llvm-project/llvm/test/CodeGen/M68k/Arith/smul-with-overflow.ll
Dan Salvato b09b05a83e
[M68k] Fix incorrect boolean content type (#152572)
M68k's SETCC instruction (`scc`) distinctly fills the destination byte
with all 1s. If boolean contents are set to `ZeroOrOneBooleanContent`,
LLVM can mistakenly think the destination holds `0x01` instead of `0xff`
and emit broken code as a result. This change corrects the boolean
content type to `ZeroOrNegativeOneBooleanContent`.

For example, this IR:

```llvm
define dso_local signext range(i8 0, 2) i8 @testBool(i32 noundef %a) local_unnamed_addr #0 {
entry:
  %cmp = icmp eq i32 %a, 4660
  %. = zext i1 %cmp to i8
  ret i8 %.
}
```

would previously build as:

```asm
testBool:                               ; @testBool
	cmpi.l	#4660, (4,%sp)
	seq	%d0
	and.l	#255, %d0
	rts
```

Notice the `zext` is erroneously not clearing the low bits, and thus the
register returns with 255 instead of 1. This patch fixes the issue:

```asm
testBool:                               ; @testBool
	cmpi.l	#4660, (4,%sp)
	seq	%d0
	and.l	#1, %d0
	rts
```

Most of the tests containing `scc` suffered from the same value error as
described above, so those tests have been updated to match the new
output (which also logically corrects them).
2025-08-12 08:46:41 -07:00

