llvm-project/llvm/unittests/ADT/STLExtrasTest.cpp
Mehdi Amini b70de61f48 Add all_of_zip to STLExtras
This takes two ranges and invokes a predicate on the element-wise pair in the
ranges. It returns true if all the pairs are matching the predicate and the ranges
have the same size.
It is useful with containers that aren't random iterator where we can't check the
sizes in O(1).

Differential Revision: https://reviews.llvm.org/D106605
2021-07-29 05:00:35 +00:00

902 lines
25 KiB
C++

//===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "gtest/gtest.h"
#include <list>
#include <vector>
using namespace llvm;
namespace {
int f(rank<0>) { return 0; }
int f(rank<1>) { return 1; }
int f(rank<2>) { return 2; }
int f(rank<4>) { return 4; }
TEST(STLExtrasTest, Rank) {
// We shouldn't get ambiguities and should select the overload of the same
// rank as the argument.
EXPECT_EQ(0, f(rank<0>()));
EXPECT_EQ(1, f(rank<1>()));
EXPECT_EQ(2, f(rank<2>()));
// This overload is missing so we end up back at 2.
EXPECT_EQ(2, f(rank<3>()));
// But going past 3 should work fine.
EXPECT_EQ(4, f(rank<4>()));
// And we can even go higher and just fall back to the last overload.
EXPECT_EQ(4, f(rank<5>()));
EXPECT_EQ(4, f(rank<6>()));
}
TEST(STLExtrasTest, EnumerateLValue) {
// Test that a simple LValue can be enumerated and gives correct results with
// multiple types, including the empty container.
std::vector<char> foo = {'a', 'b', 'c'};
typedef std::pair<std::size_t, char> CharPairType;
std::vector<CharPairType> CharResults;
for (auto X : llvm::enumerate(foo)) {
CharResults.emplace_back(X.index(), X.value());
}
ASSERT_EQ(3u, CharResults.size());
EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]);
EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]);
EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]);
// Test a const range of a different type.
typedef std::pair<std::size_t, int> IntPairType;
std::vector<IntPairType> IntResults;
const std::vector<int> bar = {1, 2, 3};
for (auto X : llvm::enumerate(bar)) {
IntResults.emplace_back(X.index(), X.value());
}
ASSERT_EQ(3u, IntResults.size());
EXPECT_EQ(IntPairType(0u, 1), IntResults[0]);
EXPECT_EQ(IntPairType(1u, 2), IntResults[1]);
EXPECT_EQ(IntPairType(2u, 3), IntResults[2]);
// Test an empty range.
IntResults.clear();
const std::vector<int> baz{};
for (auto X : llvm::enumerate(baz)) {
IntResults.emplace_back(X.index(), X.value());
}
EXPECT_TRUE(IntResults.empty());
}
TEST(STLExtrasTest, EnumerateModifyLValue) {
// Test that you can modify the underlying entries of an lvalue range through
// the enumeration iterator.
std::vector<char> foo = {'a', 'b', 'c'};
for (auto X : llvm::enumerate(foo)) {
++X.value();
}
EXPECT_EQ('b', foo[0]);
EXPECT_EQ('c', foo[1]);
EXPECT_EQ('d', foo[2]);
}
TEST(STLExtrasTest, EnumerateRValueRef) {
// Test that an rvalue can be enumerated.
typedef std::pair<std::size_t, int> PairType;
std::vector<PairType> Results;
auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});
for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
Results.emplace_back(X.index(), X.value());
}
ASSERT_EQ(3u, Results.size());
EXPECT_EQ(PairType(0u, 1), Results[0]);
EXPECT_EQ(PairType(1u, 2), Results[1]);
EXPECT_EQ(PairType(2u, 3), Results[2]);
}
TEST(STLExtrasTest, EnumerateModifyRValue) {
// Test that when enumerating an rvalue, modification still works (even if
// this isn't terribly useful, it at least shows that we haven't snuck an
// extra const in there somewhere.
