the current implementation, we use it to retrieve the only member
|
|
/// of the trivial class.
|
|
SymbolRef getRepresentativeSymbol() const {
|
|
return reinterpret_cast<SymbolRef>(ID);
|
|
}
|
|
static inline SymbolSet::Factory &getMembersFactory(ProgramStateRef State);
|
|
|
|
inline ProgramStateRef mergeImpl(RangeSet::Factory &F, ProgramStateRef State,
|
|
SymbolSet Members, EquivalenceClass Other,
|
|
SymbolSet OtherMembers);
|
|
|
|
static inline bool
|
|
addToDisequalityInfo(DisequalityMapTy &Info, ConstraintRangeTy &Constraints,
|
|
RangeSet::Factory &F, ProgramStateRef State,
|
|
EquivalenceClass First, EquivalenceClass Second);
|
|
|
|
/// This is a unique identifier of the class.
|
|
uintptr_t ID;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constraint functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
[[nodiscard]] LLVM_ATTRIBUTE_UNUSED bool
|
|
areFeasible(ConstraintRangeTy Constraints) {
|
|
return llvm::none_of(
|
|
Constraints,
|
|
[](const std::pair<EquivalenceClass, RangeSet> &ClassConstraint) {
|
|
return ClassConstraint.second.isEmpty();
|
|
});
|
|
}
|
|
|
|
[[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State,
|
|
EquivalenceClass Class) {
|
|
return State->get<ConstraintRange>(Class);
|
|
}
|
|
|
|
[[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
return getConstraint(State, EquivalenceClass::find(State, Sym));
|
|
}
|
|
|
|
[[nodiscard]] ProgramStateRef setConstraint(ProgramStateRef State,
|
|
EquivalenceClass Class,
|
|
RangeSet Constraint) {
|
|
return State->set<ConstraintRange>(Class, Constraint);
|
|
}
|
|
|
|
[[nodiscard]] ProgramStateRef setConstraints(ProgramStateRef State,
|
|
ConstraintRangeTy Constraints) {
|
|
return State->set<ConstraintRange>(Constraints);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Equality/diseqiality abstraction
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// A small helper function for detecting symbolic (dis)equality.
|
|
///
|
|
/// Equality check can have different forms (like a == b or a - b) and this
|
|
/// class encapsulates those away if the only thing the user wants to check -
|
|
/// whether it's equality/diseqiality or not.
|
|
///
|
|
/// \returns true if assuming this Sym to be true means equality of operands
|
|
/// false if it means disequality of operands
|
|
/// None otherwise
|
|
std::optional<bool> meansEquality(const SymSymExpr *Sym) {
|
|
switch (Sym->getOpcode()) {
|
|
case BO_Sub:
|
|
// This case is: A - B != 0 -> disequality check.
|
|
return false;
|
|
case BO_EQ:
|
|
// This case is: A == B != 0 -> equality check.
|
|
return true;
|
|
case BO_NE:
|
|
// This case is: A != B != 0 -> diseqiality check.
|
|
return false;
|
|
default:
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Intersection functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <class SecondTy, class... RestTy>
|
|
[[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
|
|
SecondTy Second, RestTy... Tail);
|
|
|
|
template <class... RangeTy> struct IntersectionTraits;
|
|
|
|
template <class... TailTy> struct IntersectionTraits<RangeSet, TailTy...> {
|
|
// Found RangeSet, no need to check any further
|
|
using Type = RangeSet;
|
|
};
|
|
|
|
template <> struct IntersectionTraits<> {
|
|
// We ran out of types, and we didn't find any RangeSet, so the result should
|
|
// be optional.
|
|
using Type = std::optional<RangeSet>;
|
|
};
|
|
|
|
template <class OptionalOrPointer, class... TailTy>
|
|
struct IntersectionTraits<OptionalOrPointer, TailTy...> {
|
|
// If current type is Optional or a raw pointer, we should keep looking.
|
|
using Type = typename IntersectionTraits<TailTy...>::Type;
|
|
};
|
|
|
|
template <class EndTy>
|
|
[[nodiscard]] inline EndTy intersect(RangeSet::Factory &F, EndTy End) {
|
|
// If the list contains only RangeSet or std::optional<RangeSet>, simply
|
|
// return that range set.
|
|
return End;
|
|
}
|
|
|
|
[[nodiscard]] LLVM_ATTRIBUTE_UNUSED inline std::optional<RangeSet>
|
|
intersect(RangeSet::Factory &F, const RangeSet *End) {
|
|
// This is an extraneous conversion from a raw pointer into
|
|
// std::optional<RangeSet>
|
|
if (End) {
|
|
return *End;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
template <class... RestTy>
|
|
[[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
|
|
RangeSet Second, RestTy... Tail) {
|
|
// Here we call either the <RangeSet,RangeSet,...> or <RangeSet,...> version
|
|
// of the function and can be sure that the result is RangeSet.
|
|
return intersect(F, F.intersect(Head, Second), Tail...);
|
|
}
|
|
|
|
template <class SecondTy, class... RestTy>
|
|
[[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
|
|
SecondTy Second, RestTy... Tail) {
|
|
if (Second) {
|
|
// Here we call the <RangeSet,RangeSet,...> version of the function...
|
|
return intersect(F, Head, *Second, Tail...);
|
|
}
|
|
// ...and here it is either <RangeSet,RangeSet,...> or <RangeSet,...>, which
|
|
// means that the result is definitely RangeSet.
|
|
return intersect(F, Head, Tail...);
|
|
}
|
|
|
|
/// Main generic intersect function.
|
|
/// It intersects all of the given range sets. If some of the given arguments
|
|
/// don't hold a range set (nullptr or std::nullopt), the function will skip
|
|
/// them.
|
|
///
|
|
/// Available representations for the arguments are:
|
|
/// * RangeSet
|
|
/// * std::optional<RangeSet>
|
|
/// * RangeSet *
|
|
/// Pointer to a RangeSet is automatically assumed to be nullable and will get
|
|
/// checked as well as the optional version. If this behaviour is undesired,
|
|
/// please dereference the pointer in the call.
|
|
///
|
|
/// Return type depends on the arguments' types. If we can be sure in compile
|
|
/// time that there will be a range set as a result, the returning type is
|
|
/// simply RangeSet, in other cases we have to back off to
|
|
/// std::optional<RangeSet>.
|
|
///
|
|
/// Please, prefer optional range sets to raw pointers. If the last argument is
|
|
/// a raw pointer and all previous arguments are std::nullopt, it will cost one
|
|
/// additional check to convert RangeSet * into std::optional<RangeSet>.
|
|
template <class HeadTy, class SecondTy, class... RestTy>
|
|
[[nodiscard]] inline
|
|
typename IntersectionTraits<HeadTy, SecondTy, RestTy...>::Type
|
|
intersect(RangeSet::Factory &F, HeadTy Head, SecondTy Second,
|
|
RestTy... Tail) {
|
|
if (Head) {
|
|
return intersect(F, *Head, Second, Tail...);
|
|
}
|
|
return intersect(F, Second, Tail...);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Symbolic reasoning logic
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// A little component aggregating all of the reasoning we have about
|
|
/// the ranges of symbolic expressions.
|
|
///
|
|
/// Even when we don't know the exact values of the operands, we still
|
|
/// can get a pretty good estimate of the result's range.
|
|
class SymbolicRangeInferrer
|
|
: public SymExprVisitor<SymbolicRangeInferrer, RangeSet> {
|
|
public:
|
|
template <class SourceType>
|
|
static RangeSet inferRange(RangeSet::Factory &F, ProgramStateRef State,
|
|
SourceType Origin) {
|
|
SymbolicRangeInferrer Inferrer(F, State);
|
|
return Inferrer.infer(Origin);
|
|
}
|
|
|
|
RangeSet VisitSymExpr(SymbolRef Sym) {
|
|
if (std::optional<RangeSet> RS = getRangeForNegatedSym(Sym))
|
|
return *RS;
|
|
// If we've reached this line, the actual type of the symbolic
|
|
// expression is not supported for advanced inference.
|
|
// In this case, we simply backoff to the default "let's simply
|
|
// infer the range from the expression's type".
|
|
return infer(Sym->getType());
|
|
}
|
|
|
|
RangeSet VisitUnarySymExpr(const UnarySymExpr *USE) {
|
|
if (std::optional<RangeSet> RS = getRangeForNegatedUnarySym(USE))
|
|
return *RS;
|
|
return infer(USE->getType());
|
|
}
|
|
|
|
RangeSet VisitSymIntExpr(const SymIntExpr *Sym) {
|
|
return VisitBinaryOperator(Sym);
|
|
}
|
|
|
|
RangeSet VisitIntSymExpr(const IntSymExpr *Sym) {
|
|
return VisitBinaryOperator(Sym);
|
|
}
|
|
|
|
RangeSet VisitSymSymExpr(const SymSymExpr *SSE) {
|
|
return intersect(
|
|
RangeFactory,
|
|
// If Sym is a difference of symbols A - B, then maybe we have range
|
|
// set stored for B - A.
|
|
//
|
|
// If we have range set stored for both A - B and B - A then
|
|
// calculate the effective range set by intersecting the range set
|
|
// for A - B and the negated range set of B - A.
|
|
getRangeForNegatedSymSym(SSE),
|
|
// If Sym is a comparison expression (except <=>),
|
|
// find any other comparisons with the same operands.
|
|
// See function description.
|
|
getRangeForComparisonSymbol(SSE),
|
|
// If Sym is (dis)equality, we might have some information
|
|
// on that in our equality classes data structure.
|
|
getRangeForEqualities(SSE),
|
|
// And we should always check what we can get from the operands.
|
|
VisitBinaryOperator(SSE));
|
|
}
|
|
|
|
private:
|
|
SymbolicRangeInferrer(RangeSet::Factory &F, ProgramStateRef S)
|
|
: ValueFactory(F.getValueFactory()), RangeFactory(F), State(S) {}
|
|
|
|
/// Infer range information from the given integer constant.
|
|
///
|
|
/// It's not a real "inference", but is here for operating with
|
|
/// sub-expressions in a more polymorphic manner.
|
|
RangeSet inferAs(const llvm::APSInt &Val, QualType) {
|
|
return {RangeFactory, Val};
|
|
}
|
|
|
|
/// Infer range information from symbol in the context of the given type.
|
|
RangeSet inferAs(SymbolRef Sym, QualType DestType) {
|
|
QualType ActualType = Sym->getType();
|
|
// Check that we can reason about the symbol at all.
|
|
if (ActualType->isIntegralOrEnumerationType() ||
|
|
Loc::isLocType(ActualType)) {
|
|
return infer(Sym);
|
|
}
|
|
// Otherwise, let's simply infer from the destination type.
|
|
// We couldn't figure out nothing else about that expression.
|
|
return infer(DestType);
|
|
}
|
|
|
|
RangeSet infer(SymbolRef Sym) {
|
|
return intersect(RangeFactory,
|
|
// Of course, we should take the constraint directly
|
|
// associated with this symbol into consideration.
|
|
getConstraint(State, Sym),
|
|
// Apart from the Sym itself, we can infer quite a lot if
|
|
// we look into subexpressions of Sym.
|
|
Visit(Sym));
|
|
}
|
|
|
|
RangeSet infer(EquivalenceClass Class) {
|
|
if (const RangeSet *AssociatedConstraint = getConstraint(State, Class))
|
|
return *AssociatedConstraint;
|
|
|
|
return infer(Class.getType());
|
|
}
|
|
|
|
/// Infer range information solely from the type.
