Jan Vesely 58fdb3b09a rootn: Use denormal path only
It's OK to either flush to 0 or return denormal result if the device
does not support denormals. See sec 7.2 and 7.5.3 of OCL specs
Use 0.0f explicitly intead of relying on GPU to flush it.
Fixes CTS on carrizo and turks

Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Acked-by: Aaron Watry <awatry@gmail.com>
Tested-by: Aaron Watry <awatry@gmail.com>
llvm-svn: 332324
2018-05-15 04:22:43 +00:00

371 lines
13 KiB
Common Lisp

/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <clc/clc.h>
#include "config.h"
#include "math.h"
#include "tables.h"
#include "../clcmacro.h"
// compute pow using log and exp
// x^y = exp(y * log(x))
//
// we take care not to lose precision in the intermediate steps
//
// When computing log, calculate it in splits,
//
// r = f * (p_invead + p_inv_tail)
// r = rh + rt
//
// calculate log polynomial using r, in end addition, do
// poly = poly + ((rh-r) + rt)
//
// lth = -r
// ltt = ((xexp * log2_t) - poly) + logT
// lt = lth + ltt
//
// lh = (xexp * log2_h) + logH
// l = lh + lt
//
// Calculate final log answer as gh and gt,
// gh = l & higher-half bits
// gt = (((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh))
//
// yh = y & higher-half bits
// yt = y - yh
//
// Before entering computation of exp,
// vs = ((yt*gt + yt*gh) + yh*gt)
// v = vs + yh*gh
// vt = ((yh*gh - v) + vs)
//
// In calculation of exp, add vt to r that is used for poly
// At the end of exp, do
// ((((expT * poly) + expT) + expH*poly) + expH)
_CLC_DEF _CLC_OVERLOAD float __clc_rootn(float x, int ny)
{
float y = MATH_RECIP((float)ny);
int ix = as_int(x);
int ax = ix & EXSIGNBIT_SP32;
int xpos = ix == ax;
int iy = as_int(y);
int ay = iy & EXSIGNBIT_SP32;
int ypos = iy == ay;
// Extra precise log calculation
// First handle case that x is close to 1
float r = 1.0f - as_float(ax);
int near1 = fabs(r) < 0x1.0p-4f;
float r2 = r*r;
// Coefficients are just 1/3, 1/4, 1/5 and 1/6
float poly = mad(r,
mad(r,
mad(r,
mad(r, 0x1.24924ap-3f, 0x1.555556p-3f),
0x1.99999ap-3f),
0x1.000000p-2f),
0x1.555556p-2f);
poly *= r2*r;
float lth_near1 = -r2 * 0.5f;
float ltt_near1 = -poly;
float lt_near1 = lth_near1 + ltt_near1;
float lh_near1 = -r;
float l_near1 = lh_near1 + lt_near1;
// Computations for x not near 1
int m = (int)(ax >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
float mf = (float)m;
int ixs = as_int(as_float(ax | 0x3f800000) - 1.0f);
float mfs = (float)((ixs >> EXPSHIFTBITS_SP32) - 253);
int c = m == -127;
int ixn = c ? ixs : ax;
float mfn = c ? mfs : mf;
int indx = (ixn & 0x007f0000) + ((ixn & 0x00008000) << 1);
// F - Y
float f = as_float(0x3f000000 | indx) - as_float(0x3f000000 | (ixn & MANTBITS_SP32));
indx = indx >> 16;
float2 tv = USE_TABLE(log_inv_tbl_ep, indx);
float rh = f * tv.s0;
float rt = f * tv.s1;
r = rh + rt;
poly = mad(r, mad(r, 0x1.0p-2f, 0x1.555556p-2f), 0x1.0p-1f) * (r*r);
poly += (rh - r) + rt;
const float LOG2_HEAD = 0x1.62e000p-1f; // 0.693115234
const float LOG2_TAIL = 0x1.0bfbe8p-15f; // 0.0000319461833
tv = USE_TABLE(loge_tbl, indx);
float lth = -r;
float ltt = mad(mfn, LOG2_TAIL, -poly) + tv.s1;
float lt = lth + ltt;
float lh = mad(mfn, LOG2_HEAD, tv.s0);
float l = lh + lt;
// Select near 1 or not
lth = near1 ? lth_near1 : lth;
ltt = near1 ? ltt_near1 : ltt;
lt = near1 ? lt_near1 : lt;
lh = near1 ? lh_near1 : lh;
l = near1 ? l_near1 : l;
float gh = as_float(as_int(l) & 0xfffff000);
float gt = ((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh);
float yh = as_float(iy & 0xfffff000);