typedef std::pair<std::size_t, char> PairType;
std::vector<PairType> Results;
for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
++X.value();
Results.emplace_back(X.index(), X.value());
}
ASSERT_EQ(3u, Results.size());
EXPECT_EQ(PairType(0u, '2'), Results[0]);
EXPECT_EQ(PairType(1u, '3'), Results[1]);
EXPECT_EQ(PairType(2u, '4'), Results[2]);
}
template <bool B> struct CanMove {};
template <> struct CanMove<false> {
CanMove(CanMove &&) = delete;
CanMove() = default;
CanMove(const CanMove &) = default;
};
template <bool B> struct CanCopy {};
template <> struct CanCopy<false> {
CanCopy(const CanCopy &) = delete;
CanCopy() = default;
CanCopy(CanCopy &&) = default;
};
template <bool Moveable, bool Copyable>
class Counted : CanMove<Moveable>, CanCopy<Copyable> {
int &C;
int &M;
int &D;
public:
explicit Counted(int &C, int &M, int &D) : C(C), M(M), D(D) {}
Counted(const Counted &O) : CanCopy<Copyable>(O), C(O.C), M(O.M), D(O.D) {
++C;
}
Counted(Counted &&O)
: CanMove<Moveable>(std::move(O)), C(O.C), M(O.M), D(O.D) {
++M;
}
~Counted() { ++D; }
};
template <bool Moveable, bool Copyable>
struct Range : Counted<Moveable, Copyable> {
using Counted<Moveable, Copyable>::Counted;
int *begin() { return nullptr; }
int *end() { return nullptr; }
};
TEST(STLExtrasTest, EnumerateLifetimeSemanticsPRValue) {
int Copies = 0;
int Moves = 0;
int Destructors = 0;
{
auto E = enumerate(Range<true, false>(Copies, Moves, Destructors));
(void)E;
// Doesn't compile. rvalue ranges must be moveable.
// auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(1, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(2, Destructors);
}
TEST(STLExtrasTest, EnumerateLifetimeSemanticsRValue) {
// With an rvalue, it should not be destroyed until the end of the scope.
int Copies = 0;
int Moves = 0;
int Destructors = 0;
{
Range<true, false> R(Copies, Moves, Destructors);
{
auto E = enumerate(std::move(R));
(void)E;
// Doesn't compile. rvalue ranges must be moveable.
// auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(0, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(1, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(2, Destructors);
}
TEST(STLExtrasTest, EnumerateLifetimeSemanticsLValue) {
// With an lvalue, it should not be destroyed even after the end of the scope.
// lvalue ranges need be neither copyable nor moveable.
int Copies = 0;
int Moves = 0;
int Destructors = 0;
{
Range<false, false> R(Copies, Moves, Destructors);
{
auto E = enumerate(R);
(void)E;
EXPECT_EQ(0, Copies);
EXPECT_EQ(0, Moves);
EXPECT_EQ(0, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(0, Moves);
EXPECT_EQ(0, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(0, Moves);
EXPECT_EQ(1, Destructors);
}
TEST(STLExtrasTest, ApplyTuple) {
auto T = std::make_tuple(1, 3, 7);
auto U = llvm::apply_tuple(
[](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); },
T);
EXPECT_EQ(-2, std::get<0>(U));
EXPECT_EQ(-4, std::get<1>(U));
EXPECT_EQ(6, std::get<2>(U));
auto V = llvm::apply_tuple(
[](int A, int B, int C) {
return std::make_tuple(std::make_pair(A, char('A' + A)),
std::make_pair(B, char('A' + B)),
std::make_pair(C, char('A' + C)));
},
T);
EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V));
EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V));
EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V));
}
class apply_variadic {
static int apply_one(int X) { return X + 1; }
static char apply_one(char C) { return C + 1; }
static StringRef apply_one(StringRef S) { return S.drop_back(); }
public:
template <typename... Ts> auto operator()(Ts &&... Items) {
return std::make_tuple(apply_one(Items)...);
}
};
TEST(STLExtrasTest, ApplyTupleVariadic) {
auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X');
auto Values = apply_tuple(apply_variadic(), Items);
EXPECT_EQ(2, std::get<0>(Values));
EXPECT_EQ("Tes", std::get<1>(Values));
EXPECT_EQ('Y', std::get<2>(Values));
}
TEST(STLExtrasTest, CountAdaptor) {
std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(1);
v.push_back(4);
v.push_back(3);
v.push_back(2);
v.push_back(1);
EXPECT_EQ(3, count(v, 1));
EXPECT_EQ(2, count(v, 2));
EXPECT_EQ(1, count(v, 3));
EXPECT_EQ(1, count(v, 4));
}
TEST(STLExtrasTest, for_each) {
std::vector<int> v{0, 1, 2, 3, 4};
int count = 0;
llvm::for_each(v, [&count](int) { ++count; });
EXPECT_EQ(5, count);
}
TEST(STLExtrasTest, ToVector) {
std::vector<char> v = {'a', 'b', 'c'};
auto Enumerated = to_vector<4>(enumerate(v));
ASSERT_EQ(3u, Enumerated.size());
for (size_t I = 0; I < v.size(); ++I) {
EXPECT_EQ(I, Enumerated[I].index());
EXPECT_EQ(v[I], Enumerated[I].value());
}
}
TEST(STLExtrasTest, ConcatRange) {
std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8};
std::vector<int> Test;
std::vector<int> V1234 = {1, 2, 3, 4};
std::list<int> L56 = {5, 6};
SmallVector<int, 2> SV78 = {7, 8};
// Use concat across different sized ranges of different types with different
// iterators.