|
|
RangeSet infer(QualType T) {
|
|
// Lazily generate a new RangeSet representing all possible values for the
|
|
// given symbol type.
|
|
RangeSet Result(RangeFactory, ValueFactory.getMinValue(T),
|
|
ValueFactory.getMaxValue(T));
|
|
|
|
// References are known to be non-zero.
|
|
if (T->isReferenceType())
|
|
return assumeNonZero(Result, T);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template <class BinarySymExprTy>
|
|
RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) {
|
|
// TODO #1: VisitBinaryOperator implementation might not make a good
|
|
// use of the inferred ranges. In this case, we might be calculating
|
|
// everything for nothing. This being said, we should introduce some
|
|
// sort of laziness mechanism here.
|
|
//
|
|
// TODO #2: We didn't go into the nested expressions before, so it
|
|
// might cause us spending much more time doing the inference.
|
|
// This can be a problem for deeply nested expressions that are
|
|
// involved in conditions and get tested continuously. We definitely
|
|
// need to address this issue and introduce some sort of caching
|
|
// in here.
|
|
QualType ResultType = Sym->getType();
|
|
return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType),
|
|
Sym->getOpcode(),
|
|
inferAs(Sym->getRHS(), ResultType), ResultType);
|
|
}
|
|
|
|
RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op,
|
|
RangeSet RHS, QualType T);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Ranges and operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return a rough approximation of the given range set.
|
|
///
|
|
/// For the range set:
|
|
/// { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] }
|
|
/// it will return the range [x_0, y_N].
|
|
static Range fillGaps(RangeSet Origin) {
|
|
assert(!Origin.isEmpty());
|
|
return {Origin.getMinValue(), Origin.getMaxValue()};
|
|
}
|
|
|
|
/// Try to convert given range into the given type.
|
|
///
|
|
/// It will return std::nullopt only when the trivial conversion is possible.
|
|
std::optional<Range> convert(const Range &Origin, APSIntType To) {
|
|
if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within ||
|
|
To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) {
|
|
return std::nullopt;
|
|
}
|
|
return Range(ValueFactory.Convert(To, Origin.From()),
|
|
ValueFactory.Convert(To, Origin.To()));
|
|
}
|
|
|
|
template <BinaryOperator::Opcode Op>
|
|
RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) {
|
|
assert(!LHS.isEmpty() && !RHS.isEmpty());
|
|
|
|
Range CoarseLHS = fillGaps(LHS);
|
|
Range CoarseRHS = fillGaps(RHS);
|
|
|
|
APSIntType ResultType = ValueFactory.getAPSIntType(T);
|
|
|
|
// We need to convert ranges to the resulting type, so we can compare values
|
|
// and combine them in a meaningful (in terms of the given operation) way.
|
|
auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType);
|
|
auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType);
|
|
|
|
// It is hard to reason about ranges when conversion changes
|
|
// borders of the ranges.
|
|
if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) {
|
|
return infer(T);
|
|
}
|
|
|
|
return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T);
|
|
}
|
|
|
|
template <BinaryOperator::Opcode Op>
|
|
RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) {
|
|
return infer(T);
|
|
}
|
|
|
|
/// Return a symmetrical range for the given range and type.
|
|
///
|
|
/// If T is signed, return the smallest range [-x..x] that covers the original
|
|
/// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't
|
|
/// exist due to original range covering min(T)).
|
|
///
|
|
/// If T is unsigned, return the smallest range [0..x] that covers the
|
|
/// original range.
|
|
Range getSymmetricalRange(Range Origin, QualType T) {
|
|
APSIntType RangeType = ValueFactory.getAPSIntType(T);
|
|
|
|
if (RangeType.isUnsigned()) {
|
|
return Range(ValueFactory.getMinValue(RangeType), Origin.To());
|
|
}
|
|
|
|
if (Origin.From().isMinSignedValue()) {
|
|
// If mini is a minimal signed value, absolute value of it is greater
|
|
// than the maximal signed value. In order to avoid these
|
|
// complications, we simply return the whole range.
|
|
return {ValueFactory.getMinValue(RangeType),
|
|
ValueFactory.getMaxValue(RangeType)};
|
|
}
|
|
|
|
// At this point, we are sure that the type is signed and we can safely
|
|
// use unary - operator.
|
|
//
|
|
// While calculating absolute maximum, we can use the following formula
|
|
// because of these reasons:
|
|
// * If From >= 0 then To >= From and To >= -From.
|
|
// AbsMax == To == max(To, -From)
|
|
// * If To <= 0 then -From >= -To and -From >= From.
|
|
// AbsMax == -From == max(-From, To)
|
|
// * Otherwise, From <= 0, To >= 0, and
|
|
// AbsMax == max(abs(From), abs(To))
|
|
llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To());
|
|
|
|
// Intersection is guaranteed to be non-empty.
|
|
return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)};
|
|
}
|
|
|
|
/// Return a range set subtracting zero from \p Domain.
|
|
RangeSet assumeNonZero(RangeSet Domain, QualType T) {
|
|
APSIntType IntType = ValueFactory.getAPSIntType(T);
|
|
return RangeFactory.deletePoint(Domain, IntType.getZeroValue());
|
|
}
|
|
|
|
template <typename ProduceNegatedSymFunc>
|
|
std::optional<RangeSet> getRangeForNegatedExpr(ProduceNegatedSymFunc F,
|
|
QualType T) {
|
|
// Do not negate if the type cannot be meaningfully negated.
|
|
if (!T->isUnsignedIntegerOrEnumerationType() &&
|
|
!T->isSignedIntegerOrEnumerationType())
|
|
return std::nullopt;
|
|
|
|
if (SymbolRef NegatedSym = F())
|
|
if (const RangeSet *NegatedRange = getConstraint(State, NegatedSym))
|
|
return RangeFactory.negate(*NegatedRange);
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<RangeSet> getRangeForNegatedUnarySym(const UnarySymExpr *USE) {
|
|
// Just get the operand when we negate a symbol that is already negated.
|
|
// -(-a) == a
|
|
return getRangeForNegatedExpr(
|
|
[USE]() -> SymbolRef {
|
|
if (USE->getOpcode() == UO_Minus)
|
|
return USE->getOperand();
|
|
return nullptr;
|
|
},
|
|
USE->getType());
|
|
}
|
|
|
|
std::optional<RangeSet> getRangeForNegatedSymSym(const SymSymExpr *SSE) {
|
|
return getRangeForNegatedExpr(
|
|
[SSE, State = this->State]() -> SymbolRef {
|
|
if (SSE->getOpcode() == BO_Sub)
|
|
return State->getSymbolManager().getSymSymExpr(
|
|
SSE->getRHS(), BO_Sub, SSE->getLHS(), SSE->getType());
|
|
return nullptr;
|
|
},
|
|
SSE->getType());
|
|
}
|
|
|
|
std::optional<RangeSet> getRangeForNegatedSym(SymbolRef Sym) {
|
|
return getRangeForNegatedExpr(
|
|
[Sym, State = this->State]() {
|
|
return State->getSymbolManager().getUnarySymExpr(Sym, UO_Minus,
|
|
Sym->getType());
|
|
},
|
|
Sym->getType());
|
|
}
|
|
|
|
// Returns ranges only for binary comparison operators (except <=>)
|
|
// when left and right operands are symbolic values.
|
|
// Finds any other comparisons with the same operands.
|
|
// Then do logical calculations and refuse impossible branches.
|
|
// E.g. (x < y) and (x > y) at the same time are impossible.
|
|
// E.g. (x >= y) and (x != y) at the same time makes (x > y) true only.
|
|
// E.g. (x == y) and (y == x) are just reversed but the same.
|
|
// It covers all possible combinations (see CmpOpTable description).
|
|
// Note that `x` and `y` can also stand for subexpressions,
|
|
// not only for actual symbols.
|
|
std::optional<RangeSet> getRangeForComparisonSymbol(const SymSymExpr *SSE) {
|
|
const BinaryOperatorKind CurrentOP = SSE->getOpcode();
|
|
|
|
// We currently do not support <=> (C++20).
|
|
if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp))
|
|
return std::nullopt;
|
|
|
|
static const OperatorRelationsTable CmpOpTable{};
|
|
|
|
const SymExpr *LHS = SSE->getLHS();
|
|
const SymExpr *RHS = SSE->getRHS();
|
|
QualType T = SSE->getType();
|
|
|
|
SymbolManager &SymMgr = State->getSymbolManager();
|
|
|
|
// We use this variable to store the last queried operator (`QueriedOP`)
|
|
// for which the `getCmpOpState` returned with `Unknown`. If there are two
|
|
// different OPs that returned `Unknown` then we have to query the special
|
|
// `UnknownX2` column. We assume that `getCmpOpState(CurrentOP, CurrentOP)`
|
|
// never returns `Unknown`, so `CurrentOP` is a good initial value.
|
|
BinaryOperatorKind LastQueriedOpToUnknown = CurrentOP;
|
|
|
|
// Loop goes through all of the columns exept the last one ('UnknownX2').
|
|
// We treat `UnknownX2` column separately at the end of the loop body.
|
|
for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) {
|
|
|
|
// Let's find an expression e.g. (x < y).
|
|
BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i);
|
|
const SymSymExpr *SymSym = SymMgr.getSymSymExpr(LHS, QueriedOP, RHS, T);
|
|
const RangeSet *QueriedRangeSet = getConstraint(State, SymSym);
|
|
|
|
// If ranges were not previously found,
|
|
// try to find a reversed expression (y > x).
|
|
if (!QueriedRangeSet) {
|
|
const BinaryOperatorKind ROP =
|
|
BinaryOperator::reverseComparisonOp(QueriedOP);
|
|
SymSym = SymMgr.getSymSymExpr(RHS, ROP, LHS, T);
|
|
QueriedRangeSet = getConstraint(State, SymSym);
|
|
}
|
|
|
|
if (!QueriedRangeSet || QueriedRangeSet->isEmpty())
|
|
continue;
|
|
|
|
const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue();
|
|
const bool isInFalseBranch =
|
|
ConcreteValue ? (*ConcreteValue == 0) : false;
|
|
|
|
// If it is a false branch, we shall be guided by opposite operator,
|
|
// because the table is made assuming we are in the true branch.
|
|
// E.g. when (x <= y) is false, then (x > y) is true.
|
|
if (isInFalseBranch)
|
|
QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP);
|
|
|
|
OperatorRelationsTable::TriStateKind BranchState =
|
|
CmpOpTable.getCmpOpState(CurrentOP, QueriedOP);
|
|
|
|
if (BranchState == OperatorRelationsTable::Unknown) {
|
|
if (LastQueriedOpToUnknown != CurrentOP &&
|
|
LastQueriedOpToUnknown != QueriedOP) {
|
|
// If we got the Unknown state for both different operators.
|
|
// if (x <= y) // assume true
|
|
// if (x != y) // assume true
|
|
// if (x < y) // would be also true
|
|
// Get a state from `UnknownX2` column.
|
|
BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP);
|
|
} else {
|
|
LastQueriedOpToUnknown = QueriedOP;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return (BranchState == OperatorRelationsTable::True) ? getTrueRange(T)
|
|
: getFalseRange(T);
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<RangeSet> getRangeForEqualities(const SymSymExpr *Sym) {
|
|
std::optional<bool> Equality = meansEquality(Sym);
|
|
|
|
if (!Equality)
|
|
return std::nullopt;
|
|
|
|
if (std::optional<bool> AreEqual =
|
|
EquivalenceClass::areEqual(State, Sym->getLHS(), Sym->getRHS())) {
|
|
// Here we cover two cases at once:
|
|
// * if Sym is equality and its operands are known to be equal -> true
|
|
// * if Sym is disequality and its operands are disequal -> true
|
|
if (*AreEqual == *Equality) {
|
|
return getTrueRange(Sym->getType());
|
|
}
|
|
// Opposite combinations result in false.
