
This pattern can be often met in Flang generated LLVM IR, for example, for the counts of the loops generated for array expressions like: `a(x:x+y)` or `a(x+z:x+z)` or their variations. In order to compute the loop count, Flang needs to subtract the lower bound of the array slice from the upper bound of the array slice. To avoid the sign wraps, it sign extends the original values (that may be of any user data type) to `i64`. This peephole is really helpful in CPU2017/548.exchange2, where we have multiple following statements like this: ``` block(row+1:row+2, 7:9, i7) = block(row+1:row+2, 7:9, i7) - 10 ``` While this is just a 2x3 iterations loop nest, LLVM cannot figure it out, ending up vectorizing the inner loop really hard (with a vector epilog and scalar remainder). This, in turn, causes problems for LSR that ends up creating too many loop-carried values in the loop containing the above statement, which are then causing too many spills/reloads. Alive2: https://alive2.llvm.org/ce/z/gLgfYX Related to #143219.
588 lines
24 KiB
C++
588 lines
24 KiB
C++
//===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements sinking of negation into expression trees,
|
|
// as long as that can be done without increasing instruction count.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/TargetFolder.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/DebugCounter.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
STATISTIC(NegatorTotalNegationsAttempted,
|
|
"Negator: Number of negations attempted to be sinked");
|
|
STATISTIC(NegatorNumTreesNegated,
|
|
"Negator: Number of negations successfully sinked");
|
|
STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
|
|
"reached while attempting to sink negation");
|
|
STATISTIC(NegatorTimesDepthLimitReached,
|
|
"Negator: How many times did the traversal depth limit was reached "
|
|
"during sinking");
|
|
STATISTIC(
|
|
NegatorNumValuesVisited,
|
|
"Negator: Total number of values visited during attempts to sink negation");
|
|
STATISTIC(NegatorNumNegationsFoundInCache,
|
|
"Negator: How many negations did we retrieve/reuse from cache");
|
|
STATISTIC(NegatorMaxTotalValuesVisited,
|
|
"Negator: Maximal number of values ever visited while attempting to "
|
|
"sink negation");
|
|
STATISTIC(NegatorNumInstructionsCreatedTotal,
|
|
"Negator: Number of new negated instructions created, total");
|
|
STATISTIC(NegatorMaxInstructionsCreated,
|
|
"Negator: Maximal number of new instructions created during negation "
|
|
"attempt");
|
|
STATISTIC(NegatorNumInstructionsNegatedSuccess,
|
|
"Negator: Number of new negated instructions created in successful "
|
|
"negation sinking attempts");
|
|
|
|
DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
|
|
"Controls Negator transformations in InstCombine pass");
|
|
|
|
static cl::opt<bool>
|
|
NegatorEnabled("instcombine-negator-enabled", cl::init(true),
|
|
cl::desc("Should we attempt to sink negations?"));
|
|
|
|
static cl::opt<unsigned>
|
|
NegatorMaxDepth("instcombine-negator-max-depth",
|
|
cl::init(NegatorDefaultMaxDepth),
|
|
cl::desc("What is the maximal lookup depth when trying to "
|
|
"check for viability of negation sinking."));
|
|
|
|
Negator::Negator(LLVMContext &C, const DataLayout &DL, const DominatorTree &DT_,
|
|
bool IsTrulyNegation_)
|
|
: Builder(C, TargetFolder(DL),
|
|
IRBuilderCallbackInserter([&](Instruction *I) {
|
|
++NegatorNumInstructionsCreatedTotal;
|
|
NewInstructions.push_back(I);
|
|
})),
|
|
DT(DT_), IsTrulyNegation(IsTrulyNegation_) {}
|
|
|
|
#if LLVM_ENABLE_STATS
|
|
Negator::~Negator() {
|
|
NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
|
|
}
|
|
#endif
|
|
|
|
// Due to the InstCombine's worklist management, there are no guarantees that
|
|
// each instruction we'll encounter has been visited by InstCombine already.
|
|
// In particular, most importantly for us, that means we have to canonicalize
|
|
// constants to RHS ourselves, since that is helpful sometimes.
