Reid Kleckner 8c78ca2e8f [builtins] Get the builtins tests passing on Windows
Many things were broken:

- We stopped building most builtins on Windows in r261432 for reasons
  that are not at all clear to me. This essentially reverts that patch.

- Fix %librt to expand to clang_rt.builtins-$arch.lib on Windows instead
  of libclang_rt.builtins-$arch.a.

- Fix memory protection tests (trampoline, enable executable, clear
  cache) on Windows. One issue was that the MSVC incremental linker
  generates ILT thunks for functions with external linkage, so memcpying
  the functions into the executable stack buffer wasn't working. You
  can't memcpy an RIP-relative jump without fixing up the offset.

- Disable tests that rely on C99 complex library functions when using
  the MSVC CRT, which isn't compatible with clang's C99 _Complex.

In theory, these could all be separate patches, but it would not green
the tests, so let's try for it all at once. Hopefully this fixes the
clang-x64-ninja-win7 bot.

llvm-svn: 299780
2017-04-07 16:35:09 +00:00

375 lines
7.5 KiB
C

// RUN: %clang_builtins %s %librt -o %t && %run %t
//===-- divdc3_test.c - Test __divdc3 -------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file tests __divdc3 for the compiler_rt library.
//
//===----------------------------------------------------------------------===//
#include "int_lib.h"
#include <math.h>
#include <complex.h>
#include <stdio.h>
// REQUIRES: c99-complex
// Returns: the quotient of (a + ib) / (c + id)
COMPILER_RT_ABI double _Complex
__divdc3(double __a, double __b, double __c, double __d);
enum {zero, non_zero, inf, NaN, non_zero_nan};
int
classify(double _Complex x)
{
if (x == 0)
return zero;
if (isinf(creal(x)) || isinf(cimag(x)))
return inf;
if (isnan(creal(x)) && isnan(cimag(x)))
return NaN;
if (isnan(creal(x)))
{
if (cimag(x) == 0)
return NaN;
return non_zero_nan;
}
if (isnan(cimag(x)))
{
if (creal(x) == 0)
return NaN;
return non_zero_nan;
}
return non_zero;
}
int test__divdc3(double a, double b, double c, double d)
{
double _Complex r = __divdc3(a, b, c, d);
// printf("test__divdc3(%f, %f, %f, %f) = %f + I%f\n",
// a, b, c, d, creal(r), cimag(r));
double _Complex dividend;
double _Complex divisor;
__real__ dividend = a;
__imag__ dividend = b;
__real__ divisor = c;
__imag__ divisor = d;
switch (classify(dividend))
{
case zero:
switch (classify(divisor))
{
case zero:
if (classify(r) != NaN)
return 1;
break;
case non_zero:
if (classify(r) != zero)
return 1;
break;
case inf:
if (classify(r) != zero)
return 1;
break;
case NaN:
if (classify(r) != NaN)
return 1;
break;
case non_zero_nan:
if (classify(r) != NaN)
return 1;
break;
}
break;
case non_zero:
switch (classify(divisor))
{
case zero:
if (classify(r) != inf)
return 1;
break;
case non_zero:
if (classify(r) != non_zero)
return 1;
{
double _Complex z = (a * c + b * d) / (c * c + d * d)
+ (b * c - a * d) / (c * c + d * d) * _Complex_I;
if (cabs((r-z)/r) > 1.e-6)
return 1;
}
break;
case inf:
if (classify(r) != zero)
return 1;
break;
case NaN:
if (classify(r) != NaN)
return 1;
break;
case non_zero_nan:
