Anna Zaks b508d29b78 [analyzer] Don't crash even when the system functions are redefined.
(Applied changes to CStringAPI, Malloc, and Taint.)

This might almost never happen, but we should not crash even if it does.
This fixes a crash on the internal analyzer buildbot, where postgresql's
configure was redefining memmove (radar://11219852).

llvm-svn: 154451
2012-04-10 23:41:11 +00:00

1464 lines
51 KiB
C++

//=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines malloc/free checker, which checks for potential memory
// leaks, double free, and use-after-free problems.
//
//===----------------------------------------------------------------------===//
#include "ClangSACheckers.h"
#include "InterCheckerAPI.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ObjCMessage.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/STLExtras.h"
#include <climits>
using namespace clang;
using namespace ento;
namespace {
class RefState {
enum Kind { AllocateUnchecked, AllocateFailed, Released, Escaped,
Relinquished } K;
const Stmt *S;
public:
RefState(Kind k, const Stmt *s) : K(k), S(s) {}
bool isAllocated() const { return K == AllocateUnchecked; }
bool isReleased() const { return K == Released; }
const Stmt *getStmt() const { return S; }
bool operator==(const RefState &X) const {
return K == X.K && S == X.S;
}
static RefState getAllocateUnchecked(const Stmt *s) {
return RefState(AllocateUnchecked, s);
}
static RefState getAllocateFailed() {
return RefState(AllocateFailed, 0);
}
static RefState getReleased(const Stmt *s) { return RefState(Released, s); }
static RefState getEscaped(const Stmt *s) { return RefState(Escaped, s); }
static RefState getRelinquished(const Stmt *s) {
return RefState(Relinquished, s);
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(K);
ID.AddPointer(S);
}
};
struct ReallocPair {
SymbolRef ReallocatedSym;
bool IsFreeOnFailure;
ReallocPair(SymbolRef S, bool F) : ReallocatedSym(S), IsFreeOnFailure(F) {}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(IsFreeOnFailure);
ID.AddPointer(ReallocatedSym);
}
bool operator==(const ReallocPair &X) const {
return ReallocatedSym == X.ReallocatedSym &&
IsFreeOnFailure == X.IsFreeOnFailure;
}
};
typedef std::pair<const Stmt*, const MemRegion*> LeakInfo;
class MallocChecker : public Checker<check::DeadSymbols,
check::EndPath,
check::PreStmt<ReturnStmt>,
check::PreStmt<CallExpr>,
check::PostStmt<CallExpr>,
check::PostStmt<BlockExpr>,
check::Location,
check::Bind,
eval::Assume,
check::RegionChanges>
{
mutable OwningPtr<BugType> BT_DoubleFree;
mutable OwningPtr<BugType> BT_Leak;
mutable OwningPtr<BugType> BT_UseFree;
mutable OwningPtr<BugType> BT_BadFree;
mutable IdentifierInfo *II_malloc, *II_free, *II_realloc, *II_calloc,
*II_valloc, *II_reallocf, *II_strndup, *II_strdup;
public:
MallocChecker() : II_malloc(0), II_free(0), II_realloc(0), II_calloc(0),
II_valloc(0), II_reallocf(0), II_strndup(0), II_strdup(0) {}
/// In pessimistic mode, the checker assumes that it does not know which
/// functions might free the memory.
struct ChecksFilter {
DefaultBool CMallocPessimistic;
DefaultBool CMallocOptimistic;
};
ChecksFilter Filter;
void checkPreStmt(const CallExpr *S, CheckerContext &C) const;
void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
void checkEndPath(CheckerContext &C) const;
void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
bool Assumption) const;
void checkLocation(SVal l, bool isLoad, const Stmt *S,
CheckerContext &C) const;
void checkBind(SVal location, SVal val, const Stmt*S,
CheckerContext &C) const;
ProgramStateRef
checkRegionChanges(ProgramStateRef state,
const StoreManager::InvalidatedSymbols *invalidated,
ArrayRef<const MemRegion *> ExplicitRegions,
ArrayRef<const MemRegion *> Regions,
const CallOrObjCMessage *Call) const;
bool wantsRegionChangeUpdate(ProgramStateRef state) const {
return true;
}
private:
void initIdentifierInfo(ASTContext &C) const;
/// Check if this is one of the functions which can allocate/reallocate memory
/// pointed to by one of its arguments.
bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const;
static ProgramStateRef MallocMemReturnsAttr(CheckerContext &C,
const CallExpr *CE,
const OwnershipAttr* Att);
static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
const Expr *SizeEx, SVal Init,
ProgramStateRef state) {
return MallocMemAux(C, CE,
state->getSVal(SizeEx, C.getLocationContext()),
Init, state);
}
static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
SVal SizeEx, SVal Init,
ProgramStateRef state);
/// Update the RefState to reflect the new memory allocation.
static ProgramStateRef MallocUpdateRefState(CheckerContext &C,
const CallExpr *CE,
ProgramStateRef state);
ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE,
const OwnershipAttr* Att) const;
ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE,
ProgramStateRef state, unsigned Num,
bool Hold) const;
ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE,
bool FreesMemOnFailure) const;
static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE);
bool checkEscape(SymbolRef Sym, const Stmt *S, CheckerContext &C) const;
bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
const Stmt *S = 0) const;
/// Check if the function is not known to us. So, for example, we could
/// conservatively assume it can free/reallocate it's pointer arguments.
bool doesNotFreeMemory(const CallOrObjCMessage *Call,
ProgramStateRef State) const;
static bool SummarizeValue(raw_ostream &os, SVal V);
static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);
void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange range) const;
/// Find the location of the allocation for Sym on the path leading to the
/// exploded node N.
LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
CheckerContext &C) const;
void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
/// The bug visitor which allows us to print extra diagnostics along the
/// BugReport path. For example, showing the allocation site of the leaked
/// region.
class MallocBugVisitor : public BugReporterVisitorImpl<MallocBugVisitor> {
protected:
enum NotificationMode {
Normal,
ReallocationFailed
};
// The allocated region symbol tracked by the main analysis.
SymbolRef Sym;
// The mode we are in, i.e. what kind of diagnostics will be emitted.
NotificationMode Mode;
// A symbol from when the primary region should have been reallocated.
SymbolRef FailedReallocSymbol;
public:
MallocBugVisitor(SymbolRef S)
: Sym(S), Mode(Normal), FailedReallocSymbol(0) {}
virtual ~MallocBugVisitor() {}
void Profile(llvm::FoldingSetNodeID &ID) const {
static int X = 0;
ID.AddPointer(&X);
ID.AddPointer(Sym);
}
inline bool isAllocated(const RefState *S, const RefState *SPrev,
const Stmt *Stmt) {
// Did not track -> allocated. Other state (released) -> allocated.
return (Stmt && isa<CallExpr>(Stmt) &&
(S && S->isAllocated()) && (!SPrev || !SPrev->isAllocated()));
}
inline bool isReleased(const RefState *S, const RefState *SPrev,
const Stmt *Stmt) {
// Did not track -> released. Other state (allocated) -> released.
return (Stmt && isa<CallExpr>(Stmt) &&
(S && S->isReleased()) && (!SPrev || !SPrev->isReleased()));
}
inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev,
const Stmt *Stmt) {
// If the expression is not a call, and the state change is
// released -> allocated, it must be the realloc return value
// check. If we have to handle more cases here, it might be cleaner just
// to track this extra bit in the state itself.
return ((!Stmt || !isa<CallExpr>(Stmt)) &&
(S && S->isAllocated()) && (SPrev && !SPrev->isAllocated()));
}
PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
const ExplodedNode *PrevN,
BugReporterContext &BRC,
BugReport &BR);
private:
class StackHintGeneratorForReallocationFailed
: public StackHintGeneratorForSymbol {
public:
StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
: StackHintGeneratorForSymbol(S, M) {}
virtual std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) {
SmallString<200> buf;
llvm::raw_svector_ostream os(buf);
os << "Reallocation of ";
// Printed parameters start at 1, not 0.
printOrdinal(++ArgIndex, os);
os << " parameter failed";
return os.str();
}
virtual std::string getMessageForReturn(const CallExpr *CallExpr) {
return "Reallocation of returned value failed";
}
};
};
};
} // end anonymous namespace
typedef llvm::ImmutableMap<SymbolRef, RefState> RegionStateTy;
typedef llvm::ImmutableMap<SymbolRef, ReallocPair > ReallocMap;
class RegionState {};
class ReallocPairs {};
namespace clang {
namespace ento {
template <>
struct ProgramStateTrait<RegionState>
: public ProgramStatePartialTrait<RegionStateTy> {
static void *GDMIndex() { static int x; return &x; }
};
template <>
struct ProgramStateTrait<ReallocPairs>
: public ProgramStatePartialTrait<ReallocMap> {
static void *GDMIndex() { static int x; return &x; }
};
}
}
namespace {
class StopTrackingCallback : public SymbolVisitor {
ProgramStateRef state;
public:
StopTrackingCallback(ProgramStateRef st) : state(st) {}
ProgramStateRef getState() const { return state; }
bool VisitSymbol(SymbolRef sym) {
state = state->remove<RegionState>(sym);
return true;
}
};
} // end anonymous namespace
void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const {
if (!II_malloc)
II_malloc = &Ctx.Idents.get("malloc");
if (!II_free)
II_free = &Ctx.Idents.get("free");
if (!II_realloc)
II_realloc = &Ctx.Idents.get("realloc");
if (!II_reallocf)
II_reallocf = &Ctx.Idents.get("reallocf");
if (!II_calloc)
II_calloc = &Ctx.Idents.get("calloc");
if (!II_valloc)
II_valloc = &Ctx.Idents.get("valloc");
if (!II_strdup)
II_strdup = &Ctx.Idents.get("strdup");
if (!II_strndup)
II_strndup = &Ctx.Idents.get("strndup");
}
bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const {
if (!FD)
return false;
IdentifierInfo *FunI = FD->getIdentifier();
if (!FunI)
return false;
initIdentifierInfo(C);
if (FunI == II_malloc || FunI == II_free || FunI == II_realloc ||
FunI == II_reallocf || FunI == II_calloc || FunI == II_valloc ||
FunI == II_strdup || FunI == II_strndup)
return true;
if (Filter.CMallocOptimistic && FD->hasAttrs() &&
FD->specific_attr_begin<OwnershipAttr>() !=
FD->specific_attr_end<OwnershipAttr>())
return true;
return false;
}
void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const {
const FunctionDecl *FD = C.getCalleeDecl(CE);
if (!FD)
return;
initIdentifierInfo(C.getASTContext());
IdentifierInfo *FunI = FD->getIdentifier();
if (!FunI)
return;
ProgramStateRef State = C.getState();
if (FunI == II_malloc || FunI == II_valloc) {
if (CE->getNumArgs() < 1)
return;
State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
} else if (FunI == II_realloc) {
State = ReallocMem(C, CE, false);
} else if (FunI == II_reallocf) {
State = ReallocMem(C, CE, true);
} else if (FunI == II_calloc) {
State = CallocMem(C, CE);
} else if (FunI == II_free) {
State = FreeMemAux(C, CE, C.getState(), 0, false);
} else if (FunI == II_strdup) {
State = MallocUpdateRefState(C, CE, State);
} else if (FunI == II_strndup) {
State = MallocUpdateRefState(C, CE, State);
} else if (Filter.CMallocOptimistic) {
// Check all the attributes, if there are any.
