llvm-project/clang/lib/AST/MicrosoftCXXABI.cpp
Alex Richardson a602f76a24 [clang][TargetInfo] Use LangAS for getPointer{Width,Align}()
Mixing LLVM and Clang address spaces can result in subtle bugs, and there
is no need for this hook to use the LLVM IR level address spaces.
Most of this change is just replacing zero with LangAS::Default,
but it also allows us to remove a few calls to getTargetAddressSpace().

This also removes a stale comment+workaround in
CGDebugInfo::CreatePointerLikeType(): ASTContext::getTypeSize() does
return the expected size for ReferenceType (and handles address spaces).

Differential Revision: https://reviews.llvm.org/D138295
2022-11-30 20:24:01 +00:00

335 lines
12 KiB
C++

//===------- MicrosoftCXXABI.cpp - AST support for the Microsoft C++ ABI --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This provides C++ AST support targeting the Microsoft Visual C++
// ABI.
//
//===----------------------------------------------------------------------===//
#include "CXXABI.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/MangleNumberingContext.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Type.h"
#include "clang/Basic/TargetInfo.h"
using namespace clang;
namespace {
/// Numbers things which need to correspond across multiple TUs.
/// Typically these are things like static locals, lambdas, or blocks.
class MicrosoftNumberingContext : public MangleNumberingContext {
llvm::DenseMap<const Type *, unsigned> ManglingNumbers;
unsigned LambdaManglingNumber;
unsigned StaticLocalNumber;
unsigned StaticThreadlocalNumber;
public:
MicrosoftNumberingContext()
: LambdaManglingNumber(0), StaticLocalNumber(0),
StaticThreadlocalNumber(0) {}
unsigned getManglingNumber(const CXXMethodDecl *CallOperator) override {
return ++LambdaManglingNumber;
}
unsigned getManglingNumber(const BlockDecl *BD) override {
const Type *Ty = nullptr;
return ++ManglingNumbers[Ty];
}
unsigned getStaticLocalNumber(const VarDecl *VD) override {
if (VD->getTLSKind())
return ++StaticThreadlocalNumber;
return ++StaticLocalNumber;
}
unsigned getManglingNumber(const VarDecl *VD,
unsigned MSLocalManglingNumber) override {
return MSLocalManglingNumber;
}
unsigned getManglingNumber(const TagDecl *TD,
unsigned MSLocalManglingNumber) override {
return MSLocalManglingNumber;
}
};
class MSHIPNumberingContext : public MicrosoftNumberingContext {
std::unique_ptr<MangleNumberingContext> DeviceCtx;
public:
using MicrosoftNumberingContext::getManglingNumber;
MSHIPNumberingContext(MangleContext *DeviceMangler) {
DeviceCtx = createItaniumNumberingContext(DeviceMangler);
}
unsigned getDeviceManglingNumber(const CXXMethodDecl *CallOperator) override {
return DeviceCtx->getManglingNumber(CallOperator);
}
unsigned getManglingNumber(const TagDecl *TD,
unsigned MSLocalManglingNumber) override {
unsigned DeviceN = DeviceCtx->getManglingNumber(TD, MSLocalManglingNumber);
unsigned HostN =
MicrosoftNumberingContext::getManglingNumber(TD, MSLocalManglingNumber);
if (DeviceN > 0xFFFF || HostN > 0xFFFF) {
DiagnosticsEngine &Diags = TD->getASTContext().getDiagnostics();
unsigned DiagID = Diags.getCustomDiagID(
DiagnosticsEngine::Error, "Mangling number exceeds limit (65535)");
Diags.Report(TD->getLocation(), DiagID);
}
return (DeviceN << 16) | HostN;
}
};
class MSSYCLNumberingContext : public MicrosoftNumberingContext {
std::unique_ptr<MangleNumberingContext> DeviceCtx;
public:
MSSYCLNumberingContext(MangleContext *DeviceMangler) {
DeviceCtx = createItaniumNumberingContext(DeviceMangler);
}
unsigned getDeviceManglingNumber(const CXXMethodDecl *CallOperator) override {
return DeviceCtx->getManglingNumber(CallOperator);
}
};
class MicrosoftCXXABI : public CXXABI {
ASTContext &Context;
llvm::SmallDenseMap<CXXRecordDecl *, CXXConstructorDecl *> RecordToCopyCtor;
llvm::SmallDenseMap<TagDecl *, DeclaratorDecl *>
UnnamedTagDeclToDeclaratorDecl;
llvm::SmallDenseMap<TagDecl *, TypedefNameDecl *>
UnnamedTagDeclToTypedefNameDecl;
// MangleContext for device numbering context, which is based on Itanium C++
// ABI.
