
There are several pieces of pattern rewriting infra in IR/ that really shouldn't be there. This revision moves those pieces to a better location such that they are easier to evolve in the future(e.g. with PDL). More concretely this revision does the following: * Create a Transforms/GreedyPatternRewriteDriver.h and move the apply*andFold methods there. The definitions for these methods are already in Transforms/ so it doesn't make sense for the declarations to be in IR. * Create a new lib/Rewrite library and move PatternApplicator there. This new library will be focused on applying rewrites, and will also include compiling rewrites with PDL. Differential Revision: https://reviews.llvm.org/D89103
463 lines
19 KiB
C++
463 lines
19 KiB
C++
//===- LinalgTransforms.cpp - Linalg transformations as patterns ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements logic and helpers to expose Linalg transforms as rewrite
|
|
// patterns.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
|
|
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
|
|
#include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Vector/VectorOps.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <type_traits>
|
|
|
|
#define DEBUG_TYPE "linalg-transforms"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::edsc;
|
|
using namespace mlir::edsc::intrinsics;
|
|
using namespace mlir::linalg;
|
|
|
|
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transformations exposed as rewrite patterns.
|
|
//===----------------------------------------------------------------------===//
|
|
// Marker used as attribute name in generated Linalg rewriting transformations.
|
|
const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker =
|
|
"__internal_linalg_transform__";
|
|
|
|
mlir::linalg::LinalgMarker::LinalgMarker(ArrayRef<Identifier> matchDisjunction,
|
|
Optional<Identifier> replacement)
|
|
: matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
|
|
replacement(replacement) {}
|
|
|
|
LogicalResult
|
|
mlir::linalg::LinalgMarker::checkAndNotify(PatternRewriter &rewriter,
|
|
Operation *op) const {
|
|
auto attr = op->template getAttrOfType<StringAttr>(
|
|
LinalgTransforms::kLinalgTransformMarker);
|
|
|
|
if (!attr) {
|
|
// 1. Has no marker case and matchDisjunction is empty.
|
|
if (matchDisjunction.empty())
|
|
return success();
|
|
|
|
// 2. Has no marker but was expecting a marker.
|
|
return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
|
|
diag << " does not have any marker from list: ";
|
|
interleaveComma(matchDisjunction, diag);
|
|
});
|
|
}
|
|
|
|
// 4. Match explicit marker.
|
|
for (auto marker : matchDisjunction)
|
|
if (attr.getValue() == marker)
|
|
return success();
|
|
|
|
// 5. Fail to match.
|
|
return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
|
|
diag << " does not have any marker from list: ";
|
|
interleaveComma(matchDisjunction, diag);
|
|
});
|
|
}
|
|
|
|
void mlir::linalg::LinalgMarker::replaceLinalgMarker(PatternRewriter &rewriter,
|
|
Operation *op) const {
|
|
if (replacement.hasValue())
|
|
op->setAttr(LinalgTransforms::kLinalgTransformMarker,
|
|
rewriter.getStringAttr(replacement.getValue()));
|
|
else
|
|
op->removeAttr(Identifier::get(LinalgTransforms::kLinalgTransformMarker,
|
|
rewriter.getContext()));
|
|
}
|
|
|
|
LinalgTilingOptions &
|
|
mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
|
|
SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
|
|
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
|
|
OpBuilder::InsertionGuard guard(b);
|
|
b.setInsertionPointToStart(
|
|
&op->getParentOfType<FuncOp>().getBody().front());
|
|
return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
|
|
Value v = b.create<ConstantIndexOp>(op->getLoc(), s);
|
|
return v;
|
|
}));
|
|
};
|
|
return *this;
|
|
}
|
|
|
|
/// Linalg base tiling pattern.
|
|
mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern(
|
|
StringRef opName, MLIRContext *context, LinalgTilingOptions options,
|
|
LinalgMarker marker, PatternBenefit benefit)
|
|
: RewritePattern(opName, {}, benefit, context), marker(marker),
|
|
options(options) {}
|
|
|
|
LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewriteBase(
|
|
Operation *op, PatternRewriter &rewriter,
|
|
SmallVectorImpl<Value> &tensorResults) const {
|
|
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
|
|
if (!linalgOp)
|
|
return failure();
|
|
if (failed(marker.checkAndNotify(rewriter, linalgOp)))
|
|
return failure();
|
|
|
|
// If LinalgOp has results, they must all be tied to init tensors.
