
Following the work in PR #107279, this patch applies the annotative DebugLocs, which indicate that a particular instruction is intentionally missing a location for a given reason, to existing sites in the compiler where their conditions apply. This is NFC in ordinary LLVM builds (each function `DebugLoc::getFoo()` is inlined as `DebugLoc()`), but marks the instruction in coverage-tracking builds so that it will be ignored by Debugify, allowing only real errors to be reported. From a developer standpoint, it also communicates the intentionality and reason for a missing DebugLoc. Some notes for reviewers: - The difference between `I->dropLocation()` and `I->setDebugLoc(DebugLoc::getDropped())` is that the former _may_ decide to keep some debug info alive, while the latter will always be empty; in this patch, I always used the latter (even if the former could technically be correct), because the former could result in some (barely) different output, and I'd prefer to keep this patch purely NFC. - I've generally documented the uses of `DebugLoc::getUnknown()`, with the exception of the vectorizers - in summary, they are a huge cause of dropped source locations, and I don't have the time or the domain knowledge currently to solve that, so I've plastered it all over them as a form of "fixme".
1653 lines
61 KiB
C++
1653 lines
61 KiB
C++
//===- InstCombinePHI.cpp -------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the visitPHINode function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombiner.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <optional>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
static cl::opt<unsigned>
|
|
MaxNumPhis("instcombine-max-num-phis", cl::init(512),
|
|
cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
|
|
|
|
STATISTIC(NumPHIsOfInsertValues,
|
|
"Number of phi-of-insertvalue turned into insertvalue-of-phis");
|
|
STATISTIC(NumPHIsOfExtractValues,
|
|
"Number of phi-of-extractvalue turned into extractvalue-of-phi");
|
|
STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
|
|
|
|
/// The PHI arguments will be folded into a single operation with a PHI node
|
|
/// as input. The debug location of the single operation will be the merged
|
|
/// locations of the original PHI node arguments.
|
|
void InstCombinerImpl::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
|
|
auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
|
|
Inst->setDebugLoc(FirstInst->getDebugLoc());
|
|
// We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
|
|
// will be inefficient.
|
|
assert(!isa<CallInst>(Inst));
|
|
|
|
for (Value *V : drop_begin(PN.incoming_values())) {
|
|
auto *I = cast<Instruction>(V);
|
|
Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
|
|
}
|
|
}
|
|
|
|
/// If the phi is within a phi web, which is formed by the def-use chain
|
|
/// of phis and all the phis in the web are only used in the other phis.
|
|
/// In this case, these phis are dead and we will remove all of them.
|
|
bool InstCombinerImpl::foldDeadPhiWeb(PHINode &PN) {
|
|
SmallVector<PHINode *, 16> Stack;
|
|
SmallPtrSet<PHINode *, 16> Visited;
|
|
Stack.push_back(&PN);
|
|
while (!Stack.empty()) {
|
|
PHINode *Phi = Stack.pop_back_val();
|
|
if (!Visited.insert(Phi).second)
|
|
continue;
|
|
// Early stop if the set of PHIs is large
|
|
if (Visited.size() == 16)
|
|
return false;
|
|
for (User *Use : Phi->users()) {
|
|
if (PHINode *PhiUse = dyn_cast<PHINode>(Use))
|
|
Stack.push_back(PhiUse);
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
for (PHINode *Phi : Visited)
|
|
replaceInstUsesWith(*Phi, PoisonValue::get(Phi->getType()));
|
|
for (PHINode *Phi : Visited)
|
|
eraseInstFromFunction(*Phi);
|
|
return true;
|
|
}
|
|
|
|
// Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
|
|
// If there is an existing pointer typed PHI that produces the same value as PN,
|
|
// replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
|
|
// PHI node:
|
|
//
|
|
// Case-1:
|
|
// bb1:
|
|
// int_init = PtrToInt(ptr_init)
|
|
// br label %bb2
|
|
// bb2:
|
|
// int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
|
|
// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
|
|
// ptr_val2 = IntToPtr(int_val)
|
|
// ...
|
|
// use(ptr_val2)
|
|
// ptr_val_inc = ...
|
|
// inc_val_inc = PtrToInt(ptr_val_inc)
|
|
//
|
|
// ==>
|
|
// bb1:
|
|
// br label %bb2
|
|
// bb2:
|
|
// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
|
|
// ...
|
|
// use(ptr_val)
|
|
// ptr_val_inc = ...
|
|
//
|
|
// Case-2:
|
|
// bb1:
|
|
// int_ptr = BitCast(ptr_ptr)
|
|
// int_init = Load(int_ptr)
|
|
// br label %bb2
|
|
// bb2:
|
|
// int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
|
|
// ptr_val2 = IntToPtr(int_val)
|
|
// ...
|
|
// use(ptr_val2)
|
|
// ptr_val_inc = ...
|
|
// inc_val_inc = PtrToInt(ptr_val_inc)
|
|
// ==>
|
|
// bb1:
|
|
// ptr_init = Load(ptr_ptr)
|
|
// br label %bb2
|
|
// bb2:
|
|
// ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
|
|
// ...
|
|
// use(ptr_val)
|
|
// ptr_val_inc = ...
|
|
// ...
|
|
//
|
|
bool InstCombinerImpl::foldIntegerTypedPHI(PHINode &PN) {
|
|
if (!PN.getType()->isIntegerTy())
|
|
return false;
|
|
if (!PN.hasOneUse())
|
|
return false;
|
|
|
|
auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
|
|
if (!IntToPtr)
|
|
return false;
|
|
|
|
// Check if the pointer is actually used as pointer:
|
|
auto HasPointerUse = [](Instruction *IIP) {
|
|
for (User *U : IIP->users()) {
|
|
Value *Ptr = nullptr;
|
|
if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
|
|
Ptr = LoadI->getPointerOperand();
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
|
|
Ptr = SI->getPointerOperand();
|
|
} else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
|
|
Ptr = GI->getPointerOperand();
|
|
}
|
|
|
|
if (Ptr && Ptr == IIP)
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
if (!HasPointerUse(IntToPtr))
|
|
return false;
|
|
|
|
if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
|
|
DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
|
|
return false;
|
|
|
|
SmallVector<Value *, 4> AvailablePtrVals;
|
|
for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) {
|
|
BasicBlock *BB = std::get<0>(Incoming);
|
|
Value *Arg = std::get<1>(Incoming);
|
|
|
|
// Arg could be a constant, constant expr, etc., which we don't cover here.
|
|
if (!isa<Instruction>(Arg) && !isa<Argument>(Arg))
|
|
return false;
|
|
|
|
// First look backward:
|
|
if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
|
|
AvailablePtrVals.emplace_back(PI->getOperand(0));
|
|
continue;
|
|
}
|
|
|
|
// Next look forward:
|
|
Value *ArgIntToPtr = nullptr;
|
|
for (User *U : Arg->users()) {
|
|
if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
|
|
(DT.dominates(cast<Instruction>(U), BB) ||
|
|
cast<Instruction>(U)->getParent() == BB)) {
|
|
ArgIntToPtr = U;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ArgIntToPtr) {
|
|
AvailablePtrVals.emplace_back(ArgIntToPtr);
|
|
continue;
|
|
}
|
|
|
|
// If Arg is defined by a PHI, allow it. This will also create
|
|
// more opportunities iteratively.
