
Similar to `IntegerRelation::addLocalFloorDiv`, this adds a utility `IntegerRelation::addLocalModulo` that adds and returns a local variable that is the modulus of an affine function of the variables modulo some constant modulus. The function returns the absolute index of the new var in the relation. This is computed by first finding the floordiv of `exprs // modulus = q` and then computing the remainder `result = exprs - q * modulus`. Signed-off-by: Asra Ali <asraa@google.com>
2675 lines
101 KiB
C++
2675 lines
101 KiB
C++
//===- IntegerRelation.cpp - MLIR IntegerRelation Class ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A class to represent an relation over integer tuples. A relation is
|
|
// represented as a constraint system over a space of tuples of integer valued
|
|
// variables supporting symbolic variables and existential quantification.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis/Presburger/IntegerRelation.h"
|
|
#include "mlir/Analysis/Presburger/Fraction.h"
|
|
#include "mlir/Analysis/Presburger/LinearTransform.h"
|
|
#include "mlir/Analysis/Presburger/PWMAFunction.h"
|
|
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
|
|
#include "mlir/Analysis/Presburger/PresburgerSpace.h"
|
|
#include "mlir/Analysis/Presburger/Simplex.h"
|
|
#include "mlir/Analysis/Presburger/Utils.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "presburger"
|
|
|
|
using namespace mlir;
|
|
using namespace presburger;
|
|
|
|
using llvm::SmallDenseMap;
|
|
|
|
std::unique_ptr<IntegerRelation> IntegerRelation::clone() const {
|
|
return std::make_unique<IntegerRelation>(*this);
|
|
}
|
|
|
|
std::unique_ptr<IntegerPolyhedron> IntegerPolyhedron::clone() const {
|
|
return std::make_unique<IntegerPolyhedron>(*this);
|
|
}
|
|
|
|
void IntegerRelation::setSpace(const PresburgerSpace &oSpace) {
|
|
assert(space.getNumVars() == oSpace.getNumVars() && "invalid space!");
|
|
space = oSpace;
|
|
}
|
|
|
|
void IntegerRelation::setSpaceExceptLocals(const PresburgerSpace &oSpace) {
|
|
assert(oSpace.getNumLocalVars() == 0 && "no locals should be present!");
|
|
assert(oSpace.getNumVars() <= getNumVars() && "invalid space!");
|
|
unsigned newNumLocals = getNumVars() - oSpace.getNumVars();
|
|
space = oSpace;
|
|
space.insertVar(VarKind::Local, 0, newNumLocals);
|
|
}
|
|
|
|
void IntegerRelation::setId(VarKind kind, unsigned i, Identifier id) {
|
|
assert(space.isUsingIds() &&
|
|
"space must be using identifiers to set an identifier");
|
|
assert(kind != VarKind::Local && "local variables cannot have identifiers");
|
|
assert(i < space.getNumVarKind(kind) && "invalid variable index");
|
|
space.setId(kind, i, id);
|
|
}
|
|
|
|
ArrayRef<Identifier> IntegerRelation::getIds(VarKind kind) {
|
|
if (!space.isUsingIds())
|
|
space.resetIds();
|
|
return space.getIds(kind);
|
|
}
|
|
|
|
void IntegerRelation::append(const IntegerRelation &other) {
|
|
assert(space.isEqual(other.getSpace()) && "Spaces must be equal.");
|
|
|
|
inequalities.reserveRows(inequalities.getNumRows() +
|
|
other.getNumInequalities());
|
|
equalities.reserveRows(equalities.getNumRows() + other.getNumEqualities());
|
|
|
|
for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
|
|
addInequality(other.getInequality(r));
|
|
}
|
|
for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
|
|
addEquality(other.getEquality(r));
|
|
}
|
|
}
|
|
|
|
IntegerRelation IntegerRelation::intersect(IntegerRelation other) const {
|
|
IntegerRelation result = *this;
|
|
result.mergeLocalVars(other);
|
|
result.append(other);
|
|
return result;
|
|
}
|
|
|
|
bool IntegerRelation::isEqual(const IntegerRelation &other) const {
|
|
assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible.");
|
|
return PresburgerRelation(*this).isEqual(PresburgerRelation(other));
|
|
}
|
|
|
|
bool IntegerRelation::isObviouslyEqual(const IntegerRelation &other) const {
|
|
if (!space.isEqual(other.getSpace()))
|
|
return false;
|
|
if (getNumEqualities() != other.getNumEqualities())
|
|
return false;
|
|
if (getNumInequalities() != other.getNumInequalities())
|
|
return false;
|
|
|
|
unsigned cols = getNumCols();
|
|
for (unsigned i = 0, eqs = getNumEqualities(); i < eqs; ++i) {
|
|
for (unsigned j = 0; j < cols; ++j) {
|
|
if (atEq(i, j) != other.atEq(i, j))
|
|
return false;
|
|
}
|
|
}
|
|
for (unsigned i = 0, ineqs = getNumInequalities(); i < ineqs; ++i) {
|
|
for (unsigned j = 0; j < cols; ++j) {
|
|
if (atIneq(i, j) != other.atIneq(i, j))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool IntegerRelation::isSubsetOf(const IntegerRelation &other) const {
|
|
assert(space.isCompatible(other.getSpace()) && "Spaces must be compatible.");
|
|
return PresburgerRelation(*this).isSubsetOf(PresburgerRelation(other));
|
|
}
|
|
|
|
MaybeOptimum<SmallVector<Fraction, 8>>
|
|
IntegerRelation::findRationalLexMin() const {
|
|
assert(getNumSymbolVars() == 0 && "Symbols are not supported!");
|
|
MaybeOptimum<SmallVector<Fraction, 8>> maybeLexMin =
|
|
LexSimplex(*this).findRationalLexMin();
|
|
|
|
if (!maybeLexMin.isBounded())
|
|
return maybeLexMin;
|
|
|
|
// The Simplex returns the lexmin over all the variables including locals. But
|
|
// locals are not actually part of the space and should not be returned in the
|
|
// result. Since the locals are placed last in the list of variables, they
|
|
// will be minimized last in the lexmin. So simply truncating out the locals
|
|
// from the end of the answer gives the desired lexmin over the dimensions.
|
|
assert(maybeLexMin->size() == getNumVars() &&
|
|
"Incorrect number of vars in lexMin!");
|
|
maybeLexMin->resize(getNumDimAndSymbolVars());
|
|
return maybeLexMin;
|
|
}
|
|
|
|
MaybeOptimum<SmallVector<DynamicAPInt, 8>>
|
|
IntegerRelation::findIntegerLexMin() const {
|
|
assert(getNumSymbolVars() == 0 && "Symbols are not supported!");
|
|
MaybeOptimum<SmallVector<DynamicAPInt, 8>> maybeLexMin =
|
|
LexSimplex(*this).findIntegerLexMin();
|
|
|
|
if (!maybeLexMin.isBounded())
|
|
return maybeLexMin.getKind();
|
|
|
|
// The Simplex returns the lexmin over all the variables including locals. But
|
|
// locals are not actually part of the space and should not be returned in the
|
|
// result. Since the locals are placed last in the list of variables, they
|
|
// will be minimized last in the lexmin. So simply truncating out the locals
|
|
// from the end of the answer gives the desired lexmin over the dimensions.
|
|
assert(maybeLexMin->size() == getNumVars() &&
|
|
"Incorrect number of vars in lexMin!");
|
|
maybeLexMin->resize(getNumDimAndSymbolVars());
|
|
return maybeLexMin;
|
|
}
|
|
|
|
static bool rangeIsZero(ArrayRef<DynamicAPInt> range) {
|
|
return llvm::all_of(range, [](const DynamicAPInt &x) { return x == 0; });
|
|
}
|
|
|
|
static void removeConstraintsInvolvingVarRange(IntegerRelation &poly,
|
|
unsigned begin, unsigned count) {
|
|
// We loop until i > 0 and index into i - 1 to avoid sign issues.
|
|
//
|
|
// We iterate backwards so that whether we remove constraint i - 1 or not, the
|
|
// next constraint to be tested is always i - 2.
|
|
for (unsigned i = poly.getNumEqualities(); i > 0; i--)
|
|
if (!rangeIsZero(poly.getEquality(i - 1).slice(begin, count)))
|
|
poly.removeEquality(i - 1);
|
|
for (unsigned i = poly.getNumInequalities(); i > 0; i--)
|
|
if (!rangeIsZero(poly.getInequality(i - 1).slice(begin, count)))
|
|
poly.removeInequality(i - 1);
|
|
}
|
|
|
|
IntegerRelation::CountsSnapshot IntegerRelation::getCounts() const {
|
|
return {getSpace(), getNumInequalities(), getNumEqualities()};
|
|
}
|
|
|
|
void IntegerRelation::truncateVarKind(VarKind kind, unsigned num) {
|
|
unsigned curNum = getNumVarKind(kind);
|
|
assert(num <= curNum && "Can't truncate to more vars!");
|
|
removeVarRange(kind, num, curNum);
|
|
}
|
|
|
|
void IntegerRelation::truncateVarKind(VarKind kind,
|
|
const CountsSnapshot &counts) {
|
|
truncateVarKind(kind, counts.getSpace().getNumVarKind(kind));
|
|
}
|
|
|
|
void IntegerRelation::truncate(const CountsSnapshot &counts) {
|
|
truncateVarKind(VarKind::Domain, counts);
|
|
truncateVarKind(VarKind::Range, counts);
|
|
truncateVarKind(VarKind::Symbol, counts);
|
|
truncateVarKind(VarKind::Local, counts);
|
|
removeInequalityRange(counts.getNumIneqs(), getNumInequalities());
|
|
removeEqualityRange(counts.getNumEqs(), getNumEqualities());
|
|
}
|
|
|
|
PresburgerRelation IntegerRelation::computeReprWithOnlyDivLocals() const {
|
|
// If there are no locals, we're done.
|
|
if (getNumLocalVars() == 0)
|
|
return PresburgerRelation(*this);
|
|
|
|
// Move all the non-div locals to the end, as the current API to
|
|
// SymbolicLexOpt requires these to form a contiguous range.
|
|
//
|
|
// Take a copy so we can perform mutations.
|
|
IntegerRelation copy = *this;
|
|
std::vector<MaybeLocalRepr> reprs(getNumLocalVars());
|
|
copy.getLocalReprs(&reprs);
|
|
|
|
// Iterate through all the locals. The last `numNonDivLocals` are the locals
|
|
// that have been scanned already and do not have division representations.
|
|
unsigned numNonDivLocals = 0;
|
|
unsigned offset = copy.getVarKindOffset(VarKind::Local);
|
|
for (unsigned i = 0, e = copy.getNumLocalVars(); i < e - numNonDivLocals;) {
|
|
if (!reprs[i]) {
|
|
// Whenever we come across a local that does not have a division
|
|
// representation, we swap it to the `numNonDivLocals`-th last position
|
|
// and increment `numNonDivLocal`s. `reprs` also needs to be swapped.
|
|
copy.swapVar(offset + i, offset + e - numNonDivLocals - 1);
|
|
std::swap(reprs[i], reprs[e - numNonDivLocals - 1]);
|
|
++numNonDivLocals;
|
|
continue;
|
|
}
|
|
++i;
|
|
}
|
|
|
|
// If there are no non-div locals, we're done.
|
|
if (numNonDivLocals == 0)
|
|
return PresburgerRelation(*this);
|
|
|
|
// We computeSymbolicIntegerLexMin by considering the non-div locals as
|
|
// "non-symbols" and considering everything else as "symbols". This will
|
|
// compute a function mapping assignments to "symbols" to the
|
|
// lexicographically minimal valid assignment of "non-symbols", when a
|
|
// satisfying assignment exists. It separately returns the set of assignments
|
|
// to the "symbols" such that a satisfying assignment to the "non-symbols"
|
|
// exists but the lexmin is unbounded. We basically want to find the set of
|
|
// values of the "symbols" such that an assignment to the "non-symbols"
|
|
// exists, which is the union of the domain of the returned lexmin function
|
|
// and the returned set of assignments to the "symbols" that makes the lexmin
|
|
// unbounded.
|
|
SymbolicLexOpt lexminResult =
|
|
SymbolicLexSimplex(copy, /*symbolOffset*/ 0,
|
|
IntegerPolyhedron(PresburgerSpace::getSetSpace(
|
|
/*numDims=*/copy.getNumVars() - numNonDivLocals)))
|
|
.computeSymbolicIntegerLexMin();
|
|
PresburgerRelation result =
|
|
lexminResult.lexopt.getDomain().unionSet(lexminResult.unboundedDomain);
|
|
|
|
// The result set might lie in the wrong space -- all its ids are dims.
|
|
// Set it to the desired space and return.
|
|
PresburgerSpace space = getSpace();
|
|
space.removeVarRange(VarKind::Local, 0, getNumLocalVars());
|
|
result.setSpace(space);
|
|
return result;
|
|
}
|
|
|
|
SymbolicLexOpt IntegerRelation::findSymbolicIntegerLexMin() const {
|
|
// Symbol and Domain vars will be used as symbols for symbolic lexmin.
|
|
// In other words, for every value of the symbols and domain, return the
|
|
// lexmin value of the (range, locals).
|
|
llvm::SmallBitVector isSymbol(getNumVars(), false);
|
|
isSymbol.set(getVarKindOffset(VarKind::Symbol),
|
|
getVarKindEnd(VarKind::Symbol));
|
|
isSymbol.set(getVarKindOffset(VarKind::Domain),
|
|
getVarKindEnd(VarKind::Domain));
|
|
// Compute the symbolic lexmin of the dims and locals, with the symbols being
|
|
// the actual symbols of this set.
|
|
// The resultant space of lexmin is the space of the relation itself.
|
|
SymbolicLexOpt result =
|
|
SymbolicLexSimplex(*this,
|
|
IntegerPolyhedron(PresburgerSpace::getSetSpace(
|
|
/*numDims=*/getNumDomainVars(),
|
|
/*numSymbols=*/getNumSymbolVars())),
|
|
isSymbol)
|
|
.computeSymbolicIntegerLexMin();
|
|
|
|
// We want to return only the lexmin over the dims, so strip the locals from
|
|
// the computed lexmin.
|
|
result.lexopt.removeOutputs(result.lexopt.getNumOutputs() - getNumLocalVars(),
|
|
result.lexopt.getNumOutputs());
|
|
return result;
|
|
}
|
|
|
|
/// findSymbolicIntegerLexMax is implemented using findSymbolicIntegerLexMin as
|
|
/// follows:
|
|
/// 1. A new relation is created which is `this` relation with the sign of
|
|
/// each dimension variable in range flipped;
|
|
/// 2. findSymbolicIntegerLexMin is called on the range negated relation to
|
|
/// compute the negated lexmax of `this` relation;
|
|
/// 3. The sign of the negated lexmax is flipped and returned.
|
|
SymbolicLexOpt IntegerRelation::findSymbolicIntegerLexMax() const {
|
|
IntegerRelation flippedRel = *this;
|
|
// Flip range sign by flipping the sign of range variables in all constraints.
|
|
for (unsigned j = getNumDomainVars(),
|
|
b = getNumDomainVars() + getNumRangeVars();
|
|
j < b; j++) {
|
|
for (unsigned i = 0, a = getNumEqualities(); i < a; i++)
|
|
flippedRel.atEq(i, j) = -1 * atEq(i, j);
|
|
for (unsigned i = 0, a = getNumInequalities(); i < a; i++)
|
|
flippedRel.atIneq(i, j) = -1 * atIneq(i, j);
|
|
}
|
|
// Compute negated lexmax by computing lexmin.