for (int &i : concat<int>(V1234, L56, SV78))
Test.push_back(i);
EXPECT_EQ(Expected, Test);
// Use concat between a temporary, an L-value, and an R-value to make sure
// complex lifetimes work well.
Test.clear();
for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78)))
Test.push_back(i);
EXPECT_EQ(Expected, Test);
}
TEST(STLExtrasTest, PartitionAdaptor) {
std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
auto I = partition(V, [](int i) { return i % 2 == 0; });
ASSERT_EQ(V.begin() + 4, I);
// Sort the two halves as partition may have messed with the order.
llvm::sort(V.begin(), I);
llvm::sort(I, V.end());
EXPECT_EQ(2, V[0]);
EXPECT_EQ(4, V[1]);
EXPECT_EQ(6, V[2]);
EXPECT_EQ(8, V[3]);
EXPECT_EQ(1, V[4]);
EXPECT_EQ(3, V[5]);
EXPECT_EQ(5, V[6]);
EXPECT_EQ(7, V[7]);
}
TEST(STLExtrasTest, EraseIf) {
std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
erase_if(V, [](int i) { return i % 2 == 0; });
EXPECT_EQ(4u, V.size());
EXPECT_EQ(1, V[0]);
EXPECT_EQ(3, V[1]);
EXPECT_EQ(5, V[2]);
EXPECT_EQ(7, V[3]);
}
TEST(STLExtrasTest, AppendRange) {
auto AppendVals = {3};
std::vector<int> V = {1, 2};
append_range(V, AppendVals);
EXPECT_EQ(1, V[0]);
EXPECT_EQ(2, V[1]);
EXPECT_EQ(3, V[2]);
}
namespace some_namespace {
struct some_struct {
std::vector<int> data;
std::string swap_val;
};
std::vector<int>::const_iterator begin(const some_struct &s) {
return s.data.begin();
}
std::vector<int>::const_iterator end(const some_struct &s) {
return s.data.end();
}
void swap(some_struct &lhs, some_struct &rhs) {
// make swap visible as non-adl swap would even seem to
// work with std::swap which defaults to moving
lhs.swap_val = "lhs";
rhs.swap_val = "rhs";
}
} // namespace some_namespace
TEST(STLExtrasTest, ADLTest) {
some_namespace::some_struct s{{1, 2, 3, 4, 5}, ""};
some_namespace::some_struct s2{{2, 4, 6, 8, 10}, ""};
EXPECT_EQ(*adl_begin(s), 1);
EXPECT_EQ(*(adl_end(s) - 1), 5);
adl_swap(s, s2);
EXPECT_EQ(s.swap_val, "lhs");
EXPECT_EQ(s2.swap_val, "rhs");
int count = 0;
llvm::for_each(s, [&count](int) { ++count; });
EXPECT_EQ(5, count);
}
TEST(STLExtrasTest, EmptyTest) {
std::vector<void*> V;
EXPECT_TRUE(llvm::empty(V));
V.push_back(nullptr);
EXPECT_FALSE(llvm::empty(V));
std::initializer_list<int> E = {};
std::initializer_list<int> NotE = {7, 13, 42};
EXPECT_TRUE(llvm::empty(E));
EXPECT_FALSE(llvm::empty(NotE));
auto R0 = make_range(V.begin(), V.begin());
EXPECT_TRUE(llvm::empty(R0));
auto R1 = make_range(V.begin(), V.end());
EXPECT_FALSE(llvm::empty(R1));
}
TEST(STLExtrasTest, DropBeginTest) {
SmallVector<int, 5> vec{0, 1, 2, 3, 4};
for (int n = 0; n < 5; ++n) {
int i = n;
for (auto &v : drop_begin(vec, n)) {
EXPECT_EQ(v, i);
i += 1;
}
EXPECT_EQ(i, 5);
}
}
TEST(STLExtrasTest, DropBeginDefaultTest) {
SmallVector<int, 5> vec{0, 1, 2, 3, 4};
int i = 1;
for (auto &v : drop_begin(vec)) {
EXPECT_EQ(v, i);
i += 1;
}
EXPECT_EQ(i, 5);
}
TEST(STLExtrasTest, EarlyIncrementTest) {