|
|
// We enforce this to ensure all tiled ops have been rewritten in
|
|
// "init tensor" form. This ensures tiling has anchor values into which to
|
|
// subtensor / subtensor_insert. Otherwise tiling would need to allocate which
|
|
// is not acceptable.
|
|
// This would not be the case with a special terminator op that generates the
|
|
// whole tensor (instead of inserting a subtensor). But the generator-based
|
|
// abstraction has other issues.
|
|
if (linalgOp.getNumInitTensors() != linalgOp.getOperation()->getNumResults())
|
|
return failure();
|
|
|
|
Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options);
|
|
|
|
if (!res)
|
|
return failure();
|
|
|
|
// Return relevant information to derived pattern.
|
|
tensorResults = res->tensorResults;
|
|
|
|
// New marker if specified.
|
|
marker.replaceLinalgMarker(rewriter, res->op.getOperation());
|
|
return success();
|
|
}
|
|
|
|
mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern(
|
|
StringRef opName, MLIRContext *context,
|
|
const LinalgDependenceGraph &dependenceGraph,
|
|
LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions,
|
|
LinalgMarker marker, LinalgMarker fusedOpMarker,
|
|
LinalgMarker originalOpMarker, PatternBenefit benefit)
|
|
: RewritePattern(opName, {}, benefit, context),
|
|
dependenceGraph(dependenceGraph), tilingOptions(tilingOptions),
|
|
fusionOptions(fusionOptions), marker(marker),
|
|
fusedOpMarker(fusedOpMarker), originalOpMarker(originalOpMarker) {}
|
|
|
|
LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite(
|
|
Operation *op, PatternRewriter &rewriter) const {
|
|
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
|
|
if (!linalgOp)
|
|
return failure();
|
|
if (failed(marker.checkAndNotify(rewriter, linalgOp)))
|
|
return failure();
|
|
if (!linalgOp.hasBufferSemantics())
|
|
return failure();
|
|
|
|
Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps(
|
|
rewriter, op, dependenceGraph, tilingOptions, fusionOptions);
|
|
if (!tiledAndFusedOps)
|
|
return failure();
|
|
marker.replaceLinalgMarker(rewriter, tiledAndFusedOps->op.getOperation());
|
|
for (auto fusedOp : tiledAndFusedOps->fusedProducers) {
|
|
fusedOpMarker.replaceLinalgMarker(rewriter, fusedOp.getOperation());
|
|
}
|
|
for (auto origProducerOp : tiledAndFusedOps->originalProducers)
|
|
originalOpMarker.replaceLinalgMarker(rewriter,
|
|
origProducerOp.getOperation());
|
|
rewriter.updateRootInPlace(
|
|
op, [&]() { originalOpMarker.replaceLinalgMarker(rewriter, op); });
|
|
return success();
|
|
}
|
|
|
|
/// Linalg base interchange pattern.
|
|
mlir::linalg::LinalgBaseInterchangePattern::LinalgBaseInterchangePattern(
|
|
StringRef opName, MLIRContext *context,
|
|
ArrayRef<unsigned> interchangeVector, LinalgMarker marker,
|
|
PatternBenefit benefit)
|
|
: RewritePattern(opName, {}, benefit, context), marker(marker),
|
|
interchangeVector(interchangeVector.begin(), interchangeVector.end()) {}
|
|
|
|
LogicalResult mlir::linalg::LinalgBaseInterchangePattern::matchAndRewrite(
|
|
Operation *op, PatternRewriter &rewriter) const {
|
|
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
|
|
if (!linalgOp)
|
|
return failure();
|
|
if (failed(marker.checkAndNotify(rewriter, linalgOp)))
|
|
return failure();
|
|
if (failed(interchangeGenericLinalgOpPrecondition(op, interchangeVector)))
|
|
return failure();
|
|
|
|
// TODO: figure out how this interplays with named ops. In particular this
|
|
// should break the named op property.
|
|
rewriter.updateRootInPlace(op, [&]() {
|
|
interchange(linalgOp, interchangeVector);
|
|
// New marker if specified.
