Stephen Tozer 451f3fcffd
[DwarfDump] Add new set of line-table-related statistics to llvm-dwarfdump (#93289)
This patch adds a new set of statistics to llvm-dwarfdump that provide
additional information about .debug_line regarding the number of bytes
covered by the line table (and how many of those are covered by line 0
entries), and the number of entries within the table and how many of
those are is_stmt, unique, or unique and non-line-0 (where "uniqueness"
is based on file, line, and column only).

Collectively these give a little more insight into the state of debug
line information, rather than variables (as most of the dwarfdump
statistics are currently oriented towards). I've added all of the stats
that were useful to some degree, but I think the most generally useful
stat is "unique line entries", since it gives the most straightforward
indication of regressions, i.e. when the number goes down it means that
fewer source lines are reachable in the program.
2024-06-13 17:15:31 +01:00

1144 lines
46 KiB
C++

//===-- Statistics.cpp - Debug Info quality metrics -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm-dwarfdump.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/JSON.h"
#define DEBUG_TYPE "dwarfdump"
using namespace llvm;
using namespace llvm::dwarfdump;
using namespace llvm::object;
namespace {
/// This represents the number of categories of debug location coverage being
/// calculated. The first category is the number of variables with 0% location
/// coverage, but the last category is the number of variables with 100%
/// location coverage.
constexpr int NumOfCoverageCategories = 12;
/// This is used for zero location coverage bucket.
constexpr unsigned ZeroCoverageBucket = 0;
/// The UINT64_MAX is used as an indication of the overflow.
constexpr uint64_t OverflowValue = std::numeric_limits<uint64_t>::max();
/// This represents variables DIE offsets.
using AbstractOriginVarsTy = llvm::SmallVector<uint64_t>;
/// This maps function DIE offset to its variables.
using AbstractOriginVarsTyMap = llvm::DenseMap<uint64_t, AbstractOriginVarsTy>;
/// This represents function DIE offsets containing an abstract_origin.
using FunctionsWithAbstractOriginTy = llvm::SmallVector<uint64_t>;
/// This represents a data type for the stats and it helps us to
/// detect an overflow.
/// NOTE: This can be implemented as a template if there is an another type
/// needing this.
struct SaturatingUINT64 {
/// Number that represents the stats.
uint64_t Value;
SaturatingUINT64(uint64_t Value_) : Value(Value_) {}
void operator++(int) { return *this += 1; }
void operator+=(uint64_t Value_) {
if (Value != OverflowValue) {
if (Value < OverflowValue - Value_)
Value += Value_;
else
Value = OverflowValue;
}
}
};
/// Utility struct to store the full location of a DIE - its CU and offset.
struct DIELocation {
DWARFUnit *DwUnit;
uint64_t DIEOffset;
DIELocation(DWARFUnit *_DwUnit, uint64_t _DIEOffset)
: DwUnit(_DwUnit), DIEOffset(_DIEOffset) {}
};
/// This represents DWARF locations of CrossCU referencing DIEs.
using CrossCUReferencingDIELocationTy = llvm::SmallVector<DIELocation>;
/// This maps function DIE offset to its DWARF CU.
using FunctionDIECUTyMap = llvm::DenseMap<uint64_t, DWARFUnit *>;
/// Holds statistics for one function (or other entity that has a PC range and
/// contains variables, such as a compile unit).
struct PerFunctionStats {
/// Number of inlined instances of this function.
uint64_t NumFnInlined = 0;
/// Number of out-of-line instances of this function.
uint64_t NumFnOutOfLine = 0;
/// Number of inlined instances that have abstract origins.
uint64_t NumAbstractOrigins = 0;
/// Number of variables and parameters with location across all inlined
/// instances.
uint64_t TotalVarWithLoc = 0;
/// Number of constants with location across all inlined instances.
uint64_t ConstantMembers = 0;
/// Number of arificial variables, parameters or members across all instances.
uint64_t NumArtificial = 0;
/// List of all Variables and parameters in this function.
StringSet<> VarsInFunction;
/// Compile units also cover a PC range, but have this flag set to false.
bool IsFunction = false;
/// Function has source location information.
bool HasSourceLocation = false;
/// Number of function parameters.
uint64_t NumParams = 0;
/// Number of function parameters with source location.
uint64_t NumParamSourceLocations = 0;
/// Number of function parameters with type.
uint64_t NumParamTypes = 0;
/// Number of function parameters with a DW_AT_location.
uint64_t NumParamLocations = 0;
/// Number of local variables.
uint64_t NumLocalVars = 0;
/// Number of local variables with source location.
uint64_t NumLocalVarSourceLocations = 0;
/// Number of local variables with type.
uint64_t NumLocalVarTypes = 0;
/// Number of local variables with DW_AT_location.
uint64_t NumLocalVarLocations = 0;
};
/// Holds accumulated global statistics about DIEs.
struct GlobalStats {
/// Total number of PC range bytes covered by DW_AT_locations.
SaturatingUINT64 TotalBytesCovered = 0;
/// Total number of parent DIE PC range bytes covered by DW_AT_Locations.
SaturatingUINT64 ScopeBytesCovered = 0;
/// Total number of PC range bytes in each variable's enclosing scope.
SaturatingUINT64 ScopeBytes = 0;
/// Total number of PC range bytes covered by DW_AT_locations with
/// the debug entry values (DW_OP_entry_value).
SaturatingUINT64 ScopeEntryValueBytesCovered = 0;
/// Total number of PC range bytes covered by DW_AT_locations of
/// formal parameters.
SaturatingUINT64 ParamScopeBytesCovered = 0;
/// Total number of PC range bytes in each parameter's enclosing scope.
SaturatingUINT64 ParamScopeBytes = 0;
/// Total number of PC range bytes covered by DW_AT_locations with
/// the debug entry values (DW_OP_entry_value) (only for parameters).
SaturatingUINT64 ParamScopeEntryValueBytesCovered = 0;
/// Total number of PC range bytes covered by DW_AT_locations (only for local
/// variables).
SaturatingUINT64 LocalVarScopeBytesCovered = 0;
/// Total number of PC range bytes in each local variable's enclosing scope.
SaturatingUINT64 LocalVarScopeBytes = 0;
/// Total number of PC range bytes covered by DW_AT_locations with
/// the debug entry values (DW_OP_entry_value) (only for local variables).