float fny = (float)ny;
float fnyh = as_float(as_int(fny) & 0xfffff000);
float fnyt = (float)(ny - (int)fnyh);
float yt = MATH_DIVIDE(mad(-fnyt, yh, mad(-fnyh, yh, 1.0f)), fny);
float ylogx_s = mad(gt, yh, mad(gh, yt, yt*gt));
float ylogx = mad(yh, gh, ylogx_s);
float ylogx_t = mad(yh, gh, -ylogx) + ylogx_s;
// Extra precise exp of ylogx
const float R_64_BY_LOG2 = 0x1.715476p+6f; // 64/log2 : 92.332482616893657
int n = convert_int(ylogx * R_64_BY_LOG2);
float nf = (float) n;
int j = n & 0x3f;
m = n >> 6;
int m2 = m << EXPSHIFTBITS_SP32;
const float R_LOG2_BY_64_LD = 0x1.620000p-7f; // log2/64 lead: 0.0108032227
const float R_LOG2_BY_64_TL = 0x1.c85fdep-16f; // log2/64 tail: 0.0000272020388
r = mad(nf, -R_LOG2_BY_64_TL, mad(nf, -R_LOG2_BY_64_LD, ylogx)) + ylogx_t;
// Truncated Taylor series for e^r
poly = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r);
tv = USE_TABLE(exp_tbl_ep, j);
float expylogx = mad(tv.s0, poly, mad(tv.s1, poly, tv.s1)) + tv.s0;
float sexpylogx = __clc_fp32_subnormals_supported() ? expylogx * as_float(0x1 << (m + 149)) : 0.0f;
float texpylogx = as_float(as_int(expylogx) + m2);
expylogx = m < -125 ? sexpylogx : texpylogx;
// Result is +-Inf if (ylogx + ylogx_t) > 128*log2
expylogx = ((ylogx > 0x1.62e430p+6f) | (ylogx == 0x1.62e430p+6f & ylogx_t > -0x1.05c610p-22f)) ? as_float(PINFBITPATT_SP32) : expylogx;
// Result is 0 if ylogx < -149*log2
expylogx = ylogx < -0x1.9d1da0p+6f ? 0.0f : expylogx;
// Classify y:
// inty = 0 means not an integer.
// inty = 1 means odd integer.
// inty = 2 means even integer.
int inty = 2 - (ny & 1);
float signval = as_float((as_uint(expylogx) ^ SIGNBIT_SP32));
expylogx = ((inty == 1) & !xpos) ? signval : expylogx;
int ret = as_int(expylogx);
// Corner case handling
ret = (!xpos & (inty == 2)) ? QNANBITPATT_SP32 : ret;
int xinf = xpos ? PINFBITPATT_SP32 : NINFBITPATT_SP32;
ret = ((ax == 0) & !ypos & (inty == 1)) ? xinf : ret;
ret = ((ax == 0) & !ypos & (inty == 2)) ? PINFBITPATT_SP32 : ret;
ret = ((ax == 0) & ypos & (inty == 2)) ? 0 : ret;
int xzero = xpos ? 0 : 0x80000000;
ret = ((ax == 0) & ypos & (inty == 1)) ? xzero : ret;
ret = ((ix == NINFBITPATT_SP32) & ypos & (inty == 1)) ? NINFBITPATT_SP32 : ret;
ret = ((ix == NINFBITPATT_SP32) & !ypos & (inty == 1)) ? 0x80000000 : ret;
ret = ((ix == PINFBITPATT_SP32) & !ypos) ? 0 : ret;
ret = ((ix == PINFBITPATT_SP32) & ypos) ? PINFBITPATT_SP32 : ret;
ret = ax > PINFBITPATT_SP32 ? ix : ret;
ret = ny == 0 ? QNANBITPATT_SP32 : ret;
return as_float(ret);
}
_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_rootn, float, int)
#ifdef cl_khr_fp64
_CLC_DEF _CLC_OVERLOAD double __clc_rootn(double x, int ny)
{
const double real_log2_tail = 5.76999904754328540596e-08;
const double real_log2_lead = 6.93147122859954833984e-01;
double dny = (double)ny;
double y = 1.0 / dny;
long ux = as_long(x);
long ax = ux & (~SIGNBIT_DP64);
int xpos = ax == ux;
long uy = as_long(y);
long ay = uy & (~SIGNBIT_DP64);
int ypos = ay == uy;
// Extended precision log
double v, vt;
{
int exp = (int)(ax >> 52) - 1023;
int mask_exp_1023 = exp == -1023;
double xexp = (double) exp;
long mantissa = ax & 0x000FFFFFFFFFFFFFL;
long temp_ux = as_long(as_double(0x3ff0000000000000L | mantissa) - 1.0);
exp = ((temp_ux & 0x7FF0000000000000L) >> 52) - 2045;
double xexp1 = (double) exp;
long mantissa1 = temp_ux & 0x000FFFFFFFFFFFFFL;
xexp = mask_exp_1023 ? xexp1 : xexp;
mantissa = mask_exp_1023 ? mantissa1 : mantissa;
long rax = (mantissa & 0x000ff00000000000) + ((mantissa & 0x0000080000000000) << 1);