|
|
return getFalseRange(Sym->getType());
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
RangeSet getTrueRange(QualType T) {
|
|
RangeSet TypeRange = infer(T);
|
|
return assumeNonZero(TypeRange, T);
|
|
}
|
|
|
|
RangeSet getFalseRange(QualType T) {
|
|
const llvm::APSInt &Zero = ValueFactory.getValue(0, T);
|
|
return RangeSet(RangeFactory, Zero);
|
|
}
|
|
|
|
BasicValueFactory &ValueFactory;
|
|
RangeSet::Factory &RangeFactory;
|
|
ProgramStateRef State;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Range-based reasoning about symbolic operations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <>
|
|
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_NE>(RangeSet LHS,
|
|
RangeSet RHS,
|
|
QualType T) {
|
|
assert(!LHS.isEmpty() && !RHS.isEmpty());
|
|
|
|
if (LHS.getAPSIntType() == RHS.getAPSIntType()) {
|
|
if (intersect(RangeFactory, LHS, RHS).isEmpty())
|
|
return getTrueRange(T);
|
|
|
|
} else {
|
|
// We can only lose information if we are casting smaller signed type to
|
|
// bigger unsigned type. For e.g.,
|
|
// LHS (unsigned short): [2, USHRT_MAX]
|
|
// RHS (signed short): [SHRT_MIN, 0]
|
|
//
|
|
// Casting RHS to LHS type will leave us with overlapping values
|
|
// CastedRHS : [0, 0] U [SHRT_MAX + 1, USHRT_MAX]
|
|
//
|
|
// We can avoid this by checking if signed type's maximum value is lesser
|
|
// than unsigned type's minimum value.
|
|
|
|
// If both have different signs then only we can get more information.
|
|
if (LHS.isUnsigned() != RHS.isUnsigned()) {
|
|
if (LHS.isUnsigned() && (LHS.getBitWidth() >= RHS.getBitWidth())) {
|
|
if (RHS.getMaxValue().isNegative() ||
|
|
LHS.getAPSIntType().convert(RHS.getMaxValue()) < LHS.getMinValue())
|
|
return getTrueRange(T);
|
|
|
|
} else if (RHS.isUnsigned() && (LHS.getBitWidth() <= RHS.getBitWidth())) {
|
|
if (LHS.getMaxValue().isNegative() ||
|
|
RHS.getAPSIntType().convert(LHS.getMaxValue()) < RHS.getMinValue())
|
|
return getTrueRange(T);
|
|
}
|
|
}
|
|
|
|
// Both RangeSets should be casted to bigger unsigned type.
|
|
APSIntType CastingType(std::max(LHS.getBitWidth(), RHS.getBitWidth()),
|
|
LHS.isUnsigned() || RHS.isUnsigned());
|
|
|
|
RangeSet CastedLHS = RangeFactory.castTo(LHS, CastingType);
|
|
RangeSet CastedRHS = RangeFactory.castTo(RHS, CastingType);
|
|
|
|
if (intersect(RangeFactory, CastedLHS, CastedRHS).isEmpty())
|
|
return getTrueRange(T);
|
|
}
|
|
|
|
// In all other cases, the resulting range cannot be deduced.
|
|
return infer(T);
|
|
}
|
|
|
|
template <>
|
|
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS,
|
|
QualType T) {
|
|
APSIntType ResultType = ValueFactory.getAPSIntType(T);
|
|
llvm::APSInt Zero = ResultType.getZeroValue();
|
|
|
|
bool IsLHSPositiveOrZero = LHS.From() >= Zero;
|
|
bool IsRHSPositiveOrZero = RHS.From() >= Zero;
|
|
|
|
bool IsLHSNegative = LHS.To() < Zero;
|
|
bool IsRHSNegative = RHS.To() < Zero;
|
|
|
|
// Check if both ranges have the same sign.
|
|
if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
|
|
(IsLHSNegative && IsRHSNegative)) {
|
|
// The result is definitely greater or equal than any of the operands.
|
|
const llvm::APSInt &Min = std::max(LHS.From(), RHS.From());
|
|
|
|
// We estimate maximal value for positives as the maximal value for the
|
|
// given type. For negatives, we estimate it with -1 (e.g. 0x11111111).
|
|
//
|
|
// TODO: We basically, limit the resulting range from below, but don't do
|
|
// anything with the upper bound.
|
|
//
|
|
// For positive operands, it can be done as follows: for the upper
|
|
// bound of LHS and RHS we calculate the most significant bit set.
|
|
// Let's call it the N-th bit. Then we can estimate the maximal
|
|
// number to be 2^(N+1)-1, i.e. the number with all the bits up to
|
|
// the N-th bit set.
|
|
const llvm::APSInt &Max = IsLHSNegative
|
|
? ValueFactory.getValue(--Zero)
|
|
: ValueFactory.getMaxValue(ResultType);
|
|
|
|
return {RangeFactory, ValueFactory.getValue(Min), Max};
|
|
}
|
|
|
|
// Otherwise, let's check if at least one of the operands is negative.
|
|
if (IsLHSNegative || IsRHSNegative) {
|
|
// This means that the result is definitely negative as well.
|
|
return {RangeFactory, ValueFactory.getMinValue(ResultType),
|
|
ValueFactory.getValue(--Zero)};
|
|
}
|
|
|
|
RangeSet DefaultRange = infer(T);
|
|
|
|
// It is pretty hard to reason about operands with different signs
|
|
// (and especially with possibly different signs). We simply check if it
|
|
// can be zero. In order to conclude that the result could not be zero,
|
|
// at least one of the operands should be definitely not zero itself.
|
|
if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) {
|
|
return assumeNonZero(DefaultRange, T);
|
|
}
|
|
|
|
// Nothing much else to do here.
|
|
return DefaultRange;
|
|
}
|
|
|
|
template <>
|
|
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS,
|
|
Range RHS,
|
|
QualType T) {
|
|
APSIntType ResultType = ValueFactory.getAPSIntType(T);
|
|
llvm::APSInt Zero = ResultType.getZeroValue();
|
|
|
|
bool IsLHSPositiveOrZero = LHS.From() >= Zero;
|
|
bool IsRHSPositiveOrZero = RHS.From() >= Zero;
|
|
|
|
bool IsLHSNegative = LHS.To() < Zero;
|
|
bool IsRHSNegative = RHS.To() < Zero;
|
|
|
|
// Check if both ranges have the same sign.
|
|
if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
|
|
(IsLHSNegative && IsRHSNegative)) {
|
|
// The result is definitely less or equal than any of the operands.
|
|
const llvm::APSInt &Max = std::min(LHS.To(), RHS.To());
|
|
|
|
// We conservatively estimate lower bound to be the smallest positive
|
|
// or negative value corresponding to the sign of the operands.
|
|
const llvm::APSInt &Min = IsLHSNegative
|
|
? ValueFactory.getMinValue(ResultType)
|
|
: ValueFactory.getValue(Zero);
|
|
|
|
return {RangeFactory, Min, Max};
|
|
}
|
|
|
|
// Otherwise, let's check if at least one of the operands is positive.
|
|
if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) {
|
|
// This makes result definitely positive.
|
|
//
|
|
// We can also reason about a maximal value by finding the maximal
|
|
// value of the positive operand.
|
|
const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To();
|
|
|
|
// The minimal value on the other hand is much harder to reason about.
|
|
// The only thing we know for sure is that the result is positive.
|
|
return {RangeFactory, ValueFactory.getValue(Zero),
|
|
ValueFactory.getValue(Max)};
|
|
}
|
|
|
|
// Nothing much else to do here.
|
|
return infer(T);
|
|
}
|
|
|
|
template <>
|
|
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS,
|
|
Range RHS,
|
|
QualType T) {
|
|
llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue();
|
|
|
|
Range ConservativeRange = getSymmetricalRange(RHS, T);
|
|
|
|
llvm::APSInt Max = ConservativeRange.To();
|
|
llvm::APSInt Min = ConservativeRange.From();
|
|
|
|
if (Max == Zero) {
|
|
// It's an undefined behaviour to divide by 0 and it seems like we know
|
|
// for sure that RHS is 0. Let's say that the resulting range is
|
|
// simply infeasible for that matter.
|
|
return RangeFactory.getEmptySet();
|
|
}
|
|
|
|
// At this point, our conservative range is closed. The result, however,
|
|
// couldn't be greater than the RHS' maximal absolute value. Because of
|
|
// this reason, we turn the range into open (or half-open in case of
|
|
// unsigned integers).
|
|
//
|
|
// While we operate on integer values, an open interval (a, b) can be easily
|
|
// represented by the closed interval [a + 1, b - 1]. And this is exactly
|
|
// what we do next.
|
|
//
|
|
// If we are dealing with unsigned case, we shouldn't move the lower bound.
|
|
if (Min.isSigned()) {
|
|
++Min;
|
|
}
|
|
--Max;
|
|
|
|
bool IsLHSPositiveOrZero = LHS.From() >= Zero;
|
|
bool IsRHSPositiveOrZero = RHS.From() >= Zero;
|
|
|
|
// Remainder operator results with negative operands is implementation
|
|
// defined. Positive cases are much easier to reason about though.
|
|
if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) {
|
|
// If maximal value of LHS is less than maximal value of RHS,
|
|
// the result won't get greater than LHS.To().
|
|
Max = std::min(LHS.To(), Max);
|
|
// We want to check if it is a situation similar to the following:
|
|
//
|
|
// <------------|---[ LHS ]--------[ RHS ]----->
|
|
// -INF 0 +INF
|
|
//
|
|
// In this situation, we can conclude that (LHS / RHS) == 0 and
|
|
// (LHS % RHS) == LHS.
|
|
Min = LHS.To() < RHS.From() ? LHS.From() : Zero;
|
|
}
|
|
|
|
// Nevertheless, the symmetrical range for RHS is a conservative estimate
|
|
// for any sign of either LHS, or RHS.
|
|
return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)};
|
|
}
|
|
|
|
RangeSet SymbolicRangeInferrer::VisitBinaryOperator(RangeSet LHS,
|
|
BinaryOperator::Opcode Op,
|
|
RangeSet RHS, QualType T) {
|
|
// We should propagate information about unfeasbility of one of the
|
|
// operands to the resulting range.
|
|
if (LHS.isEmpty() || RHS.isEmpty()) {
|
|
return RangeFactory.getEmptySet();
|
|
}
|
|
|
|
switch (Op) {
|
|
case BO_NE:
|
|
return VisitBinaryOperator<BO_NE>(LHS, RHS, T);
|
|
case BO_Or:
|
|
return VisitBinaryOperator<BO_Or>(LHS, RHS, T);
|
|
case BO_And:
|
|
return VisitBinaryOperator<BO_And>(LHS, RHS, T);
|
|
case BO_Rem:
|
|
return VisitBinaryOperator<BO_Rem>(LHS, RHS, T);
|
|
default:
|
|
return infer(T);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constraint manager implementation details
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class RangeConstraintManager : public RangedConstraintManager {
|
|
public:
|
|
RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB)
|
|
: RangedConstraintManager(EE, SVB), F(getBasicVals()) {}
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// Implementation for interface from ConstraintManager.
