681 lines
27 KiB
C++
681 lines
27 KiB
C++
//===- Loops.cpp - conversion from Linalg named and generic ops to loops --===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
|
|
#include "mlir/Dialect/Linalg/Passes.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/SCF/EDSC/Builders.h"
|
|
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/FoldUtils.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::edsc;
|
|
using namespace mlir::edsc::intrinsics;
|
|
using namespace mlir::linalg;
|
|
|
|
using edsc::op::operator+;
|
|
|
|
static SmallVector<Value, 8> makeCanonicalAffineApplies(OpBuilder &b,
|
|
Location loc,
|
|
AffineMap map,
|
|
ArrayRef<Value> vals) {
|
|
if (map.isEmpty())
|
|
return {};
|
|
assert(map.getNumSymbols() == 0);
|
|
assert(map.getNumInputs() == vals.size());
|
|
SmallVector<Value, 8> res;
|
|
res.reserve(map.getNumResults());
|
|
auto dims = map.getNumDims();
|
|
for (auto e : map.getResults()) {
|
|
auto exprMap = AffineMap::get(dims, 0, e);
|
|
SmallVector<Value, 4> operands(vals.begin(), vals.end());
|
|
canonicalizeMapAndOperands(&exprMap, &operands);
|
|
res.push_back(affine_apply(exprMap, operands));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static SmallVector<Value, 4> permuteIvs(ArrayRef<Value> ivs,
|
|
Optional<AffineMap> permutation) {
|
|
return permutation ? applyMapToValues(ScopedContext::getBuilderRef(),
|
|
ScopedContext::getLocation(),
|
|
permutation.getValue(), ivs)
|
|
: SmallVector<Value, 4>(ivs.begin(), ivs.end());
|
|
}
|
|
|
|
// Creates a number of ranges equal to the number of results in `map`.
|
|
// The returned ranges correspond to the loop ranges, in the proper order, for
|
|
// which new loops will be created.
|
|
static SmallVector<SubViewOp::Range, 4>
|
|
emitLoopRanges(OpBuilder &b, Location loc, AffineMap map,
|
|
ArrayRef<Value> allViewSizes) {
|
|
// Apply `map` to get view sizes in loop order.
|
|
auto sizes = applyMapToValues(b, loc, map, allViewSizes);
|
|
// Create a new range with the applied tile sizes.
|
|
ScopedContext scope(b, loc);
|
|
SmallVector<SubViewOp::Range, 4> res;
|
|
for (unsigned idx = 0, e = map.getNumResults(); idx < e; ++idx) {
|
|
res.push_back(SubViewOp::Range{std_constant_index(0), sizes[idx],
|
|
std_constant_index(1)});
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template <typename IndexedValueType, typename OpType>
|
|
static void inlineRegionAndEmitStore(OpType op, ArrayRef<Value> indexedValues,
|
|
ArrayRef<SmallVector<Value, 8>> indexing,
|
|
ArrayRef<Value> outputBuffers) {
|
|
assert(op.getOperation()->getNumRegions() == 1 &&
|
|
"Expected single region op");
|
|
auto &b = ScopedContext::getBuilderRef();
|
|
auto &block = op.region().front();
|
|
BlockAndValueMapping map;
|
|
map.map(block.getArguments(), indexedValues);
|
|
for (auto &op : block.without_terminator()) {
|
|
assert(op.getNumRegions() == 0 && "expected a non-nested region");
|
|
auto *newOp = b.clone(op, map);
|
|
map.map(op.getResults(), newOp->getResults());
|
|
}
|
|
|
|
Operation &terminator = block.back();
|
|
assert(isa<YieldOp>(terminator) &&
|
|
"expected a yield op in the end of the region");
|
|
for (unsigned i = 0, e = terminator.getNumOperands(); i < e; ++i) {
|
|
IndexedValueType O(outputBuffers[i]);
|
|
O(indexing[i]) = map.lookupOrDefault(terminator.getOperand(i));
|
|
}
|
|
}
|
|
|
|
// Returns a pair that contains input indices and output indices of a
|
|
// SingleInputPoolingOp `op`.