SaturatingUINT64 LocalVarScopeEntryValueBytesCovered = 0;
/// Total number of call site entries (DW_AT_call_file & DW_AT_call_line).
SaturatingUINT64 CallSiteEntries = 0;
/// Total number of call site DIEs (DW_TAG_call_site).
SaturatingUINT64 CallSiteDIEs = 0;
/// Total number of call site parameter DIEs (DW_TAG_call_site_parameter).
SaturatingUINT64 CallSiteParamDIEs = 0;
/// Total byte size of concrete functions. This byte size includes
/// inline functions contained in the concrete functions.
SaturatingUINT64 FunctionSize = 0;
/// Total byte size of inlined functions. This is the total number of bytes
/// for the top inline functions within concrete functions. This can help
/// tune the inline settings when compiling to match user expectations.
SaturatingUINT64 InlineFunctionSize = 0;
};
/// Holds accumulated debug location statistics about local variables and
/// formal parameters.
struct LocationStats {
/// Map the scope coverage decile to the number of variables in the decile.
/// The first element of the array (at the index zero) represents the number
/// of variables with the no debug location at all, but the last element
/// in the vector represents the number of fully covered variables within
/// its scope.
std::vector<SaturatingUINT64> VarParamLocStats{
std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
/// Map non debug entry values coverage.
std::vector<SaturatingUINT64> VarParamNonEntryValLocStats{
std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
/// The debug location statistics for formal parameters.
std::vector<SaturatingUINT64> ParamLocStats{
std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
/// Map non debug entry values coverage for formal parameters.
std::vector<SaturatingUINT64> ParamNonEntryValLocStats{
std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
/// The debug location statistics for local variables.
std::vector<SaturatingUINT64> LocalVarLocStats{
std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
/// Map non debug entry values coverage for local variables.
std::vector<SaturatingUINT64> LocalVarNonEntryValLocStats{
std::vector<SaturatingUINT64>(NumOfCoverageCategories, 0)};
/// Total number of local variables and function parameters processed.
SaturatingUINT64 NumVarParam = 0;
/// Total number of formal parameters processed.
SaturatingUINT64 NumParam = 0;
/// Total number of local variables processed.
SaturatingUINT64 NumVar = 0;
};
/// Holds accumulated debug line statistics across all CUs.
struct LineStats {
SaturatingUINT64 NumBytes = 0;
SaturatingUINT64 NumLineZeroBytes = 0;
SaturatingUINT64 NumEntries = 0;
SaturatingUINT64 NumIsStmtEntries = 0;
SaturatingUINT64 NumUniqueEntries = 0;
SaturatingUINT64 NumUniqueNonZeroEntries = 0;
};
} // namespace
/// Collect debug location statistics for one DIE.
static void collectLocStats(uint64_t ScopeBytesCovered, uint64_t BytesInScope,
std::vector<SaturatingUINT64> &VarParamLocStats,
std::vector<SaturatingUINT64> &ParamLocStats,
std::vector<SaturatingUINT64> &LocalVarLocStats,
bool IsParam, bool IsLocalVar) {
auto getCoverageBucket = [ScopeBytesCovered, BytesInScope]() -> unsigned {
// No debug location at all for the variable.
if (ScopeBytesCovered == 0)
return 0;
// Fully covered variable within its scope.
if (ScopeBytesCovered >= BytesInScope)
return NumOfCoverageCategories - 1;
// Get covered range (e.g. 20%-29%).
unsigned LocBucket = 100 * (double)ScopeBytesCovered / BytesInScope;
LocBucket /= 10;
return LocBucket + 1;
};
unsigned CoverageBucket = getCoverageBucket();
VarParamLocStats[CoverageBucket].Value++;
if (IsParam)
ParamLocStats[CoverageBucket].Value++;
else if (IsLocalVar)
LocalVarLocStats[CoverageBucket].Value++;
}
/// Construct an identifier for a given DIE from its Prefix, Name, DeclFileName
/// and DeclLine. The identifier aims to be unique for any unique entities,
/// but keeping the same among different instances of the same entity.
static std::string constructDieID(DWARFDie Die,
StringRef Prefix = StringRef()) {
std::string IDStr;
llvm::raw_string_ostream ID(IDStr);
ID << Prefix
<< Die.getName(DINameKind::LinkageName);
// Prefix + Name is enough for local variables and parameters.
if (!Prefix.empty() && Prefix != "g")
return ID.str();
auto DeclFile = Die.findRecursively(dwarf::DW_AT_decl_file);
std::string File;
if (DeclFile) {
DWARFUnit *U = Die.getDwarfUnit();
if (const auto *LT = U->getContext().getLineTableForUnit(U))
if (LT->getFileNameByIndex(
dwarf::toUnsigned(DeclFile, 0), U->getCompilationDir(),
DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, File))
File = std::string(sys::path::filename(File));
}
ID << ":" << (File.empty() ? "/" : File);
ID << ":"
<< dwarf::toUnsigned(Die.findRecursively(dwarf::DW_AT_decl_line), 0);
return ID.str();
}
/// Return the number of bytes in the overlap of ranges A and B.
static uint64_t calculateOverlap(DWARFAddressRange A, DWARFAddressRange B) {
uint64_t Lower = std::max(A.LowPC, B.LowPC);
uint64_t Upper = std::min(A.HighPC, B.HighPC);
if (Lower >= Upper)
return 0;
return Upper - Lower;
}
/// Collect debug info quality metrics for one DIE.
static void collectStatsForDie(DWARFDie Die, const std::string &FnPrefix,
const std::string &VarPrefix,
uint64_t BytesInScope, uint32_t InlineDepth,
StringMap<PerFunctionStats> &FnStatMap,
GlobalStats &GlobalStats,
LocationStats &LocStats,
AbstractOriginVarsTy *AbstractOriginVariables) {
const dwarf::Tag Tag = Die.getTag();
// Skip CU node.
if (Tag == dwarf::DW_TAG_compile_unit)
return;
bool HasLoc = false;
bool HasSrcLoc = false;
bool HasType = false;
uint64_t TotalBytesCovered = 0;
uint64_t ScopeBytesCovered = 0;
uint64_t BytesEntryValuesCovered = 0;
auto &FnStats = FnStatMap[FnPrefix];
bool IsParam = Tag == dwarf::DW_TAG_formal_parameter;
bool IsLocalVar = Tag == dwarf::DW_TAG_variable;
bool IsConstantMember = Tag == dwarf::DW_TAG_member &&
Die.find(dwarf::DW_AT_const_value);
// For zero covered inlined variables the locstats will be
// calculated later.
