llvm-project/clang/test/CodeGenCXX/debug-info-structured-binding.cpp
Michael Buch 310a9f3f25
[clang][DebugInfo] Don't mark structured bindings as artificial (#100355)
This patch is motivated by the debug-info issue in
https://github.com/llvm/llvm-project/issues/48909. Clang is currently
emitting the `DW_AT_artificial` attribute on debug-info entries for
structured bindings whereas GCC does not. GCC's interpretation of the
DWARF spec is more user-friendly in this regard, so we would like to do
the same in Clang. [`CGDebugInfo` uses `isImplicit` to decide which
variables to mark
artificial](0c4023ae3b/clang/lib/CodeGen/CGDebugInfo.cpp (L4783-L4784))
(e.g., `ImplicitParamDecls`, compiler-generated variables, etc.). But
for the purposes of debug-info, when we say "artificial", what we really
mean in many cases is: "not explicitly spelled out in source".
`VarDecl`s that back tuple-like bindings are [technically
compiler-generated](https://github.com/llvm/llvm-project/issues/48909#issuecomment-2238976579),
but that is a confusing notion for debug-info, since these bindings
*are* spelled out in source. The [documentation for
`isImplicit`](68a0d0c762/clang/include/clang/AST/DeclBase.h (L596-L600))
does to some extent imply that implicit variables aren't written in
source.

This patch adds another condition to deciding whether a `VarDecl` should
be marked artificial. Specifically, don't treat structured bindings as
artificial.

**Main alternatives considered**
1. Don't use `isImplicit` in `CGDebugInfo` when determining whether to
add `DW_AT_artificial`. Instead use some other property of the AST that
would tell us whether a node was explicitly spelled out in source or not
* Considered using `SourceRange` or `SourceLocation` to tell us this,
but didn't find a good way to, e.g., correctly identify that the
implicit `this` parameter wasn't spelled out in source (as opposed to an
unnamed parameter in a function declaration)
2. We could've also added a bit to `VarDeclBitFields` that indicates
that a `VarDecl` is a holding var, but the use-case didn't feel like
good enough justification for this
3. Don't set the `VarDecl` introduced as part of a tuple-like
decomposition as implicit.
* This may affect AST matching/traversal and this specific use-case
wasn't enough to justify such a change

Fixes https://github.com/llvm/llvm-project/issues/48909
2024-08-09 09:41:09 +01:00

51 lines
2.2 KiB
C++

// RUN: %clang_cc1 -emit-llvm -debug-info-kind=standalone -triple %itanium_abi_triple %s -o - | FileCheck %s --implicit-check-not="call void @llvm.dbg.declare"
// CHECK: #dbg_declare(ptr %{{[a-z]+}}, ![[VAR_0:[0-9]+]], !DIExpression(),
// CHECK: #dbg_declare(ptr %{{[0-9]+}}, ![[VAR_1:[0-9]+]], !DIExpression(),
// CHECK: #dbg_declare(ptr %{{[0-9]+}}, ![[VAR_2:[0-9]+]], !DIExpression(DW_OP_plus_uconst, 4),
// CHECK: #dbg_declare(ptr %{{[0-9]+}}, ![[VAR_3:[0-9]+]], !DIExpression(DW_OP_deref),
// CHECK: #dbg_declare(ptr %{{[0-9]+}}, ![[VAR_4:[0-9]+]], !DIExpression(DW_OP_deref, DW_OP_plus_uconst, 4),
// CHECK: #dbg_declare(ptr %z1, ![[VAR_5:[0-9]+]], !DIExpression()
// CHECK: #dbg_declare(ptr %z2, ![[VAR_6:[0-9]+]], !DIExpression()
// CHECK: ![[VAR_0]] = !DILocalVariable(name: "a"
// CHECK: ![[VAR_1]] = !DILocalVariable(name: "x1", scope: !{{[0-9]+}}, file: !{{[0-9]+}}, line: {{[0-9]+}}, type: !{{[0-9]+}})
// CHECK: ![[VAR_2]] = !DILocalVariable(name: "y1", scope: !{{[0-9]+}}, file: !{{[0-9]+}}, line: {{[0-9]+}}, type: !{{[0-9]+}})
// CHECK: ![[VAR_3]] = !DILocalVariable(name: "x2", scope: !{{[0-9]+}}, file: !{{[0-9]+}}, line: {{[0-9]+}}, type: !{{[0-9]+}})
// CHECK: ![[VAR_4]] = !DILocalVariable(name: "y2", scope: !{{[0-9]+}}, file: !{{[0-9]+}}, line: {{[0-9]+}}, type: !{{[0-9]+}})
// CHECK: ![[VAR_5]] = !DILocalVariable(name: "z1", scope: !{{[0-9]+}}, file: !{{[0-9]+}}, line: {{[0-9]+}}, type: !{{[0-9]+}})
// CHECK: ![[VAR_6]] = !DILocalVariable(name: "z2", scope: !{{[0-9]+}}, file: !{{[0-9]+}}, line: {{[0-9]+}}, type: !{{[0-9]+}})
struct A {
int x;
int y;
};
struct B {
int w;
int z;
template<int> int get();
template<> int get<0>() { return w; }
template<> int get<1>() { return z; }
};
// Note: the following declarations are necessary for decomposition of tuple-like
// structured bindings
namespace std {
template<typename T> struct tuple_size {
};
template<>
struct tuple_size<B> {
static constexpr unsigned value = 2;
};
template<unsigned, typename T> struct tuple_element { using type = int; };
} // namespace std
int f() {
A a{10, 20};
auto [x1, y1] = a;
auto &[x2, y2] = a;
auto [z1, z2] = B{1, 2};
return x1 + y1 + x2 + y2 + z1 + z2;
}