// There can be multiple of these attributes.
if (FD->hasAttrs())
for (specific_attr_iterator<OwnershipAttr>
i = FD->specific_attr_begin<OwnershipAttr>(),
e = FD->specific_attr_end<OwnershipAttr>();
i != e; ++i) {
switch ((*i)->getOwnKind()) {
case OwnershipAttr::Returns:
State = MallocMemReturnsAttr(C, CE, *i);
break;
case OwnershipAttr::Takes:
case OwnershipAttr::Holds:
State = FreeMemAttr(C, CE, *i);
break;
}
}
}
C.addTransition(State);
}
ProgramStateRef MallocChecker::MallocMemReturnsAttr(CheckerContext &C,
const CallExpr *CE,
const OwnershipAttr* Att) {
if (Att->getModule() != "malloc")
return 0;
OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
if (I != E) {
return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), C.getState());
}
return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), C.getState());
}
ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
const CallExpr *CE,
SVal Size, SVal Init,
ProgramStateRef state) {
// Get the return value.
SVal retVal = state->getSVal(CE, C.getLocationContext());
// We expect the malloc functions to return a pointer.
if (!isa<Loc>(retVal))
return 0;
// Fill the region with the initialization value.
state = state->bindDefault(retVal, Init);
// Set the region's extent equal to the Size parameter.
const SymbolicRegion *R =
dyn_cast_or_null<SymbolicRegion>(retVal.getAsRegion());
if (!R)
return 0;
if (isa<DefinedOrUnknownSVal>(Size)) {
SValBuilder &svalBuilder = C.getSValBuilder();
DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
DefinedOrUnknownSVal DefinedSize = cast<DefinedOrUnknownSVal>(Size);
DefinedOrUnknownSVal extentMatchesSize =
svalBuilder.evalEQ(state, Extent, DefinedSize);
state = state->assume(extentMatchesSize, true);
assert(state);
}
return MallocUpdateRefState(C, CE, state);
}
ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C,
const CallExpr *CE,
ProgramStateRef state) {
// Get the return value.
SVal retVal = state->getSVal(CE, C.getLocationContext());
// We expect the malloc functions to return a pointer.
if (!isa<Loc>(retVal))
return 0;
SymbolRef Sym = retVal.getAsLocSymbol();
assert(Sym);
// Set the symbol's state to Allocated.
return state->set<RegionState>(Sym, RefState::getAllocateUnchecked(CE));
}
ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
const CallExpr *CE,
const OwnershipAttr* Att) const {
if (Att->getModule() != "malloc")
return 0;
ProgramStateRef State = C.getState();
for (OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
I != E; ++I) {
ProgramStateRef StateI = FreeMemAux(C, CE, State, *I,
Att->getOwnKind() == OwnershipAttr::Holds);
if (StateI)
State = StateI;
}
return State;
}
ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
const CallExpr *CE,
ProgramStateRef state,
unsigned Num,
bool Hold) const {
if (CE->getNumArgs() < (Num + 1))
return 0;
const Expr *ArgExpr = CE->getArg(Num);
SVal ArgVal = state->getSVal(ArgExpr, C.getLocationContext());
if (!isa<DefinedOrUnknownSVal>(ArgVal))
return 0;
DefinedOrUnknownSVal location = cast<DefinedOrUnknownSVal>(ArgVal);
// Check for null dereferences.
if (!isa<Loc>(location))
return 0;
// The explicit NULL case, no operation is performed.
ProgramStateRef notNullState, nullState;
llvm::tie(notNullState, nullState) = state->assume(location);
if (nullState && !notNullState)
return 0;
// Unknown values could easily be okay
// Undefined values are handled elsewhere
if (ArgVal.isUnknownOrUndef())
return 0;
const MemRegion *R = ArgVal.getAsRegion();
// Nonlocs can't be freed, of course.
// Non-region locations (labels and fixed addresses) also shouldn't be freed.
if (!R) {
ReportBadFree(C, ArgVal, ArgExpr->getSourceRange());
return 0;
}
R = R->StripCasts();
// Blocks might show up as heap data, but should not be free()d
if (isa<BlockDataRegion>(R)) {
ReportBadFree(C, ArgVal, ArgExpr->getSourceRange());
return 0;
}
const MemSpaceRegion *MS = R->getMemorySpace();
// Parameters, locals, statics, and globals shouldn't be freed.
if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) {
// FIXME: at the time this code was written, malloc() regions were
// represented by conjured symbols, which are all in UnknownSpaceRegion.
// This means that there isn't actually anything from HeapSpaceRegion
// that should be freed, even though we allow it here.
// Of course, free() can work on memory allocated outside the current
// function, so UnknownSpaceRegion is always a possibility.
// False negatives are better than false positives.
ReportBadFree(C, ArgVal, ArgExpr->getSourceRange());
return 0;
}
const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R);
// Various cases could lead to non-symbol values here.
// For now, ignore them.
if (!SR)
return 0;
SymbolRef Sym = SR->getSymbol();
const RefState *RS = state->get<RegionState>(Sym);
// If the symbol has not been tracked, return. This is possible when free() is
// called on a pointer that does not get its pointee directly from malloc().