bool DeferLocStats = false;
if (Tag == dwarf::DW_TAG_call_site || Tag == dwarf::DW_TAG_GNU_call_site) {
GlobalStats.CallSiteDIEs++;
return;
}
if (Tag == dwarf::DW_TAG_call_site_parameter ||
Tag == dwarf::DW_TAG_GNU_call_site_parameter) {
GlobalStats.CallSiteParamDIEs++;
return;
}
if (!IsParam && !IsLocalVar && !IsConstantMember) {
// Not a variable or constant member.
return;
}
// Ignore declarations of global variables.
if (IsLocalVar && Die.find(dwarf::DW_AT_declaration))
return;
if (Die.findRecursively(dwarf::DW_AT_decl_file) &&
Die.findRecursively(dwarf::DW_AT_decl_line))
HasSrcLoc = true;
if (Die.findRecursively(dwarf::DW_AT_type))
HasType = true;
if (Die.find(dwarf::DW_AT_abstract_origin)) {
if (Die.find(dwarf::DW_AT_location) || Die.find(dwarf::DW_AT_const_value)) {
if (AbstractOriginVariables) {
auto Offset = Die.find(dwarf::DW_AT_abstract_origin);
// Do not track this variable any more, since it has location
// coverage.
llvm::erase(*AbstractOriginVariables, (*Offset).getRawUValue());
}
} else {
// The locstats will be handled at the end of
// the collectStatsRecursive().
DeferLocStats = true;
}
}
auto IsEntryValue = [&](ArrayRef<uint8_t> D) -> bool {
DWARFUnit *U = Die.getDwarfUnit();
DataExtractor Data(toStringRef(D),
Die.getDwarfUnit()->getContext().isLittleEndian(), 0);
DWARFExpression Expression(Data, U->getAddressByteSize(),
U->getFormParams().Format);
// Consider the expression containing the DW_OP_entry_value as
// an entry value.
return llvm::any_of(Expression, [](const DWARFExpression::Operation &Op) {
return Op.getCode() == dwarf::DW_OP_entry_value ||
Op.getCode() == dwarf::DW_OP_GNU_entry_value;
});
};
if (Die.find(dwarf::DW_AT_const_value)) {
// This catches constant members *and* variables.
HasLoc = true;
ScopeBytesCovered = BytesInScope;
TotalBytesCovered = BytesInScope;
} else {
// Handle variables and function arguments.
Expected<std::vector<DWARFLocationExpression>> Loc =
Die.getLocations(dwarf::DW_AT_location);
if (!Loc) {
consumeError(Loc.takeError());
} else {
HasLoc = true;
// Get PC coverage.
auto Default = find_if(
*Loc, [](const DWARFLocationExpression &L) { return !L.Range; });
if (Default != Loc->end()) {
// Assume the entire range is covered by a single location.
ScopeBytesCovered = BytesInScope;
TotalBytesCovered = BytesInScope;
} else {
// Caller checks this Expected result already, it cannot fail.
auto ScopeRanges = cantFail(Die.getParent().getAddressRanges());
for (auto Entry : *Loc) {
TotalBytesCovered += Entry.Range->HighPC - Entry.Range->LowPC;
uint64_t ScopeBytesCoveredByEntry = 0;
// Calculate how many bytes of the parent scope this entry covers.
// FIXME: In section 2.6.2 of the DWARFv5 spec it says that "The
// address ranges defined by the bounded location descriptions of a
// location list may overlap". So in theory a variable can have
// multiple simultaneous locations, which would make this calculation
// misleading because we will count the overlapped areas
// twice. However, clang does not currently emit DWARF like this.
for (DWARFAddressRange R : ScopeRanges) {
ScopeBytesCoveredByEntry += calculateOverlap(*Entry.Range, R);
}
ScopeBytesCovered += ScopeBytesCoveredByEntry;
if (IsEntryValue(Entry.Expr))
BytesEntryValuesCovered += ScopeBytesCoveredByEntry;
}
}
}
}
// Calculate the debug location statistics.
if (BytesInScope && !DeferLocStats) {
LocStats.NumVarParam.Value++;
if (IsParam)
LocStats.NumParam.Value++;
else if (IsLocalVar)
LocStats.NumVar.Value++;
collectLocStats(ScopeBytesCovered, BytesInScope, LocStats.VarParamLocStats,
LocStats.ParamLocStats, LocStats.LocalVarLocStats, IsParam,
IsLocalVar);
// Non debug entry values coverage statistics.
collectLocStats(ScopeBytesCovered - BytesEntryValuesCovered, BytesInScope,
LocStats.VarParamNonEntryValLocStats,
LocStats.ParamNonEntryValLocStats,
LocStats.LocalVarNonEntryValLocStats, IsParam, IsLocalVar);
}
// Collect PC range coverage data.
if (DWARFDie D =
Die.getAttributeValueAsReferencedDie(dwarf::DW_AT_abstract_origin))
Die = D;
std::string VarID = constructDieID(Die, VarPrefix);
FnStats.VarsInFunction.insert(VarID);
GlobalStats.TotalBytesCovered += TotalBytesCovered;
if (BytesInScope) {
GlobalStats.ScopeBytesCovered += ScopeBytesCovered;
GlobalStats.ScopeBytes += BytesInScope;
GlobalStats.ScopeEntryValueBytesCovered += BytesEntryValuesCovered;
if (IsParam) {
GlobalStats.ParamScopeBytesCovered += ScopeBytesCovered;
GlobalStats.ParamScopeBytes += BytesInScope;
GlobalStats.ParamScopeEntryValueBytesCovered += BytesEntryValuesCovered;
} else if (IsLocalVar) {
GlobalStats.LocalVarScopeBytesCovered += ScopeBytesCovered;
GlobalStats.LocalVarScopeBytes += BytesInScope;
GlobalStats.LocalVarScopeEntryValueBytesCovered +=
BytesEntryValuesCovered;
}
assert(GlobalStats.ScopeBytesCovered.Value <= GlobalStats.ScopeBytes.Value);
}
if (IsConstantMember) {
FnStats.ConstantMembers++;
return;
}
FnStats.TotalVarWithLoc += (unsigned)HasLoc;
if (Die.find(dwarf::DW_AT_artificial)) {
FnStats.NumArtificial++;
return;
}
if (IsParam) {
FnStats.NumParams++;
if (HasType)
FnStats.NumParamTypes++;
if (HasSrcLoc)
FnStats.NumParamSourceLocations++;
if (HasLoc)
FnStats.NumParamLocations++;
} else if (IsLocalVar) {
FnStats.NumLocalVars++;
if (HasType)
FnStats.NumLocalVarTypes++;
if (HasSrcLoc)
FnStats.NumLocalVarSourceLocations++;
if (HasLoc)
FnStats.NumLocalVarLocations++;
}
}
/// Recursively collect variables from subprogram with DW_AT_inline attribute.