|
|
SymbolicLexOpt flippedSymbolicIntegerLexMax =
|
|
flippedRel.findSymbolicIntegerLexMin(),
|
|
symbolicIntegerLexMax(
|
|
flippedSymbolicIntegerLexMax.lexopt.getSpace());
|
|
// Get lexmax by flipping range sign in the PWMA constraints.
|
|
for (auto &flippedPiece :
|
|
flippedSymbolicIntegerLexMax.lexopt.getAllPieces()) {
|
|
IntMatrix mat = flippedPiece.output.getOutputMatrix();
|
|
for (unsigned i = 0, e = mat.getNumRows(); i < e; i++)
|
|
mat.negateRow(i);
|
|
MultiAffineFunction maf(flippedPiece.output.getSpace(), mat);
|
|
PWMAFunction::Piece piece = {flippedPiece.domain, maf};
|
|
symbolicIntegerLexMax.lexopt.addPiece(piece);
|
|
}
|
|
symbolicIntegerLexMax.unboundedDomain =
|
|
flippedSymbolicIntegerLexMax.unboundedDomain;
|
|
return symbolicIntegerLexMax;
|
|
}
|
|
|
|
PresburgerRelation
|
|
IntegerRelation::subtract(const PresburgerRelation &set) const {
|
|
return PresburgerRelation(*this).subtract(set);
|
|
}
|
|
|
|
unsigned IntegerRelation::insertVar(VarKind kind, unsigned pos, unsigned num) {
|
|
assert(pos <= getNumVarKind(kind));
|
|
|
|
unsigned insertPos = space.insertVar(kind, pos, num);
|
|
inequalities.insertColumns(insertPos, num);
|
|
equalities.insertColumns(insertPos, num);
|
|
return insertPos;
|
|
}
|
|
|
|
unsigned IntegerRelation::appendVar(VarKind kind, unsigned num) {
|
|
unsigned pos = getNumVarKind(kind);
|
|
return insertVar(kind, pos, num);
|
|
}
|
|
|
|
void IntegerRelation::addEquality(ArrayRef<DynamicAPInt> eq) {
|
|
assert(eq.size() == getNumCols());
|
|
unsigned row = equalities.appendExtraRow();
|
|
for (unsigned i = 0, e = eq.size(); i < e; ++i)
|
|
equalities(row, i) = eq[i];
|
|
}
|
|
|
|
void IntegerRelation::addInequality(ArrayRef<DynamicAPInt> inEq) {
|
|
assert(inEq.size() == getNumCols());
|
|
unsigned row = inequalities.appendExtraRow();
|
|
for (unsigned i = 0, e = inEq.size(); i < e; ++i)
|
|
inequalities(row, i) = inEq[i];
|
|
}
|
|
|
|
void IntegerRelation::removeVar(VarKind kind, unsigned pos) {
|
|
removeVarRange(kind, pos, pos + 1);
|
|
}
|
|
|
|
void IntegerRelation::removeVar(unsigned pos) { removeVarRange(pos, pos + 1); }
|
|
|
|
void IntegerRelation::removeVarRange(VarKind kind, unsigned varStart,
|
|
unsigned varLimit) {
|
|
assert(varLimit <= getNumVarKind(kind));
|
|
|
|
if (varStart >= varLimit)
|
|
return;
|
|
|
|
// Remove eliminated variables from the constraints.
|
|
unsigned offset = getVarKindOffset(kind);
|
|
equalities.removeColumns(offset + varStart, varLimit - varStart);
|
|
inequalities.removeColumns(offset + varStart, varLimit - varStart);
|
|
|
|
// Remove eliminated variables from the space.
|
|
space.removeVarRange(kind, varStart, varLimit);
|
|
}
|
|
|
|
void IntegerRelation::removeVarRange(unsigned varStart, unsigned varLimit) {
|
|
assert(varLimit <= getNumVars());
|
|
|
|
if (varStart >= varLimit)
|
|
return;
|
|
|
|
// Helper function to remove vars of the specified kind in the given range
|
|
// [start, limit), The range is absolute (i.e. it is not relative to the kind
|
|
// of variable). Also updates `limit` to reflect the deleted variables.
|
|
auto removeVarKindInRange = [this](VarKind kind, unsigned &start,
|
|
unsigned &limit) {
|
|
if (start >= limit)
|
|
return;
|
|
|
|
unsigned offset = getVarKindOffset(kind);
|
|
unsigned num = getNumVarKind(kind);
|
|
|
|
// Get `start`, `limit` relative to the specified kind.
|
|
unsigned relativeStart =
|
|
start <= offset ? 0 : std::min(num, start - offset);
|
|
unsigned relativeLimit =
|
|
limit <= offset ? 0 : std::min(num, limit - offset);
|
|
|
|
// Remove vars of the specified kind in the relative range.
|
|
removeVarRange(kind, relativeStart, relativeLimit);
|
|
|
|
// Update `limit` to reflect deleted variables.
|
|
// `start` does not need to be updated because any variables that are
|
|
// deleted are after position `start`.
|
|
limit -= relativeLimit - relativeStart;
|
|
};
|
|
|
|
removeVarKindInRange(VarKind::Domain, varStart, varLimit);
|
|
removeVarKindInRange(VarKind::Range, varStart, varLimit);
|
|
removeVarKindInRange(VarKind::Symbol, varStart, varLimit);
|
|
removeVarKindInRange(VarKind::Local, varStart, varLimit);
|
|
}
|
|
|
|
void IntegerRelation::removeEquality(unsigned pos) {
|
|
equalities.removeRow(pos);
|
|
}
|
|
|
|
void IntegerRelation::removeInequality(unsigned pos) {
|
|
inequalities.removeRow(pos);
|
|
}
|
|
|
|
void IntegerRelation::removeEqualityRange(unsigned start, unsigned end) {
|
|
if (start >= end)
|
|
return;
|
|
equalities.removeRows(start, end - start);
|
|
}
|
|
|
|
void IntegerRelation::removeInequalityRange(unsigned start, unsigned end) {
|
|
if (start >= end)
|
|
return;
|
|
inequalities.removeRows(start, end - start);
|
|
}
|
|
|
|
void IntegerRelation::swapVar(unsigned posA, unsigned posB) {
|
|
assert(posA < getNumVars() && "invalid position A");
|
|
assert(posB < getNumVars() && "invalid position B");
|
|
|
|
if (posA == posB)
|
|
return;
|
|
|
|
VarKind kindA = space.getVarKindAt(posA);
|
|
VarKind kindB = space.getVarKindAt(posB);
|
|
unsigned relativePosA = posA - getVarKindOffset(kindA);
|
|
unsigned relativePosB = posB - getVarKindOffset(kindB);
|
|
space.swapVar(kindA, kindB, relativePosA, relativePosB);
|
|
|
|
inequalities.swapColumns(posA, posB);
|
|
equalities.swapColumns(posA, posB);
|
|
}
|
|
|
|
void IntegerRelation::clearConstraints() {
|
|
equalities.resizeVertically(0);
|
|
inequalities.resizeVertically(0);
|
|
}
|
|
|
|
/// Gather all lower and upper bounds of the variable at `pos`, and
|
|
/// optionally any equalities on it. In addition, the bounds are to be
|
|
/// independent of variables in position range [`offset`, `offset` + `num`).
|
|
void IntegerRelation::getLowerAndUpperBoundIndices(
|
|
unsigned pos, SmallVectorImpl<unsigned> *lbIndices,
|
|
SmallVectorImpl<unsigned> *ubIndices, SmallVectorImpl<unsigned> *eqIndices,
|
|
unsigned offset, unsigned num) const {
|
|
assert(pos < getNumVars() && "invalid position");
|
|
assert(offset + num < getNumCols() && "invalid range");
|
|
|
|
// Checks for a constraint that has a non-zero coeff for the variables in
|
|
// the position range [offset, offset + num) while ignoring `pos`.
|
|
auto containsConstraintDependentOnRange = [&](unsigned r, bool isEq) {
|
|
unsigned c, f;
|
|
auto cst = isEq ? getEquality(r) : getInequality(r);
|
|
for (c = offset, f = offset + num; c < f; ++c) {
|
|
if (c == pos)
|
|
continue;
|
|
if (cst[c] != 0)
|
|
break;
|
|
}
|
|
return c < f;
|
|
};
|
|
|
|
// Gather all lower bounds and upper bounds of the variable. Since the
|
|
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
|
|
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
|
|
// The bounds are to be independent of [offset, offset + num) columns.
|
|
if (containsConstraintDependentOnRange(r, /*isEq=*/false))
|
|
continue;
|
|
if (atIneq(r, pos) >= 1) {
|
|
// Lower bound.
|
|
lbIndices->emplace_back(r);
|
|
} else if (atIneq(r, pos) <= -1) {
|
|
// Upper bound.
|
|
ubIndices->emplace_back(r);
|
|
}
|
|
}
|
|
|
|
// An equality is both a lower and upper bound. Record any equalities
|
|
// involving the pos^th variable.
|
|
if (!eqIndices)
|
|
return;
|
|
|
|
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
|
|
if (atEq(r, pos) == 0)
|
|
continue;
|
|
if (containsConstraintDependentOnRange(r, /*isEq=*/true))
|
|
continue;
|
|
eqIndices->emplace_back(r);
|
|
}
|
|
}
|
|
|
|
bool IntegerRelation::hasConsistentState() const {
|
|
if (!inequalities.hasConsistentState())
|
|
return false;
|
|
if (!equalities.hasConsistentState())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void IntegerRelation::setAndEliminate(unsigned pos,
|
|
ArrayRef<DynamicAPInt> values) {
|
|
if (values.empty())
|
|
return;
|
|
assert(pos + values.size() <= getNumVars() &&
|
|
"invalid position or too many values");
|
|
// Setting x_j = p in sum_i a_i x_i + c is equivalent to adding p*a_j to the
|
|
// constant term and removing the var x_j. We do this for all the vars
|
|
// pos, pos + 1, ... pos + values.size() - 1.
|
|
unsigned constantColPos = getNumCols() - 1;
|
|
for (unsigned i = 0, numVals = values.size(); i < numVals; ++i)
|
|
inequalities.addToColumn(i + pos, constantColPos, values[i]);
|
|
for (unsigned i = 0, numVals = values.size(); i < numVals; ++i)
|
|
equalities.addToColumn(i + pos, constantColPos, values[i]);
|
|
removeVarRange(pos, pos + values.size());
|
|
}
|
|
|
|
void IntegerRelation::clearAndCopyFrom(const IntegerRelation &other) {
|
|
*this = other;
|
|
}
|
|
|
|
std::optional<unsigned>
|
|
IntegerRelation::findConstraintWithNonZeroAt(unsigned colIdx, bool isEq) const {
|
|
assert(colIdx < getNumCols() && "position out of bounds");
|
|
auto at = [&](unsigned rowIdx) -> DynamicAPInt {
|
|
return isEq ? atEq(rowIdx, colIdx) : atIneq(rowIdx, colIdx);
|
|
};
|
|
unsigned e = isEq ? getNumEqualities() : getNumInequalities();
|
|
for (unsigned rowIdx = 0; rowIdx < e; ++rowIdx) {
|
|
if (at(rowIdx) != 0)
|
|
return rowIdx;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
void IntegerRelation::normalizeConstraintsByGCD() {
|
|
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
|
|
equalities.normalizeRow(i);
|
|
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i)
|
|
inequalities.normalizeRow(i);
|
|
}
|
|
|
|
bool IntegerRelation::hasInvalidConstraint() const {
|
|
assert(hasConsistentState());
|
|
auto check = [&](bool isEq) -> bool {
|
|
unsigned numCols = getNumCols();
|
|
unsigned numRows = isEq ? getNumEqualities() : getNumInequalities();
|
|
for (unsigned i = 0, e = numRows; i < e; ++i) {
|
|
unsigned j;
|
|
for (j = 0; j < numCols - 1; ++j) {
|
|
DynamicAPInt v = isEq ? atEq(i, j) : atIneq(i, j);
|
|
// Skip rows with non-zero variable coefficients.
|
|
if (v != 0)
|
|
break;
|
|
}
|
|
if (j < numCols - 1) {
|
|
continue;
|
|
}
|
|
// Check validity of constant term at 'numCols - 1' w.r.t 'isEq'.
|
|
// Example invalid constraints include: '1 == 0' or '-1 >= 0'
|
|
DynamicAPInt v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1);
|
|
if ((isEq && v != 0) || (!isEq && v < 0)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
if (check(/*isEq=*/true))
|
|
return true;
|
|
return check(/*isEq=*/false);
|
|
}
|
|
|
|
/// Eliminate variable from constraint at `rowIdx` based on coefficient at
|
|
/// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be
|
|
/// updated as they have already been eliminated.
|
|
static void eliminateFromConstraint(IntegerRelation *constraints,
|
|
unsigned rowIdx, unsigned pivotRow,
|
|
unsigned pivotCol, unsigned elimColStart,
|
|
bool isEq) {
|
|
// Skip if equality 'rowIdx' if same as 'pivotRow'.
|
|
if (isEq && rowIdx == pivotRow)
|
|
return;
|
|
auto at = [&](unsigned i, unsigned j) -> DynamicAPInt {
|
|
return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j);
|
|
};
|
|
DynamicAPInt leadCoeff = at(rowIdx, pivotCol);
|
|
// Skip if leading coefficient at 'rowIdx' is already zero.
|
|
if (leadCoeff == 0)
|
|
return;
|
|
DynamicAPInt pivotCoeff = constraints->atEq(pivotRow, pivotCol);
|
|
int sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1;
|
|
DynamicAPInt lcm = llvm::lcm(pivotCoeff, leadCoeff);
|
|
DynamicAPInt pivotMultiplier = sign * (lcm / abs(pivotCoeff));
|
|
DynamicAPInt rowMultiplier = lcm / abs(leadCoeff);
|
|
|
|
unsigned numCols = constraints->getNumCols();
|
|
for (unsigned j = 0; j < numCols; ++j) {
|
|
// Skip updating column 'j' if it was just eliminated.
|
|
if (j >= elimColStart && j < pivotCol)
|
|
continue;
|
|
DynamicAPInt v = pivotMultiplier * constraints->atEq(pivotRow, j) +
|
|
rowMultiplier * at(rowIdx, j);
|
|
isEq ? constraints->atEq(rowIdx, j) = v
|
|
: constraints->atIneq(rowIdx, j) = v;
|
|
}
|
|
}
|
|
|
|
/// Returns the position of the variable that has the minimum <number of lower
|
|
/// bounds> times <number of upper bounds> from the specified range of
|
|
/// variables [start, end). It is often best to eliminate in the increasing
|
|
/// order of these counts when doing Fourier-Motzkin elimination since FM adds
|
|
/// that many new constraints.
