
Note this is a change local to -Wunsafe-buffer-usage checks. Add a new matcher `forEveryDescendant` that recursively matches descendants of a `Stmt` but skips nested callable definitions. This matcher has same effect as using `forEachDescendant` and skipping `forCallable` explicitly but does not require the AST construction to be complete. Reviewed by: NoQ, xazax.hun Differential revision: https://reviews.llvm.org/D138329
572 lines
19 KiB
C++
572 lines
19 KiB
C++
//===- UnsafeBufferUsage.cpp - Replace pointers with modern C++ -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/Analyses/UnsafeBufferUsage.h"
|
|
#include "clang/ASTMatchers/ASTMatchFinder.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
|
|
using namespace llvm;
|
|
using namespace clang;
|
|
using namespace ast_matchers;
|
|
|
|
namespace clang::ast_matchers::internal {
|
|
// A `RecursiveASTVisitor` that traverses all descendants of a given node "n"
|
|
// except for those belonging to a different callable of "n".
|
|
class MatchDescendantVisitor
|
|
: public RecursiveASTVisitor<MatchDescendantVisitor> {
|
|
public:
|
|
typedef RecursiveASTVisitor<MatchDescendantVisitor> VisitorBase;
|
|
|
|
// Creates an AST visitor that matches `Matcher` on all
|
|
// descendants of a given node "n" except for the ones
|
|
// belonging to a different callable of "n".
|
|
MatchDescendantVisitor(const DynTypedMatcher *Matcher, ASTMatchFinder *Finder,
|
|
BoundNodesTreeBuilder *Builder,
|
|
ASTMatchFinder::BindKind Bind)
|
|
: Matcher(Matcher), Finder(Finder), Builder(Builder), Bind(Bind),
|
|
Matches(false) {}
|
|
|
|
// Returns true if a match is found in a subtree of `DynNode`, which belongs
|
|
// to the same callable of `DynNode`.
|
|
bool findMatch(const DynTypedNode &DynNode) {
|
|
Matches = false;
|
|
if (const Stmt *StmtNode = DynNode.get<Stmt>()) {
|
|
TraverseStmt(const_cast<Stmt *>(StmtNode));
|
|
*Builder = ResultBindings;
|
|
return Matches;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// The following are overriding methods from the base visitor class.
|
|
// They are public only to allow CRTP to work. They are *not *part
|
|
// of the public API of this class.
|
|
|
|
// For the matchers so far used in safe buffers, we only need to match
|
|
// `Stmt`s. To override more as needed.
|
|
|
|
bool TraverseDecl(Decl *Node) {
|
|
if (!Node)
|
|
return true;
|
|
if (!match(*Node))
|
|
return false;
|
|
// To skip callables:
|
|
if (isa<FunctionDecl, BlockDecl, ObjCMethodDecl>(Node))
|
|
return true;
|
|
// Traverse descendants
|
|
return VisitorBase::TraverseDecl(Node);
|
|
}
|
|
|
|
bool TraverseStmt(Stmt *Node, DataRecursionQueue *Queue = nullptr) {
|
|
if (!Node)
|
|
return true;
|
|
if (!match(*Node))
|
|
return false;
|
|
// To skip callables:
|
|
if (isa<LambdaExpr>(Node))
|
|
return true;
|
|
return VisitorBase::TraverseStmt(Node);
|
|
}
|
|
|
|
bool shouldVisitTemplateInstantiations() const { return true; }
|
|
bool shouldVisitImplicitCode() const {
|
|
// TODO: let's ignore implicit code for now
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
// Sets 'Matched' to true if 'Matcher' matches 'Node'
|
|
//
|
|
// Returns 'true' if traversal should continue after this function
|
|
// returns, i.e. if no match is found or 'Bind' is 'BK_All'.
|
|
template <typename T> bool match(const T &Node) {
|
|
BoundNodesTreeBuilder RecursiveBuilder(*Builder);
|
|
|
|
if (Matcher->matches(DynTypedNode::create(Node), Finder,
|
|
&RecursiveBuilder)) {
|
|
ResultBindings.addMatch(RecursiveBuilder);
|
|
Matches = true;
|
|
if (Bind != ASTMatchFinder::BK_All)
|
|
return false; // Abort as soon as a match is found.