|
|
marker.replaceLinalgMarker(rewriter, op);
|
|
});
|
|
return success();
|
|
}
|
|
|
|
mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern(
|
|
StringRef opName, MLIRContext *context, LinalgPromotionOptions options,
|
|
LinalgMarker marker, PatternBenefit benefit)
|
|
: RewritePattern(opName, {}, benefit, context), marker(marker),
|
|
options(options) {}
|
|
|
|
LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite(
|
|
Operation *op, PatternRewriter &rewriter) const {
|
|
if (failed(marker.checkAndNotify(rewriter, op)))
|
|
return failure();
|
|
if (failed(promoteSubviewsPrecondition(op, options)))
|
|
return failure();
|
|
|
|
// TODO: We cannot use root update here. This pattern is creating other ops,
|
|
// so if the promotion fails, those need to be cleaned up, which doesnt seem
|
|
// to be happening here. So to fail properly, we should be cloning the op and
|
|
// deleting the previous op. This needs more investigation.
|
|
rewriter.startRootUpdate(op);
|
|
Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options);
|
|
if (!promotedOp) {
|
|
rewriter.cancelRootUpdate(op);
|
|
return op->emitError("subview promotion failed");
|
|
}
|
|
rewriter.finalizeRootUpdate(op);
|
|
marker.replaceLinalgMarker(rewriter, op);
|
|
return success();
|
|
}
|
|
|
|
mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern(
|
|
StringRef opName, MLIRContext *context, LinalgMarker marker,
|
|
PatternBenefit benefit)
|
|
: RewritePattern(opName, {}, benefit, context), marker(marker) {}
|
|
|
|
LogicalResult mlir::linalg::LinalgBaseVectorizationPattern::matchAndRewrite(
|
|
Operation *op, PatternRewriter &rewriter) const {
|
|
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
|
|
if (!linalgOp)
|
|
return failure();
|
|
if (failed(marker.checkAndNotify(rewriter, linalgOp)))
|
|
return failure();
|
|
if (failed(vectorizeLinalgOpPrecondition(op)))
|
|
return failure();
|
|
vectorizeLinalgOp(rewriter, op);
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
|
|
LogicalResult mlir::linalg::applyStagedPatterns(
|
|
Operation *op, ArrayRef<OwningRewritePatternList> stage1Patterns,
|
|
const OwningRewritePatternList &stage2Patterns,
|
|
function_ref<LogicalResult(Operation *)> stage3Lambda) {
|
|
unsigned iteration = 0;
|
|
(void)iteration;
|
|
for (const auto &patterns : stage1Patterns) {
|
|
LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n"
|
|
<< *op);
|
|
if (failed(applyPatternsAndFoldGreedily(op, patterns))) {
|
|
LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge");
|
|
return failure();
|
|
}
|
|
LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n"
|
|
<< *op);
|
|
if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) {
|
|
LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge");
|
|
return failure();
|
|
}
|
|
LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n"
|
|
<< *op);
|
|
if (stage3Lambda) {
|
|
if (failed(stage3Lambda(op)))
|
|
return failure();
|
|
LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n"
|
|
<< *op);
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Traverse `e` and return an AffineExpr where all occurrences of `dim` have
|
|
/// been replaced by either:
|
|
/// - `min` if `positivePath` is true when we reach an occurrence of `dim`
|
|
/// - `max` if `positivePath` is true when we reach an occurrence of `dim`
|
|
/// `positivePath` is negated each time we hit a multiplicative or divisive
|
|
/// binary op with a constant negative coefficient.