|
|
struct InputAndOutputIndices {
|
|
SmallVector<Value, 8> inputs;
|
|
SmallVector<Value, 8> outputs;
|
|
};
|
|
template <typename SingleInputPoolingOp>
|
|
static InputAndOutputIndices getInputAndOutputIndices(ArrayRef<Value> allIvs,
|
|
SingleInputPoolingOp op) {
|
|
auto &b = ScopedContext::getBuilderRef();
|
|
auto loc = ScopedContext::getLocation();
|
|
auto mapsRange = op.indexing_maps().template getAsRange<AffineMapAttr>();
|
|
auto maps = llvm::to_vector<8>(
|
|
llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); }));
|
|
return InputAndOutputIndices{
|
|
makeCanonicalAffineApplies(b, loc, maps[0], allIvs),
|
|
makeCanonicalAffineApplies(b, loc, maps[2], allIvs)};
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Emits the MLIR for the scalar part of the generic op by:
|
|
/// 1. Emitting load ops for each input and output view in order. This is
|
|
/// achieved by applying the appropriate input or output map to the
|
|
/// enclosing induction variables.
|
|
/// 2. Emitting a call to `op.fun()` that takes as arguments the scalars
|
|
/// from point 1. above.
|
|
/// 3. Emitting store ops to store the results of 2. to the output
|
|
/// views.
|
|
///
|
|
/// An example output may resemble:
|
|
///
|
|
/// ```
|
|
/// scf.for %i = %c0 to %0 step %c1 {
|
|
/// scf.for %j = %c0 to %1 step %c1 {
|
|
/// scf.for %k = %c0 to %4 step %c1 {
|
|
/// %11 = load %arg0[%i, %j] :
|
|
/// memref<?x?xf32, stride_specification>
|
|
/// %12 = load %arg1[%i, %j, %k] :
|
|
/// memref<?x?x?xf32, stride_specification>
|
|
/// %13 = load %arg2[%i, %k, %j] :
|
|
/// memref<?x?x?xf32, stride_specification>
|
|
/// %14:2 = call @foo(%11, %12, %13) : (f32, f32, f32) -> (f32, f32)
|
|
/// store %14#0, %arg1[%i, %j, %k] :
|
|
/// memref<?x?x?Xf32, stride_specification>
|
|
/// store %14#1, %arg2[%i, %k, %j] :
|
|
/// memref<?x?x?Xf32, stride_specification>
|
|
/// }
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
// TODO: need a LinalgStructuredOpInterface.
|
|
template <typename IndexedValueType, typename LinalgStructuredOpType>
|
|
void emitScalarImplementation(ArrayRef<Value> allIvs,
|
|
LinalgStructuredOpType linalgOp) {
|
|
assert(linalgOp.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
auto &b = ScopedContext::getBuilderRef();
|
|
auto loc = ScopedContext::getLocation();
|
|
unsigned nInputs = linalgOp.getNumInputs();
|
|
unsigned nOutputs = linalgOp.getNumOutputs();
|
|
SmallVector<Value, 4> indexedValues;
|
|
indexedValues.reserve(nInputs + nOutputs);
|
|
|
|
// TODO: Avoid the loads if the corresponding argument of the
|
|
// region has no uses.
|
|
// 1.a. Emit load from input views.
|
|
for (unsigned i = 0; i < nInputs; ++i) {
|
|
auto indexing = makeCanonicalAffineApplies(
|
|
b, loc, linalgOp.getInputIndexingMap(i), allIvs);
|
|
// Passing through IndexedValueType emits the proper load operation.
|
|
indexedValues.push_back(IndexedValueType(linalgOp.getInput(i))(indexing));
|
|
}
|
|
// 1.b. Emit load from output views.
|
|
for (unsigned i = 0; i < nOutputs; ++i) {
|
|
auto indexing = makeCanonicalAffineApplies(
|
|
b, loc, linalgOp.getOutputIndexingMap(i), allIvs);
|
|
// Passing through IndexedValueType emits the proper load operation.
|
|
indexedValues.push_back(
|
|
IndexedValueType(linalgOp.getOutputBuffer(i))(indexing));
|
|
}
|
|
|
|
// TODO: When a region inliner exists, use it.
|
|
// 2. Inline region, currently only works for a single basic block.
|
|
// 3. Emit store.