// Full support of this requires inter-procedural analysis.
if (!RS)
return 0;
// Check double free.
if (RS->isReleased()) {
if (ExplodedNode *N = C.generateSink()) {
if (!BT_DoubleFree)
BT_DoubleFree.reset(
new BugType("Double free", "Memory Error"));
BugReport *R = new BugReport(*BT_DoubleFree,
"Attempt to free released memory", N);
R->addRange(ArgExpr->getSourceRange());
R->markInteresting(Sym);
R->addVisitor(new MallocBugVisitor(Sym));
C.EmitReport(R);
}
return 0;
}
// Normal free.
if (Hold)
return state->set<RegionState>(Sym, RefState::getRelinquished(CE));
return state->set<RegionState>(Sym, RefState::getReleased(CE));
}
bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
if (nonloc::ConcreteInt *IntVal = dyn_cast<nonloc::ConcreteInt>(&V))
os << "an integer (" << IntVal->getValue() << ")";
else if (loc::ConcreteInt *ConstAddr = dyn_cast<loc::ConcreteInt>(&V))
os << "a constant address (" << ConstAddr->getValue() << ")";
else if (loc::GotoLabel *Label = dyn_cast<loc::GotoLabel>(&V))
os << "the address of the label '" << Label->getLabel()->getName() << "'";
else
return false;
return true;
}
bool MallocChecker::SummarizeRegion(raw_ostream &os,
const MemRegion *MR) {
switch (MR->getKind()) {
case MemRegion::FunctionTextRegionKind: {
const FunctionDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
if (FD)
os << "the address of the function '" << *FD << '\'';
else
os << "the address of a function";
return true;
}
case MemRegion::BlockTextRegionKind:
os << "block text";
return true;
case MemRegion::BlockDataRegionKind:
// FIXME: where the block came from?
os << "a block";
return true;
default: {
const MemSpaceRegion *MS = MR->getMemorySpace();
if (isa<StackLocalsSpaceRegion>(MS)) {
const VarRegion *VR = dyn_cast<VarRegion>(MR);
const VarDecl *VD;
if (VR)
VD = VR->getDecl();
else
VD = NULL;
if (VD)
os << "the address of the local variable '" << VD->getName() << "'";
else
os << "the address of a local stack variable";
return true;
}
if (isa<StackArgumentsSpaceRegion>(MS)) {
const VarRegion *VR = dyn_cast<VarRegion>(MR);
const VarDecl *VD;
if (VR)
VD = VR->getDecl();
else
VD = NULL;
if (VD)
os << "the address of the parameter '" << VD->getName() << "'";
else
os << "the address of a parameter";
return true;
}
if (isa<GlobalsSpaceRegion>(MS)) {
const VarRegion *VR = dyn_cast<VarRegion>(MR);
const VarDecl *VD;
if (VR)
VD = VR->getDecl();
else
VD = NULL;
if (VD) {
if (VD->isStaticLocal())
os << "the address of the static variable '" << VD->getName() << "'";
else
os << "the address of the global variable '" << VD->getName() << "'";
} else
os << "the address of a global variable";
return true;
}
return false;
}
}
}
void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal,
SourceRange range) const {
if (ExplodedNode *N = C.generateSink()) {
if (!BT_BadFree)
BT_BadFree.reset(new BugType("Bad free", "Memory Error"));
SmallString<100> buf;
llvm::raw_svector_ostream os(buf);
const MemRegion *MR = ArgVal.getAsRegion();
if (MR) {
while (const ElementRegion *ER = dyn_cast<ElementRegion>(MR))
MR = ER->getSuperRegion();
// Special case for alloca()
if (isa<AllocaRegion>(MR))
os << "Argument to free() was allocated by alloca(), not malloc()";
else {
os << "Argument to free() is ";
if (SummarizeRegion(os, MR))
os << ", which is not memory allocated by malloc()";
else
os << "not memory allocated by malloc()";
}
} else {
os << "Argument to free() is ";
if (SummarizeValue(os, ArgVal))
os << ", which is not memory allocated by malloc()";
else
os << "not memory allocated by malloc()";
}
BugReport *R = new BugReport(*BT_BadFree, os.str(), N);
R->markInteresting(MR);
R->addRange(range);
C.EmitReport(R);
}
}
ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C,
const CallExpr *CE,
bool FreesOnFail) const {
if (CE->getNumArgs() < 2)
return 0;
ProgramStateRef state = C.getState();
const Expr *arg0Expr = CE->getArg(0);
const LocationContext *LCtx = C.getLocationContext();
SVal Arg0Val = state->getSVal(arg0Expr, LCtx);
if (!isa<DefinedOrUnknownSVal>(Arg0Val))
return 0;
DefinedOrUnknownSVal arg0Val = cast<DefinedOrUnknownSVal>(Arg0Val);
SValBuilder &svalBuilder = C.getSValBuilder();
DefinedOrUnknownSVal PtrEQ =
svalBuilder.evalEQ(state, arg0Val, svalBuilder.makeNull());
// Get the size argument. If there is no size arg then give up.
const Expr *Arg1 = CE->getArg(1);
if (!Arg1)
return 0;
// Get the value of the size argument.
SVal Arg1ValG = state->getSVal(Arg1, LCtx);
if (!isa<DefinedOrUnknownSVal>(Arg1ValG))
return 0;
DefinedOrUnknownSVal Arg1Val = cast<DefinedOrUnknownSVal>(Arg1ValG);
// Compare the size argument to 0.