|
|
static AffineExpr substWithMin(AffineExpr e, AffineExpr dim, AffineExpr min,
|
|
AffineExpr max, bool positivePath = true) {
|
|
if (e == dim)
|
|
return positivePath ? min : max;
|
|
if (auto bin = e.dyn_cast<AffineBinaryOpExpr>()) {
|
|
AffineExpr lhs = bin.getLHS();
|
|
AffineExpr rhs = bin.getRHS();
|
|
if (bin.getKind() == mlir::AffineExprKind::Add)
|
|
return substWithMin(lhs, dim, min, max, positivePath) +
|
|
substWithMin(rhs, dim, min, max, positivePath);
|
|
|
|
auto c1 = bin.getLHS().dyn_cast<AffineConstantExpr>();
|
|
auto c2 = bin.getRHS().dyn_cast<AffineConstantExpr>();
|
|
if (c1 && c1.getValue() < 0)
|
|
return getAffineBinaryOpExpr(
|
|
bin.getKind(), c1, substWithMin(rhs, dim, min, max, !positivePath));
|
|
if (c2 && c2.getValue() < 0)
|
|
return getAffineBinaryOpExpr(
|
|
bin.getKind(), substWithMin(lhs, dim, min, max, !positivePath), c2);
|
|
return getAffineBinaryOpExpr(
|
|
bin.getKind(), substWithMin(lhs, dim, min, max, positivePath),
|
|
substWithMin(rhs, dim, min, max, positivePath));
|
|
}
|
|
return e;
|
|
}
|
|
|
|
/// Given the `lbVal`, `ubVal` and `stepVal` of a loop, append `lbVal` and
|
|
/// `ubVal` to `dims` and `stepVal` to `symbols`.
|
|
/// Create new AffineDimExpr (`%lb` and `%ub`) and AffineSymbolExpr (`%step`)
|
|
/// with positions matching the newly appended values. Substitute occurrences of
|
|
/// `dimExpr` by either the min expression (i.e. `%lb`) or the max expression
|
|
/// (i.e. `%lb + %step * floordiv(%ub -1 - %lb, %step)`), depending on whether
|
|
/// the induction variable is used with a positive or negative coefficient.
|
|
static AffineExpr substituteLoopInExpr(AffineExpr expr, AffineExpr dimExpr,
|
|
Value lbVal, Value ubVal, Value stepVal,
|
|
SmallVectorImpl<Value> &dims,
|
|
SmallVectorImpl<Value> &symbols) {
|
|
MLIRContext *ctx = lbVal.getContext();
|
|
AffineExpr lb = getAffineDimExpr(dims.size(), ctx);
|
|
dims.push_back(lbVal);
|
|
AffineExpr ub = getAffineDimExpr(dims.size(), ctx);
|
|
dims.push_back(ubVal);
|
|
AffineExpr step = getAffineSymbolExpr(symbols.size(), ctx);
|
|
symbols.push_back(stepVal);
|
|
LLVM_DEBUG(DBGS() << "Before: " << expr << "\n");
|
|
AffineExpr ee = substWithMin(expr, dimExpr, lb,
|
|
lb + step * ((ub - 1) - lb).floorDiv(step));
|
|
LLVM_DEBUG(DBGS() << "After: " << expr << "\n");
|
|
return ee;
|
|
}
|
|
|
|
/// Traverse the `dims` and substitute known min or max expressions in place of
|
|
/// induction variables in `exprs`.
|
|
static AffineMap substitute(AffineMap map, SmallVectorImpl<Value> &dims,
|
|
SmallVectorImpl<Value> &symbols) {
|
|
auto exprs = llvm::to_vector<4>(map.getResults());
|
|
for (AffineExpr &expr : exprs) {
|
|
bool substituted = true;
|
|
while (substituted) {
|
|
substituted = false;
|
|
for (unsigned dimIdx = 0; dimIdx < dims.size(); ++dimIdx) {
|
|
Value dim = dims[dimIdx];
|
|
AffineExpr dimExpr = getAffineDimExpr(dimIdx, expr.getContext());
|
|
LLVM_DEBUG(DBGS() << "Subst: " << dim << " @ " << dimExpr << "\n");
|
|
AffineExpr substitutedExpr;
|
|
if (auto forOp = scf::getForInductionVarOwner(dim))
|
|
substitutedExpr = substituteLoopInExpr(
|
|
expr, dimExpr, forOp.lowerBound(), forOp.upperBound(),
|
|
forOp.step(), dims, symbols);
|
|
|
|
if (auto parallelForOp = scf::getParallelForInductionVarOwner(dim))
|
|
for (unsigned idx = 0, e = parallelForOp.getNumLoops(); idx < e;
|
|
++idx)
|
|
substitutedExpr = substituteLoopInExpr(
|
|
expr, dimExpr, parallelForOp.lowerBound()[idx],
|
|
parallelForOp.upperBound()[idx], parallelForOp.step()[idx],
|
|
dims, symbols);
|
|
|
|
if (!substitutedExpr)
|
|
continue;
|
|
|
|
substituted = (substitutedExpr != expr);
|
|
expr = substitutedExpr;
|
|
}
|
|
}
|
|
|
|
// Cleanup and simplify the results.