|
|
SmallVector<SmallVector<Value, 8>, 8> indexing;
|
|
SmallVector<Value, 8> outputBuffers;
|
|
for (unsigned i = 0; i < nOutputs; ++i) {
|
|
indexing.push_back(makeCanonicalAffineApplies(
|
|
b, loc, linalgOp.getOutputIndexingMap(i), allIvs));
|
|
outputBuffers.push_back(linalgOp.getOutputBuffer(i));
|
|
}
|
|
inlineRegionAndEmitStore<IndexedValueType>(linalgOp, indexedValues, indexing,
|
|
outputBuffers);
|
|
}
|
|
|
|
template <typename IndexedValueType>
|
|
void emitScalarImplementation(ArrayRef<Value> allIvs, CopyOp copyOp) {
|
|
assert(copyOp.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
auto nPar = copyOp.getNumParallelLoops();
|
|
assert(nPar == allIvs.size());
|
|
auto inputIvs =
|
|
permuteIvs(allIvs.take_front(nPar), copyOp.inputPermutation());
|
|
auto outputIvs =
|
|
permuteIvs(allIvs.take_front(nPar), copyOp.outputPermutation());
|
|
SmallVector<Value, 8> iivs(inputIvs.begin(), inputIvs.end());
|
|
SmallVector<Value, 8> oivs(outputIvs.begin(), outputIvs.end());
|
|
IndexedValueType O(copyOp.getOutputBuffer(0)), I(copyOp.getInput(0));
|
|
// Emit the proper scalar assignment, whether we are dealing with a 0-D or
|
|
// an n-D loop nest; with or without permutations.
|
|
// clang-format off
|
|
nPar > 0 ? O(oivs) = I(iivs) :
|
|
O() = I();
|
|
// clang-format on
|
|
}
|
|
|
|
template <typename IndexedValueType>
|
|
void emitScalarImplementation(ArrayRef<Value> allIvs, FillOp fillOp) {
|
|
assert(fillOp.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
auto nPar = fillOp.getNumParallelLoops();
|
|
assert(nPar == allIvs.size());
|
|
auto ivs = SmallVector<Value, 4>(allIvs.begin(), allIvs.begin() + nPar);
|
|
IndexedValueType O(fillOp.getOutputBuffer(0));
|
|
// Emit the proper scalar assignment, whether we are dealing with a 0-D or
|
|
// an n-D loop nest; with or without permutations.
|
|
nPar > 0 ? O(ivs) = fillOp.value() : O() = fillOp.value();
|
|
}
|
|
|
|
template <typename IndexedValueType>
|
|
void emitScalarImplementation(ArrayRef<Value> allIvs, DotOp dotOp) {
|
|
assert(dotOp.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
assert(allIvs.size() == 1);
|
|
Value r_i(allIvs[0]);
|
|
IndexedValueType A(dotOp.getInput(0)), B(dotOp.getInput(1)),
|
|
C(dotOp.getOutputBuffer(0));
|
|
// Emit scalar form.
|
|
C() = C() + A(r_i) * B(r_i);
|
|
}
|
|
|
|
template <typename IndexedValueType>
|
|
Value getConvOpInput(ConvOp convOp, StdIndexedValue im,
|
|
MutableArrayRef<Value> imIdx) {
|
|
// TODO: add a level of indirection to linalg.generic.
|
|
if (!convOp.padding())
|
|
return im(imIdx);
|
|
|
|
auto *context = ScopedContext::getContext();
|
|
Value zeroIndex = std_constant_index(0);
|
|
SmallVector<Value, 8> conds;
|
|
SmallVector<Value, 8> clampedImIdx;
|
|
for (auto iter : llvm::enumerate(imIdx)) {
|
|
int idx = iter.index();
|
|
auto dim = iter.value();
|
|
// Only need to iterate over the window dimensions.
|
|
if (idx == 0 || idx == static_cast<int>(imIdx.size()) - 1) {
|
|
clampedImIdx.push_back(dim);
|
|
continue;
|
|
}
|
|
|
|
using edsc::op::sge;
|
|
using edsc::op::slt;
|
|
using edsc::op::operator||;
|
|
Value leftOutOfBound = slt(dim, zeroIndex);
|
|
if (conds.empty())
|
|
conds.push_back(leftOutOfBound);
|
|
else
|
|
conds.push_back(conds.back() || leftOutOfBound);
|
|
Value rightBound = std_dim(convOp.input(), idx);
|
|
conds.push_back(conds.back() || (sge(dim, rightBound)));
|
|
|
|
// When padding is involved, the indices will only be shifted to negative,
|
|
// so having a max op is enough.