|
|
if (isa<PHINode>(Arg)) {
|
|
AvailablePtrVals.emplace_back(Arg);
|
|
continue;
|
|
}
|
|
|
|
// For a single use integer load:
|
|
auto *LoadI = dyn_cast<LoadInst>(Arg);
|
|
if (!LoadI)
|
|
return false;
|
|
|
|
if (!LoadI->hasOneUse())
|
|
return false;
|
|
|
|
// Push the integer typed Load instruction into the available
|
|
// value set, and fix it up later when the pointer typed PHI
|
|
// is synthesized.
|
|
AvailablePtrVals.emplace_back(LoadI);
|
|
}
|
|
|
|
// Now search for a matching PHI
|
|
auto *BB = PN.getParent();
|
|
assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
|
|
"Not enough available ptr typed incoming values");
|
|
PHINode *MatchingPtrPHI = nullptr;
|
|
unsigned NumPhis = 0;
|
|
for (PHINode &PtrPHI : BB->phis()) {
|
|
// FIXME: consider handling this in AggressiveInstCombine
|
|
if (NumPhis++ > MaxNumPhis)
|
|
return false;
|
|
if (&PtrPHI == &PN || PtrPHI.getType() != IntToPtr->getType())
|
|
continue;
|
|
if (any_of(zip(PN.blocks(), AvailablePtrVals),
|
|
[&](const auto &BlockAndValue) {
|
|
BasicBlock *BB = std::get<0>(BlockAndValue);
|
|
Value *V = std::get<1>(BlockAndValue);
|
|
return PtrPHI.getIncomingValueForBlock(BB) != V;
|
|
}))
|
|
continue;
|
|
MatchingPtrPHI = &PtrPHI;
|
|
break;
|
|
}
|
|
|
|
if (MatchingPtrPHI) {
|
|
assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
|
|
"Phi's Type does not match with IntToPtr");
|
|
// Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
|
|
// to make sure another transform can't undo it in the meantime.
|
|
replaceInstUsesWith(*IntToPtr, MatchingPtrPHI);
|
|
eraseInstFromFunction(*IntToPtr);
|
|
eraseInstFromFunction(PN);
|
|
return true;
|
|
}
|
|
|
|
// If it requires a conversion for every PHI operand, do not do it.
|
|
if (all_of(AvailablePtrVals, [&](Value *V) {
|
|
return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
|
|
}))
|
|
return false;
|
|
|
|
// If any of the operand that requires casting is a terminator
|
|
// instruction, do not do it. Similarly, do not do the transform if the value
|
|
// is PHI in a block with no insertion point, for example, a catchswitch
|
|
// block, since we will not be able to insert a cast after the PHI.
|
|
if (any_of(AvailablePtrVals, [&](Value *V) {
|
|
if (V->getType() == IntToPtr->getType())
|
|
return false;
|
|
auto *Inst = dyn_cast<Instruction>(V);
|
|
if (!Inst)
|
|
return false;
|
|
if (Inst->isTerminator())
|
|
return true;
|
|
auto *BB = Inst->getParent();
|
|
if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end())
|
|
return true;
|
|
return false;
|
|
}))
|
|
return false;
|
|
|
|
PHINode *NewPtrPHI = PHINode::Create(
|
|
IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
|
|
|
|
InsertNewInstBefore(NewPtrPHI, PN.getIterator());
|
|
SmallDenseMap<Value *, Instruction *> Casts;
|
|
for (auto Incoming : zip(PN.blocks(), AvailablePtrVals)) {
|
|
auto *IncomingBB = std::get<0>(Incoming);
|
|
auto *IncomingVal = std::get<1>(Incoming);
|
|
|
|
if (IncomingVal->getType() == IntToPtr->getType()) {
|
|
NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
|
|
continue;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
|
|
assert((isa<PHINode>(IncomingVal) ||
|
|
IncomingVal->getType()->isPointerTy() ||
|
|
(LoadI && LoadI->hasOneUse())) &&
|
|
"Can not replace LoadInst with multiple uses");
|
|
#endif
|
|
// Need to insert a BitCast.
|
|
// For an integer Load instruction with a single use, the load + IntToPtr
|
|
// cast will be simplified into a pointer load:
|
|
// %v = load i64, i64* %a.ip, align 8
|
|
// %v.cast = inttoptr i64 %v to float **
|
|
// ==>
|
|
// %v.ptrp = bitcast i64 * %a.ip to float **
|
|
// %v.cast = load float *, float ** %v.ptrp, align 8
|
|
Instruction *&CI = Casts[IncomingVal];
|
|
if (!CI) {
|
|
CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
|
|
IncomingVal->getName() + ".ptr");
|
|
if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
|
|
BasicBlock::iterator InsertPos(IncomingI);
|
|
InsertPos++;
|
|
BasicBlock *BB = IncomingI->getParent();
|
|
if (isa<PHINode>(IncomingI))
|
|
InsertPos = BB->getFirstInsertionPt();
|
|
assert(InsertPos != BB->end() && "should have checked above");
|
|
InsertNewInstBefore(CI, InsertPos);
|
|
} else {
|
|
auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
|
|
InsertNewInstBefore(CI, InsertBB->getFirstInsertionPt());
|
|
}
|
|
}
|
|
NewPtrPHI->addIncoming(CI, IncomingBB);
|
|
}
|
|
|
|
// Explicitly replace the inttoptr (rather than inserting a ptrtoint) here,
|
|
// to make sure another transform can't undo it in the meantime.
|
|
replaceInstUsesWith(*IntToPtr, NewPtrPHI);
|
|
eraseInstFromFunction(*IntToPtr);
|
|
eraseInstFromFunction(PN);
|
|
return true;
|
|
}
|
|
|
|
// Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and
|
|
// fold Phi-operand to bitcast.
|
|
Instruction *InstCombinerImpl::foldPHIArgIntToPtrToPHI(PHINode &PN) {
|
|
// convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] )
|
|
// Make sure all uses of phi are ptr2int.
|
|
if (!all_of(PN.users(), [](User *U) { return isa<PtrToIntInst>(U); }))
|
|
return nullptr;
|
|
|
|
// Iterating over all operands to check presence of target pointers for
|
|
// optimization.
|
|
bool OperandWithRoundTripCast = false;
|
|
for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) {
|
|
if (auto *NewOp =
|
|
simplifyIntToPtrRoundTripCast(PN.getIncomingValue(OpNum))) {
|
|
replaceOperand(PN, OpNum, NewOp);
|
|
OperandWithRoundTripCast = true;
|
|
}
|
|
}
|
|
if (!OperandWithRoundTripCast)
|
|
return nullptr;
|
|
return &PN;
|
|
}
|
|
|
|
/// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)],
|
|
/// turn this into a phi[a,c] and phi[b,d] and a single insertvalue.
|
|
Instruction *
|
|
InstCombinerImpl::foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN) {
|
|
auto *FirstIVI = cast<InsertValueInst>(PN.getIncomingValue(0));
|
|
|
|
// Scan to see if all operands are `insertvalue`'s with the same indices,
|
|
// and all have a single use.