|
|
//===------------------------------------------------------------------===//
|
|
|
|
bool haveEqualConstraints(ProgramStateRef S1,
|
|
ProgramStateRef S2) const override {
|
|
// NOTE: ClassMembers are as simple as back pointers for ClassMap,
|
|
// so comparing constraint ranges and class maps should be
|
|
// sufficient.
|
|
return S1->get<ConstraintRange>() == S2->get<ConstraintRange>() &&
|
|
S1->get<ClassMap>() == S2->get<ClassMap>();
|
|
}
|
|
|
|
bool canReasonAbout(SVal X) const override;
|
|
|
|
ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
|
|
|
|
const llvm::APSInt *getSymVal(ProgramStateRef State,
|
|
SymbolRef Sym) const override;
|
|
|
|
ProgramStateRef removeDeadBindings(ProgramStateRef State,
|
|
SymbolReaper &SymReaper) override;
|
|
|
|
void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n",
|
|
unsigned int Space = 0, bool IsDot = false) const override;
|
|
void printValue(raw_ostream &Out, ProgramStateRef State,
|
|
SymbolRef Sym) override;
|
|
void printConstraints(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL = "\n", unsigned int Space = 0,
|
|
bool IsDot = false) const;
|
|
void printEquivalenceClasses(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL = "\n", unsigned int Space = 0,
|
|
bool IsDot = false) const;
|
|
void printDisequalities(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL = "\n", unsigned int Space = 0,
|
|
bool IsDot = false) const;
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// Implementation for interface from RangedConstraintManager.
|
|
//===------------------------------------------------------------------===//
|
|
|
|
ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymWithinInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymOutsideInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
|
|
|
|
private:
|
|
RangeSet::Factory F;
|
|
|
|
RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
|
|
RangeSet getRange(ProgramStateRef State, EquivalenceClass Class);
|
|
ProgramStateRef setRange(ProgramStateRef State, SymbolRef Sym,
|
|
RangeSet Range);
|
|
ProgramStateRef setRange(ProgramStateRef State, EquivalenceClass Class,
|
|
RangeSet Range);
|
|
|
|
RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constraint assignment logic
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ConstraintAssignorBase is a small utility class that unifies visitor
|
|
/// for ranges with a visitor for constraints (rangeset/range/constant).
|
|
///
|
|
/// It is designed to have one derived class, but generally it can have more.
|
|
/// Derived class can control which types we handle by defining methods of the
|
|
/// following form:
|
|
///
|
|
/// bool handle${SYMBOL}To${CONSTRAINT}(const SYMBOL *Sym,
|
|
/// CONSTRAINT Constraint);
|
|
///
|
|
/// where SYMBOL is the type of the symbol (e.g. SymSymExpr, SymbolCast, etc.)
|
|
/// CONSTRAINT is the type of constraint (RangeSet/Range/Const)
|
|
/// return value signifies whether we should try other handle methods
|
|
/// (i.e. false would mean to stop right after calling this method)
|
|
template <class Derived> class ConstraintAssignorBase {
|
|
public:
|
|
using Const = const llvm::APSInt &;
|
|
|
|
#define DISPATCH(CLASS) return assign##CLASS##Impl(cast<CLASS>(Sym), Constraint)
|
|
|
|
#define ASSIGN(CLASS, TO, SYM, CONSTRAINT) \
|
|
if (!static_cast<Derived *>(this)->assign##CLASS##To##TO(SYM, CONSTRAINT)) \
|
|
return false
|
|
|
|
void assign(SymbolRef Sym, RangeSet Constraint) {
|
|
assignImpl(Sym, Constraint);
|
|
}
|
|
|
|
bool assignImpl(SymbolRef Sym, RangeSet Constraint) {
|
|
switch (Sym->getKind()) {
|
|
#define SYMBOL(Id, Parent) \
|
|
case SymExpr::Id##Kind: \
|
|
DISPATCH(Id);
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def"
|
|
}
|
|
llvm_unreachable("Unknown SymExpr kind!");
|
|
}
|
|
|
|
#define DEFAULT_ASSIGN(Id) \
|
|
bool assign##Id##To##RangeSet(const Id *Sym, RangeSet Constraint) { \
|
|
return true; \
|
|
} \
|
|
bool assign##Id##To##Range(const Id *Sym, Range Constraint) { return true; } \
|
|
bool assign##Id##To##Const(const Id *Sym, Const Constraint) { return true; }
|
|
|
|
// When we dispatch for constraint types, we first try to check
|
|
// if the new constraint is the constant and try the corresponding
|
|
// assignor methods. If it didn't interrupt, we can proceed to the
|
|
// range, and finally to the range set.
|
|
#define CONSTRAINT_DISPATCH(Id) \
|
|
if (const llvm::APSInt *Const = Constraint.getConcreteValue()) { \
|
|
ASSIGN(Id, Const, Sym, *Const); \
|
|
} \
|
|
if (Constraint.size() == 1) { \
|
|
ASSIGN(Id, Range, Sym, *Constraint.begin()); \
|
|
} \
|
|
ASSIGN(Id, RangeSet, Sym, Constraint)
|
|
|
|
// Our internal assign method first tries to call assignor methods for all
|
|
// constraint types that apply. And if not interrupted, continues with its
|
|
// parent class.
|
|
#define SYMBOL(Id, Parent) \
|
|
bool assign##Id##Impl(const Id *Sym, RangeSet Constraint) { \
|
|
CONSTRAINT_DISPATCH(Id); \
|
|
DISPATCH(Parent); \
|
|
} \
|
|
DEFAULT_ASSIGN(Id)
|
|
#define ABSTRACT_SYMBOL(Id, Parent) SYMBOL(Id, Parent)
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def"
|
|
|
|
// Default implementations for the top class that doesn't have parents.
|
|
bool assignSymExprImpl(const SymExpr *Sym, RangeSet Constraint) {
|
|
CONSTRAINT_DISPATCH(SymExpr);
|
|
return true;
|
|
}
|
|
DEFAULT_ASSIGN(SymExpr);
|
|
|
|
#undef DISPATCH
|
|
#undef CONSTRAINT_DISPATCH
|
|
#undef DEFAULT_ASSIGN
|
|
#undef ASSIGN
|
|
};
|
|
|
|
/// A little component aggregating all of the reasoning we have about
|
|
/// assigning new constraints to symbols.
|
|
///
|
|
/// The main purpose of this class is to associate constraints to symbols,
|
|
/// and impose additional constraints on other symbols, when we can imply
|
|
/// them.
|
|
///
|
|
/// It has a nice symmetry with SymbolicRangeInferrer. When the latter
|
|
/// can provide more precise ranges by looking into the operands of the
|
|
/// expression in question, ConstraintAssignor looks into the operands
|
|
/// to see if we can imply more from the new constraint.
|
|
class ConstraintAssignor : public ConstraintAssignorBase<ConstraintAssignor> {
|
|
public:
|
|
template <class ClassOrSymbol>
|
|
[[nodiscard]] static ProgramStateRef
|
|
assign(ProgramStateRef State, SValBuilder &Builder, RangeSet::Factory &F,
|
|
ClassOrSymbol CoS, RangeSet NewConstraint) {
|
|
if (!State || NewConstraint.isEmpty())
|
|
return nullptr;
|
|
|
|
ConstraintAssignor Assignor{State, Builder, F};
|
|
return Assignor.assign(CoS, NewConstraint);
|
|
}
|
|
|
|
/// Handle expressions like: a % b != 0.
|
|
template <typename SymT>
|
|
bool handleRemainderOp(const SymT *Sym, RangeSet Constraint) {
|
|
if (Sym->getOpcode() != BO_Rem)
|
|
return true;
|
|
// a % b != 0 implies that a != 0.
|
|
if (!Constraint.containsZero()) {
|
|
SVal SymSVal = Builder.makeSymbolVal(Sym->getLHS());
|
|
if (auto NonLocSymSVal = SymSVal.getAs<nonloc::SymbolVal>()) {
|
|
State = State->assume(*NonLocSymSVal, true);
|
|
if (!State)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline bool assignSymExprToConst(const SymExpr *Sym, Const Constraint);
|
|
inline bool assignSymIntExprToRangeSet(const SymIntExpr *Sym,
|
|
RangeSet Constraint) {
|
|
return handleRemainderOp(Sym, Constraint);
|
|
}
|
|
inline bool assignSymSymExprToRangeSet(const SymSymExpr *Sym,
|
|
RangeSet Constraint);
|
|
|
|
private:
|
|
ConstraintAssignor(ProgramStateRef State, SValBuilder &Builder,
|
|
RangeSet::Factory &F)
|
|
: State(State), Builder(Builder), RangeFactory(F) {}
|
|
using Base = ConstraintAssignorBase<ConstraintAssignor>;
|
|
|
|
/// Base method for handling new constraints for symbols.
|
|
[[nodiscard]] ProgramStateRef assign(SymbolRef Sym, RangeSet NewConstraint) {
|
|
// All constraints are actually associated with equivalence classes, and
|
|
// that's what we are going to do first.
|
|
State = assign(EquivalenceClass::find(State, Sym), NewConstraint);
|
|
if (!State)
|
|
return nullptr;
|
|
|
|
// And after that we can check what other things we can get from this
|
|
// constraint.
|
|
Base::assign(Sym, NewConstraint);
|
|
return State;
|
|
}
|
|
|
|
/// Base method for handling new constraints for classes.
|
|
[[nodiscard]] ProgramStateRef assign(EquivalenceClass Class,
|
|
RangeSet NewConstraint) {
|
|
// There is a chance that we might need to update constraints for the
|
|
// classes that are known to be disequal to Class.
|
|
//
|
|
// In order for this to be even possible, the new constraint should
|
|
// be simply a constant because we can't reason about range disequalities.
|
|
if (const llvm::APSInt *Point = NewConstraint.getConcreteValue()) {
|
|
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
ConstraintRangeTy::Factory &CF = State->get_context<ConstraintRange>();
|
|
|
|
// Add new constraint.
|
|
Constraints = CF.add(Constraints, Class, NewConstraint);
|
|
|
|
for (EquivalenceClass DisequalClass : Class.getDisequalClasses(State)) {
|
|
RangeSet UpdatedConstraint = SymbolicRangeInferrer::inferRange(
|
|
RangeFactory, State, DisequalClass);
|
|
|
|
UpdatedConstraint = RangeFactory.deletePoint(UpdatedConstraint, *Point);
|
|
|
|
// If we end up with at least one of the disequal classes to be
|
|
// constrained with an empty range-set, the state is infeasible.
|
|
if (UpdatedConstraint.isEmpty())
|
|
return nullptr;
|
|
|
|
Constraints = CF.add(Constraints, DisequalClass, UpdatedConstraint);
|
|
}
|
|
assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
|
|
"a state with infeasible constraints");
|
|
|
|
return setConstraints(State, Constraints);
|
|
}
|
|
|
|
return setConstraint(State, Class, NewConstraint);
|
|
}
|
|
|
|
ProgramStateRef trackDisequality(ProgramStateRef State, SymbolRef LHS,
|
|
SymbolRef RHS) {
|
|
return EquivalenceClass::markDisequal(RangeFactory, State, LHS, RHS);
|
|
}
|
|
|
|
ProgramStateRef trackEquality(ProgramStateRef State, SymbolRef LHS,
|
|
SymbolRef RHS) {
|
|
return EquivalenceClass::merge(RangeFactory, State, LHS, RHS);
|
|
}
|
|
|
|
[[nodiscard]] std::optional<bool> interpreteAsBool(RangeSet Constraint) {
|
|
assert(!Constraint.isEmpty() && "Empty ranges shouldn't get here");
|
|
|
|
if (Constraint.getConcreteValue())
|
|
return !Constraint.getConcreteValue()->isZero();
|
|
|
|
if (!Constraint.containsZero())
|
|
return true;
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
ProgramStateRef State;
|
|
SValBuilder &Builder;
|
|
RangeSet::Factory &RangeFactory;
|
|
};
|
|
|
|
bool ConstraintAssignor::assignSymExprToConst(const SymExpr *Sym,
|
|
const llvm::APSInt &Constraint) {
|
|
llvm::SmallSet<EquivalenceClass, 4> SimplifiedClasses;
|
|
// Iterate over all equivalence classes and try to simplify them.
|
|
ClassMembersTy Members = State->get<ClassMembers>();
|
|
for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) {
|
|
EquivalenceClass Class = ClassToSymbolSet.first;
|
|
State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class);
|
|
if (!State)
|
|
return false;
|
|
SimplifiedClasses.insert(Class);
|
|
}
|
|
|
|
// Trivial equivalence classes (those that have only one symbol member) are
|
|
// not stored in the State. Thus, we must skim through the constraints as
|
|
// well. And we try to simplify symbols in the constraints.