|
|
auto maxMap = AffineMap::get(/*dimCount=*/1, 0,
|
|
{getAffineDimExpr(/*position=*/0, context),
|
|
getAffineConstantExpr(0, context)},
|
|
context);
|
|
clampedImIdx.push_back(affine_max(dim.getType(), maxMap, ValueRange{dim}));
|
|
}
|
|
|
|
auto &b = ScopedContext::getBuilderRef();
|
|
Type type = convOp.input().getType().cast<MemRefType>().getElementType();
|
|
Value zero = std_constant(type, b.getZeroAttr(type));
|
|
Value readInput = im(clampedImIdx);
|
|
return conds.empty() ? readInput
|
|
: (Value)std_select(conds.back(), zero, readInput);
|
|
}
|
|
|
|
/// Returns true is `convOp` has a non-zero padding.
|
|
static bool hasPadding(ConvOp convOp) {
|
|
for (unsigned i = 0, e = convOp.getNumSpatialDimensions(); i < e; ++i) {
|
|
if (convOp.getLowPad(i) > 0 || convOp.getHighPad(i) > 0)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <typename IndexedValueType>
|
|
static void emitScalarImplementation(ArrayRef<Value> allIvs, ConvOp convOp) {
|
|
assert(convOp.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
auto &b = ScopedContext::getBuilderRef();
|
|
auto loc = ScopedContext::getLocation();
|
|
auto mapsRange = convOp.indexing_maps().getAsRange<AffineMapAttr>();
|
|
auto maps = llvm::to_vector<8>(
|
|
llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); }));
|
|
SmallVector<Value, 8> fIdx(
|
|
makeCanonicalAffineApplies(b, loc, maps[0], allIvs));
|
|
SmallVector<Value, 8> imIdx(
|
|
makeCanonicalAffineApplies(b, loc, maps[1], allIvs));
|
|
SmallVector<Value, 8> oIdx(
|
|
makeCanonicalAffineApplies(b, loc, maps[2], allIvs));
|
|
|
|
IndexedValueType F(convOp.filter()), O(convOp.output());
|
|
|
|
// Emit scalar form. Padded conv involves an affine.max in the memory access
|
|
// which is not allowed by affine.load. Override to use an StdIndexedValue
|
|
// when there is non-zero padding.
|
|
if (hasPadding(convOp)) {
|
|
StdIndexedValue I(convOp.input());
|
|
Value paddedInput = getConvOpInput<IndexedValueType>(convOp, I, imIdx);
|
|
O(oIdx) += F(fIdx) * paddedInput;
|
|
} else {
|
|
IndexedValueType I(convOp.input());
|
|
O(oIdx) += F(fIdx) * I(imIdx);
|
|
}
|
|
}
|
|
|
|
template <typename IndexedValueType>
|
|
void emitScalarImplementation(ArrayRef<Value> allIvs, PoolingMaxOp op) {
|
|
InputAndOutputIndices indices = getInputAndOutputIndices(allIvs, op);
|
|
// Emit scalar form.
|
|
IndexedValueType output(op.output());
|
|
IndexedValueType input(op.input());
|
|
Value lhs = output(indices.outputs);
|
|
Value rhs = input(indices.inputs);
|
|
using edsc::op::sgt;
|
|
Value maxValue = std_select(sgt(lhs, rhs), lhs, rhs);
|
|
output(indices.outputs) = maxValue;
|
|
}
|
|
|
|
template <typename IndexedValueType>
|
|
void emitScalarImplementation(ArrayRef<Value> allIvs, PoolingMinOp op) {
|
|
InputAndOutputIndices indices = getInputAndOutputIndices(allIvs, op);
|
|
// Emit scalar form.