static void collectAbstractOriginFnInfo(
DWARFDie Die, uint64_t SPOffset,
AbstractOriginVarsTyMap &GlobalAbstractOriginFnInfo,
AbstractOriginVarsTyMap &LocalAbstractOriginFnInfo) {
DWARFDie Child = Die.getFirstChild();
while (Child) {
const dwarf::Tag ChildTag = Child.getTag();
if (ChildTag == dwarf::DW_TAG_formal_parameter ||
ChildTag == dwarf::DW_TAG_variable) {
GlobalAbstractOriginFnInfo[SPOffset].push_back(Child.getOffset());
LocalAbstractOriginFnInfo[SPOffset].push_back(Child.getOffset());
} else if (ChildTag == dwarf::DW_TAG_lexical_block)
collectAbstractOriginFnInfo(Child, SPOffset, GlobalAbstractOriginFnInfo,
LocalAbstractOriginFnInfo);
Child = Child.getSibling();
}
}
/// Recursively collect debug info quality metrics.
static void collectStatsRecursive(
DWARFDie Die, std::string FnPrefix, std::string VarPrefix,
uint64_t BytesInScope, uint32_t InlineDepth,
StringMap<PerFunctionStats> &FnStatMap, GlobalStats &GlobalStats,
LocationStats &LocStats, FunctionDIECUTyMap &AbstractOriginFnCUs,
AbstractOriginVarsTyMap &GlobalAbstractOriginFnInfo,
AbstractOriginVarsTyMap &LocalAbstractOriginFnInfo,
FunctionsWithAbstractOriginTy &FnsWithAbstractOriginToBeProcessed,
AbstractOriginVarsTy *AbstractOriginVarsPtr = nullptr) {
// Skip NULL nodes.
if (Die.isNULL())
return;
const dwarf::Tag Tag = Die.getTag();
// Skip function types.
if (Tag == dwarf::DW_TAG_subroutine_type)
return;
// Handle any kind of lexical scope.
const bool HasAbstractOrigin =
Die.find(dwarf::DW_AT_abstract_origin) != std::nullopt;
const bool IsFunction = Tag == dwarf::DW_TAG_subprogram;
const bool IsBlock = Tag == dwarf::DW_TAG_lexical_block;
const bool IsInlinedFunction = Tag == dwarf::DW_TAG_inlined_subroutine;
// We want to know how many variables (with abstract_origin) don't have
// location info.
const bool IsCandidateForZeroLocCovTracking =
(IsInlinedFunction || (IsFunction && HasAbstractOrigin));
AbstractOriginVarsTy AbstractOriginVars;
// Get the vars of the inlined fn, so the locstats
// reports the missing vars (with coverage 0%).
if (IsCandidateForZeroLocCovTracking) {
auto OffsetFn = Die.find(dwarf::DW_AT_abstract_origin);
if (OffsetFn) {
uint64_t OffsetOfInlineFnCopy = (*OffsetFn).getRawUValue();
if (LocalAbstractOriginFnInfo.count(OffsetOfInlineFnCopy)) {
AbstractOriginVars = LocalAbstractOriginFnInfo[OffsetOfInlineFnCopy];
AbstractOriginVarsPtr = &AbstractOriginVars;
} else {
// This means that the DW_AT_inline fn copy is out of order
// or that the abstract_origin references another CU,
// so this abstract origin instance will be processed later.
FnsWithAbstractOriginToBeProcessed.push_back(Die.getOffset());
AbstractOriginVarsPtr = nullptr;
}
}
}
if (IsFunction || IsInlinedFunction || IsBlock) {
// Reset VarPrefix when entering a new function.
if (IsFunction || IsInlinedFunction)
VarPrefix = "v";
// Ignore forward declarations.
if (Die.find(dwarf::DW_AT_declaration))
return;
// Check for call sites.
if (Die.find(dwarf::DW_AT_call_file) && Die.find(dwarf::DW_AT_call_line))
GlobalStats.CallSiteEntries++;
// PC Ranges.
auto RangesOrError = Die.getAddressRanges();
if (!RangesOrError) {
llvm::consumeError(RangesOrError.takeError());
return;
}
auto Ranges = RangesOrError.get();
uint64_t BytesInThisScope = 0;
for (auto Range : Ranges)
BytesInThisScope += Range.HighPC - Range.LowPC;
// Count the function.
if (!IsBlock) {
// Skip over abstract origins, but collect variables
// from it so it can be used for location statistics
// for inlined instancies.
if (Die.find(dwarf::DW_AT_inline)) {
uint64_t SPOffset = Die.getOffset();
AbstractOriginFnCUs[SPOffset] = Die.getDwarfUnit();
collectAbstractOriginFnInfo(Die, SPOffset, GlobalAbstractOriginFnInfo,
LocalAbstractOriginFnInfo);
return;
}
std::string FnID = constructDieID(Die);
// We've seen an instance of this function.
auto &FnStats = FnStatMap[FnID];
FnStats.IsFunction = true;
if (IsInlinedFunction) {
FnStats.NumFnInlined++;
if (Die.findRecursively(dwarf::DW_AT_abstract_origin))
FnStats.NumAbstractOrigins++;
} else {
FnStats.NumFnOutOfLine++;
}
if (Die.findRecursively(dwarf::DW_AT_decl_file) &&
Die.findRecursively(dwarf::DW_AT_decl_line))
FnStats.HasSourceLocation = true;
// Update function prefix.
