llvm-project/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp

267 lines
11 KiB
C++

//===- TilingInterfaceImpl.cpp - Implementation of TilingInterface -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Transforms/TilingInterfaceImpl.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Interfaces/TilingInterface.h"
using namespace mlir;
using namespace mlir::linalg;
//===----------------------------------------------------------------------===//
// Utility methods for implementation of Tiling Interface for Linalg ops
//===----------------------------------------------------------------------===//
/// Return the SSA values that represent the data point accessed using a given
/// `indexingMap` for a given point in the iteration space represented by `ivs`.
static SmallVector<Value> getIndicesForAccess(OpBuilder &b, Location loc,
AffineMap indexingMap,
ValueRange ivs) {
SmallVector<Value> indices;
indices.reserve(indexingMap.getNumResults());
for (auto result : indexingMap.getResults()) {
AffineMap m = AffineMap::get(indexingMap.getNumDims(),
indexingMap.getNumSymbols(), result);
Value v = b.create<AffineApplyOp>(loc, m, ivs);
indices.push_back(v);
}
return indices;
}
/// Method to inline the payload of a `linalgOp` given the iteration space
/// point and values for the arguments of the payload.
static LogicalResult inlinePayload(OpBuilder &b, LinalgOp linalgOp,
ValueRange ivs, ValueRange argValues) {
Block *body = linalgOp.getBlock();
BlockAndValueMapping map;
map.map(body->getArguments(), argValues);
for (auto &op : body->without_terminator()) {
if (auto indexOp = dyn_cast<IndexOp>(&op)) {
map.map(indexOp.getResult(), ivs[indexOp.getDim()]);
continue;
}
b.clone(op, map);
}
Operation *terminator = body->getTerminator();
Location loc = terminator->getLoc();
for (const auto &operand : llvm::enumerate(terminator->getOperands())) {
Value toStore = map.lookupOrDefault(operand.value());
OpOperand *storeInto = linalgOp.getDpsInitOperand(operand.index());
auto indices = getIndicesForAccess(
b, loc, linalgOp.getMatchingIndexingMap(storeInto), ivs);
b.create<memref::StoreOp>(
loc, toStore, linalgOp.getDpsInitOperand(operand.index())->get(),
indices);
}
return success();
}
//===----------------------------------------------------------------------===//
// External Model for implementing `TilingInterface` for `LinalgOp`s.
//===----------------------------------------------------------------------===//
namespace {
/// External model implementation of TilingInterface for LinalgOps. An external
/// model implementation is used for now till the use of `TilingInterface` is
/// on-par with the current Linalg tiling + fusion patterns. Once it is
/// maybe possible to move this into the op-definition (though there are
/// advantages to leaving it as an external model)
template <typename LinalgOpTy>
struct LinalgOpTilingInterface
: public TilingInterface::ExternalModel<LinalgOpTilingInterface<LinalgOpTy>,
LinalgOpTy> {
/// Return the loop iterator type.
SmallVector<utils::IteratorType> getLoopIteratorTypes(Operation *op) const {
LinalgOpTy concreteOp = cast<LinalgOpTy>(op);
return llvm::to_vector(llvm::map_range(
concreteOp.getIteratorTypesArray(), [](StringRef iteratorType) {
return utils::symbolizeIteratorType(iteratorType).value();
}));
}
/// Return the iteration domain range.
SmallVector<Range> getIterationDomain(Operation *op, OpBuilder &b) const {
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
Location loc = op->getLoc();
LinalgOp linalgOp = cast<LinalgOp>(op);
SmallVector<OpFoldResult> allShapesSizes =
linalgOp.createFlatListOfOperandDims(b, loc);
AffineMap map = linalgOp.getShapesToLoopsMap();
return llvm::to_vector(
llvm::map_range(map.getResults(), [&](AffineExpr loopExpr) {
OpFoldResult ofr =
makeComposedFoldedAffineApply(b, loc, loopExpr, allShapesSizes);
return Range{b.getIndexAttr(0), ofr, b.getIndexAttr(1)};
}));
}
// Instantiate the tiled implementation of the operation.
SmallVector<Operation *>
getTiledImplementation(Operation *op, OpBuilder &b,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes) const {
// Leave the `sizeBounds` value empty. That is only needed when the `sizes`
// specified could lead to out of bounds accesses.
Location loc = op->getLoc();
LinalgOp linalgOp = cast<LinalgOp>(op);
SmallVector<Value> valuesToTile = linalgOp->getOperands();
SmallVector<Value, 4> tiledOperands = makeTiledShapes(
b, loc, linalgOp, valuesToTile, offsets, sizes, {}, true);
SmallVector<Type> resultTensorTypes =
getTensorOutputTypes(linalgOp, tiledOperands);
Operation *tiledOp =
linalgOp.clone(b, loc, resultTensorTypes, tiledOperands);
offsetIndices(b, cast<LinalgOp>(tiledOp), offsets);
return {tiledOp};
}
// Return the details of the output tile generated by the tiled
// implementation.