|
|
static unsigned getBestVarToEliminate(const IntegerRelation &cst,
|
|
unsigned start, unsigned end) {
|
|
assert(start < cst.getNumVars() && end < cst.getNumVars() + 1);
|
|
|
|
auto getProductOfNumLowerUpperBounds = [&](unsigned pos) {
|
|
unsigned numLb = 0;
|
|
unsigned numUb = 0;
|
|
for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
|
|
if (cst.atIneq(r, pos) > 0) {
|
|
++numLb;
|
|
} else if (cst.atIneq(r, pos) < 0) {
|
|
++numUb;
|
|
}
|
|
}
|
|
return numLb * numUb;
|
|
};
|
|
|
|
unsigned minLoc = start;
|
|
unsigned min = getProductOfNumLowerUpperBounds(start);
|
|
for (unsigned c = start + 1; c < end; c++) {
|
|
unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c);
|
|
if (numLbUbProduct < min) {
|
|
min = numLbUbProduct;
|
|
minLoc = c;
|
|
}
|
|
}
|
|
return minLoc;
|
|
}
|
|
|
|
// Checks for emptiness of the set by eliminating variables successively and
|
|
// using the GCD test (on all equality constraints) and checking for trivially
|
|
// invalid constraints. Returns 'true' if the constraint system is found to be
|
|
// empty; false otherwise.
|
|
bool IntegerRelation::isEmpty() const {
|
|
if (isEmptyByGCDTest() || hasInvalidConstraint())
|
|
return true;
|
|
|
|
IntegerRelation tmpCst(*this);
|
|
|
|
// First, eliminate as many local variables as possible using equalities.
|
|
tmpCst.removeRedundantLocalVars();
|
|
if (tmpCst.isEmptyByGCDTest() || tmpCst.hasInvalidConstraint())
|
|
return true;
|
|
|
|
// Eliminate as many variables as possible using Gaussian elimination.
|
|
unsigned currentPos = 0;
|
|
while (currentPos < tmpCst.getNumVars()) {
|
|
tmpCst.gaussianEliminateVars(currentPos, tmpCst.getNumVars());
|
|
++currentPos;
|
|
// We check emptiness through trivial checks after eliminating each ID to
|
|
// detect emptiness early. Since the checks isEmptyByGCDTest() and
|
|
// hasInvalidConstraint() are linear time and single sweep on the constraint
|
|
// buffer, this appears reasonable - but can optimize in the future.
|
|
if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest())
|
|
return true;
|
|
}
|
|
|
|
// Eliminate the remaining using FM.
|
|
for (unsigned i = 0, e = tmpCst.getNumVars(); i < e; i++) {
|
|
tmpCst.fourierMotzkinEliminate(
|
|
getBestVarToEliminate(tmpCst, 0, tmpCst.getNumVars()));
|
|
// Check for a constraint explosion. This rarely happens in practice, but
|
|
// this check exists as a safeguard against improperly constructed
|
|
// constraint systems or artificially created arbitrarily complex systems
|
|
// that aren't the intended use case for IntegerRelation. This is
|
|
// needed since FM has a worst case exponential complexity in theory.
|
|
if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumVars()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected\n");
|
|
return false;
|
|
}
|
|
|
|
// FM wouldn't have modified the equalities in any way. So no need to again
|
|
// run GCD test. Check for trivial invalid constraints.
|
|
if (tmpCst.hasInvalidConstraint())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool IntegerRelation::isObviouslyEmpty() const {
|
|
return isEmptyByGCDTest() || hasInvalidConstraint();
|
|
}
|
|
|
|
// Runs the GCD test on all equality constraints. Returns 'true' if this test
|
|
// fails on any equality. Returns 'false' otherwise.
|
|
// This test can be used to disprove the existence of a solution. If it returns
|
|
// true, no integer solution to the equality constraints can exist.
|
|
//
|
|
// GCD test definition:
|
|
//
|
|
// The equality constraint:
|
|
//
|
|
// c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0
|
|
//
|
|
// has an integer solution iff:
|
|
//
|
|
// GCD of c_1, c_2, ..., c_n divides c_0.
|
|
bool IntegerRelation::isEmptyByGCDTest() const {
|
|
assert(hasConsistentState());
|
|
unsigned numCols = getNumCols();
|
|
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
|
|
DynamicAPInt gcd = abs(atEq(i, 0));
|
|
for (unsigned j = 1; j < numCols - 1; ++j) {
|
|
gcd = llvm::gcd(gcd, abs(atEq(i, j)));
|
|
}
|
|
DynamicAPInt v = abs(atEq(i, numCols - 1));
|
|
if (gcd > 0 && (v % gcd != 0)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns a matrix where each row is a vector along which the polytope is
|
|
// bounded. The span of the returned vectors is guaranteed to contain all
|
|
// such vectors. The returned vectors are NOT guaranteed to be linearly
|
|
// independent. This function should not be called on empty sets.
|
|
//
|
|
// It is sufficient to check the perpendiculars of the constraints, as the set
|
|
// of perpendiculars which are bounded must span all bounded directions.
|
|
IntMatrix IntegerRelation::getBoundedDirections() const {
|
|
// Note that it is necessary to add the equalities too (which the constructor
|
|
// does) even though we don't need to check if they are bounded; whether an
|
|
// inequality is bounded or not depends on what other constraints, including
|
|
// equalities, are present.
|
|
Simplex simplex(*this);
|
|
|
|
assert(!simplex.isEmpty() && "It is not meaningful to ask whether a "
|
|
"direction is bounded in an empty set.");
|
|
|
|
SmallVector<unsigned, 8> boundedIneqs;
|
|
// The constructor adds the inequalities to the simplex first, so this
|
|
// processes all the inequalities.
|
|
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
|
|
if (simplex.isBoundedAlongConstraint(i))
|
|
boundedIneqs.emplace_back(i);
|
|
}
|
|
|
|
// The direction vector is given by the coefficients and does not include the
|
|
// constant term, so the matrix has one fewer column.
|
|
unsigned dirsNumCols = getNumCols() - 1;
|
|
IntMatrix dirs(boundedIneqs.size() + getNumEqualities(), dirsNumCols);
|
|
|
|
// Copy the bounded inequalities.
|
|
unsigned row = 0;
|
|
for (unsigned i : boundedIneqs) {
|
|
for (unsigned col = 0; col < dirsNumCols; ++col)
|
|
dirs(row, col) = atIneq(i, col);
|
|
++row;
|
|
}
|
|
|
|
// Copy the equalities. All the equalities' perpendiculars are bounded.
|
|
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
|
|
for (unsigned col = 0; col < dirsNumCols; ++col)
|
|
dirs(row, col) = atEq(i, col);
|
|
++row;
|
|
}
|
|
|
|
return dirs;
|
|
}
|
|
|
|
bool IntegerRelation::isIntegerEmpty() const { return !findIntegerSample(); }
|
|
|
|
/// Let this set be S. If S is bounded then we directly call into the GBR
|
|
/// sampling algorithm. Otherwise, there are some unbounded directions, i.e.,
|
|
/// vectors v such that S extends to infinity along v or -v. In this case we
|
|
/// use an algorithm described in the integer set library (isl) manual and used
|
|
/// by the isl_set_sample function in that library. The algorithm is:
|
|
///
|
|
/// 1) Apply a unimodular transform T to S to obtain S*T, such that all
|
|
/// dimensions in which S*T is bounded lie in the linear span of a prefix of the
|
|
/// dimensions.
|
|
///
|
|
/// 2) Construct a set B by removing all constraints that involve
|
|
/// the unbounded dimensions and then deleting the unbounded dimensions. Note
|
|
/// that B is a Bounded set.
|
|
///
|
|
/// 3) Try to obtain a sample from B using the GBR sampling
|
|
/// algorithm. If no sample is found, return that S is empty.
|
|
///
|
|
/// 4) Otherwise, substitute the obtained sample into S*T to obtain a set
|
|
/// C. C is a full-dimensional Cone and always contains a sample.
|
|
///
|
|
/// 5) Obtain an integer sample from C.
|
|
///
|
|
/// 6) Return T*v, where v is the concatenation of the samples from B and C.
|
|
///
|
|
/// The following is a sketch of a proof that
|
|
/// a) If the algorithm returns empty, then S is empty.
|
|
/// b) If the algorithm returns a sample, it is a valid sample in S.
|
|
///
|
|
/// The algorithm returns empty only if B is empty, in which case S*T is
|
|
/// certainly empty since B was obtained by removing constraints and then
|
|
/// deleting unconstrained dimensions from S*T. Since T is unimodular, a vector
|
|
/// v is in S*T iff T*v is in S. So in this case, since
|
|
/// S*T is empty, S is empty too.
|
|
///
|
|
/// Otherwise, the algorithm substitutes the sample from B into S*T. All the
|
|
/// constraints of S*T that did not involve unbounded dimensions are satisfied
|
|
/// by this substitution. All dimensions in the linear span of the dimensions
|
|
/// outside the prefix are unbounded in S*T (step 1). Substituting values for
|
|
/// the bounded dimensions cannot make these dimensions bounded, and these are
|
|
/// the only remaining dimensions in C, so C is unbounded along every vector (in
|
|
/// the positive or negative direction, or both). C is hence a full-dimensional
|
|
/// cone and therefore always contains an integer point.
|
|
///
|
|
/// Concatenating the samples from B and C gives a sample v in S*T, so the
|
|
/// returned sample T*v is a sample in S.
|
|
std::optional<SmallVector<DynamicAPInt, 8>>
|
|
IntegerRelation::findIntegerSample() const {
|
|
// First, try the GCD test heuristic.
|
|
if (isEmptyByGCDTest())
|
|
return {};
|
|
|
|
Simplex simplex(*this);
|
|
if (simplex.isEmpty())
|
|
return {};
|
|
|
|
// For a bounded set, we directly call into the GBR sampling algorithm.
|
|
if (!simplex.isUnbounded())
|
|
return simplex.findIntegerSample();
|
|
|
|
// The set is unbounded. We cannot directly use the GBR algorithm.
|
|
//
|
|
// m is a matrix containing, in each row, a vector in which S is
|
|
// bounded, such that the linear span of all these dimensions contains all
|
|
// bounded dimensions in S.
|
|
IntMatrix m = getBoundedDirections();
|
|
// In column echelon form, each row of m occupies only the first rank(m)
|
|
// columns and has zeros on the other columns. The transform T that brings S
|
|
// to column echelon form is unimodular as well, so this is a suitable
|
|
// transform to use in step 1 of the algorithm.
|
|
std::pair<unsigned, LinearTransform> result =
|
|
LinearTransform::makeTransformToColumnEchelon(m);
|
|
const LinearTransform &transform = result.second;
|
|
// 1) Apply T to S to obtain S*T.
|
|
IntegerRelation transformedSet = transform.applyTo(*this);
|
|
|
|
// 2) Remove the unbounded dimensions and constraints involving them to
|
|
// obtain a bounded set.
|
|
IntegerRelation boundedSet(transformedSet);
|
|
unsigned numBoundedDims = result.first;
|
|
unsigned numUnboundedDims = getNumVars() - numBoundedDims;
|
|
removeConstraintsInvolvingVarRange(boundedSet, numBoundedDims,
|
|
numUnboundedDims);
|
|
boundedSet.removeVarRange(numBoundedDims, boundedSet.getNumVars());
|
|
|
|
// 3) Try to obtain a sample from the bounded set.
|
|
std::optional<SmallVector<DynamicAPInt, 8>> boundedSample =
|
|
Simplex(boundedSet).findIntegerSample();
|
|
if (!boundedSample)
|
|
return {};
|
|
assert(boundedSet.containsPoint(*boundedSample) &&
|
|
"Simplex returned an invalid sample!");
|
|
|
|
// 4) Substitute the values of the bounded dimensions into S*T to obtain a
|
|
// full-dimensional cone, which necessarily contains an integer sample.
|
|
transformedSet.setAndEliminate(0, *boundedSample);
|
|
IntegerRelation &cone = transformedSet;
|
|
|
|
// 5) Obtain an integer sample from the cone.
|
|
//
|
|
// We shrink the cone such that for any rational point in the shrunken cone,
|
|
// rounding up each of the point's coordinates produces a point that still
|
|
// lies in the original cone.
|
|
//
|
|
// Rounding up a point x adds a number e_i in [0, 1) to each coordinate x_i.
|
|
// For each inequality sum_i a_i x_i + c >= 0 in the original cone, the
|
|
// shrunken cone will have the inequality tightened by some amount s, such
|
|
// that if x satisfies the shrunken cone's tightened inequality, then x + e
|
|
// satisfies the original inequality, i.e.,
|
|
//
|
|
// sum_i a_i x_i + c + s >= 0 implies sum_i a_i (x_i + e_i) + c >= 0
|
|
//
|
|
// for any e_i values in [0, 1). In fact, we will handle the slightly more
|
|
// general case where e_i can be in [0, 1]. For example, consider the
|
|
// inequality 2x_1 - 3x_2 - 7x_3 - 6 >= 0, and let x = (3, 0, 0). How low
|
|
// could the LHS go if we added a number in [0, 1] to each coordinate? The LHS
|
|
// is minimized when we add 1 to the x_i with negative coefficient a_i and
|
|
// keep the other x_i the same. In the example, we would get x = (3, 1, 1),
|
|
// changing the value of the LHS by -3 + -7 = -10.
|
|
//
|
|
// In general, the value of the LHS can change by at most the sum of the
|
|
// negative a_i, so we accomodate this by shifting the inequality by this
|
|
// amount for the shrunken cone.
|
|
for (unsigned i = 0, e = cone.getNumInequalities(); i < e; ++i) {
|
|
for (unsigned j = 0; j < cone.getNumVars(); ++j) {
|
|
DynamicAPInt coeff = cone.atIneq(i, j);
|
|
if (coeff < 0)
|
|
cone.atIneq(i, cone.getNumVars()) += coeff;
|
|
}
|
|
}
|
|
|
|
// Obtain an integer sample in the cone by rounding up a rational point from
|
|
// the shrunken cone. Shrinking the cone amounts to shifting its apex
|
|
// "inwards" without changing its "shape"; the shrunken cone is still a
|
|
// full-dimensional cone and is hence non-empty.
|
|
Simplex shrunkenConeSimplex(cone);
|
|
assert(!shrunkenConeSimplex.isEmpty() && "Shrunken cone cannot be empty!");
|
|
|
|
// The sample will always exist since the shrunken cone is non-empty.
|
|
SmallVector<Fraction, 8> shrunkenConeSample =
|
|
*shrunkenConeSimplex.getRationalSample();
|
|
|
|
SmallVector<DynamicAPInt, 8> coneSample(
|
|
llvm::map_range(shrunkenConeSample, ceil));
|
|
|
|
// 6) Return transform * concat(boundedSample, coneSample).
|
|
SmallVector<DynamicAPInt, 8> &sample = *boundedSample;
|
|
sample.append(coneSample.begin(), coneSample.end());
|
|
return transform.postMultiplyWithColumn(sample);
|
|
}
|
|
|
|
/// Helper to evaluate an affine expression at a point.
|
|
/// The expression is a list of coefficients for the dimensions followed by the
|
|
/// constant term.
|
|
static DynamicAPInt valueAt(ArrayRef<DynamicAPInt> expr,
|
|
ArrayRef<DynamicAPInt> point) {
|
|
assert(expr.size() == 1 + point.size() &&
|
|
"Dimensionalities of point and expression don't match!");
|
|
DynamicAPInt value = expr.back();
|
|
for (unsigned i = 0; i < point.size(); ++i)
|
|
value += expr[i] * point[i];
|
|
return value;
|
|
}
|
|
|
|
/// A point satisfies an equality iff the value of the equality at the
|
|
/// expression is zero, and it satisfies an inequality iff the value of the
|
|
/// inequality at that point is non-negative.