FnPrefix = FnID;
}
if (BytesInThisScope) {
BytesInScope = BytesInThisScope;
if (IsFunction)
GlobalStats.FunctionSize += BytesInThisScope;
else if (IsInlinedFunction && InlineDepth == 0)
GlobalStats.InlineFunctionSize += BytesInThisScope;
}
} else {
// Not a scope, visit the Die itself. It could be a variable.
collectStatsForDie(Die, FnPrefix, VarPrefix, BytesInScope, InlineDepth,
FnStatMap, GlobalStats, LocStats, AbstractOriginVarsPtr);
}
// Set InlineDepth correctly for child recursion
if (IsFunction)
InlineDepth = 0;
else if (IsInlinedFunction)
++InlineDepth;
// Traverse children.
unsigned LexicalBlockIndex = 0;
unsigned FormalParameterIndex = 0;
DWARFDie Child = Die.getFirstChild();
while (Child) {
std::string ChildVarPrefix = VarPrefix;
if (Child.getTag() == dwarf::DW_TAG_lexical_block)
ChildVarPrefix += toHex(LexicalBlockIndex++) + '.';
if (Child.getTag() == dwarf::DW_TAG_formal_parameter)
ChildVarPrefix += 'p' + toHex(FormalParameterIndex++) + '.';
collectStatsRecursive(
Child, FnPrefix, ChildVarPrefix, BytesInScope, InlineDepth, FnStatMap,
GlobalStats, LocStats, AbstractOriginFnCUs, GlobalAbstractOriginFnInfo,
LocalAbstractOriginFnInfo, FnsWithAbstractOriginToBeProcessed,
AbstractOriginVarsPtr);
Child = Child.getSibling();
}
if (!IsCandidateForZeroLocCovTracking)
return;
// After we have processed all vars of the inlined function (or function with
// an abstract_origin), we want to know how many variables have no location.
for (auto Offset : AbstractOriginVars) {
LocStats.NumVarParam++;
LocStats.VarParamLocStats[ZeroCoverageBucket]++;
auto FnDie = Die.getDwarfUnit()->getDIEForOffset(Offset);
if (!FnDie)
continue;
auto Tag = FnDie.getTag();
if (Tag == dwarf::DW_TAG_formal_parameter) {
LocStats.NumParam++;
LocStats.ParamLocStats[ZeroCoverageBucket]++;
} else if (Tag == dwarf::DW_TAG_variable) {
LocStats.NumVar++;
LocStats.LocalVarLocStats[ZeroCoverageBucket]++;
}
}
}
/// Print human-readable output.
/// \{
static void printDatum(json::OStream &J, const char *Key, json::Value Value) {
if (Value == OverflowValue)
J.attribute(Key, "overflowed");
else
J.attribute(Key, Value);
LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n');
}
static void printLocationStats(json::OStream &J, const char *Key,
std::vector<SaturatingUINT64> &LocationStats) {
if (LocationStats[0].Value == OverflowValue)
J.attribute((Twine(Key) +
" with (0%,10%) of parent scope covered by DW_AT_location")
.str(),
"overflowed");
else
J.attribute(
(Twine(Key) + " with 0% of parent scope covered by DW_AT_location")
.str(),
LocationStats[0].Value);
LLVM_DEBUG(
llvm::dbgs() << Key
<< " with 0% of parent scope covered by DW_AT_location: \\"
<< LocationStats[0].Value << '\n');
if (LocationStats[1].Value == OverflowValue)
J.attribute((Twine(Key) +
" with (0%,10%) of parent scope covered by DW_AT_location")
.str(),
"overflowed");
else
J.attribute((Twine(Key) +
" with (0%,10%) of parent scope covered by DW_AT_location")
.str(),
LocationStats[1].Value);
LLVM_DEBUG(llvm::dbgs()
<< Key
<< " with (0%,10%) of parent scope covered by DW_AT_location: "
<< LocationStats[1].Value << '\n');
for (unsigned i = 2; i < NumOfCoverageCategories - 1; ++i) {
if (LocationStats[i].Value == OverflowValue)
J.attribute((Twine(Key) + " with [" + Twine((i - 1) * 10) + "%," +
Twine(i * 10) +
"%) of parent scope covered by DW_AT_location")
.str(),
"overflowed");
else
J.attribute((Twine(Key) + " with [" + Twine((i - 1) * 10) + "%," +
Twine(i * 10) +
"%) of parent scope covered by DW_AT_location")
.str(),
LocationStats[i].Value);
LLVM_DEBUG(llvm::dbgs()
<< Key << " with [" << (i - 1) * 10 << "%," << i * 10
<< "%) of parent scope covered by DW_AT_location: "
<< LocationStats[i].Value);
}
if (LocationStats[NumOfCoverageCategories - 1].Value == OverflowValue)
J.attribute(
(Twine(Key) + " with 100% of parent scope covered by DW_AT_location")
.str(),
"overflowed");
else
J.attribute(
(Twine(Key) + " with 100% of parent scope covered by DW_AT_location")
.str(),
LocationStats[NumOfCoverageCategories - 1].Value);
LLVM_DEBUG(
llvm::dbgs() << Key
<< " with 100% of parent scope covered by DW_AT_location: "
<< LocationStats[NumOfCoverageCategories - 1].Value);
}
static void printSectionSizes(json::OStream &J, const SectionSizes &Sizes) {
for (const auto &It : Sizes.DebugSectionSizes)
J.attribute((Twine("#bytes in ") + It.first).str(), int64_t(It.second));
}
/// Stop tracking variables that contain abstract_origin with a location.
/// This is used for out-of-order DW_AT_inline subprograms only.
static void updateVarsWithAbstractOriginLocCovInfo(
DWARFDie FnDieWithAbstractOrigin,
AbstractOriginVarsTy &AbstractOriginVars) {
DWARFDie Child = FnDieWithAbstractOrigin.getFirstChild();
while (Child) {
const dwarf::Tag ChildTag = Child.getTag();
if ((ChildTag == dwarf::DW_TAG_formal_parameter ||
ChildTag == dwarf::DW_TAG_variable) &&
(Child.find(dwarf::DW_AT_location) ||
Child.find(dwarf::DW_AT_const_value))) {
auto OffsetVar = Child.find(dwarf::DW_AT_abstract_origin);
if (OffsetVar)
llvm::erase(AbstractOriginVars, (*OffsetVar).getRawUValue());
} else if (ChildTag == dwarf::DW_TAG_lexical_block)
updateVarsWithAbstractOriginLocCovInfo(Child, AbstractOriginVars);
Child = Child.getSibling();
}
}
/// Collect zero location coverage for inlined variables which refer to
/// a DW_AT_inline copy of subprogram that is out of order in the DWARF.