|
|
IndexedValueType output(op.output());
|
|
IndexedValueType input(op.input());
|
|
Value lhs = output(indices.outputs);
|
|
Value rhs = input(indices.inputs);
|
|
using edsc::op::slt;
|
|
Value minValue = std_select(slt(lhs, rhs), lhs, rhs);
|
|
output(indices.outputs) = minValue;
|
|
}
|
|
template <typename IndexedValueType>
|
|
void emitScalarImplementation(ArrayRef<Value> allIvs, PoolingSumOp op) {
|
|
auto indices = getInputAndOutputIndices(allIvs, op);
|
|
IndexedValueType input(op.input()), output(op.output());
|
|
|
|
// Emit scalar form.
|
|
output(indices.outputs) += input(indices.inputs);
|
|
}
|
|
/// Emits the MLIR for the scalar part of the indexed generic op by:
|
|
/// 1. Emitting load ops for each input and output view in order. This is
|
|
/// achieved by applying the appropriate input or output map to the
|
|
/// enclosing induction variables.
|
|
/// 2. Emitting a call to `op.fun()` that takes as arguments the induction
|
|
/// variables and the scalars from point 1. above.
|
|
/// 3. Emitting store ops to store the results of 2. to the output views.
|
|
///
|
|
/// An example output may resemble:
|
|
///
|
|
/// ```
|
|
/// scf.for %i = %c0 to %0 step %c1 {
|
|
/// scf.for %j = %c0 to %1 step %c1 {
|
|
/// scf.for %k = %c0 to %4 step %c1 {
|
|
/// %11 = load %arg0[%i, %j] :
|
|
/// memref<?x?xf32, stride_specification>
|
|
/// %12 = load %arg1[%i, %j, %k] :
|
|
/// memref<?x?x?xf32, stride_specification>
|
|
/// %13 = load %arg2[%i, %k, %j] :
|
|
/// memref<?x?x?xf32, stride_specification>
|
|
/// %14:2 = call @foo(%i, %j, %k, %11, %12, %13) :
|
|
/// (index, index, index, f32, f32, f32) -> (f32, f32)
|
|
/// store %14#0, %arg1[%i, %j, %k] :
|
|
/// memref<?x?x?Xf32, stride_specification>
|
|
/// store %14#1, %arg2[%i, %k, %j] :
|
|
/// memref<?x?x?Xf32, stride_specification>
|
|
/// }
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
template <typename IndexedValueType>
|
|
static void emitScalarImplementation(ArrayRef<Value> allIvs,
|
|
IndexedGenericOp indexedGenericOp) {
|
|
assert(indexedGenericOp.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
auto &b = ScopedContext::getBuilderRef();
|
|
auto loc = ScopedContext::getLocation();
|
|
unsigned nInputs = indexedGenericOp.getNumInputs();
|
|
unsigned nOutputs = indexedGenericOp.getNumOutputs();
|
|
unsigned nLoops = allIvs.size();
|
|
SmallVector<Value, 4> indexedValues;
|
|
indexedValues.reserve(nLoops + nInputs + nOutputs);
|
|
for (unsigned i = 0; i < nLoops; ++i)
|
|
indexedValues.push_back(allIvs[i]);
|
|
|
|
// TODO: Avoid the loads if the corresponding argument of the
|
|
// region has no uses.
|
|
// 1.a. Emit load from input views.
|
|
for (unsigned i = 0; i < nInputs; ++i) {
|
|
auto indexing = makeCanonicalAffineApplies(
|
|
b, loc, indexedGenericOp.getInputIndexingMap(i), allIvs);
|
|
// Pass input i through IndexedValueType emits the proper load operation.
|
|
indexedValues.push_back(
|
|
IndexedValueType(indexedGenericOp.getInput(i))(indexing));
|
|
}
|
|
// 1.b. Emit load from output views.
|
|
for (unsigned i = 0; i < nOutputs; ++i) {
|
|
auto indexing = makeCanonicalAffineApplies(
|
|
b, loc, indexedGenericOp.getOutputIndexingMap(i), allIvs);
|
|
// Pass output i through IndexedValueType emits the proper load operation.
|
|
indexedValues.push_back(
|
|
IndexedValueType(indexedGenericOp.getOutputBuffer(i))(indexing));
|
|
}
|
|
|
|
// TODO: When a region inliner exists, use it.
|
|
// 2. Inline region, currently only works for a single basic block.
|
|
// 3. Emit store.