|
|
bool IntegerRelation::containsPoint(ArrayRef<DynamicAPInt> point) const {
|
|
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
|
|
if (valueAt(getEquality(i), point) != 0)
|
|
return false;
|
|
}
|
|
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
|
|
if (valueAt(getInequality(i), point) < 0)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Just substitute the values given and check if an integer sample exists for
|
|
/// the local vars.
|
|
///
|
|
/// TODO: this could be made more efficient by handling divisions separately.
|
|
/// Instead of finding an integer sample over all the locals, we can first
|
|
/// compute the values of the locals that have division representations and
|
|
/// only use the integer emptiness check for the locals that don't have this.
|
|
/// Handling this correctly requires ordering the divs, though.
|
|
std::optional<SmallVector<DynamicAPInt, 8>>
|
|
IntegerRelation::containsPointNoLocal(ArrayRef<DynamicAPInt> point) const {
|
|
assert(point.size() == getNumVars() - getNumLocalVars() &&
|
|
"Point should contain all vars except locals!");
|
|
assert(getVarKindOffset(VarKind::Local) == getNumVars() - getNumLocalVars() &&
|
|
"This function depends on locals being stored last!");
|
|
IntegerRelation copy = *this;
|
|
copy.setAndEliminate(0, point);
|
|
return copy.findIntegerSample();
|
|
}
|
|
|
|
DivisionRepr
|
|
IntegerRelation::getLocalReprs(std::vector<MaybeLocalRepr> *repr) const {
|
|
SmallVector<bool, 8> foundRepr(getNumVars(), false);
|
|
for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i)
|
|
foundRepr[i] = true;
|
|
|
|
unsigned localOffset = getVarKindOffset(VarKind::Local);
|
|
DivisionRepr divs(getNumVars(), getNumLocalVars());
|
|
bool changed;
|
|
do {
|
|
// Each time changed is true, at end of this iteration, one or more local
|
|
// vars have been detected as floor divs.
|
|
changed = false;
|
|
for (unsigned i = 0, e = getNumLocalVars(); i < e; ++i) {
|
|
if (!foundRepr[i + localOffset]) {
|
|
MaybeLocalRepr res =
|
|
computeSingleVarRepr(*this, foundRepr, localOffset + i,
|
|
divs.getDividend(i), divs.getDenom(i));
|
|
if (!res) {
|
|
// No representation was found, so clear the representation and
|
|
// continue.
|
|
divs.clearRepr(i);
|
|
continue;
|
|
}
|
|
foundRepr[localOffset + i] = true;
|
|
if (repr)
|
|
(*repr)[i] = res;
|
|
changed = true;
|
|
}
|
|
}
|
|
} while (changed);
|
|
|
|
return divs;
|
|
}
|
|
|
|
/// Tightens inequalities given that we are dealing with integer spaces. This is
|
|
/// analogous to the GCD test but applied to inequalities. The constant term can
|
|
/// be reduced to the preceding multiple of the GCD of the coefficients, i.e.,
|
|
/// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a
|
|
/// fast method - linear in the number of coefficients.
|
|
// Example on how this affects practical cases: consider the scenario:
|
|
// 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield
|
|
// j >= 100 instead of the tighter (exact) j >= 128.
|
|
void IntegerRelation::gcdTightenInequalities() {
|
|
unsigned numCols = getNumCols();
|
|
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
|
|
// Normalize the constraint and tighten the constant term by the GCD.
|
|
DynamicAPInt gcd = inequalities.normalizeRow(i, getNumCols() - 1);
|
|
if (gcd > 1)
|
|
atIneq(i, numCols - 1) = floorDiv(atIneq(i, numCols - 1), gcd);
|
|
}
|
|
}
|
|
|
|
// Eliminates all variable variables in column range [posStart, posLimit).
|
|
// Returns the number of variables eliminated.
|
|
unsigned IntegerRelation::gaussianEliminateVars(unsigned posStart,
|
|
unsigned posLimit) {
|
|
// Return if variable positions to eliminate are out of range.
|
|
assert(posLimit <= getNumVars());
|
|
assert(hasConsistentState());
|
|
|
|
if (posStart >= posLimit)
|
|
return 0;
|
|
|
|
gcdTightenInequalities();
|
|
|
|
unsigned pivotCol = 0;
|
|
for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) {
|
|
// Find a row which has a non-zero coefficient in column 'j'.
|
|
std::optional<unsigned> pivotRow =
|
|
findConstraintWithNonZeroAt(pivotCol, /*isEq=*/true);
|
|
// No pivot row in equalities with non-zero at 'pivotCol'.
|
|
if (!pivotRow) {
|
|
// If inequalities are also non-zero in 'pivotCol', it can be eliminated.
|
|
if ((pivotRow = findConstraintWithNonZeroAt(pivotCol, /*isEq=*/false)))
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
// Eliminate variable at 'pivotCol' from each equality row.
|
|
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
|
|
eliminateFromConstraint(this, i, *pivotRow, pivotCol, posStart,
|
|
/*isEq=*/true);
|
|
equalities.normalizeRow(i);
|
|
}
|
|
|
|
// Eliminate variable at 'pivotCol' from each inequality row.
|
|
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
|
|
eliminateFromConstraint(this, i, *pivotRow, pivotCol, posStart,
|
|
/*isEq=*/false);
|
|
inequalities.normalizeRow(i);
|
|
}
|
|
removeEquality(*pivotRow);
|
|
gcdTightenInequalities();
|
|
}
|
|
// Update position limit based on number eliminated.
|
|
posLimit = pivotCol;
|
|
// Remove eliminated columns from all constraints.
|
|
removeVarRange(posStart, posLimit);
|
|
return posLimit - posStart;
|
|
}
|
|
|
|
bool IntegerRelation::gaussianEliminate() {
|
|
gcdTightenInequalities();
|
|
unsigned firstVar = 0, vars = getNumVars();
|
|
unsigned nowDone, eqs;
|
|
std::optional<unsigned> pivotRow;
|
|
for (nowDone = 0, eqs = getNumEqualities(); nowDone < eqs; ++nowDone) {
|
|
// Finds the first non-empty column.
|
|
for (; firstVar < vars; ++firstVar) {
|
|
if ((pivotRow = findConstraintWithNonZeroAt(firstVar, /*isEq=*/true)))
|
|
break;
|
|
}
|
|
// The matrix has been normalized to row echelon form.
|
|
if (firstVar >= vars)
|
|
break;
|
|
|
|
// The first pivot row found is below where it should currently be placed.
|
|
if (*pivotRow > nowDone) {
|
|
equalities.swapRows(*pivotRow, nowDone);
|
|
*pivotRow = nowDone;
|
|
}
|
|
|
|
// Normalize all lower equations and all inequalities.
|
|
for (unsigned i = nowDone + 1; i < eqs; ++i) {
|
|
eliminateFromConstraint(this, i, *pivotRow, firstVar, 0, true);
|
|
equalities.normalizeRow(i);
|
|
}
|
|
for (unsigned i = 0, ineqs = getNumInequalities(); i < ineqs; ++i) {
|
|
eliminateFromConstraint(this, i, *pivotRow, firstVar, 0, false);
|
|
inequalities.normalizeRow(i);
|
|
}
|
|
gcdTightenInequalities();
|
|
}
|
|
|
|
// No redundant rows.
|
|
if (nowDone == eqs)
|
|
return false;
|
|
|
|
// Check to see if the redundant rows constant is zero, a non-zero value means
|
|
// the set is empty.
|
|
for (unsigned i = nowDone; i < eqs; ++i) {
|
|
if (atEq(i, vars) == 0)
|
|
continue;
|
|
|
|
*this = getEmpty(getSpace());
|
|
return true;
|
|
}
|
|
// Eliminate rows that are confined to be all zeros.
|
|
removeEqualityRange(nowDone, eqs);
|
|
return true;
|
|
}
|
|
|
|
// A more complex check to eliminate redundant inequalities. Uses FourierMotzkin
|
|
// to check if a constraint is redundant.
|
|
void IntegerRelation::removeRedundantInequalities() {
|
|
SmallVector<bool, 32> redun(getNumInequalities(), false);
|
|
// To check if an inequality is redundant, we replace the inequality by its
|
|
// complement (for eg., i - 1 >= 0 by i <= 0), and check if the resulting
|
|
// system is empty. If it is, the inequality is redundant.
|
|
IntegerRelation tmpCst(*this);
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
|
|
// Change the inequality to its complement.
|
|
tmpCst.inequalities.negateRow(r);
|
|
--tmpCst.atIneq(r, tmpCst.getNumCols() - 1);
|
|
if (tmpCst.isEmpty()) {
|
|
redun[r] = true;
|
|
// Zero fill the redundant inequality.
|
|
inequalities.fillRow(r, /*value=*/0);
|
|
tmpCst.inequalities.fillRow(r, /*value=*/0);
|
|
} else {
|
|
// Reverse the change (to avoid recreating tmpCst each time).
|
|
++tmpCst.atIneq(r, tmpCst.getNumCols() - 1);
|
|
tmpCst.inequalities.negateRow(r);
|
|
}
|
|
}
|
|
|
|
unsigned pos = 0;
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; ++r) {
|
|
if (!redun[r])
|
|
inequalities.copyRow(r, pos++);
|
|
}
|
|
inequalities.resizeVertically(pos);
|
|
}
|
|
|
|
// A more complex check to eliminate redundant inequalities and equalities. Uses
|
|
// Simplex to check if a constraint is redundant.
|
|
void IntegerRelation::removeRedundantConstraints() {
|
|
// First, we run gcdTightenInequalities. This allows us to catch some
|
|
// constraints which are not redundant when considering rational solutions
|
|
// but are redundant in terms of integer solutions.
|
|
gcdTightenInequalities();
|
|
Simplex simplex(*this);
|
|
simplex.detectRedundant();
|
|
|
|
unsigned pos = 0;
|
|
unsigned numIneqs = getNumInequalities();
|
|
// Scan to get rid of all inequalities marked redundant, in-place. In Simplex,
|
|
// the first constraints added are the inequalities.
|
|
for (unsigned r = 0; r < numIneqs; r++) {
|
|
if (!simplex.isMarkedRedundant(r))
|
|
inequalities.copyRow(r, pos++);
|
|
}
|
|
inequalities.resizeVertically(pos);
|
|
|
|
// Scan to get rid of all equalities marked redundant, in-place. In Simplex,
|
|
// after the inequalities, a pair of constraints for each equality is added.
|
|
// An equality is redundant if both the inequalities in its pair are
|
|
// redundant.
|
|
pos = 0;
|
|
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
|
|
if (!(simplex.isMarkedRedundant(numIneqs + 2 * r) &&
|
|
simplex.isMarkedRedundant(numIneqs + 2 * r + 1)))
|
|
equalities.copyRow(r, pos++);
|
|
}
|
|
equalities.resizeVertically(pos);
|
|
}
|
|
|
|
std::optional<DynamicAPInt> IntegerRelation::computeVolume() const {
|
|
assert(getNumSymbolVars() == 0 && "Symbols are not yet supported!");
|
|
|
|
Simplex simplex(*this);
|
|
// If the polytope is rationally empty, there are certainly no integer
|
|
// points.
|
|
if (simplex.isEmpty())
|
|
return DynamicAPInt(0);
|
|
|
|
// Just find the maximum and minimum integer value of each non-local var
|
|
// separately, thus finding the number of integer values each such var can
|
|
// take. Multiplying these together gives a valid overapproximation of the
|
|
// number of integer points in the relation. The result this gives is
|
|
// equivalent to projecting (rationally) the relation onto its non-local vars
|
|
// and returning the number of integer points in a minimal axis-parallel
|
|
// hyperrectangular overapproximation of that.
|
|
//
|
|
// We also handle the special case where one dimension is unbounded and
|
|
// another dimension can take no integer values. In this case, the volume is
|
|
// zero.
|
|
//
|
|
// If there is no such empty dimension, if any dimension is unbounded we
|
|
// just return the result as unbounded.
|
|
DynamicAPInt count(1);
|
|
SmallVector<DynamicAPInt, 8> dim(getNumVars() + 1);
|
|
bool hasUnboundedVar = false;
|
|
for (unsigned i = 0, e = getNumDimAndSymbolVars(); i < e; ++i) {
|
|
dim[i] = 1;
|
|
auto [min, max] = simplex.computeIntegerBounds(dim);
|
|
dim[i] = 0;
|
|
|
|
assert((!min.isEmpty() && !max.isEmpty()) &&
|
|
"Polytope should be rationally non-empty!");
|
|
|
|
// One of the dimensions is unbounded. Note this fact. We will return
|
|
// unbounded if none of the other dimensions makes the volume zero.
|
|
if (min.isUnbounded() || max.isUnbounded()) {
|
|
hasUnboundedVar = true;
|
|
continue;
|
|
}
|
|
|
|
// In this case there are no valid integer points and the volume is
|
|
// definitely zero.
|
|
if (min.getBoundedOptimum() > max.getBoundedOptimum())
|
|
return DynamicAPInt(0);
|
|
|
|
count *= (*max - *min + 1);
|
|
}
|
|
|
|
if (count == 0)
|
|
return DynamicAPInt(0);
|
|
if (hasUnboundedVar)
|
|
return {};
|
|
return count;
|
|
}
|
|
|
|
void IntegerRelation::eliminateRedundantLocalVar(unsigned posA, unsigned posB) {
|
|
assert(posA < getNumLocalVars() && "Invalid local var position");
|
|
assert(posB < getNumLocalVars() && "Invalid local var position");
|
|
|
|
unsigned localOffset = getVarKindOffset(VarKind::Local);
|
|
posA += localOffset;
|
|
posB += localOffset;
|
|
inequalities.addToColumn(posB, posA, 1);
|
|
equalities.addToColumn(posB, posA, 1);
|
|
removeVar(posB);
|
|
}
|
|
|
|
/// mergeAndAlignSymbols's implementation can be broken down into two steps:
|
|
/// 1. Merge and align identifiers into `other` from `this. If an identifier
|
|
/// from `this` exists in `other` then we align it. Otherwise, we assume it is a
|
|
/// new identifier and insert it into `other` in the same position as `this`.
|
|
/// 2. Add identifiers that are in `other` but not `this to `this`.
|
|
void IntegerRelation::mergeAndAlignSymbols(IntegerRelation &other) {
|
|
assert(space.isUsingIds() && other.space.isUsingIds() &&
|
|
"both relations need to have identifers to merge and align");
|
|
|
|
unsigned i = 0;
|
|
for (const Identifier identifier : space.getIds(VarKind::Symbol)) {
|
|
// Search in `other` starting at position `i` since the left of `i` is
|
|
// aligned.
|
|
const Identifier *findBegin =
|
|
other.space.getIds(VarKind::Symbol).begin() + i;
|
|
const Identifier *findEnd = other.space.getIds(VarKind::Symbol).end();
|
|
const Identifier *itr = std::find(findBegin, findEnd, identifier);
|
|
if (itr != findEnd) {
|
|
other.swapVar(other.getVarKindOffset(VarKind::Symbol) + i,
|
|
other.getVarKindOffset(VarKind::Symbol) + i +
|
|
std::distance(findBegin, itr));
|
|
} else {
|
|
other.insertVar(VarKind::Symbol, i);
|
|
other.space.setId(VarKind::Symbol, i, identifier);
|
|
}
|
|
++i;
|
|
}
|
|
|
|
for (unsigned e = other.getNumVarKind(VarKind::Symbol); i < e; ++i) {
|
|
insertVar(VarKind::Symbol, i);
|
|
space.setId(VarKind::Symbol, i, other.space.getId(VarKind::Symbol, i));
|
|
}
|
|
}
|
|
|
|
/// Adds additional local ids to the sets such that they both have the union
|
|
/// of the local ids in each set, without changing the set of points that
|
|
/// lie in `this` and `other`.