/// Also cover the variables of a concrete function (represented with
/// the DW_TAG_subprogram) with an abstract_origin attribute.
static void collectZeroLocCovForVarsWithAbstractOrigin(
DWARFUnit *DwUnit, GlobalStats &GlobalStats, LocationStats &LocStats,
AbstractOriginVarsTyMap &LocalAbstractOriginFnInfo,
FunctionsWithAbstractOriginTy &FnsWithAbstractOriginToBeProcessed) {
// The next variable is used to filter out functions that have been processed,
// leaving FnsWithAbstractOriginToBeProcessed with just CrossCU references.
FunctionsWithAbstractOriginTy ProcessedFns;
for (auto FnOffset : FnsWithAbstractOriginToBeProcessed) {
DWARFDie FnDieWithAbstractOrigin = DwUnit->getDIEForOffset(FnOffset);
auto FnCopy = FnDieWithAbstractOrigin.find(dwarf::DW_AT_abstract_origin);
AbstractOriginVarsTy AbstractOriginVars;
if (!FnCopy)
continue;
uint64_t FnCopyRawUValue = (*FnCopy).getRawUValue();
// If there is no entry within LocalAbstractOriginFnInfo for the given
// FnCopyRawUValue, function isn't out-of-order in DWARF. Rather, we have
// CrossCU referencing.
if (!LocalAbstractOriginFnInfo.count(FnCopyRawUValue))
continue;
AbstractOriginVars = LocalAbstractOriginFnInfo[FnCopyRawUValue];
updateVarsWithAbstractOriginLocCovInfo(FnDieWithAbstractOrigin,
AbstractOriginVars);
for (auto Offset : AbstractOriginVars) {
LocStats.NumVarParam++;
LocStats.VarParamLocStats[ZeroCoverageBucket]++;
auto Tag = DwUnit->getDIEForOffset(Offset).getTag();
if (Tag == dwarf::DW_TAG_formal_parameter) {
LocStats.NumParam++;
LocStats.ParamLocStats[ZeroCoverageBucket]++;
} else if (Tag == dwarf::DW_TAG_variable) {
LocStats.NumVar++;
LocStats.LocalVarLocStats[ZeroCoverageBucket]++;
}
}
ProcessedFns.push_back(FnOffset);
}
for (auto ProcessedFn : ProcessedFns)
llvm::erase(FnsWithAbstractOriginToBeProcessed, ProcessedFn);
}
/// Collect zero location coverage for inlined variables which refer to
/// a DW_AT_inline copy of subprogram that is in a different CU.
static void collectZeroLocCovForVarsWithCrossCUReferencingAbstractOrigin(
LocationStats &LocStats, FunctionDIECUTyMap AbstractOriginFnCUs,
AbstractOriginVarsTyMap &GlobalAbstractOriginFnInfo,
CrossCUReferencingDIELocationTy &CrossCUReferencesToBeResolved) {
for (const auto &CrossCUReferenceToBeResolved :
CrossCUReferencesToBeResolved) {
DWARFUnit *DwUnit = CrossCUReferenceToBeResolved.DwUnit;
DWARFDie FnDIEWithCrossCUReferencing =
DwUnit->getDIEForOffset(CrossCUReferenceToBeResolved.DIEOffset);
auto FnCopy =
FnDIEWithCrossCUReferencing.find(dwarf::DW_AT_abstract_origin);
if (!FnCopy)
continue;
uint64_t FnCopyRawUValue = (*FnCopy).getRawUValue();
AbstractOriginVarsTy AbstractOriginVars =
GlobalAbstractOriginFnInfo[FnCopyRawUValue];
updateVarsWithAbstractOriginLocCovInfo(FnDIEWithCrossCUReferencing,
AbstractOriginVars);
for (auto Offset : AbstractOriginVars) {
LocStats.NumVarParam++;
LocStats.VarParamLocStats[ZeroCoverageBucket]++;
auto Tag = (AbstractOriginFnCUs[FnCopyRawUValue])
->getDIEForOffset(Offset)
.getTag();
if (Tag == dwarf::DW_TAG_formal_parameter) {
LocStats.NumParam++;
LocStats.ParamLocStats[ZeroCoverageBucket]++;
} else if (Tag == dwarf::DW_TAG_variable) {
LocStats.NumVar++;
LocStats.LocalVarLocStats[ZeroCoverageBucket]++;
}
}
}
}
/// \}
/// Collect debug info quality metrics for an entire DIContext.
///
/// Do the impossible and reduce the quality of the debug info down to a few
/// numbers. The idea is to condense the data into numbers that can be tracked
/// over time to identify trends in newer compiler versions and gauge the effect
/// of particular optimizations. The raw numbers themselves are not particularly
/// useful, only the delta between compiling the same program with different
/// compilers is.
bool dwarfdump::collectStatsForObjectFile(ObjectFile &Obj, DWARFContext &DICtx,
const Twine &Filename,
raw_ostream &OS) {
StringRef FormatName = Obj.getFileFormatName();
GlobalStats GlobalStats;
LocationStats LocStats;
LineStats LnStats;
StringMap<PerFunctionStats> Statistics;
// This variable holds variable information for functions with
// abstract_origin globally, across all CUs.
AbstractOriginVarsTyMap GlobalAbstractOriginFnInfo;
// This variable holds information about the CU of a function with
// abstract_origin.
FunctionDIECUTyMap AbstractOriginFnCUs;
CrossCUReferencingDIELocationTy CrossCUReferencesToBeResolved;
// Tuple representing a single source code position in the line table. Fields
// are respectively: Line, Col, File, where 'File' is an index into the Files
// vector below.
using LineTuple = std::tuple<uint32_t, uint16_t, uint16_t>;
SmallVector<std::string> Files;
DenseSet<LineTuple> UniqueLines;
DenseSet<LineTuple> UniqueNonZeroLines;
for (const auto &CU : static_cast<DWARFContext *>(&DICtx)->compile_units()) {
if (DWARFDie CUDie = CU->getNonSkeletonUnitDIE(false)) {
// This variable holds variable information for functions with
// abstract_origin, but just for the current CU.