DefinedOrUnknownSVal SizeZero =
svalBuilder.evalEQ(state, Arg1Val,
svalBuilder.makeIntValWithPtrWidth(0, false));
ProgramStateRef StatePtrIsNull, StatePtrNotNull;
llvm::tie(StatePtrIsNull, StatePtrNotNull) = state->assume(PtrEQ);
ProgramStateRef StateSizeIsZero, StateSizeNotZero;
llvm::tie(StateSizeIsZero, StateSizeNotZero) = state->assume(SizeZero);
// We only assume exceptional states if they are definitely true; if the
// state is under-constrained, assume regular realloc behavior.
bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;
// If the ptr is NULL and the size is not 0, the call is equivalent to
// malloc(size).
if ( PrtIsNull && !SizeIsZero) {
ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1),
UndefinedVal(), StatePtrIsNull);
return stateMalloc;
}
if (PrtIsNull && SizeIsZero)
return 0;
// Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
assert(!PrtIsNull);
SymbolRef FromPtr = arg0Val.getAsSymbol();
SVal RetVal = state->getSVal(CE, LCtx);
SymbolRef ToPtr = RetVal.getAsSymbol();
if (!FromPtr || !ToPtr)
return 0;
// If the size is 0, free the memory.
if (SizeIsZero)
if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero,0,false)){
// The semantics of the return value are:
// If size was equal to 0, either NULL or a pointer suitable to be passed
// to free() is returned.
stateFree = stateFree->set<ReallocPairs>(ToPtr,
ReallocPair(FromPtr, FreesOnFail));
C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
return stateFree;
}
// Default behavior.
if (ProgramStateRef stateFree = FreeMemAux(C, CE, state, 0, false)) {
// FIXME: We should copy the content of the original buffer.
ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1),
UnknownVal(), stateFree);
if (!stateRealloc)
return 0;
stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
ReallocPair(FromPtr, FreesOnFail));
C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
return stateRealloc;
}
return 0;
}
ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE){
if (CE->getNumArgs() < 2)
return 0;
ProgramStateRef state = C.getState();
SValBuilder &svalBuilder = C.getSValBuilder();
const LocationContext *LCtx = C.getLocationContext();
SVal count = state->getSVal(CE->getArg(0), LCtx);
SVal elementSize = state->getSVal(CE->getArg(1), LCtx);
SVal TotalSize = svalBuilder.evalBinOp(state, BO_Mul, count, elementSize,
svalBuilder.getContext().getSizeType());
SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
return MallocMemAux(C, CE, TotalSize, zeroVal, state);
}
LeakInfo
MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
CheckerContext &C) const {
const LocationContext *LeakContext = N->getLocationContext();
// Walk the ExplodedGraph backwards and find the first node that referred to
// the tracked symbol.
const ExplodedNode *AllocNode = N;
const MemRegion *ReferenceRegion = 0;
while (N) {
ProgramStateRef State = N->getState();
if (!State->get<RegionState>(Sym))
break;
// Find the most recent expression bound to the symbol in the current
// context.
if (!ReferenceRegion) {
if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
SVal Val = State->getSVal(MR);
if (Val.getAsLocSymbol() == Sym)
ReferenceRegion = MR;
}
}
// Allocation node, is the last node in the current context in which the
// symbol was tracked.
if (N->getLocationContext() == LeakContext)
AllocNode = N;
N = N->pred_empty() ? NULL : *(N->pred_begin());
}
ProgramPoint P = AllocNode->getLocation();
const Stmt *AllocationStmt = 0;
if (isa<StmtPoint>(P))
AllocationStmt = cast<StmtPoint>(P).getStmt();
return LeakInfo(AllocationStmt, ReferenceRegion);
}
void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N,
CheckerContext &C) const {
assert(N);
if (!BT_Leak) {
BT_Leak.reset(new BugType("Memory leak", "Memory Error"));
// Leaks should not be reported if they are post-dominated by a sink:
// (1) Sinks are higher importance bugs.
// (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
// with __noreturn functions such as assert() or exit(). We choose not
// to report leaks on such paths.
BT_Leak->setSuppressOnSink(true);
}
// Most bug reports are cached at the location where they occurred.
// With leaks, we want to unique them by the location where they were
// allocated, and only report a single path.
PathDiagnosticLocation LocUsedForUniqueing;
const Stmt *AllocStmt = 0;
const MemRegion *Region = 0;
llvm::tie(AllocStmt, Region) = getAllocationSite(N, Sym, C);
if (AllocStmt)
LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocStmt,
C.getSourceManager(), N->getLocationContext());
SmallString<200> buf;
llvm::raw_svector_ostream os(buf);
os << "Memory is never released; potential leak";
if (Region) {
os << " of memory pointed to by '";
Region->dumpPretty(os);
os <<'\'';
}
BugReport *R = new BugReport(*BT_Leak, os.str(), N, LocUsedForUniqueing);
R->markInteresting(Sym);
R->addVisitor(new MallocBugVisitor(Sym));
C.EmitReport(R);
}
void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
CheckerContext &C) const
{
if (!SymReaper.hasDeadSymbols())
return;
ProgramStateRef state = C.getState();
RegionStateTy RS = state->get<RegionState>();
RegionStateTy::Factory &F = state->get_context<RegionState>();
bool generateReport = false;
llvm::SmallVector<SymbolRef, 2> Errors;
for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
if (SymReaper.isDead(I->first)) {
if (I->second.isAllocated()) {
generateReport = true;
Errors.push_back(I->first);
}
// Remove the dead symbol from the map.
RS = F.remove(RS, I->first);
}
}
// Cleanup the Realloc Pairs Map.