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) {
|
|
EquivalenceClass Class = ClassConstraint.first;
|
|
if (SimplifiedClasses.count(Class)) // Already simplified.
|
|
continue;
|
|
State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class);
|
|
if (!State)
|
|
return false;
|
|
}
|
|
|
|
// We may have trivial equivalence classes in the disequality info as
|
|
// well, and we need to simplify them.
|
|
DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
|
|
for (std::pair<EquivalenceClass, ClassSet> DisequalityEntry :
|
|
DisequalityInfo) {
|
|
EquivalenceClass Class = DisequalityEntry.first;
|
|
ClassSet DisequalClasses = DisequalityEntry.second;
|
|
State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class);
|
|
if (!State)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ConstraintAssignor::assignSymSymExprToRangeSet(const SymSymExpr *Sym,
|
|
RangeSet Constraint) {
|
|
if (!handleRemainderOp(Sym, Constraint))
|
|
return false;
|
|
|
|
std::optional<bool> ConstraintAsBool = interpreteAsBool(Constraint);
|
|
|
|
if (!ConstraintAsBool)
|
|
return true;
|
|
|
|
if (std::optional<bool> Equality = meansEquality(Sym)) {
|
|
// Here we cover two cases:
|
|
// * if Sym is equality and the new constraint is true -> Sym's operands
|
|
// should be marked as equal
|
|
// * if Sym is disequality and the new constraint is false -> Sym's
|
|
// operands should be also marked as equal
|
|
if (*Equality == *ConstraintAsBool) {
|
|
State = trackEquality(State, Sym->getLHS(), Sym->getRHS());
|
|
} else {
|
|
// Other combinations leave as with disequal operands.
|
|
State = trackDisequality(State, Sym->getLHS(), Sym->getRHS());
|
|
}
|
|
|
|
if (!State)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::unique_ptr<ConstraintManager>
|
|
ento::CreateRangeConstraintManager(ProgramStateManager &StMgr,
|
|
ExprEngine *Eng) {
|
|
return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
|
|
}
|
|
|
|
ConstraintMap ento::getConstraintMap(ProgramStateRef State) {
|
|
ConstraintMap::Factory &F = State->get_context<ConstraintMap>();
|
|
ConstraintMap Result = F.getEmptyMap();
|
|
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) {
|
|
EquivalenceClass Class = ClassConstraint.first;
|
|
SymbolSet ClassMembers = Class.getClassMembers(State);
|
|
assert(!ClassMembers.isEmpty() &&
|
|
"Class must always have at least one member!");
|
|
|
|
SymbolRef Representative = *ClassMembers.begin();
|
|
Result = F.add(Result, Representative, ClassConstraint.second);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// EqualityClass implementation details
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LLVM_DUMP_METHOD void EquivalenceClass::dumpToStream(ProgramStateRef State,
|
|
raw_ostream &os) const {
|
|
SymbolSet ClassMembers = getClassMembers(State);
|
|
for (const SymbolRef &MemberSym : ClassMembers) {
|
|
MemberSym->dump();
|
|
os << "\n";
|
|
}
|
|
}
|
|
|
|
inline EquivalenceClass EquivalenceClass::find(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
assert(State && "State should not be null");
|
|
assert(Sym && "Symbol should not be null");
|
|
// We store far from all Symbol -> Class mappings
|
|
if (const EquivalenceClass *NontrivialClass = State->get<ClassMap>(Sym))
|
|
return *NontrivialClass;
|
|
|
|
// This is a trivial class of Sym.
|
|
return Sym;
|
|
}
|
|
|
|
inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F,
|
|
ProgramStateRef State,
|
|
SymbolRef First,
|
|
SymbolRef Second) {
|
|
EquivalenceClass FirstClass = find(State, First);
|
|
EquivalenceClass SecondClass = find(State, Second);
|
|
|
|
return FirstClass.merge(F, State, SecondClass);
|
|
}
|
|
|
|
inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F,
|
|
ProgramStateRef State,
|
|
EquivalenceClass Other) {
|
|
// It is already the same class.
|
|
if (*this == Other)
|
|
return State;
|
|
|
|
// FIXME: As of now, we support only equivalence classes of the same type.
|
|
// This limitation is connected to the lack of explicit casts in
|
|
// our symbolic expression model.
|
|
//
|
|
// That means that for `int x` and `char y` we don't distinguish
|
|
// between these two very different cases:
|
|
// * `x == y`
|
|
// * `(char)x == y`
|
|
//
|
|
// The moment we introduce symbolic casts, this restriction can be
|
|
// lifted.
|
|
if (getType() != Other.getType())
|
|
return State;
|
|
|
|
SymbolSet Members = getClassMembers(State);
|
|
SymbolSet OtherMembers = Other.getClassMembers(State);
|
|
|
|
// We estimate the size of the class by the height of tree containing
|
|
// its members. Merging is not a trivial operation, so it's easier to
|
|
// merge the smaller class into the bigger one.
|
|
if (Members.getHeight() >= OtherMembers.getHeight()) {
|
|
return mergeImpl(F, State, Members, Other, OtherMembers);
|
|
} else {
|
|
return Other.mergeImpl(F, State, OtherMembers, *this, Members);
|
|
}
|
|
}
|
|
|
|
inline ProgramStateRef
|
|
EquivalenceClass::mergeImpl(RangeSet::Factory &RangeFactory,
|
|
ProgramStateRef State, SymbolSet MyMembers,
|
|
EquivalenceClass Other, SymbolSet OtherMembers) {
|
|
// Essentially what we try to recreate here is some kind of union-find
|
|
// data structure. It does have certain limitations due to persistence
|
|
// and the need to remove elements from classes.
|
|
//
|
|
// In this setting, EquialityClass object is the representative of the class
|
|
// or the parent element. ClassMap is a mapping of class members to their
|
|
// parent. Unlike the union-find structure, they all point directly to the
|
|
// class representative because we don't have an opportunity to actually do
|
|
// path compression when dealing with immutability. This means that we
|
|
// compress paths every time we do merges. It also means that we lose
|
|
// the main amortized complexity benefit from the original data structure.
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>();
|
|
|
|
// 1. If the merged classes have any constraints associated with them, we
|
|
// need to transfer them to the class we have left.
|
|
//
|
|
// Intersection here makes perfect sense because both of these constraints
|
|
// must hold for the whole new class.
|
|
if (std::optional<RangeSet> NewClassConstraint =
|
|
intersect(RangeFactory, getConstraint(State, *this),
|
|
getConstraint(State, Other))) {
|
|
// NOTE: Essentially, NewClassConstraint should NEVER be infeasible because
|
|
// range inferrer shouldn't generate ranges incompatible with
|
|
// equivalence classes. However, at the moment, due to imperfections
|
|
// in the solver, it is possible and the merge function can also
|
|
// return infeasible states aka null states.
|
|
if (NewClassConstraint->isEmpty())
|
|
// Infeasible state
|
|
return nullptr;
|
|
|
|
// No need in tracking constraints of a now-dissolved class.
|
|
Constraints = CRF.remove(Constraints, Other);
|
|
// Assign new constraints for this class.
|
|
Constraints = CRF.add(Constraints, *this, *NewClassConstraint);
|
|
|
|
assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
|
|
"a state with infeasible constraints");
|
|
|
|
State = State->set<ConstraintRange>(Constraints);
|
|
}
|
|
|
|
// 2. Get ALL equivalence-related maps
|
|
ClassMapTy Classes = State->get<ClassMap>();
|
|
ClassMapTy::Factory &CMF = State->get_context<ClassMap>();
|
|
|
|
ClassMembersTy Members = State->get<ClassMembers>();
|
|
ClassMembersTy::Factory &MF = State->get_context<ClassMembers>();
|
|
|
|
DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
|
|
DisequalityMapTy::Factory &DF = State->get_context<DisequalityMap>();
|
|
|
|
ClassSet::Factory &CF = State->get_context<ClassSet>();
|
|
SymbolSet::Factory &F = getMembersFactory(State);
|
|
|
|
// 2. Merge members of the Other class into the current class.
|
|
SymbolSet NewClassMembers = MyMembers;
|
|
for (SymbolRef Sym : OtherMembers) {
|
|
NewClassMembers = F.add(NewClassMembers, Sym);
|
|
// *this is now the class for all these new symbols.
|
|
Classes = CMF.add(Classes, Sym, *this);
|
|
}
|
|
|
|
// 3. Adjust member mapping.
|
|
//
|
|
// No need in tracking members of a now-dissolved class.
|
|
Members = MF.remove(Members, Other);
|
|
// Now only the current class is mapped to all the symbols.
|
|
Members = MF.add(Members, *this, NewClassMembers);
|
|
|
|
// 4. Update disequality relations
|
|
ClassSet DisequalToOther = Other.getDisequalClasses(DisequalityInfo, CF);
|
|
// We are about to merge two classes but they are already known to be
|
|
// non-equal. This is a contradiction.
|
|
if (DisequalToOther.contains(*this))
|
|
return nullptr;
|
|
|
|
if (!DisequalToOther.isEmpty()) {
|
|
ClassSet DisequalToThis = getDisequalClasses(DisequalityInfo, CF);
|
|
DisequalityInfo = DF.remove(DisequalityInfo, Other);
|
|
|
|
for (EquivalenceClass DisequalClass : DisequalToOther) {
|
|
DisequalToThis = CF.add(DisequalToThis, DisequalClass);
|
|
|
|
// Disequality is a symmetric relation meaning that if
|
|
// DisequalToOther not null then the set for DisequalClass is not
|
|
// empty and has at least Other.
|
|
ClassSet OriginalSetLinkedToOther =
|
|
*DisequalityInfo.lookup(DisequalClass);
|
|
|
|
// Other will be eliminated and we should replace it with the bigger
|
|
// united class.