|
|
std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) {
|
|
assert(I->getNumOperands() == 2 && "Only for binops!");
|
|
std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)};
|
|
if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) <
|
|
InstCombiner::getComplexity(I->getOperand(1)))
|
|
std::swap(Ops[0], Ops[1]);
|
|
return Ops;
|
|
}
|
|
|
|
// FIXME: can this be reworked into a worklist-based algorithm while preserving
|
|
// the depth-first, early bailout traversal?
|
|
[[nodiscard]] Value *Negator::visitImpl(Value *V, bool IsNSW, unsigned Depth) {
|
|
// -(undef) -> undef.
|
|
if (match(V, m_Undef()))
|
|
return V;
|
|
|
|
// In i1, negation can simply be ignored.
|
|
if (V->getType()->isIntOrIntVectorTy(1))
|
|
return V;
|
|
|
|
Value *X;
|
|
|
|
// -(-(X)) -> X.
|
|
if (match(V, m_Neg(m_Value(X))))
|
|
return X;
|
|
|
|
// Integral constants can be freely negated.
|
|
if (match(V, m_AnyIntegralConstant()))
|
|
return ConstantExpr::getNeg(cast<Constant>(V),
|
|
/*HasNSW=*/false);
|
|
|
|
// If we have a non-instruction, then give up.
|
|
if (!isa<Instruction>(V))
|
|
return nullptr;
|
|
|
|
// If we have started with a true negation (i.e. `sub 0, %y`), then if we've
|
|
// got instruction that does not require recursive reasoning, we can still
|
|
// negate it even if it has other uses, without increasing instruction count.
|
|
if (!V->hasOneUse() && !IsTrulyNegation)
|
|
return nullptr;
|
|
|
|
auto *I = cast<Instruction>(V);
|
|
unsigned BitWidth = I->getType()->getScalarSizeInBits();
|
|
|
|
// We must preserve the insertion point and debug info that is set in the
|
|
// builder at the time this function is called.
|
|
InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
|
|
// And since we are trying to negate instruction I, that tells us about the
|
|
// insertion point and the debug info that we need to keep.
|
|
Builder.SetInsertPoint(I);
|
|
|
|
// In some cases we can give the answer without further recursion.
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add: {
|
|
std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
|
|
// `inc` is always negatible.
|
|
if (match(Ops[1], m_One()))
|
|
return Builder.CreateNot(Ops[0], I->getName() + ".neg");
|
|
break;
|
|
}
|
|
case Instruction::Xor:
|
|
// `not` is always negatible.
|
|
if (match(I, m_Not(m_Value(X))))
|
|
return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
|
|
I->getName() + ".neg");
|
|
break;
|
|
case Instruction::AShr:
|
|
case Instruction::LShr: {
|
|
// Right-shift sign bit smear is negatible.
|
|
const APInt *Op1Val;
|
|
if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
|
|
Value *BO = I->getOpcode() == Instruction::AShr
|
|
? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
|
|
: Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
|
|
if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
|
|
NewInstr->copyIRFlags(I);
|
|
NewInstr->setName(I->getName() + ".neg");
|
|
}
|
|
return BO;
|
|
}
|
|
// While we could negate exact arithmetic shift:
|
|
// ashr exact %x, C --> sdiv exact i8 %x, -1<<C
|
|
// iff C != 0 and C u< bitwidth(%x), we don't want to,
|
|
// because division is *THAT* much worse than a shift.
|
|
break;
|
|
}
|
|
case Instruction::SExt:
|
|
case Instruction::ZExt:
|
|
// `*ext` of i1 is always negatible
|
|
if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
|
|
return I->getOpcode() == Instruction::SExt
|
|
? Builder.CreateZExt(I->getOperand(0), I->getType(),
|
|
I->getName() + ".neg")
|
|
: Builder.CreateSExt(I->getOperand(0), I->getType(),
|
|
I->getName() + ".neg");
|
|
break;
|
|
case Instruction::Select: {
|
|
// If both arms of the select are constants, we don't need to recurse.
|
|
// Therefore, this transform is not limited by uses.