std::unique_ptr<MangleContext> DeviceMangler;
public:
MicrosoftCXXABI(ASTContext &Ctx) : Context(Ctx) {
if (Context.getLangOpts().CUDA && Context.getAuxTargetInfo()) {
assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&
Context.getAuxTargetInfo()->getCXXABI().isItaniumFamily() &&
"Unexpected combination of C++ ABIs.");
DeviceMangler.reset(
Context.createMangleContext(Context.getAuxTargetInfo()));
}
else if (Context.getLangOpts().isSYCL()) {
DeviceMangler.reset(
ItaniumMangleContext::create(Context, Context.getDiagnostics()));
}
}
MemberPointerInfo
getMemberPointerInfo(const MemberPointerType *MPT) const override;
CallingConv getDefaultMethodCallConv(bool isVariadic) const override {
if (!isVariadic &&
Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
return CC_X86ThisCall;
return Context.getTargetInfo().getDefaultCallingConv();
}
bool isNearlyEmpty(const CXXRecordDecl *RD) const override {
llvm_unreachable("unapplicable to the MS ABI");
}
const CXXConstructorDecl *
getCopyConstructorForExceptionObject(CXXRecordDecl *RD) override {
return RecordToCopyCtor[RD];
}
void
addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
CXXConstructorDecl *CD) override {
assert(CD != nullptr);
assert(RecordToCopyCtor[RD] == nullptr || RecordToCopyCtor[RD] == CD);
RecordToCopyCtor[RD] = CD;
}
void addTypedefNameForUnnamedTagDecl(TagDecl *TD,
TypedefNameDecl *DD) override {
TD = TD->getCanonicalDecl();
DD = DD->getCanonicalDecl();
TypedefNameDecl *&I = UnnamedTagDeclToTypedefNameDecl[TD];
if (!I)
I = DD;
}
TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD) override {
return UnnamedTagDeclToTypedefNameDecl.lookup(
const_cast<TagDecl *>(TD->getCanonicalDecl()));
}
void addDeclaratorForUnnamedTagDecl(TagDecl *TD,
DeclaratorDecl *DD) override {
TD = TD->getCanonicalDecl();
DD = cast<DeclaratorDecl>(DD->getCanonicalDecl());
DeclaratorDecl *&I = UnnamedTagDeclToDeclaratorDecl[TD];
if (!I)
I = DD;
}
DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD) override {
return UnnamedTagDeclToDeclaratorDecl.lookup(
const_cast<TagDecl *>(TD->getCanonicalDecl()));
}
std::unique_ptr<MangleNumberingContext>
createMangleNumberingContext() const override {
if (Context.getLangOpts().CUDA && Context.getAuxTargetInfo()) {
assert(DeviceMangler && "Missing device mangler");
return std::make_unique<MSHIPNumberingContext>(DeviceMangler.get());
} else if (Context.getLangOpts().isSYCL()) {
assert(DeviceMangler && "Missing device mangler");
return std::make_unique<MSSYCLNumberingContext>(DeviceMangler.get());
}
return std::make_unique<MicrosoftNumberingContext>();
}
};
}
// getNumBases() seems to only give us the number of direct bases, and not the
// total. This function tells us if we inherit from anybody that uses MI, or if
// we have a non-primary base class, which uses the multiple inheritance model.