168 lines
5.1 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=m68k-linux -verify-machineinstrs | FileCheck %s
define zeroext i8 @smul_i8(i8 signext %a, i8 signext %b) nounwind ssp {
; CHECK-LABEL: smul_i8:
; CHECK: ; %bb.0: ; %entry
; CHECK-NEXT: move.b (11,%sp), %d0
; CHECK-NEXT: and.l #255, %d0
; CHECK-NEXT: move.b (7,%sp), %d1
; CHECK-NEXT: and.l #255, %d1
; CHECK-NEXT: muls %d0, %d1
; CHECK-NEXT: move.l %d1, %d0
; CHECK-NEXT: and.l #65535, %d0
; CHECK-NEXT: and.l #255, %d0
; CHECK-NEXT: rts
entry:
%smul = tail call { i8, i1 } @llvm.smul.with.overflow.i8(i8 %a, i8 %b)
%cmp = extractvalue { i8, i1 } %smul, 1
%smul.result = extractvalue { i8, i1 } %smul, 0
%X = select i1 %cmp, i8 42, i8 %smul.result
ret i8 %X
}
define zeroext i8 @smul_i8_no_ovf(i8 signext %a, i8 signext %b) nounwind ssp {
; CHECK-LABEL: smul_i8_no_ovf:
; CHECK: ; %bb.0: ; %entry
; CHECK-NEXT: moveq #42, %d0
; CHECK-NEXT: rts
entry:
%smul = tail call { i8, i1 } @llvm.smul.with.overflow.i8(i8 %a, i8 %b)
%cmp = extractvalue { i8, i1 } %smul, 1
%smul.result = extractvalue { i8, i1 } %smul, 0
%X = select i1 %cmp, i8 %smul.result, i8 42
ret i8 %X
}
declare { i8, i1 } @llvm.smul.with.overflow.i8(i8, i8) nounwind readnone
define zeroext i16 @smul_i16(i16 signext %a, i16 signext %b) nounwind ssp {
; CHECK-LABEL: smul_i16:
; CHECK: ; %bb.0: ; %entry
; CHECK-NEXT: move.w (6,%sp), %d0
; CHECK-NEXT: move.w (10,%sp), %d1
; CHECK-NEXT: muls %d1, %d0
; CHECK-NEXT: and.l #65535, %d0
; CHECK-NEXT: rts
entry:
%smul = tail call { i16, i1 } @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
%cmp = extractvalue { i16, i1 } %smul, 1
%smul.result = extractvalue { i16, i1 } %smul, 0
%X = select i1 %cmp, i16 42, i16 %smul.result
ret i16 %X
}
declare { i16, i1 } @llvm.smul.with.overflow.i16(i16, i16) nounwind readnone
declare i32 @printf(ptr, ...) nounwind
declare {i32, i1} @llvm.smul.with.overflow.i32(i32, i32)
@ok = internal constant [4 x i8] c"%d\0A\00"
@no = internal constant [4 x i8] c"no\0A\00"
define fastcc i1 @test1(i32 %v1, i32 %v2) nounwind {
; CHECK-LABEL: test1:
; CHECK: ; %bb.0: ; %entry
; CHECK-NEXT: suba.l #12, %sp
; CHECK-NEXT: muls.l %d1, %d0
; CHECK-NEXT: bvc .LBB3_1
; CHECK-NEXT: ; %bb.2: ; %overflow
; CHECK-NEXT: lea (no,%pc), %a0
; CHECK-NEXT: move.l %a0, (%sp)
; CHECK-NEXT: jsr printf
; CHECK-NEXT: moveq #0, %d0
; CHECK-NEXT: adda.l #12, %sp
; CHECK-NEXT: rts
; CHECK-NEXT: .LBB3_1: ; %normal
; CHECK-NEXT: move.l %d0, (4,%sp)
; CHECK-NEXT: lea (ok,%pc), %a0
; CHECK-NEXT: move.l %a0, (%sp)
; CHECK-NEXT: jsr printf
; CHECK-NEXT: moveq #1, %d0
; CHECK-NEXT: adda.l #12, %sp
; CHECK-NEXT: rts
entry:
%t = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %v1, i32 %v2)
%sum = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
br i1 %obit, label %overflow, label %normal
normal:
%t1 = tail call i32 (ptr, ...) @printf( ptr @ok, i32 %sum ) nounwind
ret i1 true
overflow:
%t2 = tail call i32 (ptr, ...) @printf( ptr @no ) nounwind
ret i1 false
}
define fastcc i1 @test2(i32 %v1, i32 %v2) nounwind {
; CHECK-LABEL: test2:
; CHECK: ; %bb.0: ; %entry
; CHECK-NEXT: suba.l #12, %sp
; CHECK-NEXT: muls.l %d1, %d0
; CHECK-NEXT: svs %d1
; CHECK-NEXT: and.b #1, %d1
; CHECK-NEXT: cmpi.b #0, %d1
; CHECK-NEXT: beq .LBB4_2
; CHECK-NEXT: ; %bb.1: ; %overflow
; CHECK-NEXT: lea (no,%pc), %a0
; CHECK-NEXT: move.l %a0, (%sp)
; CHECK-NEXT: jsr printf
; CHECK-NEXT: moveq #0, %d0
; CHECK-NEXT: adda.l #12, %sp
; CHECK-NEXT: rts
; CHECK-NEXT: .LBB4_2: ; %normal
; CHECK-NEXT: move.l %d0, (4,%sp)
; CHECK-NEXT: lea (ok,%pc), %a0
; CHECK-NEXT: move.l %a0, (%sp)
; CHECK-NEXT: jsr printf
; CHECK-NEXT: moveq #1, %d0
; CHECK-NEXT: adda.l #12, %sp
; CHECK-NEXT: rts
entry:
%t = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %v1, i32 %v2)
%sum = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
br i1 %obit, label %overflow, label %normal
overflow:
%t2 = tail call i32 (ptr, ...) @printf( ptr @no ) nounwind
ret i1 false
normal:
%t1 = tail call i32 (ptr, ...) @printf( ptr @ok, i32 %sum ) nounwind
ret i1 true
}
define i32 @test3(i32 %a, i32 %b) nounwind readnone {
; CHECK-LABEL: test3:
; CHECK: ; %bb.0: ; %entry
; CHECK-NEXT: move.l (8,%sp), %d0
; CHECK-NEXT: add.l (4,%sp), %d0
; CHECK-NEXT: add.l %d0, %d0
; CHECK-NEXT: rts
entry:
%tmp0 = add i32 %b, %a
%tmp1 = call { i32, i1 } @llvm.smul.with.overflow.i32(i32 %tmp0, i32 2)
%tmp2 = extractvalue { i32, i1 } %tmp1, 0
ret i32 %tmp2
}
; Same as umul-with-overflow, we shouldn't fallback to
; builtin here
define i32 @test4(i32 %a, i32 %b) nounwind readnone {
; CHECK-LABEL: test4:
; CHECK: ; %bb.0: ; %entry
; CHECK-NEXT: move.l (8,%sp), %d0
; CHECK-NEXT: add.l (4,%sp), %d0
; CHECK-NEXT: moveq #4, %d1
; CHECK-NEXT: muls.l %d1, %d0
; CHECK-NEXT: rts
entry:
%tmp0 = add i32 %b, %a
%tmp1 = call { i32, i1 } @llvm.smul.with.overflow.i32(i32 %tmp0, i32 4)
%tmp2 = extractvalue { i32, i1 } %tmp1, 0
ret i32 %tmp2
}