|
|
auto *Sel = cast<SelectInst>(I);
|
|
Constant *TrueC, *FalseC;
|
|
if (match(Sel->getTrueValue(), m_ImmConstant(TrueC)) &&
|
|
match(Sel->getFalseValue(), m_ImmConstant(FalseC))) {
|
|
Constant *NegTrueC = ConstantExpr::getNeg(TrueC);
|
|
Constant *NegFalseC = ConstantExpr::getNeg(FalseC);
|
|
return Builder.CreateSelect(Sel->getCondition(), NegTrueC, NegFalseC,
|
|
I->getName() + ".neg", /*MDFrom=*/I);
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::Call:
|
|
if (auto *CI = dyn_cast<CmpIntrinsic>(I); CI && CI->hasOneUse())
|
|
return Builder.CreateIntrinsic(CI->getType(), CI->getIntrinsicID(),
|
|
{CI->getRHS(), CI->getLHS()});
|
|
break;
|
|
default:
|
|
break; // Other instructions require recursive reasoning.
|
|
}
|
|
|
|
if (I->getOpcode() == Instruction::Sub &&
|
|
(I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) {
|
|
// `sub` is always negatible.
|
|
// However, only do this either if the old `sub` doesn't stick around, or
|
|
// it was subtracting from a constant. Otherwise, this isn't profitable.
|
|
return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
|
|
I->getName() + ".neg", /*HasNUW=*/false,
|
|
IsNSW && I->hasNoSignedWrap());
|
|
}
|
|
|
|
// Some other cases, while still don't require recursion,
|
|
// are restricted to the one-use case.
|
|
if (!V->hasOneUse())
|
|
return nullptr;
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::ZExt: {
|
|
// Negation of zext of signbit is signbit splat:
|
|
// 0 - (zext (i8 X u>> 7) to iN) --> sext (i8 X s>> 7) to iN
|
|
Value *SrcOp = I->getOperand(0);
|
|
unsigned SrcWidth = SrcOp->getType()->getScalarSizeInBits();
|
|
const APInt &FullShift = APInt(SrcWidth, SrcWidth - 1);
|
|
if (IsTrulyNegation &&
|
|
match(SrcOp, m_LShr(m_Value(X), m_SpecificIntAllowPoison(FullShift)))) {
|
|
Value *Ashr = Builder.CreateAShr(X, FullShift);
|
|
return Builder.CreateSExt(Ashr, I->getType());
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::And: {
|
|
Constant *ShAmt;
|
|
// sub(y,and(lshr(x,C),1)) --> add(ashr(shl(x,(BW-1)-C),BW-1),y)
|
|
if (match(I, m_And(m_OneUse(m_TruncOrSelf(
|
|
m_LShr(m_Value(X), m_ImmConstant(ShAmt)))),
|
|
m_One()))) {
|
|
unsigned BW = X->getType()->getScalarSizeInBits();
|
|
Constant *BWMinusOne = ConstantInt::get(X->getType(), BW - 1);
|
|
Value *R = Builder.CreateShl(X, Builder.CreateSub(BWMinusOne, ShAmt));
|
|
R = Builder.CreateAShr(R, BWMinusOne);
|
|
return Builder.CreateTruncOrBitCast(R, I->getType());
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::SDiv:
|
|
// `sdiv` is negatible if divisor is not undef/INT_MIN/1.
|
|
// While this is normally not behind a use-check,
|
|
// let's consider division to be special since it's costly.
|
|
if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
|
|
if (!Op1C->containsUndefOrPoisonElement() &&
|
|
Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) {
|
|
Value *BO =
|
|
Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
|
|
I->getName() + ".neg");
|
|
if (auto *NewInstr = dyn_cast<Instruction>(BO))
|
|
NewInstr->setIsExact(I->isExact());
|
|
return BO;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Rest of the logic is recursive, so if it's time to give up then it's time.
|
|
if (Depth > NegatorMaxDepth) {
|
|
LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
|
|
<< *V << ". Giving up.\n");
|
|
++NegatorTimesDepthLimitReached;
|
|
return nullptr;
|
|
}
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Freeze: {
|
|
// `freeze` is negatible if its operand is negatible.
|
|
Value *NegOp = negate(I->getOperand(0), IsNSW, Depth + 1);
|
|
if (!NegOp) // Early return.
|
|
return nullptr;
|
|
return Builder.CreateFreeze(NegOp, I->getName() + ".neg");
|
|
}
|
|
case Instruction::PHI: {
|
|
// `phi` is negatible if all the incoming values are negatible.