LogicalResult
getResultTilePosition(Operation *op, OpBuilder &b, unsigned resultNumber,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
SmallVector<OpFoldResult> &resultOffsets,
SmallVector<OpFoldResult> &resultSizes) const {
Location loc = op->getLoc();
LinalgOp linalgOp = cast<LinalgOp>(op);
AffineExpr d0;
bindDims(b.getContext(), d0);
SmallVector<OpFoldResult> subShapeSizes =
llvm::to_vector(llvm::map_range(sizes, [&](OpFoldResult ofr) {
return makeComposedFoldedAffineApply(b, loc, d0 - 1, ofr);
}));
OpOperand *outOperand = linalgOp.getDpsInitOperand(resultNumber);
SliceParameters sliceParams = computeSliceParameters(
b, loc, outOperand->get(), sizes,
linalgOp.getMatchingIndexingMap(outOperand), offsets,
/*ubs*/ {}, subShapeSizes, true);
resultOffsets = sliceParams.offsets;
resultSizes = sliceParams.sizes;
return success();
}
FailureOr<Value> generateResultTileValue(Operation *op, OpBuilder &b,
unsigned resultNumber,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes) const {
auto linalgOp = cast<LinalgOp>(op);
// Check that the indexing map used for the output is a projected
// permutation. This could be relaxed with a more general approach that can
// map the offsets and sizes from the result to iteration space tiles
// (filling in full extent for dimensions not used to access the result).
AffineMap indexingMap =
linalgOp.getIndexingMapMatchingResult(op->getResult(resultNumber));
if (!indexingMap.isProjectedPermutation()) {
return op->emitOpError(
"unhandled tiled implementation generation when result is not "
"accessed using a permuted projection");
}
auto numLoops = linalgOp.getNumLoops();
auto tilingInterfaceOp = cast<TilingInterface>(op);
SmallVector<OpFoldResult> iterationTileOffsets(numLoops),
iterationTileSizes(numLoops);
if (!indexingMap.isPermutation()) {
SmallVector<Range> iterationDomain =
tilingInterfaceOp.getIterationDomain(b);
for (const auto &range : llvm::enumerate(iterationDomain)) {
iterationTileOffsets[range.index()] = range.value().offset;
iterationTileSizes[range.index()] = range.value().size;
}
}
for (const auto &resultExpr : llvm::enumerate(indexingMap.getResults())) {
unsigned dimPosition =
resultExpr.value().cast<AffineDimExpr>().getPosition();
iterationTileOffsets[dimPosition] = offsets[resultExpr.index()];
iterationTileSizes[dimPosition] = sizes[resultExpr.index()];
}
SmallVector<Operation *> tiledOp = tilingInterfaceOp.getTiledImplementation(
b, iterationTileOffsets, iterationTileSizes);
if (tiledOp.size() != 1)
return op->emitOpError("failed to generate tiled implementation");
return tiledOp[0]->getResult(resultNumber);
}
LogicalResult generateScalarImplementation(Operation *op, OpBuilder &builder,
Location loc,
ValueRange ivs) const {
auto linalgOp = cast<LinalgOp>(op);
if (!linalgOp.hasBufferSemantics())
return op->emitOpError("expected operation to have buffer semantics");
SmallVector<Value> indexedValues;
indexedValues.reserve(linalgOp->getNumOperands());
Location linalgOpLoc = op->getLoc();
/// Load the data corresponding to the block arguments that
/// represent input operands.
for (OpOperand &operand : linalgOp->getOpOperands()) {
if (!linalgOp.payloadUsesValueFromOperand(&operand)) {
indexedValues.push_back(nullptr);
continue;
}
if (linalgOp.isScalar(&operand)) {
indexedValues.push_back(operand.get());
continue;
}
SmallVector<Value> indices = getIndicesForAccess(
builder, linalgOpLoc, linalgOp.getMatchingIndexingMap(&operand), ivs);
Value load =
builder.create<memref::LoadOp>(linalgOpLoc, operand.get(), indices);
indexedValues.push_back(load);
}
/// Inline the op payload and store the result.
return inlinePayload(builder, linalgOp, ivs, indexedValues);
}
};
} // namespace
template <typename OpType>
static void registerOne(MLIRContext *ctx) {
OpType::template attachInterface<LinalgOpTilingInterface<OpType>>(*ctx);
}
/// Variadic helper function.
template <typename... OpTypes>
static void registerAll(MLIRContext *ctx) {
(registerOne<OpTypes>(ctx), ...);
}
#define GET_OP_LIST
void mlir::linalg::registerTilingInterfaceExternalModels(
DialectRegistry &registry) {
registry.addExtension(+[](MLIRContext *ctx, linalg::LinalgDialect *dialect) {
registerOne<linalg::GenericOp>(ctx);
registerAll<
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
>(ctx);
});
}