|
|
///
|
|
/// To detect local ids that always take the same value, each local id is
|
|
/// represented as a floordiv with constant denominator in terms of other ids.
|
|
/// After extracting these divisions, local ids in `other` with the same
|
|
/// division representation as some other local id in any set are considered
|
|
/// duplicate and are merged.
|
|
///
|
|
/// It is possible that division representation for some local id cannot be
|
|
/// obtained, and thus these local ids are not considered for detecting
|
|
/// duplicates.
|
|
unsigned IntegerRelation::mergeLocalVars(IntegerRelation &other) {
|
|
IntegerRelation &relA = *this;
|
|
IntegerRelation &relB = other;
|
|
|
|
unsigned oldALocals = relA.getNumLocalVars();
|
|
|
|
// Merge function that merges the local variables in both sets by treating
|
|
// them as the same variable.
|
|
auto merge = [&relA, &relB, oldALocals](unsigned i, unsigned j) -> bool {
|
|
// We only merge from local at pos j to local at pos i, where j > i.
|
|
if (i >= j)
|
|
return false;
|
|
|
|
// If i < oldALocals, we are trying to merge duplicate divs. Since we do not
|
|
// want to merge duplicates in A, we ignore this call.
|
|
if (j < oldALocals)
|
|
return false;
|
|
|
|
// Merge local at pos j into local at position i.
|
|
relA.eliminateRedundantLocalVar(i, j);
|
|
relB.eliminateRedundantLocalVar(i, j);
|
|
return true;
|
|
};
|
|
|
|
presburger::mergeLocalVars(*this, other, merge);
|
|
|
|
// Since we do not remove duplicate divisions in relA, this is guranteed to be
|
|
// non-negative.
|
|
return relA.getNumLocalVars() - oldALocals;
|
|
}
|
|
|
|
bool IntegerRelation::hasOnlyDivLocals() const {
|
|
return getLocalReprs().hasAllReprs();
|
|
}
|
|
|
|
void IntegerRelation::removeDuplicateDivs() {
|
|
DivisionRepr divs = getLocalReprs();
|
|
auto merge = [this](unsigned i, unsigned j) -> bool {
|
|
eliminateRedundantLocalVar(i, j);
|
|
return true;
|
|
};
|
|
divs.removeDuplicateDivs(merge);
|
|
}
|
|
|
|
void IntegerRelation::simplify() {
|
|
bool changed = true;
|
|
// Repeat until we reach a fixed point.
|
|
while (changed) {
|
|
if (isObviouslyEmpty())
|
|
return;
|
|
changed = false;
|
|
normalizeConstraintsByGCD();
|
|
changed |= gaussianEliminate();
|
|
changed |= removeDuplicateConstraints();
|
|
}
|
|
// Current set is not empty.
|
|
}
|
|
|
|
/// Removes local variables using equalities. Each equality is checked if it
|
|
/// can be reduced to the form: `e = affine-expr`, where `e` is a local
|
|
/// variable and `affine-expr` is an affine expression not containing `e`.
|
|
/// If an equality satisfies this form, the local variable is replaced in
|
|
/// each constraint and then removed. The equality used to replace this local
|
|
/// variable is also removed.
|
|
void IntegerRelation::removeRedundantLocalVars() {
|
|
// Normalize the equality constraints to reduce coefficients of local
|
|
// variables to 1 wherever possible.
|
|
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
|
|
equalities.normalizeRow(i);
|
|
|
|
while (true) {
|
|
unsigned i, e, j, f;
|
|
for (i = 0, e = getNumEqualities(); i < e; ++i) {
|
|
// Find a local variable to eliminate using ith equality.
|
|
for (j = getNumDimAndSymbolVars(), f = getNumVars(); j < f; ++j)
|
|
if (abs(atEq(i, j)) == 1)
|
|
break;
|
|
|
|
// Local variable can be eliminated using ith equality.
|
|
if (j < f)
|
|
break;
|
|
}
|
|
|
|
// No equality can be used to eliminate a local variable.
|
|
if (i == e)
|
|
break;
|
|
|
|
// Use the ith equality to simplify other equalities. If any changes
|
|
// are made to an equality constraint, it is normalized by GCD.
|
|
for (unsigned k = 0, t = getNumEqualities(); k < t; ++k) {
|
|
if (atEq(k, j) != 0) {
|
|
eliminateFromConstraint(this, k, i, j, j, /*isEq=*/true);
|
|
equalities.normalizeRow(k);
|
|
}
|
|
}
|
|
|
|
// Use the ith equality to simplify inequalities.
|
|
for (unsigned k = 0, t = getNumInequalities(); k < t; ++k)
|
|
eliminateFromConstraint(this, k, i, j, j, /*isEq=*/false);
|
|
|
|
// Remove the ith equality and the found local variable.
|
|
removeVar(j);
|
|
removeEquality(i);
|
|
}
|
|
}
|
|
|
|
void IntegerRelation::convertVarKind(VarKind srcKind, unsigned varStart,
|
|
unsigned varLimit, VarKind dstKind,
|
|
unsigned pos) {
|
|
assert(varLimit <= getNumVarKind(srcKind) && "invalid id range");
|
|
|
|
if (varStart >= varLimit)
|
|
return;
|
|
|
|
unsigned srcOffset = getVarKindOffset(srcKind);
|
|
unsigned dstOffset = getVarKindOffset(dstKind);
|
|
unsigned convertCount = varLimit - varStart;
|
|
int forwardMoveOffset = dstOffset > srcOffset ? -convertCount : 0;
|
|
|
|
equalities.moveColumns(srcOffset + varStart, convertCount,
|
|
dstOffset + pos + forwardMoveOffset);
|
|
inequalities.moveColumns(srcOffset + varStart, convertCount,
|
|
dstOffset + pos + forwardMoveOffset);
|
|
|
|
space.convertVarKind(srcKind, varStart, varLimit - varStart, dstKind, pos);
|
|
}
|
|
|
|
void IntegerRelation::addBound(BoundType type, unsigned pos,
|
|
const DynamicAPInt &value) {
|
|
assert(pos < getNumCols());
|
|
if (type == BoundType::EQ) {
|
|
unsigned row = equalities.appendExtraRow();
|
|
equalities(row, pos) = 1;
|
|
equalities(row, getNumCols() - 1) = -value;
|
|
} else {
|
|
unsigned row = inequalities.appendExtraRow();
|
|
inequalities(row, pos) = type == BoundType::LB ? 1 : -1;
|
|
inequalities(row, getNumCols() - 1) =
|
|
type == BoundType::LB ? -value : value;
|
|
}
|
|
}
|
|
|
|
void IntegerRelation::addBound(BoundType type, ArrayRef<DynamicAPInt> expr,
|
|
const DynamicAPInt &value) {
|
|
assert(type != BoundType::EQ && "EQ not implemented");
|
|
assert(expr.size() == getNumCols());
|
|
unsigned row = inequalities.appendExtraRow();
|
|
for (unsigned i = 0, e = expr.size(); i < e; ++i)
|
|
inequalities(row, i) = type == BoundType::LB ? expr[i] : -expr[i];
|
|
inequalities(inequalities.getNumRows() - 1, getNumCols() - 1) +=
|
|
type == BoundType::LB ? -value : value;
|
|
}
|
|
|
|
/// Adds a new local variable as the floordiv of an affine function of other
|
|
/// variables, the coefficients of which are provided in 'dividend' and with
|
|
/// respect to a positive constant 'divisor'. Two constraints are added to the
|
|
/// system to capture equivalence with the floordiv.
|
|
/// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1.
|
|
void IntegerRelation::addLocalFloorDiv(ArrayRef<DynamicAPInt> dividend,
|
|
const DynamicAPInt &divisor) {
|
|
assert(dividend.size() == getNumCols() && "incorrect dividend size");
|
|
assert(divisor > 0 && "positive divisor expected");
|
|
|
|
appendVar(VarKind::Local);
|
|
|
|
SmallVector<DynamicAPInt, 8> dividendCopy(dividend);
|
|
dividendCopy.insert(dividendCopy.end() - 1, DynamicAPInt(0));
|
|
addInequality(
|
|
getDivLowerBound(dividendCopy, divisor, dividendCopy.size() - 2));
|
|
addInequality(
|
|
getDivUpperBound(dividendCopy, divisor, dividendCopy.size() - 2));
|
|
}
|
|
|
|
unsigned IntegerRelation::addLocalModulo(ArrayRef<DynamicAPInt> exprs,
|
|
const DynamicAPInt &modulus) {
|
|
assert(exprs.size() == getNumCols() && "incorrect exprs size");
|
|
assert(modulus > 0 && "positive modulus expected");
|
|
|
|
/// Add a local variable for q = expr floordiv modulus
|
|
addLocalFloorDiv(exprs, modulus);
|
|
|
|
/// Add a local var to represent the result
|
|
auto resultIndex = appendVar(VarKind::Local);
|
|
|
|
SmallVector<DynamicAPInt, 8> exprsCopy(exprs);
|
|
/// Insert the two new locals before the constant
|
|
/// Add locals that correspond to `q` and `result` to compute
|
|
/// 0 = (expr - modulus * q) - result
|
|
exprsCopy.insert(exprsCopy.end() - 1,
|
|
{DynamicAPInt(-modulus), DynamicAPInt(-1)});
|
|
addEquality(exprsCopy);
|
|
return resultIndex;
|
|
}
|
|
|
|
int IntegerRelation::findEqualityToConstant(unsigned pos, bool symbolic) const {
|
|
assert(pos < getNumVars() && "invalid position");
|
|
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
|
|
DynamicAPInt v = atEq(r, pos);
|
|
if (v * v != 1)
|
|
continue;
|
|
unsigned c;
|
|
unsigned f = symbolic ? getNumDimVars() : getNumVars();
|
|
// This checks for zeros in all positions other than 'pos' in [0, f)
|
|
for (c = 0; c < f; c++) {
|
|
if (c == pos)
|
|
continue;
|
|
if (atEq(r, c) != 0) {
|
|
// Dependent on another variable.
|
|
break;
|
|
}
|
|
}
|
|
if (c == f)
|
|
// Equality is free of other variables.
|
|
return r;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
LogicalResult IntegerRelation::constantFoldVar(unsigned pos) {
|
|
assert(pos < getNumVars() && "invalid position");
|
|
int rowIdx;
|
|
if ((rowIdx = findEqualityToConstant(pos)) == -1)
|
|
return failure();
|
|
|
|
// atEq(rowIdx, pos) is either -1 or 1.
|
|
assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1);
|
|
DynamicAPInt constVal = -atEq(rowIdx, getNumCols() - 1) / atEq(rowIdx, pos);
|
|
setAndEliminate(pos, constVal);
|
|
return success();
|
|
}
|
|
|
|
void IntegerRelation::constantFoldVarRange(unsigned pos, unsigned num) {
|
|
for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) {
|
|
if (constantFoldVar(t).failed())
|
|
t++;
|
|
}
|
|
}
|
|
|
|
/// Returns a non-negative constant bound on the extent (upper bound - lower
|
|
/// bound) of the specified variable if it is found to be a constant; returns
|
|
/// std::nullopt if it's not a constant. This methods treats symbolic variables
|
|
/// specially, i.e., it looks for constant differences between affine
|
|
/// expressions involving only the symbolic variables. See comments at function
|
|
/// definition for example. 'lb', if provided, is set to the lower bound
|
|
/// associated with the constant difference. Note that 'lb' is purely symbolic
|
|
/// and thus will contain the coefficients of the symbolic variables and the
|
|
/// constant coefficient.
|
|
// Egs: 0 <= i <= 15, return 16.
|
|
// s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol)
|
|
// s0 + s1 + 16 <= d0 <= s0 + s1 + 31, returns 16.
|
|
// s0 - 7 <= 8*j <= s0 returns 1 with lb = s0, lbDivisor = 8 (since lb =
|
|
// ceil(s0 - 7 / 8) = floor(s0 / 8)).
|
|
std::optional<DynamicAPInt> IntegerRelation::getConstantBoundOnDimSize(
|
|
unsigned pos, SmallVectorImpl<DynamicAPInt> *lb,
|
|
DynamicAPInt *boundFloorDivisor, SmallVectorImpl<DynamicAPInt> *ub,
|
|
unsigned *minLbPos, unsigned *minUbPos) const {
|
|
assert(pos < getNumDimVars() && "Invalid variable position");
|
|
|
|
// Find an equality for 'pos'^th variable that equates it to some function
|
|
// of the symbolic variables (+ constant).
|
|
int eqPos = findEqualityToConstant(pos, /*symbolic=*/true);
|
|
if (eqPos != -1) {
|
|
auto eq = getEquality(eqPos);
|
|
// If the equality involves a local var, we do not handle it.
|
|
// FlatLinearConstraints can instead be used to detect the local variable as
|
|
// an affine function (potentially div/mod) of other variables and use
|
|
// affine expressions/maps to represent output.
|
|
if (!std::all_of(eq.begin() + getNumDimAndSymbolVars(), eq.end() - 1,
|
|
[](const DynamicAPInt &coeff) { return coeff == 0; }))
|
|
return std::nullopt;
|
|
|
|
// This variable can only take a single value.
|
|
if (lb) {
|
|
// Set lb to that symbolic value.
|
|
lb->resize(getNumSymbolVars() + 1);
|
|
if (ub)
|
|
ub->resize(getNumSymbolVars() + 1);
|
|
for (unsigned c = 0, f = getNumSymbolVars() + 1; c < f; c++) {
|
|
DynamicAPInt v = atEq(eqPos, pos);
|
|
// atEq(eqRow, pos) is either -1 or 1.
|
|
assert(v * v == 1);
|
|
(*lb)[c] = v < 0 ? atEq(eqPos, getNumDimVars() + c) / -v
|
|
: -atEq(eqPos, getNumDimVars() + c) / v;
|
|
// Since this is an equality, ub = lb.
|
|
if (ub)
|
|
(*ub)[c] = (*lb)[c];
|
|
}
|
|
assert(boundFloorDivisor &&
|
|
"both lb and divisor or none should be provided");
|
|
*boundFloorDivisor = 1;
|
|
}
|
|
if (minLbPos)
|
|
*minLbPos = eqPos;
|
|
if (minUbPos)
|
|
*minUbPos = eqPos;
|
|
return DynamicAPInt(1);
|
|
}
|
|
|
|
// Check if the variable appears at all in any of the inequalities.
|
|
unsigned r, e;
|
|
for (r = 0, e = getNumInequalities(); r < e; r++) {
|
|
if (atIneq(r, pos) != 0)
|
|
break;
|
|
}
|
|
if (r == e)
|
|
// If it doesn't, there isn't a bound on it.
|
|
return std::nullopt;
|
|
|
|
// Positions of constraints that are lower/upper bounds on the variable.