|
|
auto *PHI = cast<PHINode>(I);
|
|
SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
|
|
for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
|
|
// Don't negate indvars to avoid infinite loops.
|
|
if (DT.dominates(PHI->getParent(), std::get<0>(I)))
|
|
return nullptr;
|
|
if (!(std::get<1>(I) =
|
|
negate(std::get<0>(I), IsNSW, Depth + 1))) // Early return.
|
|
return nullptr;
|
|
}
|
|
// All incoming values are indeed negatible. Create negated PHI node.
|
|
PHINode *NegatedPHI = Builder.CreatePHI(
|
|
PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
|
|
for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
|
|
NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
|
|
return NegatedPHI;
|
|
}
|
|
case Instruction::Select: {
|
|
if (isKnownNegation(I->getOperand(1), I->getOperand(2), /*NeedNSW=*/false,
|
|
/*AllowPoison=*/false)) {
|
|
// Of one hand of select is known to be negation of another hand,
|
|
// just swap the hands around.
|
|
auto *NewSelect = cast<SelectInst>(I->clone());
|
|
// Just swap the operands of the select.
|
|
NewSelect->swapValues();
|
|
// Don't swap prof metadata, we didn't change the branch behavior.
|
|
NewSelect->setName(I->getName() + ".neg");
|
|
// Poison-generating flags should be dropped
|
|
Value *TV = NewSelect->getTrueValue();
|
|
Value *FV = NewSelect->getFalseValue();
|
|
if (match(TV, m_Neg(m_Specific(FV))))
|
|
cast<Instruction>(TV)->dropPoisonGeneratingFlags();
|
|
else if (match(FV, m_Neg(m_Specific(TV))))
|
|
cast<Instruction>(FV)->dropPoisonGeneratingFlags();
|
|
else {
|
|
cast<Instruction>(TV)->dropPoisonGeneratingFlags();
|
|
cast<Instruction>(FV)->dropPoisonGeneratingFlags();
|
|
}
|
|
Builder.Insert(NewSelect);
|
|
return NewSelect;
|
|
}
|
|
// `select` is negatible if both hands of `select` are negatible.
|
|
Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1);
|
|
if (!NegOp1) // Early return.
|
|
return nullptr;
|
|
Value *NegOp2 = negate(I->getOperand(2), IsNSW, Depth + 1);
|
|
if (!NegOp2)
|
|
return nullptr;
|
|
// Do preserve the metadata!
|
|
return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
|
|
I->getName() + ".neg", /*MDFrom=*/I);
|
|
}
|
|
case Instruction::ShuffleVector: {
|
|
// `shufflevector` is negatible if both operands are negatible.
|
|
auto *Shuf = cast<ShuffleVectorInst>(I);
|
|
Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1);
|
|
if (!NegOp0) // Early return.
|
|
return nullptr;
|
|
Value *NegOp1 = negate(I->getOperand(1), IsNSW, Depth + 1);
|
|
if (!NegOp1)
|
|
return nullptr;
|
|
return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
|
|
I->getName() + ".neg");
|
|
}
|
|
case Instruction::ExtractElement: {
|
|
// `extractelement` is negatible if source operand is negatible.
|
|
auto *EEI = cast<ExtractElementInst>(I);
|
|
Value *NegVector = negate(EEI->getVectorOperand(), IsNSW, Depth + 1);
|
|
if (!NegVector) // Early return.
|
|
return nullptr;
|
|
return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
|
|
I->getName() + ".neg");
|
|
}
|
|
case Instruction::InsertElement: {
|
|
// `insertelement` is negatible if both the source vector and
|
|
// element-to-be-inserted are negatible.
|
|
auto *IEI = cast<InsertElementInst>(I);
|
|
Value *NegVector = negate(IEI->getOperand(0), IsNSW, Depth + 1);
|
|
if (!NegVector) // Early return.
|
|
return nullptr;
|
|
Value *NegNewElt = negate(IEI->getOperand(1), IsNSW, Depth + 1);
|
|
if (!NegNewElt) // Early return.
|
|
return nullptr;
|
|
return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
|
|
I->getName() + ".neg");
|
|
}
|
|
case Instruction::Trunc: {
|
|
// `trunc` is negatible if its operand is negatible.