AbstractOriginVarsTyMap LocalAbstractOriginFnInfo;
FunctionsWithAbstractOriginTy FnsWithAbstractOriginToBeProcessed;
collectStatsRecursive(
CUDie, "/", "g", 0, 0, Statistics, GlobalStats, LocStats,
AbstractOriginFnCUs, GlobalAbstractOriginFnInfo,
LocalAbstractOriginFnInfo, FnsWithAbstractOriginToBeProcessed);
// collectZeroLocCovForVarsWithAbstractOrigin will filter out all
// out-of-order DWARF functions that have been processed within it,
// leaving FnsWithAbstractOriginToBeProcessed with only CrossCU
// references.
collectZeroLocCovForVarsWithAbstractOrigin(
CUDie.getDwarfUnit(), GlobalStats, LocStats,
LocalAbstractOriginFnInfo, FnsWithAbstractOriginToBeProcessed);
// Collect all CrossCU references into CrossCUReferencesToBeResolved.
for (auto CrossCUReferencingDIEOffset :
FnsWithAbstractOriginToBeProcessed)
CrossCUReferencesToBeResolved.push_back(
DIELocation(CUDie.getDwarfUnit(), CrossCUReferencingDIEOffset));
}
const auto *LineTable = DICtx.getLineTableForUnit(CU.get());
std::optional<uint64_t> LastFileIdxOpt;
if (LineTable)
LastFileIdxOpt = LineTable->getLastValidFileIndex();
if (LastFileIdxOpt) {
// Each CU has its own file index; in order to track unique line entries
// across CUs, we therefore need to map each CU file index to a global
// file index, which we store here.
DenseMap<uint64_t, uint16_t> CUFileMapping;
for (uint64_t FileIdx = 0; FileIdx <= *LastFileIdxOpt; ++FileIdx) {
std::string File;
if (LineTable->getFileNameByIndex(
FileIdx, CU->getCompilationDir(),
DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath,
File)) {
auto ExistingFile = llvm::find(Files, File);
if (ExistingFile != Files.end()) {
CUFileMapping[FileIdx] = std::distance(Files.begin(), ExistingFile);
} else {
CUFileMapping[FileIdx] = Files.size();
Files.push_back(File);
}
}
}
for (const auto &Seq : LineTable->Sequences) {
LnStats.NumBytes += Seq.HighPC - Seq.LowPC;
// Ignore the `end_sequence` entry, since it's not interesting for us.
LnStats.NumEntries += Seq.LastRowIndex - Seq.FirstRowIndex - 1;
for (size_t RowIdx = Seq.FirstRowIndex; RowIdx < Seq.LastRowIndex - 1;
++RowIdx) {
auto Entry = LineTable->Rows[RowIdx];
if (Entry.IsStmt)
LnStats.NumIsStmtEntries += 1;
assert(CUFileMapping.contains(Entry.File) &&
"Should have been collected earlier!");
uint16_t MappedFile = CUFileMapping[Entry.File];
UniqueLines.insert({Entry.Line, Entry.Column, MappedFile});
if (Entry.Line != 0) {
UniqueNonZeroLines.insert({Entry.Line, Entry.Column, MappedFile});
} else {
auto EntryStartAddress = Entry.Address.Address;
auto EntryEndAddress = LineTable->Rows[RowIdx + 1].Address.Address;
LnStats.NumLineZeroBytes += EntryEndAddress - EntryStartAddress;
}
}
}
}
}
LnStats.NumUniqueEntries = UniqueLines.size();
LnStats.NumUniqueNonZeroEntries = UniqueNonZeroLines.size();
/// Resolve CrossCU references.
collectZeroLocCovForVarsWithCrossCUReferencingAbstractOrigin(
LocStats, AbstractOriginFnCUs, GlobalAbstractOriginFnInfo,
CrossCUReferencesToBeResolved);
/// Collect the sizes of debug sections.
SectionSizes Sizes;
calculateSectionSizes(Obj, Sizes, Filename);
/// The version number should be increased every time the algorithm is changed
/// (including bug fixes). New metrics may be added without increasing the
/// version.
unsigned Version = 9;
SaturatingUINT64 VarParamTotal = 0;
SaturatingUINT64 VarParamUnique = 0;
SaturatingUINT64 VarParamWithLoc = 0;
SaturatingUINT64 NumFunctions = 0;
SaturatingUINT64 NumInlinedFunctions = 0;
SaturatingUINT64 NumFuncsWithSrcLoc = 0;
SaturatingUINT64 NumAbstractOrigins = 0;
SaturatingUINT64 ParamTotal = 0;
SaturatingUINT64 ParamWithType = 0;
SaturatingUINT64 ParamWithLoc = 0;
SaturatingUINT64 ParamWithSrcLoc = 0;
SaturatingUINT64 LocalVarTotal = 0;
SaturatingUINT64 LocalVarWithType = 0;
SaturatingUINT64 LocalVarWithSrcLoc = 0;
SaturatingUINT64 LocalVarWithLoc = 0;
for (auto &Entry : Statistics) {
PerFunctionStats &Stats = Entry.getValue();
uint64_t TotalVars = Stats.VarsInFunction.size() *
(Stats.NumFnInlined + Stats.NumFnOutOfLine);
// Count variables in global scope.
if (!Stats.IsFunction)
TotalVars =
Stats.NumLocalVars + Stats.ConstantMembers + Stats.NumArtificial;
uint64_t Constants = Stats.ConstantMembers;
VarParamWithLoc += Stats.TotalVarWithLoc + Constants;
VarParamTotal += TotalVars;
VarParamUnique += Stats.VarsInFunction.size();
LLVM_DEBUG(for (auto &V
: Stats.VarsInFunction) llvm::dbgs()
<< Entry.getKey() << ": " << V.getKey() << "\n");
NumFunctions += Stats.IsFunction;
NumFuncsWithSrcLoc += Stats.HasSourceLocation;
NumInlinedFunctions += Stats.IsFunction * Stats.NumFnInlined;
NumAbstractOrigins += Stats.IsFunction * Stats.NumAbstractOrigins;
ParamTotal += Stats.NumParams;
ParamWithType += Stats.NumParamTypes;
ParamWithLoc += Stats.NumParamLocations;
ParamWithSrcLoc += Stats.NumParamSourceLocations;
LocalVarTotal += Stats.NumLocalVars;
LocalVarWithType += Stats.NumLocalVarTypes;
LocalVarWithLoc += Stats.NumLocalVarLocations;
LocalVarWithSrcLoc += Stats.NumLocalVarSourceLocations;
}
// Print summary.