|
|
SmallVector<unsigned, 4> lbIndices, ubIndices;
|
|
|
|
// Gather all symbolic lower bounds and upper bounds of the variable, i.e.,
|
|
// the bounds can only involve symbolic (and local) variables. Since the
|
|
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
|
|
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
|
|
getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices,
|
|
/*eqIndices=*/nullptr, /*offset=*/0,
|
|
/*num=*/getNumDimVars());
|
|
|
|
std::optional<DynamicAPInt> minDiff;
|
|
unsigned minLbPosition = 0, minUbPosition = 0;
|
|
for (auto ubPos : ubIndices) {
|
|
for (auto lbPos : lbIndices) {
|
|
// Look for a lower bound and an upper bound that only differ by a
|
|
// constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst.
|
|
// For example, if ii is the pos^th variable, we are looking for
|
|
// constraints like ii >= i, ii <= ii + 50, 50 being the difference. The
|
|
// minimum among all such constant differences is kept since that's the
|
|
// constant bounding the extent of the pos^th variable.
|
|
unsigned j, e;
|
|
for (j = 0, e = getNumCols() - 1; j < e; j++)
|
|
if (atIneq(ubPos, j) != -atIneq(lbPos, j)) {
|
|
break;
|
|
}
|
|
if (j < getNumCols() - 1)
|
|
continue;
|
|
DynamicAPInt diff = ceilDiv(atIneq(ubPos, getNumCols() - 1) +
|
|
atIneq(lbPos, getNumCols() - 1) + 1,
|
|
atIneq(lbPos, pos));
|
|
// This bound is non-negative by definition.
|
|
diff = std::max<DynamicAPInt>(diff, DynamicAPInt(0));
|
|
if (minDiff == std::nullopt || diff < minDiff) {
|
|
minDiff = diff;
|
|
minLbPosition = lbPos;
|
|
minUbPosition = ubPos;
|
|
}
|
|
}
|
|
}
|
|
if (lb && minDiff) {
|
|
// Set lb to the symbolic lower bound.
|
|
lb->resize(getNumSymbolVars() + 1);
|
|
if (ub)
|
|
ub->resize(getNumSymbolVars() + 1);
|
|
// The lower bound is the ceildiv of the lb constraint over the coefficient
|
|
// of the variable at 'pos'. We express the ceildiv equivalently as a floor
|
|
// for uniformity. For eg., if the lower bound constraint was: 32*d0 - N +
|
|
// 31 >= 0, the lower bound for d0 is ceil(N - 31, 32), i.e., floor(N, 32).
|
|
*boundFloorDivisor = atIneq(minLbPosition, pos);
|
|
assert(*boundFloorDivisor == -atIneq(minUbPosition, pos));
|
|
for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++) {
|
|
(*lb)[c] = -atIneq(minLbPosition, getNumDimVars() + c);
|
|
}
|
|
if (ub) {
|
|
for (unsigned c = 0, e = getNumSymbolVars() + 1; c < e; c++)
|
|
(*ub)[c] = atIneq(minUbPosition, getNumDimVars() + c);
|
|
}
|
|
// The lower bound leads to a ceildiv while the upper bound is a floordiv
|
|
// whenever the coefficient at pos != 1. ceildiv (val / d) = floordiv (val +
|
|
// d - 1 / d); hence, the addition of 'atIneq(minLbPosition, pos) - 1' to
|
|
// the constant term for the lower bound.
|
|
(*lb)[getNumSymbolVars()] += atIneq(minLbPosition, pos) - 1;
|
|
}
|
|
if (minLbPos)
|
|
*minLbPos = minLbPosition;
|
|
if (minUbPos)
|
|
*minUbPos = minUbPosition;
|
|
return minDiff;
|
|
}
|
|
|
|
template <bool isLower>
|
|
std::optional<DynamicAPInt>
|
|
IntegerRelation::computeConstantLowerOrUpperBound(unsigned pos) {
|
|
assert(pos < getNumVars() && "invalid position");
|
|
// Project to 'pos'.
|
|
projectOut(0, pos);
|
|
projectOut(1, getNumVars() - 1);
|
|
// Check if there's an equality equating the '0'^th variable to a constant.
|
|
int eqRowIdx = findEqualityToConstant(/*pos=*/0, /*symbolic=*/false);
|
|
if (eqRowIdx != -1)
|
|
// atEq(rowIdx, 0) is either -1 or 1.
|
|
return -atEq(eqRowIdx, getNumCols() - 1) / atEq(eqRowIdx, 0);
|
|
|
|
// Check if the variable appears at all in any of the inequalities.
|
|
unsigned r, e;
|
|
for (r = 0, e = getNumInequalities(); r < e; r++) {
|
|
if (atIneq(r, 0) != 0)
|
|
break;
|
|
}
|
|
if (r == e)
|
|
// If it doesn't, there isn't a bound on it.
|
|
return std::nullopt;
|
|
|
|
std::optional<DynamicAPInt> minOrMaxConst;
|
|
|
|
// Take the max across all const lower bounds (or min across all constant
|
|
// upper bounds).
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
|
|
if (isLower) {
|
|
if (atIneq(r, 0) <= 0)
|
|
// Not a lower bound.
|
|
continue;
|
|
} else if (atIneq(r, 0) >= 0) {
|
|
// Not an upper bound.
|
|
continue;
|
|
}
|
|
unsigned c, f;
|
|
for (c = 0, f = getNumCols() - 1; c < f; c++)
|
|
if (c != 0 && atIneq(r, c) != 0)
|
|
break;
|
|
if (c < getNumCols() - 1)
|
|
// Not a constant bound.
|
|
continue;
|
|
|
|
DynamicAPInt boundConst =
|
|
isLower ? ceilDiv(-atIneq(r, getNumCols() - 1), atIneq(r, 0))
|
|
: floorDiv(atIneq(r, getNumCols() - 1), -atIneq(r, 0));
|
|
if (isLower) {
|
|
if (minOrMaxConst == std::nullopt || boundConst > minOrMaxConst)
|
|
minOrMaxConst = boundConst;
|
|
} else {
|
|
if (minOrMaxConst == std::nullopt || boundConst < minOrMaxConst)
|
|
minOrMaxConst = boundConst;
|
|
}
|
|
}
|
|
return minOrMaxConst;
|
|
}
|
|
|
|
std::optional<DynamicAPInt>
|
|
IntegerRelation::getConstantBound(BoundType type, unsigned pos) const {
|
|
if (type == BoundType::LB)
|
|
return IntegerRelation(*this)
|
|
.computeConstantLowerOrUpperBound</*isLower=*/true>(pos);
|
|
if (type == BoundType::UB)
|
|
return IntegerRelation(*this)
|
|
.computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
|
|
|
|
assert(type == BoundType::EQ && "expected EQ");
|
|
std::optional<DynamicAPInt> lb =
|
|
IntegerRelation(*this).computeConstantLowerOrUpperBound</*isLower=*/true>(
|
|
pos);
|
|
std::optional<DynamicAPInt> ub =
|
|
IntegerRelation(*this)
|
|
.computeConstantLowerOrUpperBound</*isLower=*/false>(pos);
|
|
return (lb && ub && *lb == *ub) ? std::optional<DynamicAPInt>(*ub)
|
|
: std::nullopt;
|
|
}
|
|
|
|
// A simple (naive and conservative) check for hyper-rectangularity.
|
|
bool IntegerRelation::isHyperRectangular(unsigned pos, unsigned num) const {
|
|
assert(pos < getNumCols() - 1);
|
|
// Check for two non-zero coefficients in the range [pos, pos + sum).
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
|
|
unsigned sum = 0;
|
|
for (unsigned c = pos; c < pos + num; c++) {
|
|
if (atIneq(r, c) != 0)
|
|
sum++;
|
|
}
|
|
if (sum > 1)
|
|
return false;
|
|
}
|
|
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
|
|
unsigned sum = 0;
|
|
for (unsigned c = pos; c < pos + num; c++) {
|
|
if (atEq(r, c) != 0)
|
|
sum++;
|
|
}
|
|
if (sum > 1)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Removes duplicate constraints, trivially true constraints, and constraints
|
|
/// that can be detected as redundant as a result of differing only in their
|
|
/// constant term part. A constraint of the form <non-negative constant> >= 0 is
|
|
/// considered trivially true.
|
|
// Uses a DenseSet to hash and detect duplicates followed by a linear scan to
|
|
// remove duplicates in place.
|
|
void IntegerRelation::removeTrivialRedundancy() {
|
|
gcdTightenInequalities();
|
|
normalizeConstraintsByGCD();
|
|
|
|
// A map used to detect redundancy stemming from constraints that only differ
|
|
// in their constant term. The value stored is <row position, const term>
|
|
// for a given row.
|
|
SmallDenseMap<ArrayRef<DynamicAPInt>, std::pair<unsigned, DynamicAPInt>>
|
|
rowsWithoutConstTerm;
|
|
|
|
// Check if constraint is of the form <non-negative-constant> >= 0.
|
|
auto isTriviallyValid = [&](unsigned r) -> bool {
|
|
for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) {
|
|
if (atIneq(r, c) != 0)
|
|
return false;
|
|
}
|
|
return atIneq(r, getNumCols() - 1) >= 0;
|
|
};
|
|
|
|
// Detect and mark redundant constraints.
|
|
SmallVector<bool, 256> redunIneq(getNumInequalities(), false);
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
|
|
DynamicAPInt *rowStart = &inequalities(r, 0);
|
|
if (isTriviallyValid(r)) {
|
|
redunIneq[r] = true;
|
|
continue;
|
|
}
|
|
|
|
// Among constraints that only differ in the constant term part, mark
|
|
// everything other than the one with the smallest constant term redundant.
|
|
// (eg: among i - 16j - 5 >= 0, i - 16j - 1 >=0, i - 16j - 7 >= 0, the
|
|
// former two are redundant).
|
|
DynamicAPInt constTerm = atIneq(r, getNumCols() - 1);
|
|
auto rowWithoutConstTerm =
|
|
ArrayRef<DynamicAPInt>(rowStart, getNumCols() - 1);
|
|
const auto &ret =
|
|
rowsWithoutConstTerm.insert({rowWithoutConstTerm, {r, constTerm}});
|
|
if (!ret.second) {
|
|
// Check if the other constraint has a higher constant term.
|
|
auto &val = ret.first->second;
|
|
if (val.second > constTerm) {
|
|
// The stored row is redundant. Mark it so, and update with this one.
|
|
redunIneq[val.first] = true;
|
|
val = {r, constTerm};
|
|
} else {
|
|
// The one stored makes this one redundant.
|
|
redunIneq[r] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Scan to get rid of all rows marked redundant, in-place.
|
|
unsigned pos = 0;
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; r++)
|
|
if (!redunIneq[r])
|
|
inequalities.copyRow(r, pos++);
|
|
|
|
inequalities.resizeVertically(pos);
|
|
|
|
// TODO: consider doing this for equalities as well, but probably not worth
|
|
// the savings.
|
|
}
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "fm"
|
|
|
|
/// Eliminates variable at the specified position using Fourier-Motzkin
|
|
/// variable elimination. This technique is exact for rational spaces but
|
|
/// conservative (in "rare" cases) for integer spaces. The operation corresponds
|
|
/// to a projection operation yielding the (convex) set of integer points
|
|
/// contained in the rational shadow of the set. An emptiness test that relies
|
|
/// on this method will guarantee emptiness, i.e., it disproves the existence of
|
|
/// a solution if it says it's empty.
|
|
/// If a non-null isResultIntegerExact is passed, it is set to true if the
|
|
/// result is also integer exact. If it's set to false, the obtained solution
|
|
/// *may* not be exact, i.e., it may contain integer points that do not have an
|
|
/// integer pre-image in the original set.
|
|
///
|
|
/// Eg:
|
|
/// j >= 0, j <= i + 1
|
|
/// i >= 0, i <= N + 1
|
|
/// Eliminating i yields,
|
|
/// j >= 0, 0 <= N + 1, j - 1 <= N + 1
|
|
///
|
|
/// If darkShadow = true, this method computes the dark shadow on elimination;
|
|
/// the dark shadow is a convex integer subset of the exact integer shadow. A
|
|
/// non-empty dark shadow proves the existence of an integer solution. The
|
|
/// elimination in such a case could however be an under-approximation, and thus
|
|
/// should not be used for scanning sets or used by itself for dependence
|
|
/// checking.
|
|
///
|
|
/// Eg: 2-d set, * represents grid points, 'o' represents a point in the set.
|
|
/// ^
|
|
/// |
|
|
/// | * * * * o o
|
|
/// i | * * o o o o
|
|
/// | o * * * * *
|
|
/// --------------->
|
|
/// j ->
|
|
///
|
|
/// Eliminating i from this system (projecting on the j dimension):
|
|
/// rational shadow / integer light shadow: 1 <= j <= 6
|
|
/// dark shadow: 3 <= j <= 6
|
|
/// exact integer shadow: j = 1 \union 3 <= j <= 6
|
|
/// holes/splinters: j = 2
|
|
///
|
|
/// darkShadow = false, isResultIntegerExact = nullptr are default values.
|
|
// TODO: a slight modification to yield dark shadow version of FM (tightened),
|
|
// which can prove the existence of a solution if there is one.
|
|
void IntegerRelation::fourierMotzkinEliminate(unsigned pos, bool darkShadow,
|
|
bool *isResultIntegerExact) {
|
|
LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n");
|
|
LLVM_DEBUG(dump());
|
|
assert(pos < getNumVars() && "invalid position");
|
|
assert(hasConsistentState());
|
|
|
|
// Check if this variable can be eliminated through a substitution.
|
|
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
|
|
if (atEq(r, pos) != 0) {
|
|
// Use Gaussian elimination here (since we have an equality).
|
|
LogicalResult ret = gaussianEliminateVar(pos);
|
|
(void)ret;
|
|
assert(ret.succeeded() && "Gaussian elimination guaranteed to succeed");
|
|
LLVM_DEBUG(llvm::dbgs() << "FM output (through Gaussian elimination):\n");
|
|
LLVM_DEBUG(dump());
|
|
return;
|
|
}
|
|
}
|
|
|
|
// A fast linear time tightening.
|
|
gcdTightenInequalities();
|
|
|
|
// Check if the variable appears at all in any of the inequalities.
|
|
if (isColZero(pos)) {
|
|
// If it doesn't appear, just remove the column and return.
|
|
// TODO: refactor removeColumns to use it from here.
|
|
removeVar(pos);
|
|
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
|
|
LLVM_DEBUG(dump());
|
|
return;
|
|
}
|
|
|
|
// Positions of constraints that are lower bounds on the variable.
|
|
SmallVector<unsigned, 4> lbIndices;
|
|
// Positions of constraints that are lower bounds on the variable.
|
|
SmallVector<unsigned, 4> ubIndices;
|
|
// Positions of constraints that do not involve the variable.
|
|
std::vector<unsigned> nbIndices;
|
|
nbIndices.reserve(getNumInequalities());
|
|
|
|
// Gather all lower bounds and upper bounds of the variable. Since the
|
|
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
|
|
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
|
|
if (atIneq(r, pos) == 0) {
|
|
// Var does not appear in bound.
|
|
nbIndices.emplace_back(r);
|
|
} else if (atIneq(r, pos) >= 1) {
|
|
// Lower bound.
|
|
lbIndices.emplace_back(r);
|
|
} else {
|
|
// Upper bound.
|
|
ubIndices.emplace_back(r);
|
|
}
|
|
}
|
|
|
|
PresburgerSpace newSpace = getSpace();
|
|
VarKind idKindRemove = newSpace.getVarKindAt(pos);
|
|
unsigned relativePos = pos - newSpace.getVarKindOffset(idKindRemove);
|
|
newSpace.removeVarRange(idKindRemove, relativePos, relativePos + 1);
|
|
|
|
/// Create the new system which has one variable less.