|
|
}
|
|
return true;
|
|
}
|
|
|
|
const DynTypedMatcher *const Matcher;
|
|
ASTMatchFinder *const Finder;
|
|
BoundNodesTreeBuilder *const Builder;
|
|
BoundNodesTreeBuilder ResultBindings;
|
|
const ASTMatchFinder::BindKind Bind;
|
|
bool Matches;
|
|
};
|
|
|
|
AST_MATCHER_P(Stmt, forEveryDescendant, Matcher<Stmt>, innerMatcher) {
|
|
MatchDescendantVisitor Visitor(new DynTypedMatcher(innerMatcher), Finder,
|
|
Builder, ASTMatchFinder::BK_All);
|
|
return Visitor.findMatch(DynTypedNode::create(Node));
|
|
}
|
|
} // namespace clang::ast_matchers::internal
|
|
|
|
namespace {
|
|
// Because the analysis revolves around variables and their types, we'll need to
|
|
// track uses of variables (aka DeclRefExprs).
|
|
using DeclUseList = SmallVector<const DeclRefExpr *, 1>;
|
|
|
|
// Convenience typedef.
|
|
using FixItList = SmallVector<FixItHint, 4>;
|
|
|
|
// Defined below.
|
|
class Strategy;
|
|
} // namespace
|
|
|
|
// Because we're dealing with raw pointers, let's define what we mean by that.
|
|
static auto hasPointerType() {
|
|
return hasType(hasCanonicalType(pointerType()));
|
|
}
|
|
|
|
namespace {
|
|
/// Gadget is an individual operation in the code that may be of interest to
|
|
/// this analysis. Each (non-abstract) subclass corresponds to a specific
|
|
/// rigid AST structure that constitutes an operation on a pointer-type object.
|
|
/// Discovery of a gadget in the code corresponds to claiming that we understand
|
|
/// what this part of code is doing well enough to potentially improve it.
|
|
/// Gadgets can be unsafe (immediately deserving a warning) or safe (not
|
|
/// deserving a warning per se, but affecting our decision-making process
|
|
/// nonetheless).
|
|
class Gadget {
|
|
public:
|
|
enum class Kind {
|
|
#define GADGET(x) x,
|
|
#include "clang/Analysis/Analyses/UnsafeBufferUsageGadgets.def"
|
|
};
|
|
|
|
/// Common type of ASTMatchers used for discovering gadgets.
|
|
/// Useful for implementing the static matcher() methods
|
|
/// that are expected from all non-abstract subclasses.
|
|
using Matcher = decltype(stmt());
|
|
|
|
Gadget(Kind K) : K(K) {}
|
|
|
|
Kind getKind() const { return K; }
|
|
|
|
virtual bool isSafe() const = 0;
|
|
virtual const Stmt *getBaseStmt() const = 0;
|
|
|
|
/// Returns the list of pointer-type variables on which this gadget performs
|
|
/// its operation. Typically, there's only one variable. This isn't a list
|
|
/// of all DeclRefExprs in the gadget's AST!
|
|
virtual DeclUseList getClaimedVarUseSites() const = 0;
|
|
|
|
/// Returns a fixit that would fix the current gadget according to
|
|
/// the current strategy. Returns None if the fix cannot be produced;
|
|
/// returns an empty list if no fixes are necessary.
|
|
virtual std::optional<FixItList> getFixits(const Strategy &) const {
|
|
return std::nullopt;
|
|
}
|
|
|
|
virtual ~Gadget() = default;
|
|
|
|
private:
|
|
Kind K;
|
|
};
|
|
|
|
using GadgetList = std::vector<std::unique_ptr<Gadget>>;
|
|
|
|
/// Unsafe gadgets correspond to unsafe code patterns that warrants
|
|
/// an immediate warning.