|
|
ClassSet NewSet = CF.remove(OriginalSetLinkedToOther, Other);
|
|
NewSet = CF.add(NewSet, *this);
|
|
|
|
DisequalityInfo = DF.add(DisequalityInfo, DisequalClass, NewSet);
|
|
}
|
|
|
|
DisequalityInfo = DF.add(DisequalityInfo, *this, DisequalToThis);
|
|
State = State->set<DisequalityMap>(DisequalityInfo);
|
|
}
|
|
|
|
// 5. Update the state
|
|
State = State->set<ClassMap>(Classes);
|
|
State = State->set<ClassMembers>(Members);
|
|
|
|
return State;
|
|
}
|
|
|
|
inline SymbolSet::Factory &
|
|
EquivalenceClass::getMembersFactory(ProgramStateRef State) {
|
|
return State->get_context<SymbolSet>();
|
|
}
|
|
|
|
SymbolSet EquivalenceClass::getClassMembers(ProgramStateRef State) const {
|
|
if (const SymbolSet *Members = State->get<ClassMembers>(*this))
|
|
return *Members;
|
|
|
|
// This class is trivial, so we need to construct a set
|
|
// with just that one symbol from the class.
|
|
SymbolSet::Factory &F = getMembersFactory(State);
|
|
return F.add(F.getEmptySet(), getRepresentativeSymbol());
|
|
}
|
|
|
|
bool EquivalenceClass::isTrivial(ProgramStateRef State) const {
|
|
return State->get<ClassMembers>(*this) == nullptr;
|
|
}
|
|
|
|
bool EquivalenceClass::isTriviallyDead(ProgramStateRef State,
|
|
SymbolReaper &Reaper) const {
|
|
return isTrivial(State) && Reaper.isDead(getRepresentativeSymbol());
|
|
}
|
|
|
|
inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF,
|
|
ProgramStateRef State,
|
|
SymbolRef First,
|
|
SymbolRef Second) {
|
|
return markDisequal(RF, State, find(State, First), find(State, Second));
|
|
}
|
|
|
|
inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF,
|
|
ProgramStateRef State,
|
|
EquivalenceClass First,
|
|
EquivalenceClass Second) {
|
|
return First.markDisequal(RF, State, Second);
|
|
}
|
|
|
|
inline ProgramStateRef
|
|
EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State,
|
|
EquivalenceClass Other) const {
|
|
// If we know that two classes are equal, we can only produce an infeasible
|
|
// state.
|
|
if (*this == Other) {
|
|
return nullptr;
|
|
}
|
|
|
|
DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
|
|
// Disequality is a symmetric relation, so if we mark A as disequal to B,
|
|
// we should also mark B as disequalt to A.
|
|
if (!addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, *this,
|
|
Other) ||
|
|
!addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, Other,
|
|
*this))
|
|
return nullptr;
|
|
|
|
assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
|
|
"a state with infeasible constraints");
|
|
|
|
State = State->set<DisequalityMap>(DisequalityInfo);
|
|
State = State->set<ConstraintRange>(Constraints);
|
|
|
|
return State;
|
|
}
|
|
|
|
inline bool EquivalenceClass::addToDisequalityInfo(
|
|
DisequalityMapTy &Info, ConstraintRangeTy &Constraints,
|
|
RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass First,
|
|
EquivalenceClass Second) {
|
|
|
|
// 1. Get all of the required factories.
|
|
DisequalityMapTy::Factory &F = State->get_context<DisequalityMap>();
|
|
ClassSet::Factory &CF = State->get_context<ClassSet>();
|
|
ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>();
|
|
|
|
// 2. Add Second to the set of classes disequal to First.
|
|
const ClassSet *CurrentSet = Info.lookup(First);
|
|
ClassSet NewSet = CurrentSet ? *CurrentSet : CF.getEmptySet();
|
|
NewSet = CF.add(NewSet, Second);
|
|
|
|
Info = F.add(Info, First, NewSet);
|
|
|
|
// 3. If Second is known to be a constant, we can delete this point
|
|
// from the constraint asociated with First.
|
|
//
|
|
// So, if Second == 10, it means that First != 10.
|
|
// At the same time, the same logic does not apply to ranges.
|
|
if (const RangeSet *SecondConstraint = Constraints.lookup(Second))
|
|
if (const llvm::APSInt *Point = SecondConstraint->getConcreteValue()) {
|
|
|
|
RangeSet FirstConstraint = SymbolicRangeInferrer::inferRange(
|
|
RF, State, First.getRepresentativeSymbol());
|
|
|
|
FirstConstraint = RF.deletePoint(FirstConstraint, *Point);
|
|
|
|
// If the First class is about to be constrained with an empty
|
|
// range-set, the state is infeasible.
|
|
if (FirstConstraint.isEmpty())
|
|
return false;
|
|
|
|
Constraints = CRF.add(Constraints, First, FirstConstraint);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline std::optional<bool> EquivalenceClass::areEqual(ProgramStateRef State,
|
|
SymbolRef FirstSym,
|
|
SymbolRef SecondSym) {
|
|
return EquivalenceClass::areEqual(State, find(State, FirstSym),
|
|
find(State, SecondSym));
|
|
}
|
|
|
|
inline std::optional<bool> EquivalenceClass::areEqual(ProgramStateRef State,
|
|
EquivalenceClass First,
|
|
EquivalenceClass Second) {
|
|
// The same equivalence class => symbols are equal.
|
|
if (First == Second)
|
|
return true;
|
|
|
|
// Let's check if we know anything about these two classes being not equal to
|
|
// each other.
|
|
ClassSet DisequalToFirst = First.getDisequalClasses(State);
|
|
if (DisequalToFirst.contains(Second))
|
|
return false;
|
|
|
|
// It is not clear.
|
|
return std::nullopt;
|
|
}
|
|
|
|
[[nodiscard]] ProgramStateRef
|
|
EquivalenceClass::removeMember(ProgramStateRef State, const SymbolRef Old) {
|
|
|
|
SymbolSet ClsMembers = getClassMembers(State);
|
|
assert(ClsMembers.contains(Old));
|
|
|
|
// Remove `Old`'s Class->Sym relation.
|
|
SymbolSet::Factory &F = getMembersFactory(State);
|
|
ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>();
|
|
ClsMembers = F.remove(ClsMembers, Old);
|
|
// Ensure another precondition of the removeMember function (we can check
|
|
// this only with isEmpty, thus we have to do the remove first).
|
|
assert(!ClsMembers.isEmpty() &&
|
|
"Class should have had at least two members before member removal");
|
|
// Overwrite the existing members assigned to this class.
|
|
ClassMembersTy ClassMembersMap = State->get<ClassMembers>();
|
|
ClassMembersMap = EMFactory.add(ClassMembersMap, *this, ClsMembers);
|
|
State = State->set<ClassMembers>(ClassMembersMap);
|
|
|
|
// Remove `Old`'s Sym->Class relation.
|
|
ClassMapTy Classes = State->get<ClassMap>();
|
|
ClassMapTy::Factory &CMF = State->get_context<ClassMap>();
|
|
Classes = CMF.remove(Classes, Old);
|
|
State = State->set<ClassMap>(Classes);
|
|
|
|
return State;
|
|
}
|
|
|
|
// Re-evaluate an SVal with top-level `State->assume` logic.
|
|
[[nodiscard]] ProgramStateRef
|
|
reAssume(ProgramStateRef State, const RangeSet *Constraint, SVal TheValue) {
|
|
if (!Constraint)
|
|
return State;
|
|
|
|
const auto DefinedVal = TheValue.castAs<DefinedSVal>();
|
|
|
|
// If the SVal is 0, we can simply interpret that as `false`.
|
|
if (Constraint->encodesFalseRange())
|
|
return State->assume(DefinedVal, false);
|
|
|
|
// If the constraint does not encode 0 then we can interpret that as `true`
|
|
// AND as a Range(Set).
|
|
if (Constraint->encodesTrueRange()) {
|
|
State = State->assume(DefinedVal, true);
|
|
if (!State)
|
|
return nullptr;
|
|
// Fall through, re-assume based on the range values as well.
|
|
}
|
|
// Overestimate the individual Ranges with the RangeSet' lowest and
|
|
// highest values.
|
|
return State->assumeInclusiveRange(DefinedVal, Constraint->getMinValue(),
|
|
Constraint->getMaxValue(), true);
|
|
}
|
|
|
|
// Iterate over all symbols and try to simplify them. Once a symbol is
|
|
// simplified then we check if we can merge the simplified symbol's equivalence
|
|
// class to this class. This way, we simplify not just the symbols but the
|
|
// classes as well: we strive to keep the number of the classes to be the
|
|
// absolute minimum.
|
|
[[nodiscard]] ProgramStateRef
|
|
EquivalenceClass::simplify(SValBuilder &SVB, RangeSet::Factory &F,
|
|
ProgramStateRef State, EquivalenceClass Class) {
|
|
SymbolSet ClassMembers = Class.getClassMembers(State);
|
|
for (const SymbolRef &MemberSym : ClassMembers) {
|
|
|
|
const SVal SimplifiedMemberVal = simplifyToSVal(State, MemberSym);
|
|
const SymbolRef SimplifiedMemberSym = SimplifiedMemberVal.getAsSymbol();
|
|
|
|
// The symbol is collapsed to a constant, check if the current State is
|
|
// still feasible.
|
|
if (const auto CI = SimplifiedMemberVal.getAs<nonloc::ConcreteInt>()) {
|
|
const llvm::APSInt &SV = CI->getValue();
|
|
const RangeSet *ClassConstraint = getConstraint(State, Class);
|
|
// We have found a contradiction.
|
|
if (ClassConstraint && !ClassConstraint->contains(SV))
|
|
return nullptr;
|
|
}
|
|
|
|
if (SimplifiedMemberSym && MemberSym != SimplifiedMemberSym) {
|
|
// The simplified symbol should be the member of the original Class,
|
|
// however, it might be in another existing class at the moment. We
|
|
// have to merge these classes.
|
|
ProgramStateRef OldState = State;
|
|
State = merge(F, State, MemberSym, SimplifiedMemberSym);
|
|
if (!State)
|
|
return nullptr;
|
|
// No state change, no merge happened actually.
|
|
if (OldState == State)
|
|
continue;
|
|
|
|
// Be aware that `SimplifiedMemberSym` might refer to an already dead
|
|
// symbol. In that case, the eqclass of that might not be the same as the
|
|
// eqclass of `MemberSym`. This is because the dead symbols are not
|
|
// preserved in the `ClassMap`, hence
|
|
// `find(State, SimplifiedMemberSym)` will result in a trivial eqclass
|
|
// compared to the eqclass of `MemberSym`.
|
|
// These eqclasses should be the same if `SimplifiedMemberSym` is alive.
|
|
// --> assert(find(State, MemberSym) == find(State, SimplifiedMemberSym))
|
|
//
|
|
// Note that `MemberSym` must be alive here since that is from the
|
|
// `ClassMembers` where all the symbols are alive.
|
|
|
|
// Remove the old and more complex symbol.
|
|
State = find(State, MemberSym).removeMember(State, MemberSym);
|
|
|
|
// Query the class constraint again b/c that may have changed during the
|
|
// merge above.
|
|
const RangeSet *ClassConstraint = getConstraint(State, Class);
|
|
|
|
// Re-evaluate an SVal with top-level `State->assume`, this ignites
|
|
// a RECURSIVE algorithm that will reach a FIXPOINT.
|
|
//
|
|
// About performance and complexity: Let us assume that in a State we
|
|
// have N non-trivial equivalence classes and that all constraints and
|
|
// disequality info is related to non-trivial classes. In the worst case,
|
|
// we can simplify only one symbol of one class in each iteration. The
|
|
// number of symbols in one class cannot grow b/c we replace the old
|
|
// symbol with the simplified one. Also, the number of the equivalence
|
|
// classes can decrease only, b/c the algorithm does a merge operation
|
|
// optionally. We need N iterations in this case to reach the fixpoint.
|
|
// Thus, the steps needed to be done in the worst case is proportional to
|
|
// N*N.