|
|
IntegerRelation newRel(lbIndices.size() * ubIndices.size() + nbIndices.size(),
|
|
getNumEqualities(), getNumCols() - 1, newSpace);
|
|
|
|
// This will be used to check if the elimination was integer exact.
|
|
bool allLCMsAreOne = true;
|
|
|
|
// Let x be the variable we are eliminating.
|
|
// For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note
|
|
// that c_l, c_u >= 1) we have:
|
|
// lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u
|
|
// We thus generate a constraint:
|
|
// lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub.
|
|
// Note if c_l = c_u = 1, all integer points captured by the resulting
|
|
// constraint correspond to integer points in the original system (i.e., they
|
|
// have integer pre-images). Hence, if the lcm's are all 1, the elimination is
|
|
// integer exact.
|
|
for (auto ubPos : ubIndices) {
|
|
for (auto lbPos : lbIndices) {
|
|
SmallVector<DynamicAPInt, 4> ineq;
|
|
ineq.reserve(newRel.getNumCols());
|
|
DynamicAPInt lbCoeff = atIneq(lbPos, pos);
|
|
// Note that in the comments above, ubCoeff is the negation of the
|
|
// coefficient in the canonical form as the view taken here is that of the
|
|
// term being moved to the other size of '>='.
|
|
DynamicAPInt ubCoeff = -atIneq(ubPos, pos);
|
|
// TODO: refactor this loop to avoid all branches inside.
|
|
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
|
|
if (l == pos)
|
|
continue;
|
|
assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified");
|
|
DynamicAPInt lcm = llvm::lcm(lbCoeff, ubCoeff);
|
|
ineq.emplace_back(atIneq(ubPos, l) * (lcm / ubCoeff) +
|
|
atIneq(lbPos, l) * (lcm / lbCoeff));
|
|
assert(lcm > 0 && "lcm should be positive!");
|
|
if (lcm != 1)
|
|
allLCMsAreOne = false;
|
|
}
|
|
if (darkShadow) {
|
|
// The dark shadow is a convex subset of the exact integer shadow. If
|
|
// there is a point here, it proves the existence of a solution.
|
|
ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1;
|
|
}
|
|
// TODO: we need to have a way to add inequalities in-place in
|
|
// IntegerRelation instead of creating and copying over.
|
|
newRel.addInequality(ineq);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "FM isResultIntegerExact: " << allLCMsAreOne
|
|
<< "\n");
|
|
if (allLCMsAreOne && isResultIntegerExact)
|
|
*isResultIntegerExact = true;
|
|
|
|
// Copy over the constraints not involving this variable.
|
|
for (auto nbPos : nbIndices) {
|
|
SmallVector<DynamicAPInt, 4> ineq;
|
|
ineq.reserve(getNumCols() - 1);
|
|
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
|
|
if (l == pos)
|
|
continue;
|
|
ineq.emplace_back(atIneq(nbPos, l));
|
|
}
|
|
newRel.addInequality(ineq);
|
|
}
|
|
|
|
assert(newRel.getNumConstraints() ==
|
|
lbIndices.size() * ubIndices.size() + nbIndices.size());
|
|
|
|
// Copy over the equalities.
|
|
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
|
|
SmallVector<DynamicAPInt, 4> eq;
|
|
eq.reserve(newRel.getNumCols());
|
|
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
|
|
if (l == pos)
|
|
continue;
|
|
eq.emplace_back(atEq(r, l));
|
|
}
|
|
newRel.addEquality(eq);
|
|
}
|
|
|
|
// GCD tightening and normalization allows detection of more trivially
|
|
// redundant constraints.
|
|
newRel.gcdTightenInequalities();
|
|
newRel.normalizeConstraintsByGCD();
|
|
newRel.removeTrivialRedundancy();
|
|
clearAndCopyFrom(newRel);
|
|
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
|
|
LLVM_DEBUG(dump());
|
|
}
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "presburger"
|
|
|
|
void IntegerRelation::projectOut(unsigned pos, unsigned num) {
|
|
if (num == 0)
|
|
return;
|
|
|
|
// 'pos' can be at most getNumCols() - 2 if num > 0.
|
|
assert((getNumCols() < 2 || pos <= getNumCols() - 2) && "invalid position");
|
|
assert(pos + num < getNumCols() && "invalid range");
|
|
|
|
// Eliminate as many variables as possible using Gaussian elimination.
|
|
unsigned currentPos = pos;
|
|
unsigned numToEliminate = num;
|
|
unsigned numGaussianEliminated = 0;
|
|
|
|
while (currentPos < getNumVars()) {
|
|
unsigned curNumEliminated =
|
|
gaussianEliminateVars(currentPos, currentPos + numToEliminate);
|
|
++currentPos;
|
|
numToEliminate -= curNumEliminated + 1;
|
|
numGaussianEliminated += curNumEliminated;
|
|
}
|
|
|
|
// Eliminate the remaining using Fourier-Motzkin.
|
|
for (unsigned i = 0; i < num - numGaussianEliminated; i++) {
|
|
unsigned numToEliminate = num - numGaussianEliminated - i;
|
|
fourierMotzkinEliminate(
|
|
getBestVarToEliminate(*this, pos, pos + numToEliminate));
|
|
}
|
|
|
|
// Fast/trivial simplifications.
|
|
gcdTightenInequalities();
|
|
// Normalize constraints after tightening since the latter impacts this, but
|
|
// not the other way round.
|
|
normalizeConstraintsByGCD();
|
|
}
|
|
|
|
namespace {
|
|
|
|
enum BoundCmpResult { Greater, Less, Equal, Unknown };
|
|
|
|
/// Compares two affine bounds whose coefficients are provided in 'first' and
|
|
/// 'second'. The last coefficient is the constant term.
|
|
static BoundCmpResult compareBounds(ArrayRef<DynamicAPInt> a,
|
|
ArrayRef<DynamicAPInt> b) {
|
|
assert(a.size() == b.size());
|
|
|
|
// For the bounds to be comparable, their corresponding variable
|
|
// coefficients should be equal; the constant terms are then compared to
|
|
// determine less/greater/equal.
|
|
|
|
if (!std::equal(a.begin(), a.end() - 1, b.begin()))
|
|
return Unknown;
|
|
|
|
if (a.back() == b.back())
|
|
return Equal;
|
|
|
|
return a.back() < b.back() ? Less : Greater;
|
|
}
|
|
} // namespace
|
|
|
|
// Returns constraints that are common to both A & B.
|
|
static void getCommonConstraints(const IntegerRelation &a,
|
|
const IntegerRelation &b, IntegerRelation &c) {
|
|
c = IntegerRelation(a.getSpace());
|
|
// a naive O(n^2) check should be enough here given the input sizes.
|
|
for (unsigned r = 0, e = a.getNumInequalities(); r < e; ++r) {
|
|
for (unsigned s = 0, f = b.getNumInequalities(); s < f; ++s) {
|
|
if (a.getInequality(r) == b.getInequality(s)) {
|
|
c.addInequality(a.getInequality(r));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (unsigned r = 0, e = a.getNumEqualities(); r < e; ++r) {
|
|
for (unsigned s = 0, f = b.getNumEqualities(); s < f; ++s) {
|
|
if (a.getEquality(r) == b.getEquality(s)) {
|
|
c.addEquality(a.getEquality(r));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Computes the bounding box with respect to 'other' by finding the min of the
|
|
// lower bounds and the max of the upper bounds along each of the dimensions.
|
|
LogicalResult
|
|
IntegerRelation::unionBoundingBox(const IntegerRelation &otherCst) {
|
|
assert(space.isEqual(otherCst.getSpace()) && "Spaces should match.");
|
|
assert(getNumLocalVars() == 0 && "local ids not supported yet here");
|
|
|
|
// Get the constraints common to both systems; these will be added as is to
|
|
// the union.
|
|
IntegerRelation commonCst(PresburgerSpace::getRelationSpace());
|
|
getCommonConstraints(*this, otherCst, commonCst);
|
|
|
|
std::vector<SmallVector<DynamicAPInt, 8>> boundingLbs;
|
|
std::vector<SmallVector<DynamicAPInt, 8>> boundingUbs;
|
|
boundingLbs.reserve(2 * getNumDimVars());
|
|
boundingUbs.reserve(2 * getNumDimVars());
|
|
|
|
// To hold lower and upper bounds for each dimension.
|
|
SmallVector<DynamicAPInt, 4> lb, otherLb, ub, otherUb;
|
|
// To compute min of lower bounds and max of upper bounds for each dimension.
|
|
SmallVector<DynamicAPInt, 4> minLb(getNumSymbolVars() + 1);
|
|
SmallVector<DynamicAPInt, 4> maxUb(getNumSymbolVars() + 1);
|
|
// To compute final new lower and upper bounds for the union.
|
|
SmallVector<DynamicAPInt, 8> newLb(getNumCols()), newUb(getNumCols());
|
|
|
|
DynamicAPInt lbFloorDivisor, otherLbFloorDivisor;
|
|
for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) {
|
|
auto extent = getConstantBoundOnDimSize(d, &lb, &lbFloorDivisor, &ub);
|
|
if (!extent.has_value())
|
|
// TODO: symbolic extents when necessary.
|
|
// TODO: handle union if a dimension is unbounded.
|
|
return failure();
|
|
|
|
auto otherExtent = otherCst.getConstantBoundOnDimSize(
|
|
d, &otherLb, &otherLbFloorDivisor, &otherUb);
|
|
if (!otherExtent.has_value() || lbFloorDivisor != otherLbFloorDivisor)
|
|
// TODO: symbolic extents when necessary.
|
|
return failure();
|
|
|
|
assert(lbFloorDivisor > 0 && "divisor always expected to be positive");
|
|
|
|
auto res = compareBounds(lb, otherLb);
|
|
// Identify min.
|
|
if (res == BoundCmpResult::Less || res == BoundCmpResult::Equal) {
|
|
minLb = lb;
|
|
// Since the divisor is for a floordiv, we need to convert to ceildiv,
|
|
// i.e., i >= expr floordiv div <=> i >= (expr - div + 1) ceildiv div <=>
|
|
// div * i >= expr - div + 1.
|
|
minLb.back() -= lbFloorDivisor - 1;
|
|
} else if (res == BoundCmpResult::Greater) {
|
|
minLb = otherLb;
|
|
minLb.back() -= otherLbFloorDivisor - 1;
|
|
} else {
|
|
// Uncomparable - check for constant lower/upper bounds.
|
|
auto constLb = getConstantBound(BoundType::LB, d);
|
|
auto constOtherLb = otherCst.getConstantBound(BoundType::LB, d);
|
|
if (!constLb.has_value() || !constOtherLb.has_value())
|
|
return failure();
|
|
llvm::fill(minLb, 0);
|
|
minLb.back() = std::min(*constLb, *constOtherLb);
|
|
}
|
|
|
|
// Do the same for ub's but max of upper bounds. Identify max.
|
|
auto uRes = compareBounds(ub, otherUb);
|
|
if (uRes == BoundCmpResult::Greater || uRes == BoundCmpResult::Equal) {
|
|
maxUb = ub;
|
|
} else if (uRes == BoundCmpResult::Less) {
|
|
maxUb = otherUb;
|
|
} else {
|
|
// Uncomparable - check for constant lower/upper bounds.
|
|
auto constUb = getConstantBound(BoundType::UB, d);
|
|
auto constOtherUb = otherCst.getConstantBound(BoundType::UB, d);
|
|
if (!constUb.has_value() || !constOtherUb.has_value())
|
|
return failure();
|
|
llvm::fill(maxUb, 0);
|
|
maxUb.back() = std::max(*constUb, *constOtherUb);
|
|
}
|
|
|
|
llvm::fill(newLb, 0);
|
|
llvm::fill(newUb, 0);
|
|
|
|
// The divisor for lb, ub, otherLb, otherUb at this point is lbDivisor,
|
|
// and so it's the divisor for newLb and newUb as well.
|
|
newLb[d] = lbFloorDivisor;
|
|
newUb[d] = -lbFloorDivisor;
|
|
// Copy over the symbolic part + constant term.
|
|
std::copy(minLb.begin(), minLb.end(), newLb.begin() + getNumDimVars());
|
|
std::transform(newLb.begin() + getNumDimVars(), newLb.end(),
|
|
newLb.begin() + getNumDimVars(),
|
|
std::negate<DynamicAPInt>());
|
|
std::copy(maxUb.begin(), maxUb.end(), newUb.begin() + getNumDimVars());
|
|
|
|
boundingLbs.emplace_back(newLb);
|
|
boundingUbs.emplace_back(newUb);
|
|
}
|
|
|
|
// Clear all constraints and add the lower/upper bounds for the bounding box.
|
|
clearConstraints();
|
|
for (unsigned d = 0, e = getNumDimVars(); d < e; ++d) {
|
|
addInequality(boundingLbs[d]);
|
|
addInequality(boundingUbs[d]);
|
|
}
|
|
|
|
// Add the constraints that were common to both systems.
|
|
append(commonCst);
|
|
removeTrivialRedundancy();
|
|
|
|
// TODO: copy over pure symbolic constraints from this and 'other' over to the
|
|
// union (since the above are just the union along dimensions); we shouldn't
|
|
// be discarding any other constraints on the symbols.
|
|
|
|
return success();
|
|
}
|
|
|
|
bool IntegerRelation::isColZero(unsigned pos) const {
|
|
return !findConstraintWithNonZeroAt(pos, /*isEq=*/false) &&
|
|
!findConstraintWithNonZeroAt(pos, /*isEq=*/true);
|
|
}
|
|
|
|
/// Find positions of inequalities and equalities that do not have a coefficient
|
|
/// for [pos, pos + num) variables.
|
|
static void getIndependentConstraints(const IntegerRelation &cst, unsigned pos,
|
|
unsigned num,
|
|
SmallVectorImpl<unsigned> &nbIneqIndices,
|
|
SmallVectorImpl<unsigned> &nbEqIndices) {
|
|
assert(pos < cst.getNumVars() && "invalid start position");
|
|
assert(pos + num <= cst.getNumVars() && "invalid limit");
|
|
|
|
for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
|
|
// The bounds are to be independent of [offset, offset + num) columns.
|
|
unsigned c;
|
|
for (c = pos; c < pos + num; ++c) {
|
|
if (cst.atIneq(r, c) != 0)
|
|
break;
|
|
}
|
|
if (c == pos + num)
|
|
nbIneqIndices.emplace_back(r);
|
|
}
|
|
|
|
for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
|
|
// The bounds are to be independent of [offset, offset + num) columns.
|
|
unsigned c;
|
|
for (c = pos; c < pos + num; ++c) {
|
|
if (cst.atEq(r, c) != 0)
|
|
break;
|
|
}
|
|
if (c == pos + num)
|
|
nbEqIndices.emplace_back(r);
|
|
}
|
|
}
|
|
|
|
void IntegerRelation::removeIndependentConstraints(unsigned pos, unsigned num) {
|
|
assert(pos + num <= getNumVars() && "invalid range");
|
|
|
|
// Remove constraints that are independent of these variables.
|
|
SmallVector<unsigned, 4> nbIneqIndices, nbEqIndices;
|
|
getIndependentConstraints(*this, /*pos=*/0, num, nbIneqIndices, nbEqIndices);
|
|
|
|
// Iterate in reverse so that indices don't have to be updated.