|
|
Value *NegOp = negate(I->getOperand(0), /* IsNSW */ false, Depth + 1);
|
|
if (!NegOp) // Early return.
|
|
return nullptr;
|
|
return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
|
|
}
|
|
case Instruction::Shl: {
|
|
// `shl` is negatible if the first operand is negatible.
|
|
IsNSW &= I->hasNoSignedWrap();
|
|
if (Value *NegOp0 = negate(I->getOperand(0), IsNSW, Depth + 1))
|
|
return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg",
|
|
/*HasNUW=*/false, IsNSW);
|
|
// Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
|
|
Constant *Op1C;
|
|
if (!match(I->getOperand(1), m_ImmConstant(Op1C)) || !IsTrulyNegation)
|
|
return nullptr;
|
|
return Builder.CreateMul(
|
|
I->getOperand(0),
|
|
Builder.CreateShl(Constant::getAllOnesValue(Op1C->getType()), Op1C),
|
|
I->getName() + ".neg", /*HasNUW=*/false, IsNSW);
|
|
}
|
|
case Instruction::Or: {
|
|
if (!cast<PossiblyDisjointInst>(I)->isDisjoint())
|
|
return nullptr; // Don't know how to handle `or` in general.
|
|
std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
|
|
// `or`/`add` are interchangeable when operands have no common bits set.
|
|
// `inc` is always negatible.
|
|
if (match(Ops[1], m_One()))
|
|
return Builder.CreateNot(Ops[0], I->getName() + ".neg");
|
|
// Else, just defer to Instruction::Add handling.
|
|
[[fallthrough]];
|
|
}
|
|
case Instruction::Add: {
|
|
// `add` is negatible if both of its operands are negatible.
|
|
SmallVector<Value *, 2> NegatedOps, NonNegatedOps;
|
|
for (Value *Op : I->operands()) {
|
|
// Can we sink the negation into this operand?
|
|
if (Value *NegOp = negate(Op, /* IsNSW */ false, Depth + 1)) {
|
|
NegatedOps.emplace_back(NegOp); // Successfully negated operand!
|
|
continue;
|
|
}
|
|
// Failed to sink negation into this operand. IFF we started from negation
|
|
// and we manage to sink negation into one operand, we can still do this.
|
|
if (!IsTrulyNegation)
|
|
return nullptr;
|
|
NonNegatedOps.emplace_back(Op); // Just record which operand that was.
|
|
}
|
|
assert((NegatedOps.size() + NonNegatedOps.size()) == 2 &&
|
|
"Internal consistency check failed.");
|
|
// Did we manage to sink negation into both of the operands?
|
|
if (NegatedOps.size() == 2) // Then we get to keep the `add`!
|
|
return Builder.CreateAdd(NegatedOps[0], NegatedOps[1],
|
|
I->getName() + ".neg");
|
|
assert(IsTrulyNegation && "We should have early-exited then.");
|
|
// Completely failed to sink negation?
|
|
if (NonNegatedOps.size() == 2)
|
|
return nullptr;
|
|
// 0-(a+b) --> (-a)-b
|
|
return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0],
|
|
I->getName() + ".neg");
|
|
}
|
|
case Instruction::Xor: {
|
|
std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
|
|
// `xor` is negatible if one of its operands is invertible.
|
|
// FIXME: InstCombineInverter? But how to connect Inverter and Negator?
|
|
if (auto *C = dyn_cast<Constant>(Ops[1])) {
|
|
if (IsTrulyNegation) {
|
|
Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C));
|
|
return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
|
|
I->getName() + ".neg");
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
case Instruction::Mul: {
|
|
std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
|
|
// `mul` is negatible if one of its operands is negatible.
|
|
Value *NegatedOp, *OtherOp;
|
|
// First try the second operand, in case it's a constant it will be best to
|
|
// just invert it instead of sinking the `neg` deeper.
|
|
if (Value *NegOp1 = negate(Ops[1], /* IsNSW */ false, Depth + 1)) {
|
|
NegatedOp = NegOp1;
|
|
OtherOp = Ops[0];
|
|
} else if (Value *NegOp0 = negate(Ops[0], /* IsNSW */ false, Depth + 1)) {
|
|
NegatedOp = NegOp0;
|
|
OtherOp = Ops[1];
|
|
} else
|
|
// Can't negate either of them.