ReallocMap RP = state->get<ReallocPairs>();
for (ReallocMap::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
if (SymReaper.isDead(I->first) ||
SymReaper.isDead(I->second.ReallocatedSym)) {
state = state->remove<ReallocPairs>(I->first);
}
}
// Generate leak node.
static SimpleProgramPointTag Tag("MallocChecker : DeadSymbolsLeak");
ExplodedNode *N = C.addTransition(C.getState(), C.getPredecessor(), &Tag);
if (generateReport) {
for (llvm::SmallVector<SymbolRef, 2>::iterator
I = Errors.begin(), E = Errors.end(); I != E; ++I) {
reportLeak(*I, N, C);
}
}
C.addTransition(state->set<RegionState>(RS), N);
}
void MallocChecker::checkEndPath(CheckerContext &C) const {
ProgramStateRef state = C.getState();
RegionStateTy M = state->get<RegionState>();
// If inside inlined call, skip it.
if (C.getLocationContext()->getParent() != 0)
return;
for (RegionStateTy::iterator I = M.begin(), E = M.end(); I != E; ++I) {
RefState RS = I->second;
if (RS.isAllocated()) {
ExplodedNode *N = C.addTransition(state);
if (N)
reportLeak(I->first, N, C);
}
}
}
bool MallocChecker::checkEscape(SymbolRef Sym, const Stmt *S,
CheckerContext &C) const {
ProgramStateRef state = C.getState();
const RefState *RS = state->get<RegionState>(Sym);
if (!RS)
return false;
if (RS->isAllocated()) {
state = state->set<RegionState>(Sym, RefState::getEscaped(S));
C.addTransition(state);
return true;
}
return false;
}
void MallocChecker::checkPreStmt(const CallExpr *CE, CheckerContext &C) const {
if (isMemFunction(C.getCalleeDecl(CE), C.getASTContext()))
return;
// Check use after free, when a freed pointer is passed to a call.
ProgramStateRef State = C.getState();
for (CallExpr::const_arg_iterator I = CE->arg_begin(),
E = CE->arg_end(); I != E; ++I) {
const Expr *A = *I;
if (A->getType().getTypePtr()->isAnyPointerType()) {
SymbolRef Sym = State->getSVal(A, C.getLocationContext()).getAsSymbol();
if (!Sym)
continue;
if (checkUseAfterFree(Sym, C, A))
return;
}
}
}
void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const {
const Expr *E = S->getRetValue();
if (!E)
return;
// Check if we are returning a symbol.
SVal RetVal = C.getState()->getSVal(E, C.getLocationContext());
SymbolRef Sym = RetVal.getAsSymbol();
if (!Sym)
// If we are returning a field of the allocated struct or an array element,
// the callee could still free the memory.
// TODO: This logic should be a part of generic symbol escape callback.
if (const MemRegion *MR = RetVal.getAsRegion())
if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR))
if (const SymbolicRegion *BMR =
dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
Sym = BMR->getSymbol();
if (!Sym)
return;
// Check if we are returning freed memory.
if (checkUseAfterFree(Sym, C, E))
return;
// If this function body is not inlined, check if the symbol is escaping.
if (C.getLocationContext()->getParent() == 0)
checkEscape(Sym, E, C);
}
// TODO: Blocks should be either inlined or should call invalidate regions
// upon invocation. After that's in place, special casing here will not be
// needed.
void MallocChecker::checkPostStmt(const BlockExpr *BE,
CheckerContext &C) const {
// Scan the BlockDecRefExprs for any object the retain count checker
// may be tracking.
if (!BE->getBlockDecl()->hasCaptures())
return;
ProgramStateRef state = C.getState();
const BlockDataRegion *R =
cast<BlockDataRegion>(state->getSVal(BE,
C.getLocationContext()).getAsRegion());
BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
E = R->referenced_vars_end();
if (I == E)
return;
SmallVector<const MemRegion*, 10> Regions;
const LocationContext *LC = C.getLocationContext();
MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
for ( ; I != E; ++I) {
const VarRegion *VR = *I;
if (VR->getSuperRegion() == R) {
VR = MemMgr.getVarRegion(VR->getDecl(), LC);
}
Regions.push_back(VR);
}
state =
state->scanReachableSymbols<StopTrackingCallback>(Regions.data(),
Regions.data() + Regions.size()).getState();
C.addTransition(state);
}
bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
const Stmt *S) const {
assert(Sym);
const RefState *RS = C.getState()->get<RegionState>(Sym);
if (RS && RS->isReleased()) {
if (ExplodedNode *N = C.generateSink()) {
if (!BT_UseFree)
BT_UseFree.reset(new BugType("Use-after-free", "Memory Error"));
BugReport *R = new BugReport(*BT_UseFree,
"Use of memory after it is freed",N);
if (S)
R->addRange(S->getSourceRange());
R->markInteresting(Sym);
R->addVisitor(new MallocBugVisitor(Sym));
C.EmitReport(R);
return true;
}
}
return false;
}
// Check if the location is a freed symbolic region.
void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
CheckerContext &C) const {
SymbolRef Sym = l.getLocSymbolInBase();
if (Sym)
checkUseAfterFree(Sym, C);
}
//===----------------------------------------------------------------------===//
// Check various ways a symbol can be invalidated.
// TODO: This logic (the next 3 functions) is copied/similar to the
// RetainRelease checker. We might want to factor this out.
//===----------------------------------------------------------------------===//
// Stop tracking symbols when a value escapes as a result of checkBind.
// A value escapes in three possible cases:
// (1) we are binding to something that is not a memory region.
// (2) we are binding to a memregion that does not have stack storage
// (3) we are binding to a memregion with stack storage that the store
// does not understand.
void MallocChecker::checkBind(SVal loc, SVal val, const Stmt *S,
CheckerContext &C) const {
// Are we storing to something that causes the value to "escape"?
bool escapes = true;
ProgramStateRef state = C.getState();
if (loc::MemRegionVal *regionLoc = dyn_cast<loc::MemRegionVal>(&loc)) {
escapes = !regionLoc->getRegion()->hasStackStorage();
if (!escapes) {
// To test (3), generate a new state with the binding added. If it is
// the same state, then it escapes (since the store cannot represent
// the binding).
escapes = (state == (state->bindLoc(*regionLoc, val)));
}
if (!escapes) {
// Case 4: We do not currently model what happens when a symbol is
// assigned to a struct field, so be conservative here and let the symbol
// go. TODO: This could definitely be improved upon.
escapes = !isa<VarRegion>(regionLoc->getRegion());
}
}
// If our store can represent the binding and we aren't storing to something
// that doesn't have local storage then just return and have the simulation
// state continue as is.
if (!escapes)
return;
// Otherwise, find all symbols referenced by 'val' that we are tracking
// and stop tracking them.
state = state->scanReachableSymbols<StopTrackingCallback>(val).getState();
C.addTransition(state);
}
// If a symbolic region is assumed to NULL (or another constant), stop tracking
// it - assuming that allocation failed on this path.
ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
SVal Cond,
bool Assumption) const {
RegionStateTy RS = state->get<RegionState>();
for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
// If the symbol is assumed to NULL or another constant, this will
// return an APSInt*.
if (state->getSymVal(I.getKey()))
state = state->remove<RegionState>(I.getKey());
}
// Realloc returns 0 when reallocation fails, which means that we should
// restore the state of the pointer being reallocated.
ReallocMap RP = state->get<ReallocPairs>();
for (ReallocMap::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
// If the symbol is assumed to NULL or another constant, this will
// return an APSInt*.
if (state->getSymVal(I.getKey())) {
SymbolRef ReallocSym = I.getData().ReallocatedSym;
const RefState *RS = state->get<RegionState>(ReallocSym);
if (RS) {
if (RS->isReleased() && ! I.getData().IsFreeOnFailure)
state = state->set<RegionState>(ReallocSym,
RefState::getAllocateUnchecked(RS->getStmt()));
}
state = state->remove<ReallocPairs>(I.getKey());
}
}
return state;
}
// Check if the function is known to us. So, for example, we could
// conservatively assume it can free/reallocate it's pointer arguments.
// (We assume that the pointers cannot escape through calls to system
// functions not handled by this checker.)
bool MallocChecker::doesNotFreeMemory(const CallOrObjCMessage *Call,
ProgramStateRef State) const {
if (!Call)
return false;
// For now, assume that any C++ call can free memory.
// TODO: If we want to be more optimistic here, we'll need to make sure that
// regions escape to C++ containers. They seem to do that even now, but for
// mysterious reasons.
if (Call->isCXXCall())
return false;
const Decl *D = Call->getDecl();
if (!D)
return false;
ASTContext &ASTC = State->getStateManager().getContext();
// If it's one of the allocation functions we can reason about, we model
// its behavior explicitly.
if (isa<FunctionDecl>(D) && isMemFunction(cast<FunctionDecl>(D), ASTC)) {
return true;
}
// If it's not a system call, assume it frees memory.
SourceManager &SM = ASTC.getSourceManager();
if (!SM.isInSystemHeader(D->getLocation()))
return false;
// Process C/ObjC functions.
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
// White list the system functions whose arguments escape.
const IdentifierInfo *II = FD->getIdentifier();
if (!II)
return true;
StringRef FName = II->getName();
// White list thread local storage.
if (FName.equals("pthread_setspecific"))
return false;
// White list the 'XXXNoCopy' ObjC functions.
if (FName.endswith("NoCopy")) {
// Look for the deallocator argument. We know that the memory ownership
// is not transfered only if the deallocator argument is
// 'kCFAllocatorNull'.
for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
const Expr *ArgE = Call->getArg(i)->IgnoreParenCasts();
if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
StringRef DeallocatorName = DE->getFoundDecl()->getName();
if (DeallocatorName == "kCFAllocatorNull")
return true;
}
}
return false;
}
// PR12101
// Many CoreFoundation and CoreGraphics might allow a tracked object
// to escape.
if (Call->isCFCGAllowingEscape(FName))
return false;
// Associating streams with malloced buffers. The pointer can escape if
// 'closefn' is specified (and if that function does free memory).
// Currently, we do not inspect the 'closefn' function (PR12101).
if (FName == "funopen")
if (Call->getNumArgs() >= 4 && !Call->getArgSVal(4).isConstant(0))
return false;
// Do not warn on pointers passed to 'setbuf' when used with std streams,
// these leaks might be intentional when setting the buffer for stdio.
// http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
if (FName == "setbuf" || FName =="setbuffer" ||
FName == "setlinebuf" || FName == "setvbuf") {
if (Call->getNumArgs() >= 1)
if (const DeclRefExpr *Arg =
dyn_cast<DeclRefExpr>(Call->getArg(0)->IgnoreParenCasts()))
if (const VarDecl *D = dyn_cast<VarDecl>(Arg->getDecl()))
if (D->getCanonicalDecl()->getName().find("std")
!= StringRef::npos)
return false;
}
// A bunch of other functions, which take ownership of a pointer (See retain
// release checker). Not all the parameters here are invalidated, but the
// Malloc checker cannot differentiate between them. The right way of doing
// this would be to implement a pointer escapes callback.
if (FName == "CVPixelBufferCreateWithBytes" ||
FName == "CGBitmapContextCreateWithData" ||
FName == "CVPixelBufferCreateWithPlanarBytes" ||
FName == "OSAtomicEnqueue") {
return false;
}
// Whitelist NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
// be deallocated by NSMapRemove.
if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
return false;
// Otherwise, assume that the function does not free memory.
// Most system calls, do not free the memory.
return true;
// Process ObjC functions.
} else if (const ObjCMethodDecl * ObjCD = dyn_cast<ObjCMethodDecl>(D)) {
Selector S = ObjCD->getSelector();
// White list the ObjC functions which do free memory.
// - Anything containing 'freeWhenDone' param set to 1.