|
|
SmallVector<SmallVector<Value, 8>, 8> indexing;
|
|
SmallVector<Value, 8> outputBuffers;
|
|
for (unsigned i = 0; i < nOutputs; ++i) {
|
|
indexing.push_back(makeCanonicalAffineApplies(
|
|
b, loc, indexedGenericOp.getOutputIndexingMap(i), allIvs));
|
|
outputBuffers.push_back(indexedGenericOp.getOutputBuffer(i));
|
|
}
|
|
inlineRegionAndEmitStore<IndexedValueType>(indexedGenericOp, indexedValues,
|
|
indexing, outputBuffers);
|
|
}
|
|
|
|
template <typename LoopTy, typename ConcreteOpTy>
|
|
Optional<LinalgLoops> linalgOpToLoopsImpl(Operation *op, OpBuilder &builder) {
|
|
using IndexedValueTy = typename GenerateLoopNest<LoopTy>::IndexedValueTy;
|
|
|
|
ScopedContext scope(builder, op->getLoc());
|
|
|
|
// The flattened loopToOperandRangesMaps is expected to be an invertible
|
|
// permutation map (which is asserted in the inverse calculation).
|
|
auto linalgOp = cast<ConcreteOpTy>(op);
|
|
assert(linalgOp.hasBufferSemantics() &&
|
|
"expected linalg op with buffer semantics");
|
|
auto mapsRange =
|
|
linalgOp.indexing_maps().template getAsRange<AffineMapAttr>();
|
|
auto maps = llvm::to_vector<8>(
|
|
llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); }));
|
|
AffineMap invertedMap = inversePermutation(concatAffineMaps(maps));
|
|
if (!invertedMap)
|
|
return {};
|
|
if (invertedMap.isEmpty()) {
|
|
emitScalarImplementation<IndexedValueTy>({}, linalgOp);
|
|
return LinalgLoops();
|
|
}
|
|
|
|
SmallVector<Value, 4> allIvs;
|
|
auto loopRanges =
|
|
emitLoopRanges(scope.getBuilderRef(), scope.getLocation(), invertedMap,
|
|
getViewSizes(builder, linalgOp));
|
|
GenerateLoopNest<LoopTy>::doit(
|
|
loopRanges, linalgOp.iterator_types().getValue(), [&](ValueRange ivs) {
|
|
allIvs.append(ivs.begin(), ivs.end());
|
|
emitScalarImplementation<IndexedValueTy>(allIvs, linalgOp);
|
|
});
|
|
// Number of loop ops might be different from the number of ivs since some
|
|
// loops like affine.parallel and scf.parallel have multiple ivs.
|
|
llvm::SetVector<Operation *> loopSet;
|
|
for (Value iv : allIvs) {
|
|
if (!iv)
|
|
return {};
|
|
// The induction variable is a block argument of the entry block of the
|
|
// loop operation.
|
|
BlockArgument ivVal = iv.dyn_cast<BlockArgument>();
|
|
if (!ivVal)
|
|
return {};
|
|
loopSet.insert(ivVal.getOwner()->getParentOp());
|
|
}
|
|
LinalgLoops loops(loopSet.begin(), loopSet.end());
|
|
return loops;
|
|
}
|
|
|
|
template <typename LoopType, typename ConcreteOp>
|
|
class LinalgRewritePattern : public RewritePattern {
|
|
public:
|
|
explicit LinalgRewritePattern(MLIRContext *context)
|
|
: RewritePattern(ConcreteOp::getOperationName(), 1, context) {}
|
|
|
|
LogicalResult matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!linalgOpToLoopsImpl<LoopType, ConcreteOp>(op, rewriter))
|
|
return failure();
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
template <typename LoopType, typename ConcreteOp>
|
|
void insertOnePattern(OwningRewritePatternList &patterns, MLIRContext *ctx) {
|
|
patterns.insert<LinalgRewritePattern<LoopType, ConcreteOp>>(ctx);
|
|
}
|
|
|
|
template <typename LoopType, typename... Args>
|
|
void insertPatterns(OwningRewritePatternList &patterns, MLIRContext *ctx) {
|
|
(void)std::initializer_list<int>{
|
|
0, (insertOnePattern<LoopType, Args>(patterns, ctx), 0)...};
|
|
}
|
|
|
|
/// Local folding pattern for AffineApplyOp that we can apply greedily.