|
|
class UnsafeGadget : public Gadget {
|
|
public:
|
|
UnsafeGadget(Kind K) : Gadget(K) {}
|
|
|
|
static bool classof(const Gadget *G) { return G->isSafe(); }
|
|
bool isSafe() const final { return false; }
|
|
};
|
|
|
|
/// Safe gadgets correspond to code patterns that aren't unsafe but need to be
|
|
/// properly recognized in order to emit correct warnings and fixes over unsafe
|
|
/// gadgets. For example, if a raw pointer-type variable is replaced by
|
|
/// a safe C++ container, every use of such variable may need to be
|
|
/// carefully considered and possibly updated.
|
|
class SafeGadget : public Gadget {
|
|
public:
|
|
SafeGadget(Kind K) : Gadget(K) {}
|
|
|
|
static bool classof(const Gadget *G) { return !G->isSafe(); }
|
|
bool isSafe() const final { return true; }
|
|
};
|
|
|
|
/// An increment of a pointer-type value is unsafe as it may run the pointer
|
|
/// out of bounds.
|
|
class IncrementGadget : public UnsafeGadget {
|
|
static constexpr const char *const OpTag = "op";
|
|
const UnaryOperator *Op;
|
|
|
|
public:
|
|
IncrementGadget(const MatchFinder::MatchResult &Result)
|
|
: UnsafeGadget(Kind::Increment),
|
|
Op(Result.Nodes.getNodeAs<UnaryOperator>(OpTag)) {}
|
|
|
|
static bool classof(const Gadget *G) {
|
|
return G->getKind() == Kind::Increment;
|
|
}
|
|
|
|
static Matcher matcher() {
|
|
return stmt(unaryOperator(
|
|
hasOperatorName("++"),
|
|
hasUnaryOperand(ignoringParenImpCasts(hasPointerType()))
|
|
).bind(OpTag));
|
|
}
|
|
|
|
const UnaryOperator *getBaseStmt() const override { return Op; }
|
|
|
|
DeclUseList getClaimedVarUseSites() const override {
|
|
SmallVector<const DeclRefExpr *, 2> Uses;
|
|
if (const auto *DRE =
|
|
dyn_cast<DeclRefExpr>(Op->getSubExpr()->IgnoreParenImpCasts())) {
|
|
Uses.push_back(DRE);
|
|
}
|
|
|
|
return std::move(Uses);
|
|
}
|
|
};
|
|
|
|
/// A decrement of a pointer-type value is unsafe as it may run the pointer
|
|
/// out of bounds.
|
|
class DecrementGadget : public UnsafeGadget {
|
|
static constexpr const char *const OpTag = "op";
|
|
const UnaryOperator *Op;
|
|
|
|
public:
|
|
DecrementGadget(const MatchFinder::MatchResult &Result)
|
|
: UnsafeGadget(Kind::Decrement),
|
|
Op(Result.Nodes.getNodeAs<UnaryOperator>(OpTag)) {}
|
|
|
|
static bool classof(const Gadget *G) {
|
|
return G->getKind() == Kind::Decrement;
|
|
}
|
|
|
|
static Matcher matcher() {
|
|
return stmt(unaryOperator(
|
|
hasOperatorName("--"),
|
|
hasUnaryOperand(ignoringParenImpCasts(hasPointerType()))
|
|
).bind(OpTag));
|
|
}
|
|
|
|
const UnaryOperator *getBaseStmt() const override { return Op; }
|
|
|
|
DeclUseList getClaimedVarUseSites() const override {
|
|
if (const auto *DRE =
|
|
dyn_cast<DeclRefExpr>(Op->getSubExpr()->IgnoreParenImpCasts())) {
|
|
return {DRE};
|
|
}
|
|
|
|
return {};
|
|
}
|
|
};
|
|
|
|
/// Array subscript expressions on raw pointers as if they're arrays. Unsafe as
|
|
/// it doesn't have any bounds checks for the array.