// Ex: dataWithBytesNoCopy:length:freeWhenDone.
for (unsigned i = 1; i < S.getNumArgs(); ++i) {
if (S.getNameForSlot(i).equals("freeWhenDone")) {
if (Call->getArgSVal(i).isConstant(1))
return false;
else
return true;
}
}
// If the first selector ends with NoCopy, assume that the ownership is
// transfered as well.
// Ex: [NSData dataWithBytesNoCopy:bytes length:10];
if (S.getNameForSlot(0).endswith("NoCopy")) {
return false;
}
// Otherwise, assume that the function does not free memory.
// Most system calls, do not free the memory.
return true;
}
// Otherwise, assume that the function can free memory.
return false;
}
// If the symbol we are tracking is invalidated, but not explicitly (ex: the &p
// escapes, when we are tracking p), do not track the symbol as we cannot reason
// about it anymore.
ProgramStateRef
MallocChecker::checkRegionChanges(ProgramStateRef State,
const StoreManager::InvalidatedSymbols *invalidated,
ArrayRef<const MemRegion *> ExplicitRegions,
ArrayRef<const MemRegion *> Regions,
const CallOrObjCMessage *Call) const {
if (!invalidated || invalidated->empty())
return State;
llvm::SmallPtrSet<SymbolRef, 8> WhitelistedSymbols;
// If it's a call which might free or reallocate memory, we assume that all
// regions (explicit and implicit) escaped.
// Otherwise, whitelist explicit pointers; we still can track them.
if (!Call || doesNotFreeMemory(Call, State)) {
for (ArrayRef<const MemRegion *>::iterator I = ExplicitRegions.begin(),
E = ExplicitRegions.end(); I != E; ++I) {
if (const SymbolicRegion *R = (*I)->StripCasts()->getAs<SymbolicRegion>())
WhitelistedSymbols.insert(R->getSymbol());
}
}
for (StoreManager::InvalidatedSymbols::const_iterator I=invalidated->begin(),
E = invalidated->end(); I!=E; ++I) {
SymbolRef sym = *I;
if (WhitelistedSymbols.count(sym))
continue;
// The symbol escaped.
if (const RefState *RS = State->get<RegionState>(sym))
State = State->set<RegionState>(sym, RefState::getEscaped(RS->getStmt()));
}
return State;
}
static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
ProgramStateRef prevState) {
ReallocMap currMap = currState->get<ReallocPairs>();
ReallocMap prevMap = prevState->get<ReallocPairs>();
for (ReallocMap::iterator I = prevMap.begin(), E = prevMap.end();
I != E; ++I) {
SymbolRef sym = I.getKey();
if (!currMap.lookup(sym))
return sym;
}
return NULL;
}
PathDiagnosticPiece *
MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N,
const ExplodedNode *PrevN,
BugReporterContext &BRC,
BugReport &BR) {
ProgramStateRef state = N->getState();
ProgramStateRef statePrev = PrevN->getState();
const RefState *RS = state->get<RegionState>(Sym);
const RefState *RSPrev = statePrev->get<RegionState>(Sym);
if (!RS && !RSPrev)
return 0;
const Stmt *S = 0;
const char *Msg = 0;
StackHintGeneratorForSymbol *StackHint = 0;
// Retrieve the associated statement.
ProgramPoint ProgLoc = N->getLocation();
if (isa<StmtPoint>(ProgLoc))
S = cast<StmtPoint>(ProgLoc).getStmt();
// If an assumption was made on a branch, it should be caught
// here by looking at the state transition.
if (isa<BlockEdge>(ProgLoc)) {
const CFGBlock *srcBlk = cast<BlockEdge>(ProgLoc).getSrc();
S = srcBlk->getTerminator();
}
if (!S)
return 0;
// Find out if this is an interesting point and what is the kind.
if (Mode == Normal) {
if (isAllocated(RS, RSPrev, S)) {
Msg = "Memory is allocated";
StackHint = new StackHintGeneratorForSymbol(Sym,
"Returned allocated memory");
} else if (isReleased(RS, RSPrev, S)) {
Msg = "Memory is released";
StackHint = new StackHintGeneratorForSymbol(Sym,
"Returned released memory");
} else if (isReallocFailedCheck(RS, RSPrev, S)) {
Mode = ReallocationFailed;
Msg = "Reallocation failed";
StackHint = new StackHintGeneratorForReallocationFailed(Sym,
"Reallocation failed");
if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
// Is it possible to fail two reallocs WITHOUT testing in between?
assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
"We only support one failed realloc at a time.");
BR.markInteresting(sym);
FailedReallocSymbol = sym;
}
}
// We are in a special mode if a reallocation failed later in the path.
} else if (Mode == ReallocationFailed) {
assert(FailedReallocSymbol && "No symbol to look for.");
// Is this is the first appearance of the reallocated symbol?
if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
// If we ever hit this assert, that means BugReporter has decided to skip
// node pairs or visit them out of order.
assert(state->get<RegionState>(FailedReallocSymbol) &&
"Missed the reallocation point");
// We're at the reallocation point.
Msg = "Attempt to reallocate memory";
StackHint = new StackHintGeneratorForSymbol(Sym,
"Returned reallocated memory");
FailedReallocSymbol = NULL;
Mode = Normal;
}
}
if (!Msg)
return 0;
assert(StackHint);
// Generate the extra diagnostic.
PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
N->getLocationContext());
return new PathDiagnosticEventPiece(Pos, Msg, true, StackHint);
}
#define REGISTER_CHECKER(name) \
void ento::register##name(CheckerManager &mgr) {\
registerCStringCheckerBasic(mgr); \
mgr.registerChecker<MallocChecker>()->Filter.C##name = true;\
}
REGISTER_CHECKER(MallocPessimistic)
REGISTER_CHECKER(MallocOptimistic)