static bool usesMultipleInheritanceModel(const CXXRecordDecl *RD) {
while (RD->getNumBases() > 0) {
if (RD->getNumBases() > 1)
return true;
assert(RD->getNumBases() == 1);
const CXXRecordDecl *Base =
RD->bases_begin()->getType()->getAsCXXRecordDecl();
if (RD->isPolymorphic() && !Base->isPolymorphic())
return true;
RD = Base;
}
return false;
}
MSInheritanceModel CXXRecordDecl::calculateInheritanceModel() const {
if (!hasDefinition() || isParsingBaseSpecifiers())
return MSInheritanceModel::Unspecified;
if (getNumVBases() > 0)
return MSInheritanceModel::Virtual;
if (usesMultipleInheritanceModel(this))
return MSInheritanceModel::Multiple;
return MSInheritanceModel::Single;
}
MSInheritanceModel CXXRecordDecl::getMSInheritanceModel() const {
MSInheritanceAttr *IA = getAttr<MSInheritanceAttr>();
assert(IA && "Expected MSInheritanceAttr on the CXXRecordDecl!");
return IA->getInheritanceModel();
}
bool CXXRecordDecl::nullFieldOffsetIsZero() const {
return !inheritanceModelHasOnlyOneField(/*IsMemberFunction=*/false,
getMSInheritanceModel()) ||
(hasDefinition() && isPolymorphic());
}
MSVtorDispMode CXXRecordDecl::getMSVtorDispMode() const {
if (MSVtorDispAttr *VDA = getAttr<MSVtorDispAttr>())
return VDA->getVtorDispMode();
return getASTContext().getLangOpts().getVtorDispMode();
}
// Returns the number of pointer and integer slots used to represent a member
// pointer in the MS C++ ABI.
//
// Member function pointers have the following general form; however, fields
// are dropped as permitted (under the MSVC interpretation) by the inheritance
// model of the actual class.
//
// struct {
// // A pointer to the member function to call. If the member function is
// // virtual, this will be a thunk that forwards to the appropriate vftable
// // slot.
// void *FunctionPointerOrVirtualThunk;
//
// // An offset to add to the address of the vbtable pointer after
// // (possibly) selecting the virtual base but before resolving and calling
// // the function.
// // Only needed if the class has any virtual bases or bases at a non-zero
// // offset.
// int NonVirtualBaseAdjustment;
//
// // The offset of the vb-table pointer within the object. Only needed for
// // incomplete types.
// int VBPtrOffset;
//
// // An offset within the vb-table that selects the virtual base containing
// // the member. Loading from this offset produces a new offset that is
// // added to the address of the vb-table pointer to produce the base.
// int VirtualBaseAdjustmentOffset;
// };
static std::pair<unsigned, unsigned>
getMSMemberPointerSlots(const MemberPointerType *MPT) {
const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
unsigned Ptrs = 0;
unsigned Ints = 0;
if (MPT->isMemberFunctionPointer())
Ptrs = 1;
else
Ints = 1;
if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
Inheritance))
Ints++;
if (inheritanceModelHasVBPtrOffsetField(Inheritance))
Ints++;
if (inheritanceModelHasVBTableOffsetField(Inheritance))
Ints++;
return std::make_pair(Ptrs, Ints);
}
CXXABI::MemberPointerInfo MicrosoftCXXABI::getMemberPointerInfo(
const MemberPointerType *MPT) const {
// The nominal struct is laid out with pointers followed by ints and aligned
// to a pointer width if any are present and an int width otherwise.
const TargetInfo &Target = Context.getTargetInfo();
unsigned PtrSize = Target.getPointerWidth(LangAS::Default);
unsigned IntSize = Target.getIntWidth();
unsigned Ptrs, Ints;
std::tie(Ptrs, Ints) = getMSMemberPointerSlots(MPT);
MemberPointerInfo MPI;
MPI.HasPadding = false;
MPI.Width = Ptrs * PtrSize + Ints * IntSize;
// When MSVC does x86_32 record layout, it aligns aggregate member pointers to
// 8 bytes. However, __alignof usually returns 4 for data memptrs and 8 for
// function memptrs.
if (Ptrs + Ints > 1 && Target.getTriple().isArch32Bit())
MPI.Align = 64;
else if (Ptrs)
MPI.Align = Target.getPointerAlign(LangAS::Default);
else
MPI.Align = Target.getIntAlign();
if (Target.getTriple().isArch64Bit()) {
MPI.Width = llvm::alignTo(MPI.Width, MPI.Align);
MPI.HasPadding = MPI.Width != (Ptrs * PtrSize + Ints * IntSize);
}
return MPI;
}
CXXABI *clang::CreateMicrosoftCXXABI(ASTContext &Ctx) {
return new MicrosoftCXXABI(Ctx);
}