|
|
for (Value *V : drop_begin(PN.incoming_values())) {
|
|
auto *I = dyn_cast<InsertValueInst>(V);
|
|
if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices())
|
|
return nullptr;
|
|
}
|
|
|
|
// For each operand of an `insertvalue`
|
|
std::array<PHINode *, 2> NewOperands;
|
|
for (int OpIdx : {0, 1}) {
|
|
auto *&NewOperand = NewOperands[OpIdx];
|
|
// Create a new PHI node to receive the values the operand has in each
|
|
// incoming basic block.
|
|
NewOperand = PHINode::Create(
|
|
FirstIVI->getOperand(OpIdx)->getType(), PN.getNumIncomingValues(),
|
|
FirstIVI->getOperand(OpIdx)->getName() + ".pn");
|
|
// And populate each operand's PHI with said values.
|
|
for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
|
|
NewOperand->addIncoming(
|
|
cast<InsertValueInst>(std::get<1>(Incoming))->getOperand(OpIdx),
|
|
std::get<0>(Incoming));
|
|
InsertNewInstBefore(NewOperand, PN.getIterator());
|
|
}
|
|
|
|
// And finally, create `insertvalue` over the newly-formed PHI nodes.
|
|
auto *NewIVI = InsertValueInst::Create(NewOperands[0], NewOperands[1],
|
|
FirstIVI->getIndices(), PN.getName());
|
|
|
|
PHIArgMergedDebugLoc(NewIVI, PN);
|
|
++NumPHIsOfInsertValues;
|
|
return NewIVI;
|
|
}
|
|
|
|
/// If we have something like phi [extractvalue(a,0), extractvalue(b,0)],
|
|
/// turn this into a phi[a,b] and a single extractvalue.
|
|
Instruction *
|
|
InstCombinerImpl::foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN) {
|
|
auto *FirstEVI = cast<ExtractValueInst>(PN.getIncomingValue(0));
|
|
|
|
// Scan to see if all operands are `extractvalue`'s with the same indices,
|
|
// and all have a single use.
|
|
for (Value *V : drop_begin(PN.incoming_values())) {
|
|
auto *I = dyn_cast<ExtractValueInst>(V);
|
|
if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() ||
|
|
I->getAggregateOperand()->getType() !=
|
|
FirstEVI->getAggregateOperand()->getType())
|
|
return nullptr;
|
|
}
|
|
|
|
// Create a new PHI node to receive the values the aggregate operand has
|
|
// in each incoming basic block.
|
|
auto *NewAggregateOperand = PHINode::Create(
|
|
FirstEVI->getAggregateOperand()->getType(), PN.getNumIncomingValues(),
|
|
FirstEVI->getAggregateOperand()->getName() + ".pn");
|
|
// And populate the PHI with said values.
|
|
for (auto Incoming : zip(PN.blocks(), PN.incoming_values()))
|
|
NewAggregateOperand->addIncoming(
|
|
cast<ExtractValueInst>(std::get<1>(Incoming))->getAggregateOperand(),
|
|
std::get<0>(Incoming));
|
|
InsertNewInstBefore(NewAggregateOperand, PN.getIterator());
|
|
|
|
// And finally, create `extractvalue` over the newly-formed PHI nodes.
|
|
auto *NewEVI = ExtractValueInst::Create(NewAggregateOperand,
|
|
FirstEVI->getIndices(), PN.getName());
|
|
|
|
PHIArgMergedDebugLoc(NewEVI, PN);
|
|
++NumPHIsOfExtractValues;
|
|
return NewEVI;
|
|
}
|
|
|
|
/// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
|
|
/// adds all have a single user, turn this into a phi and a single binop.
|
|
Instruction *InstCombinerImpl::foldPHIArgBinOpIntoPHI(PHINode &PN) {
|
|
Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
|
|
assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
|
|
unsigned Opc = FirstInst->getOpcode();
|
|
Value *LHSVal = FirstInst->getOperand(0);
|
|
Value *RHSVal = FirstInst->getOperand(1);
|
|
|
|
Type *LHSType = LHSVal->getType();
|
|
Type *RHSType = RHSVal->getType();
|
|
|
|
// Scan to see if all operands are the same opcode, and all have one user.
|
|
for (Value *V : drop_begin(PN.incoming_values())) {
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I || I->getOpcode() != Opc || !I->hasOneUser() ||
|
|
// Verify type of the LHS matches so we don't fold cmp's of different
|
|
// types.
|
|
I->getOperand(0)->getType() != LHSType ||
|
|
I->getOperand(1)->getType() != RHSType)
|
|
return nullptr;
|
|
|
|
// If they are CmpInst instructions, check their predicates
|
|
if (CmpInst *CI = dyn_cast<CmpInst>(I))
|
|
if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
|
|
return nullptr;
|
|
|
|
// Keep track of which operand needs a phi node.
|
|
if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
|
|
if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
|
|
}
|
|
|
|
// If both LHS and RHS would need a PHI, don't do this transformation,
|
|
// because it would increase the number of PHIs entering the block,
|
|
// which leads to higher register pressure. This is especially
|
|
// bad when the PHIs are in the header of a loop.
|
|
if (!LHSVal && !RHSVal)
|
|
return nullptr;
|
|
|
|
// Otherwise, this is safe to transform!
|
|
|
|
Value *InLHS = FirstInst->getOperand(0);
|
|
Value *InRHS = FirstInst->getOperand(1);
|
|
PHINode *NewLHS = nullptr, *NewRHS = nullptr;
|
|
if (!LHSVal) {
|
|
NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
|
|
FirstInst->getOperand(0)->getName() + ".pn");
|
|
NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
|
|
InsertNewInstBefore(NewLHS, PN.getIterator());
|
|
LHSVal = NewLHS;
|
|
}
|
|
|
|
if (!RHSVal) {
|
|
NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
|
|
FirstInst->getOperand(1)->getName() + ".pn");
|
|
NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
|
|
InsertNewInstBefore(NewRHS, PN.getIterator());
|
|
RHSVal = NewRHS;
|
|
}
|
|
|
|
// Add all operands to the new PHIs.
|
|
if (NewLHS || NewRHS) {
|
|
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
|
|
BasicBlock *InBB = std::get<0>(Incoming);
|
|
Value *InVal = std::get<1>(Incoming);
|
|
Instruction *InInst = cast<Instruction>(InVal);
|
|
if (NewLHS) {
|
|
Value *NewInLHS = InInst->getOperand(0);
|
|
NewLHS->addIncoming(NewInLHS, InBB);
|
|
}
|
|
if (NewRHS) {
|
|
Value *NewInRHS = InInst->getOperand(1);
|
|
NewRHS->addIncoming(NewInRHS, InBB);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
|
|
CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
|
|
LHSVal, RHSVal);
|
|
PHIArgMergedDebugLoc(NewCI, PN);
|
|
return NewCI;
|
|
}
|
|
|
|
BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
|
|
BinaryOperator *NewBinOp =
|
|
BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
|
|
|
|
NewBinOp->copyIRFlags(PN.getIncomingValue(0));
|
|
|
|
for (Value *V : drop_begin(PN.incoming_values()))
|
|
NewBinOp->andIRFlags(V);
|
|
|
|
PHIArgMergedDebugLoc(NewBinOp, PN);
|
|
return NewBinOp;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldPHIArgGEPIntoPHI(PHINode &PN) {
|
|
GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
|
|
|
|
SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
|
|
FirstInst->op_end());
|
|
// This is true if all GEP bases are allocas and if all indices into them are
|
|
// constants.