int index = rax >> 44;
double F = as_double(rax | 0x3FE0000000000000L);
double Y = as_double(mantissa | 0x3FE0000000000000L);
double f = F - Y;
double2 tv = USE_TABLE(log_f_inv_tbl, index);
double log_h = tv.s0;
double log_t = tv.s1;
double f_inv = (log_h + log_t) * f;
double r1 = as_double(as_long(f_inv) & 0xfffffffff8000000L);
double r2 = fma(-F, r1, f) * (log_h + log_t);
double r = r1 + r2;
double poly = fma(r,
fma(r,
fma(r,
fma(r, 1.0/7.0, 1.0/6.0),
1.0/5.0),
1.0/4.0),
1.0/3.0);
poly = poly * r * r * r;
double hr1r1 = 0.5*r1*r1;
double poly0h = r1 + hr1r1;
double poly0t = r1 - poly0h + hr1r1;
poly = fma(r1, r2, fma(0.5*r2, r2, poly)) + r2 + poly0t;
tv = USE_TABLE(powlog_tbl, index);
log_h = tv.s0;
log_t = tv.s1;
double resT_t = fma(xexp, real_log2_tail, + log_t) - poly;
double resT = resT_t - poly0h;
double resH = fma(xexp, real_log2_lead, log_h);
double resT_h = poly0h;
double H = resT + resH;
double H_h = as_double(as_long(H) & 0xfffffffff8000000L);
double T = (resH - H + resT) + (resT_t - (resT + resT_h)) + (H - H_h);
H = H_h;
double y_head = as_double(uy & 0xfffffffff8000000L);
double y_tail = y - y_head;
double fnyh = as_double(as_long(dny) & 0xfffffffffff00000);
double fnyt = (double)(ny - (int)fnyh);
y_tail = fma(-fnyt, y_head, fma(-fnyh, y_head, 1.0))/ dny;
double temp = fma(y_tail, H, fma(y_head, T, y_tail*T));
v = fma(y_head, H, temp);
vt = fma(y_head, H, -v) + temp;
}
// Now calculate exp of (v,vt)
double expv;
{
const double max_exp_arg = 709.782712893384;
const double min_exp_arg = -745.1332191019411;
const double sixtyfour_by_lnof2 = 92.33248261689366;
const double lnof2_by_64_head = 0.010830424260348081;
const double lnof2_by_64_tail = -4.359010638708991e-10;
double temp = v * sixtyfour_by_lnof2;
int n = (int)temp;
double dn = (double)n;
int j = n & 0x0000003f;
int m = n >> 6;
double2 tv = USE_TABLE(two_to_jby64_ep_tbl, j);
double f1 = tv.s0;
double f2 = tv.s1;
double f = f1 + f2;
double r1 = fma(dn, -lnof2_by_64_head, v);
double r2 = dn * lnof2_by_64_tail;
double r = (r1 + r2) + vt;
double q = fma(r,
fma(r,
fma(r,
fma(r, 1.38889490863777199667e-03, 8.33336798434219616221e-03),
4.16666666662260795726e-02),
1.66666666665260878863e-01),
5.00000000000000008883e-01);
q = fma(r*r, q, r);
expv = fma(f, q, f2) + f1;
expv = ldexp(expv, m);
expv = v > max_exp_arg ? as_double(0x7FF0000000000000L) : expv;
expv = v < min_exp_arg ? 0.0 : expv;
}
// See whether y is an integer.
// inty = 0 means not an integer.
// inty = 1 means odd integer.
// inty = 2 means even integer.
int inty = 2 - (ny & 1);
expv *= ((inty == 1) & !xpos) ? -1.0 : 1.0;
long ret = as_long(expv);
// Now all the edge cases
ret = (!xpos & (inty == 2)) ? QNANBITPATT_DP64 : ret;
long xinf = xpos ? PINFBITPATT_DP64 : NINFBITPATT_DP64;
ret = ((ax == 0L) & !ypos & (inty == 1)) ? xinf : ret;
ret = ((ax == 0L) & !ypos & (inty == 2)) ? PINFBITPATT_DP64 : ret;
ret = ((ax == 0L) & ypos & (inty == 2)) ? 0L : ret;
long xzero = xpos ? 0L : 0x8000000000000000L;
ret = ((ax == 0L) & ypos & (inty == 1)) ? xzero : ret;
ret = ((ux == NINFBITPATT_DP64) & ypos & (inty == 1)) ? NINFBITPATT_DP64 : ret;
ret = ((ux == NINFBITPATT_DP64) & !ypos & (inty == 1)) ? 0x8000000000000000L : ret;
ret = ((ux == PINFBITPATT_DP64) & !ypos) ? 0L : ret;
ret = ((ux == PINFBITPATT_DP64) & ypos) ? PINFBITPATT_DP64 : ret;
ret = ax > PINFBITPATT_DP64 ? ux : ret;
ret = ny == 0 ? QNANBITPATT_DP64 : ret;
return as_double(ret);
}
_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_rootn, double, int)
#endif