|
|
class ArraySubscriptGadget : public UnsafeGadget {
|
|
static constexpr const char *const ArraySubscrTag = "arraySubscr";
|
|
const ArraySubscriptExpr *ASE;
|
|
|
|
public:
|
|
ArraySubscriptGadget(const MatchFinder::MatchResult &Result)
|
|
: UnsafeGadget(Kind::ArraySubscript),
|
|
ASE(Result.Nodes.getNodeAs<ArraySubscriptExpr>(ArraySubscrTag)) {}
|
|
|
|
static bool classof(const Gadget *G) {
|
|
return G->getKind() == Kind::ArraySubscript;
|
|
}
|
|
|
|
static Matcher matcher() {
|
|
// FIXME: What if the index is integer literal 0? Should this be
|
|
// a safe gadget in this case?
|
|
return stmt(arraySubscriptExpr(hasBase(ignoringParenImpCasts(hasPointerType())),
|
|
unless(hasIndex(integerLiteral(equals(0)))))
|
|
.bind(ArraySubscrTag));
|
|
}
|
|
|
|
const ArraySubscriptExpr *getBaseStmt() const override { return ASE; }
|
|
|
|
DeclUseList getClaimedVarUseSites() const override {
|
|
if (const auto *DRE =
|
|
dyn_cast<DeclRefExpr>(ASE->getBase()->IgnoreParenImpCasts())) {
|
|
return {DRE};
|
|
}
|
|
|
|
return {};
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// An auxiliary tracking facility for the fixit analysis. It helps connect
|
|
// declarations to its and make sure we've covered all uses with our analysis
|
|
// before we try to fix the declaration.
|
|
class DeclUseTracker {
|
|
using UseSetTy = SmallSet<const DeclRefExpr *, 16>;
|
|
using DefMapTy = DenseMap<const VarDecl *, const DeclStmt *>;
|
|
|
|
// Allocate on the heap for easier move.
|
|
std::unique_ptr<UseSetTy> Uses{std::make_unique<UseSetTy>()};
|
|
DefMapTy Defs{};
|
|
|
|
public:
|
|
DeclUseTracker() = default;
|
|
DeclUseTracker(const DeclUseTracker &) = delete; // Let's avoid copies.
|
|
DeclUseTracker(DeclUseTracker &&) = default;
|
|
|
|
// Start tracking a freshly discovered DRE.
|
|
void discoverUse(const DeclRefExpr *DRE) { Uses->insert(DRE); }
|
|
|
|
// Stop tracking the DRE as it's been fully figured out.
|
|
void claimUse(const DeclRefExpr *DRE) {
|
|
assert(Uses->count(DRE) &&
|
|
"DRE not found or claimed by multiple matchers!");
|
|
Uses->erase(DRE);
|
|
}
|
|
|
|
// A variable is unclaimed if at least one use is unclaimed.
|
|
bool hasUnclaimedUses(const VarDecl *VD) const {
|
|
// FIXME: Can this be less linear? Maybe maintain a map from VDs to DREs?
|
|
return any_of(*Uses, [VD](const DeclRefExpr *DRE) {
|
|
return DRE->getDecl()->getCanonicalDecl() == VD->getCanonicalDecl();
|
|
});
|
|
}
|
|
|
|
void discoverDecl(const DeclStmt *DS) {
|
|
for (const Decl *D : DS->decls()) {
|
|
if (const auto *VD = dyn_cast<VarDecl>(D)) {
|
|
// FIXME: Assertion temporarily disabled due to a bug in
|
|
// ASTMatcher internal behavior in presence of GNU
|
|
// statement-expressions. We need to properly investigate this
|
|
// because it can screw up our algorithm in other ways.
|
|
// assert(Defs.count(VD) == 0 && "Definition already discovered!");
|
|
Defs[VD] = DS;
|
|
}
|
|
}
|
|
}
|
|
|
|
const DeclStmt *lookupDecl(const VarDecl *VD) const {
|
|
auto It = Defs.find(VD);
|
|
assert(It != Defs.end() && "Definition never discovered!");
|
|
return It->second;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Strategy is a map from variables to the way we plan to emit fixes for
|
|
// these variables. It is figured out gradually by trying different fixes
|
|
// for different variables depending on gadgets in which these variables
|
|
// participate.
|
|
class Strategy {
|
|
public:
|
|
enum class Kind {
|
|
Wontfix, // We don't plan to emit a fixit for this variable.
|
|
Span, // We recommend replacing the variable with std::span.