|
|
bool AllBasePointersAreAllocas = true;
|
|
|
|
// We don't want to replace this phi if the replacement would require
|
|
// more than one phi, which leads to higher register pressure. This is
|
|
// especially bad when the PHIs are in the header of a loop.
|
|
bool NeededPhi = false;
|
|
|
|
// Remember flags of the first phi-operand getelementptr.
|
|
GEPNoWrapFlags NW = FirstInst->getNoWrapFlags();
|
|
|
|
// Scan to see if all operands are the same opcode, and all have one user.
|
|
for (Value *V : drop_begin(PN.incoming_values())) {
|
|
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V);
|
|
if (!GEP || !GEP->hasOneUser() ||
|
|
GEP->getSourceElementType() != FirstInst->getSourceElementType() ||
|
|
GEP->getNumOperands() != FirstInst->getNumOperands())
|
|
return nullptr;
|
|
|
|
NW &= GEP->getNoWrapFlags();
|
|
|
|
// Keep track of whether or not all GEPs are of alloca pointers.
|
|
if (AllBasePointersAreAllocas &&
|
|
(!isa<AllocaInst>(GEP->getOperand(0)) ||
|
|
!GEP->hasAllConstantIndices()))
|
|
AllBasePointersAreAllocas = false;
|
|
|
|
// Compare the operand lists.
|
|
for (unsigned Op = 0, E = FirstInst->getNumOperands(); Op != E; ++Op) {
|
|
if (FirstInst->getOperand(Op) == GEP->getOperand(Op))
|
|
continue;
|
|
|
|
// Don't merge two GEPs when two operands differ (introducing phi nodes)
|
|
// if one of the PHIs has a constant for the index. The index may be
|
|
// substantially cheaper to compute for the constants, so making it a
|
|
// variable index could pessimize the path. This also handles the case
|
|
// for struct indices, which must always be constant.
|
|
if (isa<Constant>(FirstInst->getOperand(Op)) ||
|
|
isa<Constant>(GEP->getOperand(Op)))
|
|
return nullptr;
|
|
|
|
if (FirstInst->getOperand(Op)->getType() !=
|
|
GEP->getOperand(Op)->getType())
|
|
return nullptr;
|
|
|
|
// If we already needed a PHI for an earlier operand, and another operand
|
|
// also requires a PHI, we'd be introducing more PHIs than we're
|
|
// eliminating, which increases register pressure on entry to the PHI's
|
|
// block.
|
|
if (NeededPhi)
|
|
return nullptr;
|
|
|
|
FixedOperands[Op] = nullptr; // Needs a PHI.
|
|
NeededPhi = true;
|
|
}
|
|
}
|
|
|
|
// If all of the base pointers of the PHI'd GEPs are from allocas, don't
|
|
// bother doing this transformation. At best, this will just save a bit of
|
|
// offset calculation, but all the predecessors will have to materialize the
|
|
// stack address into a register anyway. We'd actually rather *clone* the
|
|
// load up into the predecessors so that we have a load of a gep of an alloca,
|
|
// which can usually all be folded into the load.
|
|
if (AllBasePointersAreAllocas)
|
|
return nullptr;
|
|
|
|
// Otherwise, this is safe to transform. Insert PHI nodes for each operand
|
|
// that is variable.
|
|
SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
|
|
|
|
bool HasAnyPHIs = false;
|
|
for (unsigned I = 0, E = FixedOperands.size(); I != E; ++I) {
|
|
if (FixedOperands[I])
|
|
continue; // operand doesn't need a phi.
|
|
Value *FirstOp = FirstInst->getOperand(I);
|
|
PHINode *NewPN =
|
|
PHINode::Create(FirstOp->getType(), E, FirstOp->getName() + ".pn");
|
|
InsertNewInstBefore(NewPN, PN.getIterator());
|
|
|
|
NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
|
|
OperandPhis[I] = NewPN;
|
|
FixedOperands[I] = NewPN;
|
|
HasAnyPHIs = true;
|
|
}
|
|
|
|
// Add all operands to the new PHIs.
|
|
if (HasAnyPHIs) {
|
|
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
|
|
BasicBlock *InBB = std::get<0>(Incoming);
|
|
Value *InVal = std::get<1>(Incoming);
|
|
GetElementPtrInst *InGEP = cast<GetElementPtrInst>(InVal);
|
|
|
|
for (unsigned Op = 0, E = OperandPhis.size(); Op != E; ++Op)
|
|
if (PHINode *OpPhi = OperandPhis[Op])
|
|
OpPhi->addIncoming(InGEP->getOperand(Op), InBB);
|
|
}
|
|
}
|
|
|
|
Value *Base = FixedOperands[0];
|
|
GetElementPtrInst *NewGEP =
|
|
GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
|
|
ArrayRef(FixedOperands).slice(1), NW);
|
|
PHIArgMergedDebugLoc(NewGEP, PN);
|
|
return NewGEP;
|
|
}
|
|
|
|
/// Return true if we know that it is safe to sink the load out of the block
|
|
/// that defines it. This means that it must be obvious the value of the load is
|
|
/// not changed from the point of the load to the end of the block it is in.
|
|
///
|
|
/// Finally, it is safe, but not profitable, to sink a load targeting a
|
|
/// non-address-taken alloca. Doing so will cause us to not promote the alloca
|
|
/// to a register.
|
|
static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
|
|
BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
|
|
|
|
for (++BBI; BBI != E; ++BBI)
|
|
if (BBI->mayWriteToMemory()) {
|
|
// Calls that only access inaccessible memory do not block sinking the
|
|
// load.
|
|
if (auto *CB = dyn_cast<CallBase>(BBI))
|
|
if (CB->onlyAccessesInaccessibleMemory())
|
|
continue;
|
|
return false;
|
|
}
|
|
|
|
// Check for non-address taken alloca. If not address-taken already, it isn't
|
|
// profitable to do this xform.
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
|
|
bool IsAddressTaken = false;
|
|
for (User *U : AI->users()) {
|
|
if (isa<LoadInst>(U)) continue;
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
|
|
// If storing TO the alloca, then the address isn't taken.
|
|
if (SI->getOperand(1) == AI) continue;
|
|
}
|
|
IsAddressTaken = true;
|
|
break;
|
|
}
|
|
|
|
if (!IsAddressTaken && AI->isStaticAlloca())
|
|
return false;
|
|
}
|
|
|
|
// If this load is a load from a GEP with a constant offset from an alloca,
|
|
// then we don't want to sink it. In its present form, it will be
|
|
// load [constant stack offset]. Sinking it will cause us to have to
|
|
// materialize the stack addresses in each predecessor in a register only to
|
|
// do a shared load from register in the successor.