|
|
//
|
|
// This worst case scenario can be extended to that case when we have
|
|
// trivial classes in the constraints and in the disequality map. This
|
|
// case can be reduced to the case with a State where there are only
|
|
// non-trivial classes. This is because a merge operation on two trivial
|
|
// classes results in one non-trivial class.
|
|
State = reAssume(State, ClassConstraint, SimplifiedMemberVal);
|
|
if (!State)
|
|
return nullptr;
|
|
}
|
|
}
|
|
return State;
|
|
}
|
|
|
|
inline ClassSet EquivalenceClass::getDisequalClasses(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
return find(State, Sym).getDisequalClasses(State);
|
|
}
|
|
|
|
inline ClassSet
|
|
EquivalenceClass::getDisequalClasses(ProgramStateRef State) const {
|
|
return getDisequalClasses(State->get<DisequalityMap>(),
|
|
State->get_context<ClassSet>());
|
|
}
|
|
|
|
inline ClassSet
|
|
EquivalenceClass::getDisequalClasses(DisequalityMapTy Map,
|
|
ClassSet::Factory &Factory) const {
|
|
if (const ClassSet *DisequalClasses = Map.lookup(*this))
|
|
return *DisequalClasses;
|
|
|
|
return Factory.getEmptySet();
|
|
}
|
|
|
|
bool EquivalenceClass::isClassDataConsistent(ProgramStateRef State) {
|
|
ClassMembersTy Members = State->get<ClassMembers>();
|
|
|
|
for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : Members) {
|
|
for (SymbolRef Member : ClassMembersPair.second) {
|
|
// Every member of the class should have a mapping back to the class.
|
|
if (find(State, Member) == ClassMembersPair.first) {
|
|
continue;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DisequalityMapTy Disequalities = State->get<DisequalityMap>();
|
|
for (std::pair<EquivalenceClass, ClassSet> DisequalityInfo : Disequalities) {
|
|
EquivalenceClass Class = DisequalityInfo.first;
|
|
ClassSet DisequalClasses = DisequalityInfo.second;
|
|
|
|
// There is no use in keeping empty sets in the map.
|
|
if (DisequalClasses.isEmpty())
|
|
return false;
|
|
|
|
// Disequality is symmetrical, i.e. for every Class A and B that A != B,
|
|
// B != A should also be true.
|
|
for (EquivalenceClass DisequalClass : DisequalClasses) {
|
|
const ClassSet *DisequalToDisequalClasses =
|
|
Disequalities.lookup(DisequalClass);
|
|
|
|
// It should be a set of at least one element: Class
|
|
if (!DisequalToDisequalClasses ||
|
|
!DisequalToDisequalClasses->contains(Class))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RangeConstraintManager implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool RangeConstraintManager::canReasonAbout(SVal X) const {
|
|
std::optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
|
|
if (SymVal && SymVal->isExpression()) {
|
|
const SymExpr *SE = SymVal->getSymbol();
|
|
|
|
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
|
|
switch (SIE->getOpcode()) {
|
|
// We don't reason yet about bitwise-constraints on symbolic values.
|
|
case BO_And:
|
|
case BO_Or:
|
|
case BO_Xor:
|
|
return false;
|
|
// We don't reason yet about these arithmetic constraints on
|
|
// symbolic values.
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_Rem:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
return false;
|
|
// All other cases.
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
|
|
// FIXME: Handle <=> here.
|
|
if (BinaryOperator::isEqualityOp(SSE->getOpcode()) ||
|
|
BinaryOperator::isRelationalOp(SSE->getOpcode())) {
|
|
// We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
|
|
// We've recently started producing Loc <> NonLoc comparisons (that
|
|
// result from casts of one of the operands between eg. intptr_t and
|
|
// void *), but we can't reason about them yet.
|
|
if (Loc::isLocType(SSE->getLHS()->getType())) {
|
|
return Loc::isLocType(SSE->getRHS()->getType());
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
const RangeSet *Ranges = getConstraint(State, Sym);
|
|
|
|
// If we don't have any information about this symbol, it's underconstrained.
|
|
if (!Ranges)
|
|
return ConditionTruthVal();
|
|
|
|
// If we have a concrete value, see if it's zero.
|
|
if (const llvm::APSInt *Value = Ranges->getConcreteValue())
|
|
return *Value == 0;
|
|
|
|
BasicValueFactory &BV = getBasicVals();
|
|
APSIntType IntType = BV.getAPSIntType(Sym->getType());
|
|
llvm::APSInt Zero = IntType.getZeroValue();
|
|
|
|
// Check if zero is in the set of possible values.
|
|
if (!Ranges->contains(Zero))
|
|
return false;
|
|
|
|
// Zero is a possible value, but it is not the /only/ possible value.
|
|
return ConditionTruthVal();
|
|
}
|
|
|
|
const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
|
|
SymbolRef Sym) const {
|
|
const RangeSet *T = getConstraint(St, Sym);
|
|
return T ? T->getConcreteValue() : nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Remove dead symbols from existing constraints
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Scan all symbols referenced by the constraints. If the symbol is not alive
|
|
/// as marked in LSymbols, mark it as dead in DSymbols.
|
|
ProgramStateRef
|
|
RangeConstraintManager::removeDeadBindings(ProgramStateRef State,
|
|
SymbolReaper &SymReaper) {
|
|
ClassMembersTy ClassMembersMap = State->get<ClassMembers>();
|
|
ClassMembersTy NewClassMembersMap = ClassMembersMap;
|
|
ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>();
|
|
SymbolSet::Factory &SetFactory = State->get_context<SymbolSet>();
|
|
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
ConstraintRangeTy NewConstraints = Constraints;
|
|
ConstraintRangeTy::Factory &ConstraintFactory =
|
|
State->get_context<ConstraintRange>();
|
|
|
|
ClassMapTy Map = State->get<ClassMap>();
|
|
ClassMapTy NewMap = Map;
|
|
ClassMapTy::Factory &ClassFactory = State->get_context<ClassMap>();
|
|
|
|
DisequalityMapTy Disequalities = State->get<DisequalityMap>();
|
|
DisequalityMapTy::Factory &DisequalityFactory =
|
|
State->get_context<DisequalityMap>();
|
|
ClassSet::Factory &ClassSetFactory = State->get_context<ClassSet>();
|
|
|
|
bool ClassMapChanged = false;
|
|
bool MembersMapChanged = false;
|
|
bool ConstraintMapChanged = false;
|
|
bool DisequalitiesChanged = false;
|
|
|
|
auto removeDeadClass = [&](EquivalenceClass Class) {
|
|
// Remove associated constraint ranges.
|
|
Constraints = ConstraintFactory.remove(Constraints, Class);
|
|
ConstraintMapChanged = true;
|
|
|
|
// Update disequality information to not hold any information on the
|
|
// removed class.
|
|
ClassSet DisequalClasses =
|
|
Class.getDisequalClasses(Disequalities, ClassSetFactory);
|
|
if (!DisequalClasses.isEmpty()) {
|
|
for (EquivalenceClass DisequalClass : DisequalClasses) {
|
|
ClassSet DisequalToDisequalSet =
|
|
DisequalClass.getDisequalClasses(Disequalities, ClassSetFactory);
|
|
// DisequalToDisequalSet is guaranteed to be non-empty for consistent
|
|
// disequality info.
|
|
assert(!DisequalToDisequalSet.isEmpty());
|
|
ClassSet NewSet = ClassSetFactory.remove(DisequalToDisequalSet, Class);
|
|
|
|
// No need in keeping an empty set.
|
|
if (NewSet.isEmpty()) {
|
|
Disequalities =
|
|
DisequalityFactory.remove(Disequalities, DisequalClass);
|
|
} else {
|
|
Disequalities =
|
|
DisequalityFactory.add(Disequalities, DisequalClass, NewSet);
|
|
}
|
|
}
|
|
// Remove the data for the class
|
|
Disequalities = DisequalityFactory.remove(Disequalities, Class);
|
|
DisequalitiesChanged = true;
|
|
}
|
|
};
|
|
|
|
// 1. Let's see if dead symbols are trivial and have associated constraints.
|
|
for (std::pair<EquivalenceClass, RangeSet> ClassConstraintPair :
|
|
Constraints) {
|
|
EquivalenceClass Class = ClassConstraintPair.first;
|
|
if (Class.isTriviallyDead(State, SymReaper)) {
|
|
// If this class is trivial, we can remove its constraints right away.
|
|
removeDeadClass(Class);
|
|
}
|
|
}
|
|
|
|
// 2. We don't need to track classes for dead symbols.
|
|
for (std::pair<SymbolRef, EquivalenceClass> SymbolClassPair : Map) {
|
|
SymbolRef Sym = SymbolClassPair.first;
|
|
|
|
if (SymReaper.isDead(Sym)) {
|
|
ClassMapChanged = true;
|
|
NewMap = ClassFactory.remove(NewMap, Sym);
|
|
}
|
|
}
|
|
|
|
// 3. Remove dead members from classes and remove dead non-trivial classes
|
|
// and their constraints.
|
|
for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair :
|
|
ClassMembersMap) {
|
|
EquivalenceClass Class = ClassMembersPair.first;
|
|
SymbolSet LiveMembers = ClassMembersPair.second;
|
|
bool MembersChanged = false;
|
|
|
|
for (SymbolRef Member : ClassMembersPair.second) {
|
|
if (SymReaper.isDead(Member)) {
|
|
MembersChanged = true;
|
|
LiveMembers = SetFactory.remove(LiveMembers, Member);
|
|
}
|
|
}
|
|
|
|
// Check if the class changed.
|
|
if (!MembersChanged)
|
|
continue;
|
|
|
|
MembersMapChanged = true;
|
|
|
|
if (LiveMembers.isEmpty()) {
|
|
// The class is dead now, we need to wipe it out of the members map...
|
|
NewClassMembersMap = EMFactory.remove(NewClassMembersMap, Class);
|
|
|
|
// ...and remove all of its constraints.
|
|
removeDeadClass(Class);
|
|
} else {
|
|
// We need to change the members associated with the class.
|
|
NewClassMembersMap =
|
|
EMFactory.add(NewClassMembersMap, Class, LiveMembers);
|
|
}
|
|
}
|
|
|
|
// 4. Update the state with new maps.
|
|
//
|
|
// Here we try to be humble and update a map only if it really changed.
|
|
if (ClassMapChanged)
|
|
State = State->set<ClassMap>(NewMap);
|
|
|
|
if (MembersMapChanged)
|
|
State = State->set<ClassMembers>(NewClassMembersMap);
|
|
|
|
if (ConstraintMapChanged)
|
|
State = State->set<ConstraintRange>(Constraints);
|
|
|
|
if (DisequalitiesChanged)
|
|
State = State->set<DisequalityMap>(Disequalities);
|
|
|
|
assert(EquivalenceClass::isClassDataConsistent(State));
|
|
|
|
return State;
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
return SymbolicRangeInferrer::inferRange(F, State, Sym);
|
|
}
|
|
|
|
ProgramStateRef RangeConstraintManager::setRange(ProgramStateRef State,
|
|
SymbolRef Sym,
|
|
RangeSet Range) {
|
|
return ConstraintAssignor::assign(State, getSValBuilder(), F, Sym, Range);
|
|
}
|
|
|
|
//===------------------------------------------------------------------------===
|
|
// assumeSymX methods: protected interface for RangeConstraintManager.
|
|
//===------------------------------------------------------------------------===/
|
|
|
|
// The syntax for ranges below is mathematical, using [x, y] for closed ranges
|
|
// and (x, y) for open ranges. These ranges are modular, corresponding with
|
|
// a common treatment of C integer overflow. This means that these methods
|
|
// do not have to worry about overflow; RangeSet::Intersect can handle such a
|
|
// "wraparound" range.
|
|
// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
|
|
// UINT_MAX, 0, 1, and 2.