|
|
/// This replaces AffineApplyOp by the proper value in cases where the
|
|
/// associated map is trivial.
|
|
/// A trivial map here is defined as a map with a single result and either:
|
|
/// 1. Zero operand + returns a single AffineConstantExpr
|
|
/// 2. One operand + returns a single AffineDimExpr
|
|
/// 3. One operand + returns a single AffineSymbolExpr
|
|
//
|
|
/// In the first case, the AffineApplyOp is replaced by a new constant. In the
|
|
/// other cases, it is replaced by its unique operand.
|
|
struct FoldAffineOp : public RewritePattern {
|
|
FoldAffineOp(MLIRContext *context)
|
|
: RewritePattern(AffineApplyOp::getOperationName(), 0, context) {}
|
|
|
|
LogicalResult matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const override {
|
|
AffineApplyOp affineApplyOp = cast<AffineApplyOp>(op);
|
|
auto map = affineApplyOp.getAffineMap();
|
|
if (map.getNumResults() != 1 || map.getNumInputs() > 1)
|
|
return failure();
|
|
|
|
AffineExpr expr = map.getResult(0);
|
|
if (map.getNumInputs() == 0) {
|
|
if (auto val = expr.dyn_cast<AffineConstantExpr>()) {
|
|
rewriter.replaceOpWithNewOp<ConstantIndexOp>(op, val.getValue());
|
|
return success();
|
|
}
|
|
return failure();
|
|
}
|
|
if (expr.dyn_cast<AffineDimExpr>() || expr.dyn_cast<AffineSymbolExpr>()) {
|
|
rewriter.replaceOp(op, op->getOperand(0));
|
|
return success();
|
|
}
|
|
return failure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
template <typename LoopType>
|
|
static void lowerLinalgToLoopsImpl(FuncOp funcOp, MLIRContext *context) {
|
|
OwningRewritePatternList patterns;
|
|
// Canonicalization and folding patterns applied greedily allow cleaning up
|
|
// the emitted IR on the fly.
|
|
// TODO: fold view and subview ops?
|
|
insertPatterns<LoopType,
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
|
|
>(patterns, context);
|
|
|
|
DimOp::getCanonicalizationPatterns(patterns, context);
|
|
AffineApplyOp::getCanonicalizationPatterns(patterns, context);
|
|
patterns.insert<FoldAffineOp>(context);
|
|
// Just apply the patterns greedily.
|
|
applyPatternsAndFoldGreedily(funcOp, patterns);
|
|
}
|
|
|
|
namespace {
|
|
struct LowerToAffineLoops
|
|
: public LinalgLowerToAffineLoopsBase<LowerToAffineLoops> {
|
|
void runOnFunction() override {
|
|
lowerLinalgToLoopsImpl<AffineForOp>(getFunction(), &getContext());
|
|
}
|
|
};
|
|
struct LowerToLoops : public LinalgLowerToLoopsBase<LowerToLoops> {
|
|
void runOnFunction() override {
|
|
lowerLinalgToLoopsImpl<scf::ForOp>(getFunction(), &getContext());
|
|
}
|
|
};
|
|
struct LowerToParallelLoops
|
|
: public LinalgLowerToParallelLoopsBase<LowerToParallelLoops> {
|
|
void runOnFunction() override {
|
|
lowerLinalgToLoopsImpl<scf::ParallelOp>(getFunction(), &getContext());
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<FuncOp>> mlir::createConvertLinalgToLoopsPass() {
|
|
return std::make_unique<LowerToLoops>();
|
|
}
|
|
|
|
std::unique_ptr<OperationPass<FuncOp>>
|
|
mlir::createConvertLinalgToParallelLoopsPass() {
|
|
return std::make_unique<LowerToParallelLoops>();
|
|
}
|
|
|
|
std::unique_ptr<OperationPass<FuncOp>>
|
|
mlir::createConvertLinalgToAffineLoopsPass() {
|
|
return std::make_unique<LowerToAffineLoops>();
|
|
}
|
|
|
|
// TODO: gradually remove this layer as more ops become "named".