|
|
// TODO: This method can be made more efficient (because removal of each
|
|
// inequality leads to much shifting/copying in the underlying buffer).
|
|
for (auto nbIndex : llvm::reverse(nbIneqIndices))
|
|
removeInequality(nbIndex);
|
|
for (auto nbIndex : llvm::reverse(nbEqIndices))
|
|
removeEquality(nbIndex);
|
|
}
|
|
|
|
IntegerPolyhedron IntegerRelation::getDomainSet() const {
|
|
IntegerRelation copyRel = *this;
|
|
|
|
// Convert Range variables to Local variables.
|
|
copyRel.convertVarKind(VarKind::Range, 0, getNumVarKind(VarKind::Range),
|
|
VarKind::Local);
|
|
|
|
// Convert Domain variables to SetDim(Range) variables.
|
|
copyRel.convertVarKind(VarKind::Domain, 0, getNumVarKind(VarKind::Domain),
|
|
VarKind::SetDim);
|
|
|
|
return IntegerPolyhedron(std::move(copyRel));
|
|
}
|
|
|
|
bool IntegerRelation::removeDuplicateConstraints() {
|
|
bool changed = false;
|
|
SmallDenseMap<ArrayRef<DynamicAPInt>, unsigned> hashTable;
|
|
unsigned ineqs = getNumInequalities(), cols = getNumCols();
|
|
|
|
if (ineqs <= 1)
|
|
return changed;
|
|
|
|
// Check if the non-constant part of the constraint is the same.
|
|
ArrayRef<DynamicAPInt> row = getInequality(0).drop_back();
|
|
hashTable.insert({row, 0});
|
|
for (unsigned k = 1; k < ineqs; ++k) {
|
|
row = getInequality(k).drop_back();
|
|
if (hashTable.try_emplace(row, k).second)
|
|
continue;
|
|
|
|
// For identical cases, keep only the smaller part of the constant term.
|
|
unsigned l = hashTable[row];
|
|
changed = true;
|
|
if (atIneq(k, cols - 1) <= atIneq(l, cols - 1))
|
|
inequalities.swapRows(k, l);
|
|
removeInequality(k);
|
|
--k;
|
|
--ineqs;
|
|
}
|
|
|
|
// Check the neg form of each inequality, need an extra vector to store it.
|
|
SmallVector<DynamicAPInt> negIneq(cols - 1);
|
|
for (unsigned k = 0; k < ineqs; ++k) {
|
|
row = getInequality(k).drop_back();
|
|
negIneq.assign(row.begin(), row.end());
|
|
for (DynamicAPInt &ele : negIneq)
|
|
ele = -ele;
|
|
if (!hashTable.contains(negIneq))
|
|
continue;
|
|
|
|
// For cases where the neg is the same as other inequalities, check that the
|
|
// sum of their constant terms is positive.
|
|
unsigned l = hashTable[row];
|
|
auto sum = atIneq(l, cols - 1) + atIneq(k, cols - 1);
|
|
if (sum > 0 || l == k)
|
|
continue;
|
|
|
|
// A sum of constant terms equal to zero combines two inequalities into one
|
|
// equation, less than zero means the set is empty.
|
|
changed = true;
|
|
if (k < l)
|
|
std::swap(l, k);
|
|
if (sum == 0) {
|
|
addEquality(getInequality(k));
|
|
removeInequality(k);
|
|
removeInequality(l);
|
|
} else {
|
|
*this = getEmpty(getSpace());
|
|
}
|
|
break;
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
IntegerPolyhedron IntegerRelation::getRangeSet() const {
|
|
IntegerRelation copyRel = *this;
|
|
|
|
// Convert Domain variables to Local variables.
|
|
copyRel.convertVarKind(VarKind::Domain, 0, getNumVarKind(VarKind::Domain),
|
|
VarKind::Local);
|
|
|
|
// We do not need to do anything to Range variables since they are already in
|
|
// SetDim position.
|
|
|
|
return IntegerPolyhedron(std::move(copyRel));
|
|
}
|
|
|
|
void IntegerRelation::intersectDomain(const IntegerPolyhedron &poly) {
|
|
assert(getDomainSet().getSpace().isCompatible(poly.getSpace()) &&
|
|
"Domain set is not compatible with poly");
|
|
|
|
// Treating the poly as a relation, convert it from `0 -> R` to `R -> 0`.
|
|
IntegerRelation rel = poly;
|
|
rel.inverse();
|
|
|
|
// Append dummy range variables to make the spaces compatible.
|
|
rel.appendVar(VarKind::Range, getNumRangeVars());
|
|
|
|
// Intersect in place.
|
|
mergeLocalVars(rel);
|
|
append(rel);
|
|
}
|
|
|
|
void IntegerRelation::intersectRange(const IntegerPolyhedron &poly) {
|
|
assert(getRangeSet().getSpace().isCompatible(poly.getSpace()) &&
|
|
"Range set is not compatible with poly");
|
|
|
|
IntegerRelation rel = poly;
|
|
|
|
// Append dummy domain variables to make the spaces compatible.
|
|
rel.appendVar(VarKind::Domain, getNumDomainVars());
|
|
|
|
mergeLocalVars(rel);
|
|
append(rel);
|
|
}
|
|
|
|
void IntegerRelation::inverse() {
|
|
unsigned numRangeVars = getNumVarKind(VarKind::Range);
|
|
convertVarKind(VarKind::Domain, 0, getVarKindEnd(VarKind::Domain),
|
|
VarKind::Range);
|
|
convertVarKind(VarKind::Range, 0, numRangeVars, VarKind::Domain);
|
|
}
|
|
|
|
void IntegerRelation::compose(const IntegerRelation &rel) {
|
|
assert(getRangeSet().getSpace().isCompatible(rel.getDomainSet().getSpace()) &&
|
|
"Range of `this` should be compatible with Domain of `rel`");
|
|
|
|
IntegerRelation copyRel = rel;
|
|
|
|
// Let relation `this` be R1: A -> B, and `rel` be R2: B -> C.
|
|
// We convert R1 to A -> (B X C), and R2 to B X C then intersect the range of
|
|
// R1 with R2. After this, we get R1: A -> C, by projecting out B.
|
|
// TODO: Using nested spaces here would help, since we could directly
|
|
// intersect the range with another relation.
|
|
unsigned numBVars = getNumRangeVars();
|
|
|
|
// Convert R1 from A -> B to A -> (B X C).
|
|
appendVar(VarKind::Range, copyRel.getNumRangeVars());
|
|
|
|
// Convert R2 to B X C.
|
|
copyRel.convertVarKind(VarKind::Domain, 0, numBVars, VarKind::Range, 0);
|
|
|
|
// Intersect R2 to range of R1.
|
|
intersectRange(IntegerPolyhedron(copyRel));
|
|
|
|
// Project out B in R1.
|
|
convertVarKind(VarKind::Range, 0, numBVars, VarKind::Local);
|
|
}
|
|
|
|
void IntegerRelation::applyDomain(const IntegerRelation &rel) {
|
|
inverse();
|
|
compose(rel);
|
|
inverse();
|
|
}
|
|
|
|
void IntegerRelation::applyRange(const IntegerRelation &rel) { compose(rel); }
|
|
|
|
IntegerRelation IntegerRelation::rangeProduct(const IntegerRelation &rel) {
|
|
/// R1: (i, j) -> k : f(i, j, k) = 0
|
|
/// R2: (i, j) -> l : g(i, j, l) = 0
|
|
/// R1.rangeProduct(R2): (i, j) -> (k, l) : f(i, j, k) = 0 and g(i, j, l) = 0
|
|
assert(getNumDomainVars() == rel.getNumDomainVars() &&
|
|
"Range product is only defined for relations with equal domains");
|
|
|
|
// explicit copy of `this`
|
|
IntegerRelation result = *this;
|
|
unsigned relRangeVarStart = rel.getVarKindOffset(VarKind::Range);
|
|
unsigned numThisRangeVars = getNumRangeVars();
|
|
unsigned numNewSymbolVars = result.getNumSymbolVars() - getNumSymbolVars();
|
|
|
|
result.appendVar(VarKind::Range, rel.getNumRangeVars());
|
|
|
|
// Copy each equality from `rel` and update the copy to account for range
|
|
// variables from `this`. The `rel` equality is a list of coefficients of the
|
|
// variables from `rel`, and so the range variables need to be shifted right
|
|
// by the number of `this` range variables and symbols.
|
|
for (unsigned i = 0; i < rel.getNumEqualities(); ++i) {
|
|
SmallVector<DynamicAPInt> copy =
|
|
SmallVector<DynamicAPInt>(rel.getEquality(i));
|
|
copy.insert(copy.begin() + relRangeVarStart,
|
|
numThisRangeVars + numNewSymbolVars, DynamicAPInt(0));
|
|
result.addEquality(copy);
|
|
}
|
|
|
|
for (unsigned i = 0; i < rel.getNumInequalities(); ++i) {
|
|
SmallVector<DynamicAPInt> copy =
|
|
SmallVector<DynamicAPInt>(rel.getInequality(i));
|
|
copy.insert(copy.begin() + relRangeVarStart,
|
|
numThisRangeVars + numNewSymbolVars, DynamicAPInt(0));
|
|
result.addInequality(copy);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void IntegerRelation::printSpace(raw_ostream &os) const {
|
|
space.print(os);
|
|
os << getNumConstraints() << " constraints\n";
|
|
}
|
|
|
|
void IntegerRelation::removeTrivialEqualities() {
|
|
for (int i = getNumEqualities() - 1; i >= 0; --i)
|
|
if (rangeIsZero(getEquality(i)))
|
|
removeEquality(i);
|
|
}
|
|
|
|
bool IntegerRelation::isFullDim() {
|
|
if (getNumVars() == 0)
|
|
return true;
|
|
if (isEmpty())
|
|
return false;
|
|
|
|
// If there is a non-trivial equality, the space cannot be full-dimensional.
|
|
removeTrivialEqualities();
|
|
if (getNumEqualities() > 0)
|
|
return false;
|
|
|
|
// The polytope is full-dimensional iff it is not flat along any of the
|
|
// inequality directions.
|
|
Simplex simplex(*this);
|
|
return llvm::none_of(llvm::seq<int>(getNumInequalities()), [&](int i) {
|
|
return simplex.isFlatAlong(getInequality(i));
|
|
});
|
|
}
|
|
|
|
void IntegerRelation::mergeAndCompose(const IntegerRelation &other) {
|
|
assert(getNumDomainVars() == other.getNumRangeVars() &&
|
|
"Domain of this and range of other do not match");
|
|
// assert(std::equal(values.begin(), values.begin() +
|
|
// other.getNumDomainVars(),
|
|
// otherValues.begin() + other.getNumDomainVars()) &&
|
|
// "Domain of this and range of other do not match");
|
|
|
|
IntegerRelation result = other;
|
|
|
|
const unsigned thisDomain = getNumDomainVars();
|
|
const unsigned thisRange = getNumRangeVars();
|
|
const unsigned otherDomain = other.getNumDomainVars();
|
|
const unsigned otherRange = other.getNumRangeVars();
|
|
|
|
// Add dimension variables temporarily to merge symbol and local vars.
|
|
// Convert `this` from
|
|
// [thisDomain] -> [thisRange]
|
|
// to
|
|
// [otherDomain thisDomain] -> [otherRange thisRange].
|
|
// and `result` from
|
|
// [otherDomain] -> [otherRange]
|
|
// to
|
|
// [otherDomain thisDomain] -> [otherRange thisRange]
|
|
insertVar(VarKind::Domain, 0, otherDomain);
|
|
insertVar(VarKind::Range, 0, otherRange);
|
|
result.insertVar(VarKind::Domain, otherDomain, thisDomain);
|
|
result.insertVar(VarKind::Range, otherRange, thisRange);
|
|
|
|
// Merge symbol and local variables.
|
|
mergeAndAlignSymbols(result);
|
|
mergeLocalVars(result);
|
|
|
|
// Convert `result` from [otherDomain thisDomain] -> [otherRange thisRange] to
|
|
// [otherDomain] -> [thisRange]
|
|
result.removeVarRange(VarKind::Domain, otherDomain, otherDomain + thisDomain);
|
|
result.convertToLocal(VarKind::Range, 0, otherRange);
|
|
// Convert `this` from [otherDomain thisDomain] -> [otherRange thisRange] to
|
|
// [otherDomain] -> [thisRange]
|
|
convertToLocal(VarKind::Domain, otherDomain, otherDomain + thisDomain);
|
|
removeVarRange(VarKind::Range, 0, otherRange);
|
|
|
|
// Add and match domain of `result` to domain of `this`.
|
|
for (unsigned i = 0, e = result.getNumDomainVars(); i < e; ++i)
|
|
if (result.getSpace().getId(VarKind::Domain, i).hasValue())
|
|
space.setId(VarKind::Domain, i,
|
|
result.getSpace().getId(VarKind::Domain, i));
|
|
// Add and match range of `this` to range of `result`.
|
|
for (unsigned i = 0, e = getNumRangeVars(); i < e; ++i)
|
|
if (space.getId(VarKind::Range, i).hasValue())
|
|
result.space.setId(VarKind::Range, i, space.getId(VarKind::Range, i));
|
|
|
|
// Append `this` to `result` and simplify constraints.
|
|
result.append(*this);
|
|
result.removeRedundantLocalVars();
|
|
|
|
*this = result;
|
|
}
|
|
|
|
void IntegerRelation::print(raw_ostream &os) const {
|
|
assert(hasConsistentState());
|
|
printSpace(os);
|
|
PrintTableMetrics ptm = {0, 0, "-"};
|
|
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i)
|
|
for (unsigned j = 0, f = getNumCols(); j < f; ++j)
|
|
updatePrintMetrics<DynamicAPInt>(atEq(i, j), ptm);
|
|
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i)
|
|
for (unsigned j = 0, f = getNumCols(); j < f; ++j)
|
|
updatePrintMetrics<DynamicAPInt>(atIneq(i, j), ptm);
|
|
// Print using PrintMetrics.
|
|
constexpr unsigned kMinSpacing = 1;
|
|
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
|
|
for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
|
|
printWithPrintMetrics<DynamicAPInt>(os, atEq(i, j), kMinSpacing, ptm);
|
|
}
|
|
os << " = 0\n";
|
|
}
|
|
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
|
|
for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
|
|
printWithPrintMetrics<DynamicAPInt>(os, atIneq(i, j), kMinSpacing, ptm);
|
|
}
|
|
os << " >= 0\n";
|
|
}
|
|
os << '\n';
|
|
}
|
|
|
|
void IntegerRelation::dump() const { print(llvm::errs()); }
|
|
|
|
unsigned IntegerPolyhedron::insertVar(VarKind kind, unsigned pos,
|
|
unsigned num) {
|
|
assert((kind != VarKind::Domain || num == 0) &&
|
|
"Domain has to be zero in a set");
|
|
return IntegerRelation::insertVar(kind, pos, num);
|
|
}
|
|
IntegerPolyhedron
|
|
IntegerPolyhedron::intersect(const IntegerPolyhedron &other) const {
|
|
return IntegerPolyhedron(IntegerRelation::intersect(other));
|
|
}
|
|
|
|
PresburgerSet IntegerPolyhedron::subtract(const PresburgerSet &other) const {
|
|
return PresburgerSet(IntegerRelation::subtract(other));
|
|
}
|