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
|
|
if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldPHIArgLoadIntoPHI(PHINode &PN) {
|
|
LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
|
|
|
|
// Can't forward swifterror through a phi.
|
|
if (FirstLI->getOperand(0)->isSwiftError())
|
|
return nullptr;
|
|
|
|
// FIXME: This is overconservative; this transform is allowed in some cases
|
|
// for atomic operations.
|
|
if (FirstLI->isAtomic())
|
|
return nullptr;
|
|
|
|
// When processing loads, we need to propagate two bits of information to the
|
|
// sunk load: whether it is volatile, and what its alignment is.
|
|
bool IsVolatile = FirstLI->isVolatile();
|
|
Align LoadAlignment = FirstLI->getAlign();
|
|
const unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
|
|
|
|
// We can't sink the load if the loaded value could be modified between the
|
|
// load and the PHI.
|
|
if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
|
|
!isSafeAndProfitableToSinkLoad(FirstLI))
|
|
return nullptr;
|
|
|
|
// If the PHI is of volatile loads and the load block has multiple
|
|
// successors, sinking it would remove a load of the volatile value from
|
|
// the path through the other successor.
|
|
if (IsVolatile &&
|
|
FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
|
|
return nullptr;
|
|
|
|
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
|
|
BasicBlock *InBB = std::get<0>(Incoming);
|
|
Value *InVal = std::get<1>(Incoming);
|
|
LoadInst *LI = dyn_cast<LoadInst>(InVal);
|
|
if (!LI || !LI->hasOneUser() || LI->isAtomic())
|
|
return nullptr;
|
|
|
|
// Make sure all arguments are the same type of operation.
|
|
if (LI->isVolatile() != IsVolatile ||
|
|
LI->getPointerAddressSpace() != LoadAddrSpace)
|
|
return nullptr;
|
|
|
|
// Can't forward swifterror through a phi.
|
|
if (LI->getOperand(0)->isSwiftError())
|
|
return nullptr;
|
|
|
|
// We can't sink the load if the loaded value could be modified between
|
|
// the load and the PHI.
|
|
if (LI->getParent() != InBB || !isSafeAndProfitableToSinkLoad(LI))
|
|
return nullptr;
|
|
|
|
LoadAlignment = std::min(LoadAlignment, LI->getAlign());
|
|
|
|
// If the PHI is of volatile loads and the load block has multiple
|
|
// successors, sinking it would remove a load of the volatile value from
|
|
// the path through the other successor.
|
|
if (IsVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1)
|
|
return nullptr;
|
|
}
|
|
|
|
// Okay, they are all the same operation. Create a new PHI node of the
|
|
// correct type, and PHI together all of the LHS's of the instructions.
|
|
PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
|
|
PN.getNumIncomingValues(),
|
|
PN.getName()+".in");
|
|
|
|
Value *InVal = FirstLI->getOperand(0);
|
|
NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
|
|
LoadInst *NewLI =
|
|
new LoadInst(FirstLI->getType(), NewPN, "", IsVolatile, LoadAlignment);
|
|
NewLI->copyMetadata(*FirstLI);
|
|
|
|
// Add all operands to the new PHI and combine TBAA metadata.
|
|
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
|
|
BasicBlock *BB = std::get<0>(Incoming);
|
|
Value *V = std::get<1>(Incoming);
|
|
LoadInst *LI = cast<LoadInst>(V);
|
|
combineMetadataForCSE(NewLI, LI, true);
|
|
Value *NewInVal = LI->getOperand(0);
|
|
if (NewInVal != InVal)
|
|
InVal = nullptr;
|
|
NewPN->addIncoming(NewInVal, BB);
|
|
}
|
|
|
|
if (InVal) {
|
|
// The new PHI unions all of the same values together. This is really
|
|
// common, so we handle it intelligently here for compile-time speed.
|
|
NewLI->setOperand(0, InVal);
|
|
delete NewPN;
|
|
} else {
|
|
InsertNewInstBefore(NewPN, PN.getIterator());
|
|
}
|
|
|
|
// If this was a volatile load that we are merging, make sure to loop through
|
|
// and mark all the input loads as non-volatile. If we don't do this, we will
|
|
// insert a new volatile load and the old ones will not be deletable.
|
|
if (IsVolatile)
|
|
for (Value *IncValue : PN.incoming_values())
|
|
cast<LoadInst>(IncValue)->setVolatile(false);
|
|
|
|
PHIArgMergedDebugLoc(NewLI, PN);
|
|
return NewLI;
|
|
}
|
|
|
|
/// TODO: This function could handle other cast types, but then it might
|
|
/// require special-casing a cast from the 'i1' type. See the comment in
|
|
/// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
|
|
Instruction *InstCombinerImpl::foldPHIArgZextsIntoPHI(PHINode &Phi) {
|
|
// We cannot create a new instruction after the PHI if the terminator is an
|
|
// EHPad because there is no valid insertion point.
|
|
if (Instruction *TI = Phi.getParent()->getTerminator())
|
|
if (TI->isEHPad())
|
|
return nullptr;
|
|
|
|
// Early exit for the common case of a phi with two operands. These are
|
|
// handled elsewhere. See the comment below where we check the count of zexts
|
|
// and constants for more details.
|
|
unsigned NumIncomingValues = Phi.getNumIncomingValues();
|
|
if (NumIncomingValues < 3)
|
|
return nullptr;
|
|
|
|
// Find the narrower type specified by the first zext.
|
|
Type *NarrowType = nullptr;
|
|
for (Value *V : Phi.incoming_values()) {
|
|
if (auto *Zext = dyn_cast<ZExtInst>(V)) {
|
|
NarrowType = Zext->getSrcTy();
|
|
break;
|
|
}
|
|
}
|
|
if (!NarrowType)
|
|
return nullptr;
|
|
|
|
// Walk the phi operands checking that we only have zexts or constants that
|
|
// we can shrink for free. Store the new operands for the new phi.
|
|
SmallVector<Value *, 4> NewIncoming;
|
|
unsigned NumZexts = 0;
|
|
unsigned NumConsts = 0;
|
|
for (Value *V : Phi.incoming_values()) {
|
|
if (auto *Zext = dyn_cast<ZExtInst>(V)) {
|
|
// All zexts must be identical and have one user.
|
|
if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser())
|
|
return nullptr;
|
|
NewIncoming.push_back(Zext->getOperand(0));
|
|
NumZexts++;
|
|
} else if (auto *C = dyn_cast<Constant>(V)) {
|
|
// Make sure that constants can fit in the new type.
|
|
Constant *Trunc = getLosslessUnsignedTrunc(C, NarrowType);
|
|
if (!Trunc)
|
|
return nullptr;
|
|
NewIncoming.push_back(Trunc);
|
|
NumConsts++;
|
|
} else {
|
|
// If it's not a cast or a constant, bail out.