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
|
|
return St;
|
|
|
|
llvm::APSInt Point = AdjustmentType.convert(Int) - Adjustment;
|
|
RangeSet New = getRange(St, Sym);
|
|
New = F.deletePoint(New, Point);
|
|
|
|
return setRange(St, Sym, New);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
|
|
return nullptr;
|
|
|
|
// [Int-Adjustment, Int-Adjustment]
|
|
llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
|
|
RangeSet New = getRange(St, Sym);
|
|
New = F.intersect(New, AdjInt);
|
|
|
|
return setRange(St, Sym, New);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return F.getEmptySet();
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return getRange(St, Sym);
|
|
}
|
|
|
|
// Special case for Int == Min. This is always false.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
if (ComparisonVal == Min)
|
|
return F.getEmptySet();
|
|
|
|
llvm::APSInt Lower = Min - Adjustment;
|
|
llvm::APSInt Upper = ComparisonVal - Adjustment;
|
|
--Upper;
|
|
|
|
RangeSet Result = getRange(St, Sym);
|
|
return F.intersect(Result, Lower, Upper);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
|
|
return setRange(St, Sym, New);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return getRange(St, Sym);
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return F.getEmptySet();
|
|
}
|
|
|
|
// Special case for Int == Max. This is always false.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
if (ComparisonVal == Max)
|
|
return F.getEmptySet();
|
|
|
|
llvm::APSInt Lower = ComparisonVal - Adjustment;
|
|
llvm::APSInt Upper = Max - Adjustment;
|
|
++Lower;
|
|
|
|
RangeSet SymRange = getRange(St, Sym);
|
|
return F.intersect(SymRange, Lower, Upper);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
|
|
return setRange(St, Sym, New);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return getRange(St, Sym);
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return F.getEmptySet();
|
|
}
|
|
|
|
// Special case for Int == Min. This is always feasible.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
if (ComparisonVal == Min)
|
|
return getRange(St, Sym);
|
|
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
llvm::APSInt Lower = ComparisonVal - Adjustment;
|
|
llvm::APSInt Upper = Max - Adjustment;
|
|
|
|
RangeSet SymRange = getRange(St, Sym);
|
|
return F.intersect(SymRange, Lower, Upper);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
|
|
return setRange(St, Sym, New);
|
|
}
|
|
|
|
RangeSet
|
|
RangeConstraintManager::getSymLERange(llvm::function_ref<RangeSet()> RS,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return F.getEmptySet();
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return RS();
|
|
}
|
|
|
|
// Special case for Int == Max. This is always feasible.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
if (ComparisonVal == Max)
|
|
return RS();
|
|
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
llvm::APSInt Lower = Min - Adjustment;
|
|
llvm::APSInt Upper = ComparisonVal - Adjustment;
|
|
|
|
RangeSet Default = RS();
|
|
return F.intersect(Default, Lower, Upper);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
|
|
return setRange(St, Sym, New);
|
|
}
|
|
|
|
ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymGERange(State, Sym, From, Adjustment);
|
|
if (New.isEmpty())
|
|
return nullptr;
|
|
RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment);
|
|
return setRange(State, Sym, Out);
|
|
}
|
|
|
|
ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
|
|
RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
|
|
RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
|
|
RangeSet New(F.add(RangeLT, RangeGT));
|
|
return setRange(State, Sym, New);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pretty-printing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL, unsigned int Space,
|
|
bool IsDot) const {
|
|
printConstraints(Out, State, NL, Space, IsDot);
|
|
printEquivalenceClasses(Out, State, NL, Space, IsDot);
|
|
printDisequalities(Out, State, NL, Space, IsDot);
|
|
}
|
|
|
|
void RangeConstraintManager::printValue(raw_ostream &Out, ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
const RangeSet RS = getRange(State, Sym);
|
|
Out << RS.getBitWidth() << (RS.isUnsigned() ? "u:" : "s:");
|
|
RS.dump(Out);
|
|
}
|
|
|
|
static std::string toString(const SymbolRef &Sym) {
|
|
std::string S;
|
|
llvm::raw_string_ostream O(S);
|
|
Sym->dumpToStream(O);
|
|
return O.str();
|
|
}
|
|
|
|
void RangeConstraintManager::printConstraints(raw_ostream &Out,
|
|
ProgramStateRef State,
|
|
const char *NL,
|
|
unsigned int Space,
|
|
bool IsDot) const {
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
|
|
Indent(Out, Space, IsDot) << "\"constraints\": ";
|
|
if (Constraints.isEmpty()) {
|
|
Out << "null," << NL;
|
|
return;
|
|
}
|
|
|
|
std::map<std::string, RangeSet> OrderedConstraints;
|
|
for (std::pair<EquivalenceClass, RangeSet> P : Constraints) {
|
|
SymbolSet ClassMembers = P.first.getClassMembers(State);
|
|
for (const SymbolRef &ClassMember : ClassMembers) {
|
|
bool insertion_took_place;
|
|
std::tie(std::ignore, insertion_took_place) =
|
|
OrderedConstraints.insert({toString(ClassMember), P.second});
|
|
assert(insertion_took_place &&
|
|
"two symbols should not have the same dump");
|
|
}
|
|
}
|
|
|
|
++Space;
|
|
Out << '[' << NL;
|
|
bool First = true;
|
|
for (std::pair<std::string, RangeSet> P : OrderedConstraints) {
|
|
if (First) {
|
|
First = false;
|
|
} else {
|
|
Out << ',';
|
|
Out << NL;
|
|
}
|
|
Indent(Out, Space, IsDot)
|
|
<< "{ \"symbol\": \"" << P.first << "\", \"range\": \"";
|
|
P.second.dump(Out);
|
|
Out << "\" }";
|
|
}
|
|
Out << NL;
|
|
|
|
--Space;
|
|
Indent(Out, Space, IsDot) << "]," << NL;
|
|
}
|
|
|
|
static std::string toString(ProgramStateRef State, EquivalenceClass Class) {
|
|
SymbolSet ClassMembers = Class.getClassMembers(State);
|
|
llvm::SmallVector<SymbolRef, 8> ClassMembersSorted(ClassMembers.begin(),
|
|
ClassMembers.end());
|
|
llvm::sort(ClassMembersSorted,
|
|
[](const SymbolRef &LHS, const SymbolRef &RHS) {
|
|
return toString(LHS) < toString(RHS);
|
|
});
|
|
|
|
bool FirstMember = true;
|
|
|
|
std::string Str;
|
|
llvm::raw_string_ostream Out(Str);
|
|
Out << "[ ";
|
|
for (SymbolRef ClassMember : ClassMembersSorted) {
|
|
if (FirstMember)
|
|
FirstMember = false;
|
|
else
|
|
Out << ", ";
|
|
Out << "\"" << ClassMember << "\"";
|
|
}
|
|
Out << " ]";
|
|
return Out.str();
|
|
}
|
|
|
|
void RangeConstraintManager::printEquivalenceClasses(raw_ostream &Out,
|
|
ProgramStateRef State,
|
|
const char *NL,
|
|
unsigned int Space,
|
|
bool IsDot) const {
|
|
ClassMembersTy Members = State->get<ClassMembers>();
|
|
|
|
Indent(Out, Space, IsDot) << "\"equivalence_classes\": ";
|
|
if (Members.isEmpty()) {
|
|
Out << "null," << NL;
|
|
return;
|
|
}
|
|
|
|
std::set<std::string> MembersStr;
|
|
for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members)
|
|
MembersStr.insert(toString(State, ClassToSymbolSet.first));
|
|
|
|
++Space;
|
|
Out << '[' << NL;
|
|
bool FirstClass = true;
|
|
for (const std::string &Str : MembersStr) {
|
|
if (FirstClass) {
|
|
FirstClass = false;
|
|
} else {
|
|
Out << ',';
|
|
Out << NL;
|
|
}
|
|
Indent(Out, Space, IsDot);
|
|
Out << Str;
|
|
}
|
|
Out << NL;
|
|
|
|
--Space;
|
|
Indent(Out, Space, IsDot) << "]," << NL;
|
|
}
|
|
|
|
void RangeConstraintManager::printDisequalities(raw_ostream &Out,
|
|
ProgramStateRef State,
|
|
const char *NL,
|
|
unsigned int Space,
|
|
bool IsDot) const {
|
|
DisequalityMapTy Disequalities = State->get<DisequalityMap>();
|
|
|
|
Indent(Out, Space, IsDot) << "\"disequality_info\": ";
|
|
if (Disequalities.isEmpty()) {
|
|
Out << "null," << NL;
|
|
return;
|
|
}
|
|
|
|
// Transform the disequality info to an ordered map of
|
|
// [string -> (ordered set of strings)]
|
|
using EqClassesStrTy = std::set<std::string>;
|
|
using DisequalityInfoStrTy = std::map<std::string, EqClassesStrTy>;
|
|
DisequalityInfoStrTy DisequalityInfoStr;
|
|
for (std::pair<EquivalenceClass, ClassSet> ClassToDisEqSet : Disequalities) {
|
|
EquivalenceClass Class = ClassToDisEqSet.first;
|
|
ClassSet DisequalClasses = ClassToDisEqSet.second;
|
|
EqClassesStrTy MembersStr;
|
|
for (EquivalenceClass DisEqClass : DisequalClasses)
|
|
MembersStr.insert(toString(State, DisEqClass));
|
|
DisequalityInfoStr.insert({toString(State, Class), MembersStr});
|
|
}
|
|
|
|
++Space;
|
|
Out << '[' << NL;
|
|
bool FirstClass = true;
|
|
for (std::pair<std::string, EqClassesStrTy> ClassToDisEqSet :
|
|
DisequalityInfoStr) {
|
|
const std::string &Class = ClassToDisEqSet.first;
|
|
if (FirstClass) {
|
|
FirstClass = false;
|
|
} else {
|
|
Out << ',';
|
|
Out << NL;
|
|
}
|
|
Indent(Out, Space, IsDot) << "{" << NL;
|
|
unsigned int DisEqSpace = Space + 1;
|
|
Indent(Out, DisEqSpace, IsDot) << "\"class\": ";
|
|
Out << Class;
|
|
const EqClassesStrTy &DisequalClasses = ClassToDisEqSet.second;
|
|
if (!DisequalClasses.empty()) {
|
|
Out << "," << NL;
|
|
Indent(Out, DisEqSpace, IsDot) << "\"disequal_to\": [" << NL;
|
|
unsigned int DisEqClassSpace = DisEqSpace + 1;
|
|
Indent(Out, DisEqClassSpace, IsDot);
|
|
bool FirstDisEqClass = true;
|
|
for (const std::string &DisEqClass : DisequalClasses) {
|
|
if (FirstDisEqClass) {
|
|
FirstDisEqClass = false;
|
|
} else {
|
|
Out << ',' << NL;
|
|
Indent(Out, DisEqClassSpace, IsDot);
|
|
}
|
|
Out << DisEqClass;
|
|
}
|
|
Out << "]" << NL;
|
|
}
|
|
Indent(Out, Space, IsDot) << "}";
|
|
}
|
|
Out << NL;
|
|
|
|
--Space;
|
|
Indent(Out, Space, IsDot) << "]," << NL;
|
|
}
|