|
|
Iterator, // We recommend replacing the variable with std::span::iterator.
|
|
Array, // We recommend replacing the variable with std::array.
|
|
Vector // We recommend replacing the variable with std::vector.
|
|
};
|
|
|
|
private:
|
|
using MapTy = llvm::DenseMap<const VarDecl *, Kind>;
|
|
|
|
MapTy Map;
|
|
|
|
public:
|
|
Strategy() = default;
|
|
Strategy(const Strategy &) = delete; // Let's avoid copies.
|
|
Strategy(Strategy &&) = default;
|
|
|
|
void set(const VarDecl *VD, Kind K) {
|
|
Map[VD] = K;
|
|
}
|
|
|
|
Kind lookup(const VarDecl *VD) const {
|
|
auto I = Map.find(VD);
|
|
if (I == Map.end())
|
|
return Kind::Wontfix;
|
|
|
|
return I->second;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/// Scan the function and return a list of gadgets found with provided kits.
|
|
static std::pair<GadgetList, DeclUseTracker> findGadgets(const Decl *D) {
|
|
|
|
struct GadgetFinderCallback : MatchFinder::MatchCallback {
|
|
GadgetList Gadgets;
|
|
DeclUseTracker Tracker;
|
|
|
|
void run(const MatchFinder::MatchResult &Result) override {
|
|
// In debug mode, assert that we've found exactly one gadget.
|
|
// This helps us avoid conflicts in .bind() tags.
|
|
#if NDEBUG
|
|
#define NEXT return
|
|
#else
|
|
[[maybe_unused]] int numFound = 0;
|
|
#define NEXT ++numFound
|
|
#endif
|
|
|
|
if (const auto *DRE = Result.Nodes.getNodeAs<DeclRefExpr>("any_dre")) {
|
|
Tracker.discoverUse(DRE);
|
|
NEXT;
|
|
}
|
|
|
|
if (const auto *DS = Result.Nodes.getNodeAs<DeclStmt>("any_ds")) {
|
|
Tracker.discoverDecl(DS);
|
|
NEXT;
|
|
}
|
|
|
|
// Figure out which matcher we've found, and call the appropriate
|
|
// subclass constructor.
|
|
// FIXME: Can we do this more logarithmically?
|
|
#define GADGET(name) \
|
|
if (Result.Nodes.getNodeAs<Stmt>(#name)) { \
|
|
Gadgets.push_back(std::make_unique<name ## Gadget>(Result)); \
|
|
NEXT; \
|
|
}
|
|
#include "clang/Analysis/Analyses/UnsafeBufferUsageGadgets.def"
|
|
|
|
assert(numFound >= 1 && "Gadgets not found in match result!");
|
|
assert(numFound <= 1 && "Conflicting bind tags in gadgets!");
|
|
}
|
|
};
|
|
|
|
MatchFinder M;
|
|
GadgetFinderCallback CB;
|
|
|
|
// clang-format off
|
|
M.addMatcher(
|
|
stmt(forEveryDescendant(
|
|
stmt(anyOf(
|
|
// Add Gadget::matcher() for every gadget in the registry.
|
|
#define GADGET(x) \
|
|
x ## Gadget::matcher().bind(#x),
|
|
#include "clang/Analysis/Analyses/UnsafeBufferUsageGadgets.def"
|
|
// In parallel, match all DeclRefExprs so that to find out
|
|
// whether there are any uncovered by gadgets.
|
|
declRefExpr(hasPointerType(), to(varDecl())).bind("any_dre"),
|
|
// Also match DeclStmts because we'll need them when fixing
|
|
// their underlying VarDecls that otherwise don't have
|
|
// any backreferences to DeclStmts.
|
|
declStmt().bind("any_ds")
|
|
))
|
|
// FIXME: Idiomatically there should be a forCallable(equalsNode(D))
|
|
// here, to make sure that the statement actually belongs to the
|
|
// function and not to a nested function. However, forCallable uses
|
|
// ParentMap which can't be used before the AST is fully constructed.
|
|
// The original problem doesn't sound like it needs ParentMap though,
|
|
// maybe there's a more direct solution?