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// The more common cases of a phi with no constant operands or just one
|
|
// variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
|
|
// respectively. foldOpIntoPhi() wants to do the opposite transform that is
|
|
// performed here. It tries to replicate a cast in the phi operand's basic
|
|
// block to expose other folding opportunities. Thus, InstCombine will
|
|
// infinite loop without this check.
|
|
if (NumConsts == 0 || NumZexts < 2)
|
|
return nullptr;
|
|
|
|
// All incoming values are zexts or constants that are safe to truncate.
|
|
// Create a new phi node of the narrow type, phi together all of the new
|
|
// operands, and zext the result back to the original type.
|
|
PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
|
|
Phi.getName() + ".shrunk");
|
|
for (unsigned I = 0; I != NumIncomingValues; ++I)
|
|
NewPhi->addIncoming(NewIncoming[I], Phi.getIncomingBlock(I));
|
|
|
|
InsertNewInstBefore(NewPhi, Phi.getIterator());
|
|
auto *CI = CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
|
|
|
|
// We use a dropped location here because the new ZExt is necessarily a merge
|
|
// of ZExtInsts and at least one constant from incoming branches; the presence
|
|
// of the constant means we have no viable DebugLoc from that branch, and
|
|
// therefore we must use a dropped location.
|
|
CI->setDebugLoc(DebugLoc::getDropped());
|
|
return CI;
|
|
}
|
|
|
|
/// If all operands to a PHI node are the same "unary" operator and they all are
|
|
/// only used by the PHI, PHI together their inputs, and do the operation once,
|
|
/// to the result of the PHI.
|
|
Instruction *InstCombinerImpl::foldPHIArgOpIntoPHI(PHINode &PN) {
|
|
// We cannot create a new instruction after the PHI if the terminator is an
|
|
// EHPad because there is no valid insertion point.
|
|
if (Instruction *TI = PN.getParent()->getTerminator())
|
|
if (TI->isEHPad())
|
|
return nullptr;
|
|
|
|
Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
|
|
|
|
if (isa<GetElementPtrInst>(FirstInst))
|
|
return foldPHIArgGEPIntoPHI(PN);
|
|
if (isa<LoadInst>(FirstInst))
|
|
return foldPHIArgLoadIntoPHI(PN);
|
|
if (isa<InsertValueInst>(FirstInst))
|
|
return foldPHIArgInsertValueInstructionIntoPHI(PN);
|
|
if (isa<ExtractValueInst>(FirstInst))
|
|
return foldPHIArgExtractValueInstructionIntoPHI(PN);
|
|
|
|
// Scan the instruction, looking for input operations that can be folded away.
|
|
// If all input operands to the phi are the same instruction (e.g. a cast from
|
|
// the same type or "+42") we can pull the operation through the PHI, reducing
|
|
// code size and simplifying code.
|
|
Constant *ConstantOp = nullptr;
|
|
Type *CastSrcTy = nullptr;
|
|
|
|
if (isa<CastInst>(FirstInst)) {
|
|
CastSrcTy = FirstInst->getOperand(0)->getType();
|
|
|
|
// Be careful about transforming integer PHIs. We don't want to pessimize
|
|
// the code by turning an i32 into an i1293.
|
|
if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
|
|
if (!shouldChangeType(PN.getType(), CastSrcTy))
|
|
return nullptr;
|
|
}
|
|
} else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
|
|
// Can fold binop, compare or shift here if the RHS is a constant,
|
|
// otherwise call FoldPHIArgBinOpIntoPHI.
|
|
ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
|
|
if (!ConstantOp)
|
|
return foldPHIArgBinOpIntoPHI(PN);
|
|
} else {
|
|
return nullptr; // Cannot fold this operation.
|
|
}
|
|
|
|
// Check to see if all arguments are the same operation.
|
|
for (Value *V : drop_begin(PN.incoming_values())) {
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I || !I->hasOneUser() || !I->isSameOperationAs(FirstInst))
|
|
return nullptr;
|
|
if (CastSrcTy) {
|
|
if (I->getOperand(0)->getType() != CastSrcTy)
|
|
return nullptr; // Cast operation must match.
|
|
} else if (I->getOperand(1) != ConstantOp) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Okay, they are all the same operation. Create a new PHI node of the
|
|
// correct type, and PHI together all of the LHS's of the instructions.
|
|
PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
|
|
PN.getNumIncomingValues(),
|
|
PN.getName()+".in");
|
|
|
|
Value *InVal = FirstInst->getOperand(0);
|
|
NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
|
|
|
|
// Add all operands to the new PHI.
|
|
for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) {
|
|
BasicBlock *BB = std::get<0>(Incoming);
|
|
Value *V = std::get<1>(Incoming);
|
|
Value *NewInVal = cast<Instruction>(V)->getOperand(0);
|
|
if (NewInVal != InVal)
|
|
InVal = nullptr;
|
|
NewPN->addIncoming(NewInVal, BB);
|
|
}
|
|
|
|
Value *PhiVal;
|
|
if (InVal) {
|
|
// The new PHI unions all of the same values together. This is really
|
|
// common, so we handle it intelligently here for compile-time speed.
|
|
PhiVal = InVal;
|
|
delete NewPN;
|
|
} else {
|
|
InsertNewInstBefore(NewPN, PN.getIterator());
|
|
PhiVal = NewPN;
|
|
}
|
|
|
|
// Insert and return the new operation.
|
|
if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
|
|
CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
|
|
PN.getType());
|
|
PHIArgMergedDebugLoc(NewCI, PN);
|
|
return NewCI;
|
|
}
|
|
|
|
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
|
|
BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
|
|
BinOp->copyIRFlags(PN.getIncomingValue(0));
|
|
|
|
for (Value *V : drop_begin(PN.incoming_values()))
|
|
BinOp->andIRFlags(V);
|
|
|
|
PHIArgMergedDebugLoc(BinOp, PN);
|
|
return BinOp;
|
|
}
|
|
|
|
CmpInst *CIOp = cast<CmpInst>(FirstInst);
|
|
CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
|
|
PhiVal, ConstantOp);
|
|
PHIArgMergedDebugLoc(NewCI, PN);
|
|
return NewCI;
|
|
}
|
|
|
|
/// Return true if this phi node is always equal to NonPhiInVal.
|
|
/// This happens with mutually cyclic phi nodes like:
|
|
/// z = some value; x = phi (y, z); y = phi (x, z)
|
|
static bool PHIsEqualValue(PHINode *PN, Value *&NonPhiInVal,
|
|
SmallPtrSetImpl<PHINode *> &ValueEqualPHIs) {
|
|
// See if we already saw this PHI node.
|
|
if (!ValueEqualPHIs.insert(PN).second)
|
|
return true;
|
|
|
|
// Don't scan crazily complex things.
|
|
if (ValueEqualPHIs.size() == 16)
|
|
return false;
|
|
|
|
// Scan the operands to see if they are either phi nodes or are equal to
|
|
// the value.
|
|
for (Value *Op : PN->incoming_values()) {
|
|
if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
|
|
if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) {
|
|
if (NonPhiInVal)
|
|
return false;
|
|
NonPhiInVal = OpPN;
|
|
}
|
|
} else if (Op != NonPhiInVal)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return an existing non-zero constant if this phi node has one, otherwise
|
|
/// return constant 1.
|
|
static ConstantInt *getAnyNonZeroConstInt(PHINode &PN) {
|
|
assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
|
|
for (Value *V : PN.operands())
|
|
if (auto *ConstVA = dyn_cast<ConstantInt>(V))
|
|
if (!ConstVA->isZero())
|
|
return ConstVA;
|
|
return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
|
|
}
|
|
|
|
namespace {
|
|
struct PHIUsageRecord {
|
|
unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
|
|
unsigned Shift; // The amount shifted.
|
|
Instruction *Inst; // The trunc instruction.
|
|
|
|
PHIUsageRecord(unsigned Pn, unsigned Sh, Instruction *User)
|
|
: PHIId(Pn), Shift(Sh), Inst(User) {}
|
|
|
|
bool operator<(const PHIUsageRecord &RHS) const {
|
|
if (PHIId < RHS.PHIId) return true;
|
|
if (PHIId > RHS.PHIId) return false;
|
|
if (Shift < RHS.Shift) return true;
|
|
if (Shift > RHS.Shift) return false;
|
|
return Inst->getType()->getPrimitiveSizeInBits() <
|
|
RHS.Inst->getType()->getPrimitiveSizeInBits();
|
|
}
|
|
};
|
|
|
|
struct LoweredPHIRecord {
|
|
PHINode *PN; // The PHI that was lowered.