OS.SetBufferSize(1024);
json::OStream J(OS, 2);
J.objectBegin();
J.attribute("version", Version);
LLVM_DEBUG(llvm::dbgs() << "Variable location quality metrics\n";
llvm::dbgs() << "---------------------------------\n");
printDatum(J, "file", Filename.str());
printDatum(J, "format", FormatName);
printDatum(J, "#functions", NumFunctions.Value);
printDatum(J, "#functions with location", NumFuncsWithSrcLoc.Value);
printDatum(J, "#inlined functions", NumInlinedFunctions.Value);
printDatum(J, "#inlined functions with abstract origins",
NumAbstractOrigins.Value);
// This includes local variables and formal parameters.
printDatum(J, "#unique source variables", VarParamUnique.Value);
printDatum(J, "#source variables", VarParamTotal.Value);
printDatum(J, "#source variables with location", VarParamWithLoc.Value);
printDatum(J, "#call site entries", GlobalStats.CallSiteEntries.Value);
printDatum(J, "#call site DIEs", GlobalStats.CallSiteDIEs.Value);
printDatum(J, "#call site parameter DIEs",
GlobalStats.CallSiteParamDIEs.Value);
printDatum(J, "sum_all_variables(#bytes in parent scope)",
GlobalStats.ScopeBytes.Value);
printDatum(J,
"sum_all_variables(#bytes in any scope covered by DW_AT_location)",
GlobalStats.TotalBytesCovered.Value);
printDatum(J,
"sum_all_variables(#bytes in parent scope covered by "
"DW_AT_location)",
GlobalStats.ScopeBytesCovered.Value);
printDatum(J,
"sum_all_variables(#bytes in parent scope covered by "
"DW_OP_entry_value)",
GlobalStats.ScopeEntryValueBytesCovered.Value);
printDatum(J, "sum_all_params(#bytes in parent scope)",
GlobalStats.ParamScopeBytes.Value);
printDatum(J,
"sum_all_params(#bytes in parent scope covered by DW_AT_location)",
GlobalStats.ParamScopeBytesCovered.Value);
printDatum(J,
"sum_all_params(#bytes in parent scope covered by "
"DW_OP_entry_value)",
GlobalStats.ParamScopeEntryValueBytesCovered.Value);
printDatum(J, "sum_all_local_vars(#bytes in parent scope)",
GlobalStats.LocalVarScopeBytes.Value);
printDatum(J,
"sum_all_local_vars(#bytes in parent scope covered by "
"DW_AT_location)",
GlobalStats.LocalVarScopeBytesCovered.Value);
printDatum(J,
"sum_all_local_vars(#bytes in parent scope covered by "
"DW_OP_entry_value)",
GlobalStats.LocalVarScopeEntryValueBytesCovered.Value);
printDatum(J, "#bytes within functions", GlobalStats.FunctionSize.Value);
printDatum(J, "#bytes within inlined functions",
GlobalStats.InlineFunctionSize.Value);
// Print the summary for formal parameters.
printDatum(J, "#params", ParamTotal.Value);
printDatum(J, "#params with source location", ParamWithSrcLoc.Value);
printDatum(J, "#params with type", ParamWithType.Value);
printDatum(J, "#params with binary location", ParamWithLoc.Value);
// Print the summary for local variables.
printDatum(J, "#local vars", LocalVarTotal.Value);
printDatum(J, "#local vars with source location", LocalVarWithSrcLoc.Value);
printDatum(J, "#local vars with type", LocalVarWithType.Value);
printDatum(J, "#local vars with binary location", LocalVarWithLoc.Value);
// Print the debug section sizes.
printSectionSizes(J, Sizes);
// Print the location statistics for variables (includes local variables
// and formal parameters).
printDatum(J, "#variables processed by location statistics",
LocStats.NumVarParam.Value);
printLocationStats(J, "#variables", LocStats.VarParamLocStats);
printLocationStats(J, "#variables - entry values",
LocStats.VarParamNonEntryValLocStats);
// Print the location statistics for formal parameters.
printDatum(J, "#params processed by location statistics",
LocStats.NumParam.Value);
printLocationStats(J, "#params", LocStats.ParamLocStats);
printLocationStats(J, "#params - entry values",
LocStats.ParamNonEntryValLocStats);
// Print the location statistics for local variables.
printDatum(J, "#local vars processed by location statistics",
LocStats.NumVar.Value);
printLocationStats(J, "#local vars", LocStats.LocalVarLocStats);
printLocationStats(J, "#local vars - entry values",
LocStats.LocalVarNonEntryValLocStats);
// Print line statistics for the object file.
printDatum(J, "#bytes with line information", LnStats.NumBytes.Value);
printDatum(J, "#bytes with line-0 locations", LnStats.NumLineZeroBytes.Value);
printDatum(J, "#line entries", LnStats.NumEntries.Value);
printDatum(J, "#line entries (is_stmt)", LnStats.NumIsStmtEntries.Value);
printDatum(J, "#line entries (unique)", LnStats.NumUniqueEntries.Value);
printDatum(J, "#line entries (unique non-0)",
LnStats.NumUniqueNonZeroEntries.Value);
J.objectEnd();
OS << '\n';
LLVM_DEBUG(
llvm::dbgs() << "Total Availability: "
<< (VarParamTotal.Value
? (int)std::round((VarParamWithLoc.Value * 100.0) /
VarParamTotal.Value)
: 0)
<< "%\n";
llvm::dbgs() << "PC Ranges covered: "
<< (GlobalStats.ScopeBytes.Value
? (int)std::round(
(GlobalStats.ScopeBytesCovered.Value * 100.0) /
GlobalStats.ScopeBytes.Value)
: 0)
<< "%\n");
return true;
}