std::list<int> L = {1, 2, 3, 4};
auto EIR = make_early_inc_range(L);
auto I = EIR.begin();
auto EI = EIR.end();
EXPECT_NE(I, EI);
EXPECT_EQ(1, *I);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
// Repeated dereferences are not allowed.
EXPECT_DEATH(*I, "Cannot dereference");
// Comparison after dereference is not allowed.
EXPECT_DEATH((void)(I == EI), "Cannot compare");
EXPECT_DEATH((void)(I != EI), "Cannot compare");
#endif
#endif
++I;
EXPECT_NE(I, EI);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
// You cannot increment prior to dereference.
EXPECT_DEATH(++I, "Cannot increment");
#endif
#endif
EXPECT_EQ(2, *I);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
// Repeated dereferences are not allowed.
EXPECT_DEATH(*I, "Cannot dereference");
#endif
#endif
// Inserting shouldn't break anything. We should be able to keep dereferencing
// the currrent iterator and increment. The increment to go to the "next"
// iterator from before we inserted.
L.insert(std::next(L.begin(), 2), -1);
++I;
EXPECT_EQ(3, *I);
// Erasing the front including the current doesn't break incrementing.
L.erase(L.begin(), std::prev(L.end()));
++I;
EXPECT_EQ(4, *I);
++I;
EXPECT_EQ(EIR.end(), I);
}
// A custom iterator that returns a pointer when dereferenced. This is used to
// test make_early_inc_range with iterators that do not return a reference on
// dereferencing.
struct CustomPointerIterator
: public iterator_adaptor_base<CustomPointerIterator,
std::list<int>::iterator,
std::forward_iterator_tag> {
using base_type =
iterator_adaptor_base<CustomPointerIterator, std::list<int>::iterator,
std::forward_iterator_tag>;
explicit CustomPointerIterator(std::list<int>::iterator I) : base_type(I) {}
// Retrieve a pointer to the current int.
int *operator*() const { return &*base_type::wrapped(); }
};
// Make sure make_early_inc_range works with iterators that do not return a
// reference on dereferencing. The test is similar to EarlyIncrementTest, but
// uses CustomPointerIterator.
TEST(STLExtrasTest, EarlyIncrementTestCustomPointerIterator) {
std::list<int> L = {1, 2, 3, 4};
auto CustomRange = make_range(CustomPointerIterator(L.begin()),
CustomPointerIterator(L.end()));
auto EIR = make_early_inc_range(CustomRange);
auto I = EIR.begin();
auto EI = EIR.end();
EXPECT_NE(I, EI);
EXPECT_EQ(&*L.begin(), *I);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
// Repeated dereferences are not allowed.
EXPECT_DEATH(*I, "Cannot dereference");
// Comparison after dereference is not allowed.
EXPECT_DEATH((void)(I == EI), "Cannot compare");
EXPECT_DEATH((void)(I != EI), "Cannot compare");
#endif
#endif
++I;
EXPECT_NE(I, EI);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
// You cannot increment prior to dereference.
EXPECT_DEATH(++I, "Cannot increment");
#endif
#endif
EXPECT_EQ(&*std::next(L.begin()), *I);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
// Repeated dereferences are not allowed.