|
|
unsigned Shift; // The amount shifted.
|
|
unsigned Width; // The width extracted.
|
|
|
|
LoweredPHIRecord(PHINode *Phi, unsigned Sh, Type *Ty)
|
|
: PN(Phi), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
|
|
|
|
// Ctor form used by DenseMap.
|
|
LoweredPHIRecord(PHINode *Phi, unsigned Sh) : PN(Phi), Shift(Sh), Width(0) {}
|
|
};
|
|
} // namespace
|
|
|
|
namespace llvm {
|
|
template<>
|
|
struct DenseMapInfo<LoweredPHIRecord> {
|
|
static inline LoweredPHIRecord getEmptyKey() {
|
|
return LoweredPHIRecord(nullptr, 0);
|
|
}
|
|
static inline LoweredPHIRecord getTombstoneKey() {
|
|
return LoweredPHIRecord(nullptr, 1);
|
|
}
|
|
static unsigned getHashValue(const LoweredPHIRecord &Val) {
|
|
return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
|
|
(Val.Width>>3);
|
|
}
|
|
static bool isEqual(const LoweredPHIRecord &LHS,
|
|
const LoweredPHIRecord &RHS) {
|
|
return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
|
|
LHS.Width == RHS.Width;
|
|
}
|
|
};
|
|
} // namespace llvm
|
|
|
|
|
|
/// This is an integer PHI and we know that it has an illegal type: see if it is
|
|
/// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
|
|
/// the various pieces being extracted. This sort of thing is introduced when
|
|
/// SROA promotes an aggregate to large integer values.
|
|
///
|
|
/// TODO: The user of the trunc may be an bitcast to float/double/vector or an
|
|
/// inttoptr. We should produce new PHIs in the right type.
|
|
///
|
|
Instruction *InstCombinerImpl::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
|
|
// PHIUsers - Keep track of all of the truncated values extracted from a set
|
|
// of PHIs, along with their offset. These are the things we want to rewrite.
|
|
SmallVector<PHIUsageRecord, 16> PHIUsers;
|
|
|
|
// PHIs are often mutually cyclic, so we keep track of a whole set of PHI
|
|
// nodes which are extracted from. PHIsToSlice is a set we use to avoid
|
|
// revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
|
|
// check the uses of (to ensure they are all extracts).
|
|
SmallVector<PHINode*, 8> PHIsToSlice;
|
|
SmallPtrSet<PHINode*, 8> PHIsInspected;
|
|
|
|
PHIsToSlice.push_back(&FirstPhi);
|
|
PHIsInspected.insert(&FirstPhi);
|
|
|
|
for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
|
|
PHINode *PN = PHIsToSlice[PHIId];
|
|
|
|
// Scan the input list of the PHI. If any input is an invoke, and if the
|
|
// input is defined in the predecessor, then we won't be split the critical
|
|
// edge which is required to insert a truncate. Because of this, we have to
|
|
// bail out.
|
|
for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
|
|
BasicBlock *BB = std::get<0>(Incoming);
|
|
Value *V = std::get<1>(Incoming);
|
|
InvokeInst *II = dyn_cast<InvokeInst>(V);
|
|
if (!II)
|
|
continue;
|
|
if (II->getParent() != BB)
|
|
continue;
|
|
|
|
// If we have a phi, and if it's directly in the predecessor, then we have
|
|
// a critical edge where we need to put the truncate. Since we can't
|
|
// split the edge in instcombine, we have to bail out.
|
|
return nullptr;
|
|
}
|
|
|
|
// If the incoming value is a PHI node before a catchswitch, we cannot
|
|
// extract the value within that BB because we cannot insert any non-PHI
|
|
// instructions in the BB.
|
|
for (auto *Pred : PN->blocks())
|
|
if (Pred->getFirstInsertionPt() == Pred->end())
|
|
return nullptr;
|
|
|
|
for (User *U : PN->users()) {
|
|
Instruction *UserI = cast<Instruction>(U);
|
|
|
|
// If the user is a PHI, inspect its uses recursively.
|
|
if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
|
|
if (PHIsInspected.insert(UserPN).second)
|
|
PHIsToSlice.push_back(UserPN);
|
|
continue;
|
|
}
|
|
|
|
// Truncates are always ok.
|
|
if (isa<TruncInst>(UserI)) {
|
|
PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
|
|
continue;
|
|
}
|
|
|
|
// Otherwise it must be a lshr which can only be used by one trunc.
|
|
if (UserI->getOpcode() != Instruction::LShr ||
|
|
!UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
|
|
!isa<ConstantInt>(UserI->getOperand(1)))
|
|
return nullptr;
|
|
|
|
// Bail on out of range shifts.
|
|
unsigned SizeInBits = UserI->getType()->getScalarSizeInBits();
|
|
if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits))
|
|
return nullptr;
|
|
|
|
unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
|
|
PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
|
|
}
|
|
}
|
|
|
|
// If we have no users, they must be all self uses, just nuke the PHI.
|
|
if (PHIUsers.empty())
|
|
return replaceInstUsesWith(FirstPhi, PoisonValue::get(FirstPhi.getType()));
|
|
|
|
// If this phi node is transformable, create new PHIs for all the pieces
|
|
// extracted out of it. First, sort the users by their offset and size.
|
|
array_pod_sort(PHIUsers.begin(), PHIUsers.end());
|
|
|
|
LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
|
|
for (unsigned I = 1; I != PHIsToSlice.size(); ++I) dbgs()
|
|
<< "AND USER PHI #" << I << ": " << *PHIsToSlice[I] << '\n');
|
|
|
|
// PredValues - This is a temporary used when rewriting PHI nodes. It is
|
|
// hoisted out here to avoid construction/destruction thrashing.
|
|
DenseMap<BasicBlock*, Value*> PredValues;
|
|
|
|
// ExtractedVals - Each new PHI we introduce is saved here so we don't
|
|
// introduce redundant PHIs.
|
|
DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
|
|
|
|
for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
|
|
unsigned PHIId = PHIUsers[UserI].PHIId;
|
|
PHINode *PN = PHIsToSlice[PHIId];
|
|
unsigned Offset = PHIUsers[UserI].Shift;
|
|
Type *Ty = PHIUsers[UserI].Inst->getType();
|
|
|
|
PHINode *EltPHI;
|
|
|
|
// If we've already lowered a user like this, reuse the previously lowered
|
|
// value.
|
|
if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
|
|
|
|
// Otherwise, Create the new PHI node for this user.
|
|
EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
|
|
PN->getName() + ".off" + Twine(Offset),
|
|
PN->getIterator());
|
|
assert(EltPHI->getType() != PN->getType() &&
|
|
"Truncate didn't shrink phi?");
|
|
|
|
for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) {
|
|
BasicBlock *Pred = std::get<0>(Incoming);
|
|
Value *InVal = std::get<1>(Incoming);
|
|
Value *&PredVal = PredValues[Pred];
|
|
|
|
// If we already have a value for this predecessor, reuse it.