|
|
)),
|
|
&CB
|
|
);
|
|
// clang-format on
|
|
|
|
M.match(*D->getBody(), D->getASTContext());
|
|
|
|
// Gadgets "claim" variables they're responsible for. Once this loop finishes,
|
|
// the tracker will only track DREs that weren't claimed by any gadgets,
|
|
// i.e. not understood by the analysis.
|
|
for (const auto &G : CB.Gadgets) {
|
|
for (const auto *DRE : G->getClaimedVarUseSites()) {
|
|
CB.Tracker.claimUse(DRE);
|
|
}
|
|
}
|
|
|
|
return {std::move(CB.Gadgets), std::move(CB.Tracker)};
|
|
}
|
|
|
|
void clang::checkUnsafeBufferUsage(const Decl *D,
|
|
UnsafeBufferUsageHandler &Handler) {
|
|
assert(D && D->getBody());
|
|
|
|
SmallSet<const VarDecl *, 8> WarnedDecls;
|
|
|
|
auto [Gadgets, Tracker] = findGadgets(D);
|
|
|
|
DenseMap<const VarDecl *, std::vector<const Gadget *>> Map;
|
|
|
|
// First, let's sort gadgets by variables. If some gadgets cover more than one
|
|
// variable, they'll appear more than once in the map.
|
|
for (const auto &G : Gadgets) {
|
|
DeclUseList ClaimedVarUseSites = G->getClaimedVarUseSites();
|
|
|
|
// Populate the map.
|
|
bool Pushed = false;
|
|
for (const DeclRefExpr *DRE : ClaimedVarUseSites) {
|
|
if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
Map[VD].push_back(G.get());
|
|
Pushed = true;
|
|
}
|
|
}
|
|
|
|
if (!Pushed && !G->isSafe()) {
|
|
// We won't return to this gadget later. Emit the warning right away.
|
|
Handler.handleUnsafeOperation(G->getBaseStmt());
|
|
continue;
|
|
}
|
|
}
|
|
|
|
Strategy S;
|
|
|
|
for (const auto &[VD, VDGadgets] : Map) {
|
|
|
|
// If the variable has no unsafe gadgets, skip it entirely.
|
|
if (!any_of(VDGadgets, [](const Gadget *G) { return !G->isSafe(); }))
|
|
continue;
|
|
|
|
std::optional<FixItList> Fixes;
|
|
|
|
// Avoid suggesting fixes if not all uses of the variable are identified
|
|
// as known gadgets.
|
|
// FIXME: Support parameter variables as well.
|
|
if (!Tracker.hasUnclaimedUses(VD) && VD->isLocalVarDecl()) {
|
|
// Choose the appropriate strategy. FIXME: We should try different
|
|
// strategies.
|
|
S.set(VD, Strategy::Kind::Span);
|
|
|
|
// Check if it works.
|
|
// FIXME: This isn't sufficient (or even correct) when a gadget has
|
|
// already produced a fixit for a different variable i.e. it was mentioned
|
|
// in the map twice (or more). In such case the correct thing to do is
|
|
// to undo the previous fix first, and then if we can't produce the new
|
|
// fix for both variables, revert to the old one.
|
|
Fixes = FixItList{};
|
|
for (const Gadget *G : VDGadgets) {
|
|
std::optional<FixItList> F = G->getFixits(S);
|
|
if (!F) {
|
|
Fixes = std::nullopt;
|
|
break;
|
|
}
|
|
|
|
for (auto &&Fixit: *F)
|
|
Fixes->push_back(std::move(Fixit));
|
|
}
|
|
}
|
|
|
|
if (Fixes) {
|
|
// If we reach this point, the strategy is applicable.
|
|
Handler.handleFixableVariable(VD, std::move(*Fixes));
|
|
} else {
|
|
// The strategy has failed. Emit the warning without the fixit.
|
|
S.set(VD, Strategy::Kind::Wontfix);
|
|
for (const Gadget *G : VDGadgets) {
|
|
if (!G->isSafe()) {
|
|
Handler.handleUnsafeOperation(G->getBaseStmt());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|