|
|
template <typename LoopTy>
|
|
static Optional<LinalgLoops> linalgOpToLoopsImplSwitch(Operation *op,
|
|
OpBuilder &builder) {
|
|
assert(isa<LinalgOp>(op) && "LinalgOp expected");
|
|
if (isa<CopyOp>(op))
|
|
return linalgOpToLoopsImpl<LoopTy, CopyOp>(op, builder);
|
|
if (isa<FillOp>(op))
|
|
return linalgOpToLoopsImpl<LoopTy, FillOp>(op, builder);
|
|
if (isa<DotOp>(op))
|
|
return linalgOpToLoopsImpl<LoopTy, DotOp>(op, builder);
|
|
if (isa<ConvOp>(op))
|
|
return linalgOpToLoopsImpl<LoopTy, ConvOp>(op, builder);
|
|
if (isa<PoolingMaxOp>(op))
|
|
return linalgOpToLoopsImpl<LoopTy, PoolingMaxOp>(op, builder);
|
|
if (isa<PoolingMinOp>(op))
|
|
return linalgOpToLoopsImpl<LoopTy, PoolingMinOp>(op, builder);
|
|
if (isa<PoolingSumOp>(op))
|
|
return linalgOpToLoopsImpl<LoopTy, PoolingSumOp>(op, builder);
|
|
if (isa<IndexedGenericOp>(op))
|
|
return linalgOpToLoopsImpl<LoopTy, IndexedGenericOp>(op, builder);
|
|
|
|
// TODO: Cases below are generic and need a LinalgStructuredOpInterface.
|
|
if (isa<GenericOp>(op))
|
|
return linalgOpToLoopsImpl<LoopTy, GenericOp>(op, builder);
|
|
if (isa<MatmulOp>(op))
|
|
return linalgOpToLoopsImpl<LoopTy, MatmulOp>(op, builder);
|
|
if (isa<MatvecOp>(op))
|
|
return linalgOpToLoopsImpl<LoopTy, MatvecOp>(op, builder);
|
|
if (isa<BatchMatmulOp>(op))
|
|
return linalgOpToLoopsImpl<LoopTy, BatchMatmulOp>(op, builder);
|
|
llvm_unreachable("Unexpected op in linalgOpToLoopsImpl");
|
|
}
|
|
|
|
/// Emits a loop nest with the proper body for `op`.
|
|
template <typename LoopTy>
|
|
Optional<LinalgLoops> mlir::linalg::linalgLowerOpToLoops(OpBuilder &builder,
|
|
Operation *op) {
|
|
return linalgOpToLoopsImplSwitch<LoopTy>(op, builder);
|
|
}
|
|
|
|
template Optional<LinalgLoops>
|
|
mlir::linalg::linalgLowerOpToLoops<AffineForOp>(OpBuilder &builder,
|
|
Operation *op);
|
|
template Optional<LinalgLoops>
|
|
mlir::linalg::linalgLowerOpToLoops<scf::ForOp>(OpBuilder &builder,
|
|
Operation *op);
|
|
template Optional<LinalgLoops>
|
|
mlir::linalg::linalgLowerOpToLoops<scf::ParallelOp>(OpBuilder &builder,
|
|
Operation *op);
|
|
|
|
/// Emits a loop nest of `affine.for` with the proper body for `op`.
|
|
LogicalResult mlir::linalg::linalgOpToAffineLoops(OpBuilder &builder,
|
|
Operation *op) {
|
|
Optional<LinalgLoops> loops = linalgLowerOpToLoops<AffineForOp>(builder, op);
|
|
return loops ? success() : failure();
|
|
}
|
|
|
|
/// Emits a loop nest of `scf.for` with the proper body for `op`.
|
|
LogicalResult mlir::linalg::linalgOpToLoops(OpBuilder &builder, Operation *op) {
|
|
Optional<LinalgLoops> loops = linalgLowerOpToLoops<scf::ForOp>(builder, op);
|
|
return loops ? success() : failure();
|
|
}
|
|
|
|
/// Emits a loop nest of `scf.parallel` with the proper body for `op`.
|
|
LogicalResult mlir::linalg::linalgOpToParallelLoops(OpBuilder &builder,
|
|
Operation *op) {
|
|
Optional<LinalgLoops> loops =
|
|
linalgLowerOpToLoops<scf::ParallelOp>(builder, op);
|
|
return loops ? success() : failure();
|
|
}
|