if (classify(r) != NaN)
return 1;
break;
}
break;
case inf:
switch (classify(divisor))
{
case zero:
if (classify(r) != inf)
return 1;
break;
case non_zero:
if (classify(r) != inf)
return 1;
break;
case inf:
if (classify(r) != NaN)
return 1;
break;
case NaN:
if (classify(r) != NaN)
return 1;
break;
case non_zero_nan:
if (classify(r) != NaN)
return 1;
break;
}
break;
case NaN:
switch (classify(divisor))
{
case zero:
if (classify(r) != NaN)
return 1;
break;
case non_zero:
if (classify(r) != NaN)
return 1;
break;
case inf:
if (classify(r) != NaN)
return 1;
break;
case NaN:
if (classify(r) != NaN)
return 1;
break;
case non_zero_nan:
if (classify(r) != NaN)
return 1;
break;
}
break;
case non_zero_nan:
switch (classify(divisor))
{
case zero:
if (classify(r) != inf)
return 1;
break;
case non_zero:
if (classify(r) != NaN)
return 1;
break;
case inf:
if (classify(r) != NaN)
return 1;
break;
case NaN:
if (classify(r) != NaN)
return 1;
break;
case non_zero_nan:
if (classify(r) != NaN)
return 1;
break;
}
break;
}
return 0;
}
double x[][2] =
{
{ 1.e-6, 1.e-6},
{-1.e-6, 1.e-6},
{-1.e-6, -1.e-6},
{ 1.e-6, -1.e-6},
{ 1.e+6, 1.e-6},
{-1.e+6, 1.e-6},
{-1.e+6, -1.e-6},
{ 1.e+6, -1.e-6},
{ 1.e-6, 1.e+6},
{-1.e-6, 1.e+6},
{-1.e-6, -1.e+6},
{ 1.e-6, -1.e+6},
{ 1.e+6, 1.e+6},
{-1.e+6, 1.e+6},
{-1.e+6, -1.e+6},
{ 1.e+6, -1.e+6},
{NAN, NAN},
{-INFINITY, NAN},
{-2, NAN},
{-1, NAN},
{-0.5, NAN},
{-0., NAN},
{+0., NAN},
{0.5, NAN},
{1, NAN},
{2, NAN},
{INFINITY, NAN},
{NAN, -INFINITY},
{-INFINITY, -INFINITY},
{-2, -INFINITY},
{-1, -INFINITY},
{-0.5, -INFINITY},
{-0., -INFINITY},
{+0., -INFINITY},
{0.5, -INFINITY},
{1, -INFINITY},
{2, -INFINITY},
{INFINITY, -INFINITY},
{NAN, -2},
{-INFINITY, -2},
{-2, -2},
{-1, -2},
{-0.5, -2},
{-0., -2},
{+0., -2},
{0.5, -2},
{1, -2},
{2, -2},
{INFINITY, -2},
{NAN, -1},
{-INFINITY, -1},
{-2, -1},
{-1, -1},
{-0.5, -1},
{-0., -1},
{+0., -1},
{0.5, -1},
{1, -1},
{2, -1},
{INFINITY, -1},
{NAN, -0.5},
{-INFINITY, -0.5},
{-2, -0.5},
{-1, -0.5},
{-0.5, -0.5},
{-0., -0.5},
{+0., -0.5},
{0.5, -0.5},
{1, -0.5},
{2, -0.5},
{INFINITY, -0.5},
{NAN, -0.},
{-INFINITY, -0.},
{-2, -0.},
{-1, -0.},
{-0.5, -0.},
{-0., -0.},
{+0., -0.},
{0.5, -0.},
{1, -0.},
{2, -0.},
{INFINITY, -0.},
{NAN, 0.},
{-INFINITY, 0.},
{-2, 0.},
{-1, 0.},
{-0.5, 0.},
{-0., 0.},
{+0., 0.},
{0.5, 0.},
{1, 0.},
{2, 0.},
{INFINITY, 0.},
{NAN, 0.5},
{-INFINITY, 0.5},
{-2, 0.5},
{-1, 0.5},
{-0.5, 0.5},
{-0., 0.5},
{+0., 0.5},
{0.5, 0.5},
{1, 0.5},
{2, 0.5},
{INFINITY, 0.5},
{NAN, 1},
{-INFINITY, 1},
{-2, 1},
{-1, 1},
{-0.5, 1},
{-0., 1},
{+0., 1},
{0.5, 1},
{1, 1},
{2, 1},
{INFINITY, 1},
{NAN, 2},
{-INFINITY, 2},
{-2, 2},
{-1, 2},
{-0.5, 2},
{-0., 2},
{+0., 2},
{0.5, 2},
{1, 2},
{2, 2},
{INFINITY, 2},
{NAN, INFINITY},
{-INFINITY, INFINITY},
{-2, INFINITY},
{-1, INFINITY},
{-0.5, INFINITY},
{-0., INFINITY},
{+0., INFINITY},
{0.5, INFINITY},
{1, INFINITY},
{2, INFINITY},
{INFINITY, INFINITY}
};
int main()
{
const unsigned N = sizeof(x) / sizeof(x[0]);
unsigned i, j;
for (i = 0; i < N; ++i)
{
for (j = 0; j < N; ++j)
{
if (test__divdc3(x[i][0], x[i][1], x[j][0], x[j][1]))
return 1;
}
}
return 0;
}