EXPECT_DEATH(*I, "Cannot dereference");
#endif
#endif
// Inserting shouldn't break anything. We should be able to keep dereferencing
// the currrent iterator and increment. The increment to go to the "next"
// iterator from before we inserted.
L.insert(std::next(L.begin(), 2), -1);
++I;
EXPECT_EQ(&*std::next(L.begin(), 3), *I);
// Erasing the front including the current doesn't break incrementing.
L.erase(L.begin(), std::prev(L.end()));
++I;
EXPECT_EQ(&*L.begin(), *I);
++I;
EXPECT_EQ(EIR.end(), I);
}
TEST(STLExtrasTest, splat) {
std::vector<int> V;
EXPECT_FALSE(is_splat(V));
V.push_back(1);
EXPECT_TRUE(is_splat(V));
V.push_back(1);
V.push_back(1);
EXPECT_TRUE(is_splat(V));
V.push_back(2);
EXPECT_FALSE(is_splat(V));
}
TEST(STLExtrasTest, to_address) {
int *V1 = new int;
EXPECT_EQ(V1, to_address(V1));
// Check fancy pointer overload for unique_ptr
std::unique_ptr<int> V2 = std::make_unique<int>(0);
EXPECT_EQ(V2.get(), llvm::to_address(V2));
V2.reset(V1);
EXPECT_EQ(V1, llvm::to_address(V2));
V2.release();
// Check fancy pointer overload for shared_ptr
std::shared_ptr<int> V3 = std::make_shared<int>(0);
std::shared_ptr<int> V4 = V3;
EXPECT_EQ(V3.get(), V4.get());
EXPECT_EQ(V3.get(), llvm::to_address(V3));
EXPECT_EQ(V4.get(), llvm::to_address(V4));
V3.reset(V1);
EXPECT_EQ(V1, llvm::to_address(V3));
}
TEST(STLExtrasTest, partition_point) {
std::vector<int> V = {1, 3, 5, 7, 9};
// Range version.
EXPECT_EQ(V.begin() + 3,
partition_point(V, [](unsigned X) { return X < 7; }));
EXPECT_EQ(V.begin(), partition_point(V, [](unsigned X) { return X < 1; }));
EXPECT_EQ(V.end(), partition_point(V, [](unsigned X) { return X < 50; }));
}
TEST(STLExtrasTest, hasSingleElement) {
const std::vector<int> V0 = {}, V1 = {1}, V2 = {1, 2};
const std::vector<int> V10(10);
EXPECT_EQ(hasSingleElement(V0), false);
EXPECT_EQ(hasSingleElement(V1), true);
EXPECT_EQ(hasSingleElement(V2), false);
EXPECT_EQ(hasSingleElement(V10), false);
}
TEST(STLExtrasTest, hasNItems) {
const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
const std::list<int> V3 = {1, 3, 5};
EXPECT_TRUE(hasNItems(V0, 0));
EXPECT_FALSE(hasNItems(V0, 2));
EXPECT_TRUE(hasNItems(V1, 1));
EXPECT_FALSE(hasNItems(V1, 2));
EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 3, [](int x) { return x < 10; }));
EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 0, [](int x) { return x > 10; }));
EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
}
TEST(STLExtras, hasNItemsOrMore) {
const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
const std::list<int> V3 = {1, 3, 5};
EXPECT_TRUE(hasNItemsOrMore(V1, 1));
EXPECT_FALSE(hasNItemsOrMore(V1, 2));
EXPECT_TRUE(hasNItemsOrMore(V2, 1));
EXPECT_TRUE(hasNItemsOrMore(V2, 2));
EXPECT_FALSE(hasNItemsOrMore(V2, 3));
EXPECT_TRUE(hasNItemsOrMore(V3, 3));
EXPECT_FALSE(hasNItemsOrMore(V3, 4));
EXPECT_TRUE(
hasNItemsOrMore(V3.begin(), V3.end(), 3, [](int x) { return x < 10; }));
EXPECT_FALSE(
hasNItemsOrMore(V3.begin(), V3.end(), 3, [](int x) { return x > 10; }));