|
|
return nullptr;
|
|
return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg",
|
|
/*HasNUW=*/false, IsNSW && I->hasNoSignedWrap());
|
|
}
|
|
default:
|
|
return nullptr; // Don't know, likely not negatible for free.
|
|
}
|
|
|
|
llvm_unreachable("Can't get here. We always return from switch.");
|
|
}
|
|
|
|
[[nodiscard]] Value *Negator::negate(Value *V, bool IsNSW, unsigned Depth) {
|
|
NegatorMaxDepthVisited.updateMax(Depth);
|
|
++NegatorNumValuesVisited;
|
|
|
|
#if LLVM_ENABLE_STATS
|
|
++NumValuesVisitedInThisNegator;
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
// We can't ever have a Value with such an address.
|
|
Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
|
|
#endif
|
|
|
|
// Did we already try to negate this value?
|
|
auto NegationsCacheIterator = NegationsCache.find(V);
|
|
if (NegationsCacheIterator != NegationsCache.end()) {
|
|
++NegatorNumNegationsFoundInCache;
|
|
Value *NegatedV = NegationsCacheIterator->second;
|
|
assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
|
|
return NegatedV;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// We did not find a cached result for negation of V. While there,
|
|
// let's temporairly cache a placeholder value, with the idea that if later
|
|
// during negation we fetch it from cache, we'll know we're in a cycle.
|
|
NegationsCache[V] = Placeholder;
|
|
#endif
|
|
|
|
// No luck. Try negating it for real.
|
|
Value *NegatedV = visitImpl(V, IsNSW, Depth);
|
|
// And cache the (real) result for the future.
|
|
NegationsCache[V] = NegatedV;
|
|
|
|
return NegatedV;
|
|
}
|
|
|
|
[[nodiscard]] std::optional<Negator::Result> Negator::run(Value *Root,
|
|
bool IsNSW) {
|
|
Value *Negated = negate(Root, IsNSW, /*Depth=*/0);
|
|
if (!Negated) {
|
|
// We must cleanup newly-inserted instructions, to avoid any potential
|
|
// endless combine looping.
|
|
for (Instruction *I : llvm::reverse(NewInstructions))
|
|
I->eraseFromParent();
|
|
return std::nullopt;
|
|
}
|
|
return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
|
|
}
|
|
|
|
[[nodiscard]] Value *Negator::Negate(bool LHSIsZero, bool IsNSW, Value *Root,
|
|
InstCombinerImpl &IC) {
|
|
++NegatorTotalNegationsAttempted;
|
|
LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
|
|
<< "\n");
|
|
|
|
if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
|
|
return nullptr;
|
|
|
|
Negator N(Root->getContext(), IC.getDataLayout(), IC.getDominatorTree(),
|
|
LHSIsZero);
|
|
std::optional<Result> Res = N.run(Root, IsNSW);
|
|
if (!Res) { // Negation failed.
|
|
LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
|
|
<< "\n");
|
|
return nullptr;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
|
|
<< "\n NEW: " << *Res->second << "\n");
|
|
++NegatorNumTreesNegated;
|
|
|
|
// We must temporarily unset the 'current' insertion point and DebugLoc of the
|
|
// InstCombine's IRBuilder so that it won't interfere with the ones we have
|
|
// already specified when producing negated instructions.
|
|
InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
|
|
IC.Builder.ClearInsertionPoint();
|
|
IC.Builder.SetCurrentDebugLocation(DebugLoc());
|
|
|
|
// And finally, we must add newly-created instructions into the InstCombine's
|
|
// worklist (in a proper order!) so it can attempt to combine them.
|
|
LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
|
|
<< " instrs to InstCombine\n");
|
|
NegatorMaxInstructionsCreated.updateMax(Res->first.size());
|
|
NegatorNumInstructionsNegatedSuccess += Res->first.size();
|
|
|
|
// They are in def-use order, so nothing fancy, just insert them in order.
|
|
for (Instruction *I : Res->first)
|
|
IC.Builder.Insert(I, I->getName());
|
|
|
|
// And return the new root.
|
|
return Res->second;
|
|
}
|