|
|
// This needs to happen outside of the loop iterating on dims.size() since
|
|
// it modifies dims.
|
|
SmallVector<Value, 4> operands(dims.begin(), dims.end());
|
|
operands.append(symbols.begin(), symbols.end());
|
|
auto map = AffineMap::get(dims.size(), symbols.size(), exprs,
|
|
exprs.front().getContext());
|
|
|
|
LLVM_DEBUG(DBGS() << "Map to simplify: " << map << "\n");
|
|
|
|
// Pull in affine.apply operations and compose them fully into the
|
|
// result.
|
|
fullyComposeAffineMapAndOperands(&map, &operands);
|
|
canonicalizeMapAndOperands(&map, &operands);
|
|
map = simplifyAffineMap(map);
|
|
// Assign the results.
|
|
exprs.assign(map.getResults().begin(), map.getResults().end());
|
|
dims.assign(operands.begin(), operands.begin() + map.getNumDims());
|
|
symbols.assign(operands.begin() + map.getNumDims(), operands.end());
|
|
|
|
LLVM_DEBUG(DBGS() << "Map simplified: " << map << "\n");
|
|
}
|
|
|
|
assert(!exprs.empty() && "Unexpected empty exprs");
|
|
return AffineMap::get(dims.size(), symbols.size(), exprs, map.getContext());
|
|
}
|
|
|
|
LogicalResult AffineMinSCFCanonicalizationPattern::matchAndRewrite(
|
|
AffineMinOp minOp, PatternRewriter &rewriter) const {
|
|
LLVM_DEBUG(DBGS() << "Canonicalize AffineMinSCF: " << *minOp.getOperation()
|
|
<< "\n");
|
|
|
|
SmallVector<Value, 4> dims(minOp.getDimOperands()),
|
|
symbols(minOp.getSymbolOperands());
|
|
AffineMap map = substitute(minOp.getAffineMap(), dims, symbols);
|
|
|
|
LLVM_DEBUG(DBGS() << "Resulting map: " << map << "\n");
|
|
|
|
// Check whether any of the expressions, when subtracted from all other
|
|
// expressions, produces only >= 0 constants. If so, it is the min.
|
|
for (auto e : minOp.getAffineMap().getResults()) {
|
|
LLVM_DEBUG(DBGS() << "Candidate min: " << e << "\n");
|
|
if (!e.isSymbolicOrConstant())
|
|
continue;
|
|
|
|
auto isNonPositive = [](AffineExpr e) {
|
|
if (auto cst = e.dyn_cast<AffineConstantExpr>())
|
|
return cst.getValue() < 0;
|
|
return true;
|
|
};
|
|
|
|
// Build the subMap and check everything is statically known to be
|
|
// positive.
|
|
SmallVector<AffineExpr, 4> subExprs;
|
|
subExprs.reserve(map.getNumResults());
|
|
for (auto ee : map.getResults())
|
|
subExprs.push_back(ee - e);
|
|
MLIRContext *ctx = minOp.getContext();
|
|
AffineMap subMap = simplifyAffineMap(
|
|
AffineMap::get(map.getNumDims(), map.getNumSymbols(), subExprs, ctx));
|
|
LLVM_DEBUG(DBGS() << "simplified subMap: " << subMap << "\n");
|
|
if (llvm::any_of(subMap.getResults(), isNonPositive))
|
|
continue;
|
|
|
|
// Static min found.
|
|
if (auto cst = e.dyn_cast<AffineConstantExpr>()) {
|
|
rewriter.replaceOpWithNewOp<ConstantIndexOp>(minOp, cst.getValue());
|
|
} else {
|
|
auto resultMap = AffineMap::get(0, map.getNumSymbols(), {e}, ctx);
|
|
SmallVector<Value, 4> resultOperands = dims;
|
|
resultOperands.append(symbols.begin(), symbols.end());
|
|
canonicalizeMapAndOperands(&resultMap, &resultOperands);
|
|
resultMap = simplifyAffineMap(resultMap);
|
|
rewriter.replaceOpWithNewOp<AffineApplyOp>(minOp, resultMap,
|
|
resultOperands);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
return failure();
|
|
}
|