EXPECT_TRUE(
hasNItemsOrMore(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
}
TEST(STLExtras, hasNItemsOrLess) {
const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
const std::list<int> V3 = {1, 3, 5};
EXPECT_TRUE(hasNItemsOrLess(V0, 0));
EXPECT_TRUE(hasNItemsOrLess(V0, 1));
EXPECT_TRUE(hasNItemsOrLess(V0, 2));
EXPECT_FALSE(hasNItemsOrLess(V1, 0));
EXPECT_TRUE(hasNItemsOrLess(V1, 1));
EXPECT_TRUE(hasNItemsOrLess(V1, 2));
EXPECT_FALSE(hasNItemsOrLess(V2, 0));
EXPECT_FALSE(hasNItemsOrLess(V2, 1));
EXPECT_TRUE(hasNItemsOrLess(V2, 2));
EXPECT_TRUE(hasNItemsOrLess(V2, 3));
EXPECT_FALSE(hasNItemsOrLess(V3, 0));
EXPECT_FALSE(hasNItemsOrLess(V3, 1));
EXPECT_FALSE(hasNItemsOrLess(V3, 2));
EXPECT_TRUE(hasNItemsOrLess(V3, 3));
EXPECT_TRUE(hasNItemsOrLess(V3, 4));
EXPECT_TRUE(
hasNItemsOrLess(V3.begin(), V3.end(), 1, [](int x) { return x == 1; }));
EXPECT_TRUE(
hasNItemsOrLess(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
EXPECT_TRUE(
hasNItemsOrLess(V3.begin(), V3.end(), 5, [](int x) { return x < 5; }));
EXPECT_FALSE(
hasNItemsOrLess(V3.begin(), V3.end(), 2, [](int x) { return x < 10; }));
}
TEST(STLExtras, MoveRange) {
class Foo {
bool A;
public:
Foo() : A(true) {}
Foo(const Foo &) = delete;
Foo(Foo &&Other) : A(Other.A) { Other.A = false; }
Foo &operator=(const Foo &) = delete;
Foo &operator=(Foo &&Other) {
if (this != &Other) {
A = Other.A;
Other.A = false;
}
return *this;
}
operator bool() const { return A; }
};
SmallVector<Foo, 4U> V1, V2, V3, V4;
auto HasVal = [](const Foo &Item) { return static_cast<bool>(Item); };
auto Build = [&] {
SmallVector<Foo, 4U> Foos;
Foos.resize(4U);
return Foos;
};
V1.resize(4U);
EXPECT_TRUE(llvm::all_of(V1, HasVal));
llvm::move(V1, std::back_inserter(V2));
// Ensure input container is same size, but its contents were moved out.
EXPECT_EQ(V1.size(), 4U);
EXPECT_TRUE(llvm::none_of(V1, HasVal));
// Ensure output container has the contents of the input container.
EXPECT_EQ(V2.size(), 4U);
EXPECT_TRUE(llvm::all_of(V2, HasVal));
llvm::move(std::move(V2), std::back_inserter(V3));
EXPECT_TRUE(llvm::none_of(V2, HasVal));
EXPECT_EQ(V3.size(), 4U);
EXPECT_TRUE(llvm::all_of(V3, HasVal));
llvm::move(Build(), std::back_inserter(V4));
EXPECT_EQ(V4.size(), 4U);
EXPECT_TRUE(llvm::all_of(V4, HasVal));
}
TEST(STLExtras, Unique) {
std::vector<int> V = {1, 5, 5, 4, 3, 3, 3};
auto I = llvm::unique(V, [](int a, int b) { return a == b; });
EXPECT_EQ(I, V.begin() + 4);
EXPECT_EQ(1, V[0]);
EXPECT_EQ(5, V[1]);
EXPECT_EQ(4, V[2]);
EXPECT_EQ(3, V[3]);
}
TEST(STLExtrasTest, MakeVisitorOneCallable) {
auto IdentityLambda = [](auto X) { return X; };
auto IdentityVisitor = makeVisitor(IdentityLambda);
EXPECT_EQ(IdentityLambda(1), IdentityVisitor(1));
EXPECT_EQ(IdentityLambda(2.0f), IdentityVisitor(2.0f));
EXPECT_TRUE((std::is_same<decltype(IdentityLambda(IdentityLambda)),
decltype(IdentityLambda)>::value));
EXPECT_TRUE((std::is_same<decltype(IdentityVisitor(IdentityVisitor)),
decltype(IdentityVisitor)>::value));
}
TEST(STLExtrasTest, MakeVisitorTwoCallables) {
auto Visitor =
makeVisitor([](int) { return 0; }, [](std::string) { return 1; });
EXPECT_EQ(Visitor(42), 0);
EXPECT_EQ(Visitor("foo"), 1);
}
TEST(STLExtrasTest, MakeVisitorCallableMultipleOperands) {
auto Second = makeVisitor([](int I, float F) { return F; },
[](float F, int I) { return I; });
EXPECT_EQ(Second(1.f, 1), 1);
EXPECT_EQ(Second(1, 1.f), 1.f);
}
TEST(STLExtrasTest, MakeVisitorDefaultCase) {
{
auto Visitor = makeVisitor([](int I) { return I + 100; },
[](float F) { return F * 2; },
[](auto) { return -1; });
EXPECT_EQ(Visitor(24), 124);
EXPECT_EQ(Visitor(2.f), 4.f);
EXPECT_EQ(Visitor(2.), -1);
EXPECT_EQ(Visitor(Visitor), -1);
}
{
auto Visitor = makeVisitor([](auto) { return -1; },
[](int I) { return I + 100; },
[](float F) { return F * 2; });
EXPECT_EQ(Visitor(24), 124);
EXPECT_EQ(Visitor(2.f), 4.f);
EXPECT_EQ(Visitor(2.), -1);
EXPECT_EQ(Visitor(Visitor), -1);
}
}
template <bool Moveable, bool Copyable>
struct Functor : Counted<Moveable, Copyable> {
using Counted<Moveable, Copyable>::Counted;
void operator()() {}
};
TEST(STLExtrasTest, MakeVisitorLifetimeSemanticsPRValue) {
int Copies = 0;
int Moves = 0;
int Destructors = 0;
{
auto V = makeVisitor(Functor<true, false>(Copies, Moves, Destructors));
(void)V;
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(1, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(2, Destructors);
}
TEST(STLExtrasTest, MakeVisitorLifetimeSemanticsRValue) {
int Copies = 0;
int Moves = 0;
int Destructors = 0;
{
Functor<true, false> F(Copies, Moves, Destructors);
{
auto V = makeVisitor(std::move(F));
(void)V;
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(0, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(1, Destructors);
}
EXPECT_EQ(0, Copies);
EXPECT_EQ(1, Moves);
EXPECT_EQ(2, Destructors);
}
TEST(STLExtrasTest, MakeVisitorLifetimeSemanticsLValue) {
int Copies = 0;
int Moves = 0;
int Destructors = 0;
{
Functor<true, true> F(Copies, Moves, Destructors);
{
auto V = makeVisitor(F);
(void)V;
EXPECT_EQ(1, Copies);
EXPECT_EQ(0, Moves);
EXPECT_EQ(0, Destructors);
}
EXPECT_EQ(1, Copies);
EXPECT_EQ(0, Moves);
EXPECT_EQ(1, Destructors);
}
EXPECT_EQ(1, Copies);
EXPECT_EQ(0, Moves);
EXPECT_EQ(2, Destructors);
}
TEST(STLExtrasTest, AllOfZip) {
std::vector<int> v1 = {0, 4, 2, 1};
std::vector<int> v2 = {1, 4, 3, 6};
EXPECT_TRUE(all_of_zip(v1, v2, [](int v1, int v2) { return v1 <= v2; }));
EXPECT_FALSE(all_of_zip(v1, v2, [](int L, int R) { return L < R; }));
// Triple vectors
std::vector<int> v3 = {1, 6, 5, 7};
EXPECT_EQ(true, all_of_zip(v1, v2, v3, [](int a, int b, int c) {
return a <= b && b <= c;
}));
EXPECT_EQ(false, all_of_zip(v1, v2, v3, [](int a, int b, int c) {
return a < b && b < c;
}));
// Shorter vector should fail even with an always-true predicate.
std::vector<int> v_short = {1, 4};
EXPECT_EQ(false, all_of_zip(v1, v_short, [](int, int) { return true; }));
EXPECT_EQ(false,
all_of_zip(v1, v2, v_short, [](int, int, int) { return true; }));
}
} // namespace