|
|
if (PredVal) {
|
|
EltPHI->addIncoming(PredVal, Pred);
|
|
continue;
|
|
}
|
|
|
|
// Handle the PHI self-reuse case.
|
|
if (InVal == PN) {
|
|
PredVal = EltPHI;
|
|
EltPHI->addIncoming(PredVal, Pred);
|
|
continue;
|
|
}
|
|
|
|
if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
|
|
// If the incoming value was a PHI, and if it was one of the PHIs we
|
|
// already rewrote it, just use the lowered value.
|
|
if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
|
|
PredVal = Res;
|
|
EltPHI->addIncoming(PredVal, Pred);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, do an extract in the predecessor.
|
|
Builder.SetInsertPoint(Pred->getTerminator());
|
|
Value *Res = InVal;
|
|
if (Offset)
|
|
Res = Builder.CreateLShr(
|
|
Res, ConstantInt::get(InVal->getType(), Offset), "extract");
|
|
Res = Builder.CreateTrunc(Res, Ty, "extract.t");
|
|
PredVal = Res;
|
|
EltPHI->addIncoming(Res, Pred);
|
|
|
|
// If the incoming value was a PHI, and if it was one of the PHIs we are
|
|
// rewriting, we will ultimately delete the code we inserted. This
|
|
// means we need to revisit that PHI to make sure we extract out the
|
|
// needed piece.
|
|
if (PHINode *OldInVal = dyn_cast<PHINode>(InVal))
|
|
if (PHIsInspected.count(OldInVal)) {
|
|
unsigned RefPHIId =
|
|
find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
|
|
PHIUsers.push_back(
|
|
PHIUsageRecord(RefPHIId, Offset, cast<Instruction>(Res)));
|
|
++UserE;
|
|
}
|
|
}
|
|
PredValues.clear();
|
|
|
|
LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": "
|
|
<< *EltPHI << '\n');
|
|
ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
|
|
}
|
|
|
|
// Replace the use of this piece with the PHI node.
|
|
replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
|
|
}
|
|
|
|
// Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
|
|
// with poison.
|
|
Value *Poison = PoisonValue::get(FirstPhi.getType());
|
|
for (PHINode *PHI : drop_begin(PHIsToSlice))
|
|
replaceInstUsesWith(*PHI, Poison);
|
|
return replaceInstUsesWith(FirstPhi, Poison);
|
|
}
|
|
|
|
static Value *simplifyUsingControlFlow(InstCombiner &Self, PHINode &PN,
|
|
const DominatorTree &DT) {
|
|
// Simplify the following patterns:
|
|
// if (cond)
|
|
// / \
|
|
// ... ...
|
|
// \ /
|
|
// phi [true] [false]
|
|
// and
|
|
// switch (cond)
|
|
// case v1: / \ case v2:
|
|
// ... ...
|
|
// \ /
|
|
// phi [v1] [v2]
|
|
// Make sure all inputs are constants.
|
|
if (!all_of(PN.operands(), [](Value *V) { return isa<ConstantInt>(V); }))
|
|
return nullptr;
|
|
|
|
BasicBlock *BB = PN.getParent();
|
|
// Do not bother with unreachable instructions.
|
|
if (!DT.isReachableFromEntry(BB))
|
|
return nullptr;
|
|
|
|
// Determine which value the condition of the idom has for which successor.
|
|
LLVMContext &Context = PN.getContext();
|
|
auto *IDom = DT.getNode(BB)->getIDom()->getBlock();
|
|
Value *Cond;
|
|
SmallDenseMap<ConstantInt *, BasicBlock *, 8> SuccForValue;
|
|
SmallDenseMap<BasicBlock *, unsigned, 8> SuccCount;
|
|
auto AddSucc = [&](ConstantInt *C, BasicBlock *Succ) {
|
|
SuccForValue[C] = Succ;
|
|
++SuccCount[Succ];
|
|
};
|
|
if (auto *BI = dyn_cast<BranchInst>(IDom->getTerminator())) {
|
|
if (BI->isUnconditional())
|
|
return nullptr;
|
|
|
|
Cond = BI->getCondition();
|
|
AddSucc(ConstantInt::getTrue(Context), BI->getSuccessor(0));
|
|
AddSucc(ConstantInt::getFalse(Context), BI->getSuccessor(1));
|
|
} else if (auto *SI = dyn_cast<SwitchInst>(IDom->getTerminator())) {
|
|
Cond = SI->getCondition();
|
|
++SuccCount[SI->getDefaultDest()];
|
|
for (auto Case : SI->cases())
|
|
AddSucc(Case.getCaseValue(), Case.getCaseSuccessor());
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
if (Cond->getType() != PN.getType())
|
|
return nullptr;
|
|
|
|
// Check that edges outgoing from the idom's terminators dominate respective
|
|
// inputs of the Phi.
|
|
std::optional<bool> Invert;
|
|
for (auto Pair : zip(PN.incoming_values(), PN.blocks())) {
|
|
auto *Input = cast<ConstantInt>(std::get<0>(Pair));
|
|
BasicBlock *Pred = std::get<1>(Pair);
|
|
auto IsCorrectInput = [&](ConstantInt *Input) {
|
|
// The input needs to be dominated by the corresponding edge of the idom.
|
|
// This edge cannot be a multi-edge, as that would imply that multiple
|
|
// different condition values follow the same edge.
|
|
auto It = SuccForValue.find(Input);
|
|
return It != SuccForValue.end() && SuccCount[It->second] == 1 &&
|
|
DT.dominates(BasicBlockEdge(IDom, It->second),
|
|
BasicBlockEdge(Pred, BB));
|
|
};
|
|
|
|
// Depending on the constant, the condition may need to be inverted.
|
|
bool NeedsInvert;
|
|
if (IsCorrectInput(Input))
|
|
NeedsInvert = false;
|
|
else if (IsCorrectInput(cast<ConstantInt>(ConstantExpr::getNot(Input))))
|
|
NeedsInvert = true;
|
|
else
|
|
return nullptr;
|
|
|
|
// Make sure the inversion requirement is always the same.
|
|
if (Invert && *Invert != NeedsInvert)
|
|
return nullptr;
|
|
|
|
Invert = NeedsInvert;
|
|
}
|
|
|
|
if (!*Invert)
|
|
return Cond;
|
|
|
|
// This Phi is actually opposite to branching condition of IDom. We invert
|
|
// the condition that will potentially open up some opportunities for
|
|
// sinking.
|
|
auto InsertPt = BB->getFirstInsertionPt();
|
|
if (InsertPt != BB->end()) {
|
|
Self.Builder.SetInsertPoint(&*BB, InsertPt);
|
|
return Self.Builder.CreateNot(Cond);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Fold iv = phi(start, iv.next = iv2.next op start)
|
|
// where iv2 = phi(iv2.start, iv2.next = iv2 + iv2.step)
|
|
// and iv2.start op start = start
|
|
// to iv = iv2 op start
|
|
static Value *foldDependentIVs(PHINode &PN, IRBuilderBase &Builder) {
|
|
BasicBlock *BB = PN.getParent();
|
|
if (PN.getNumIncomingValues() != 2)
|
|
return nullptr;
|
|
|
|
Value *Start;
|
|
Instruction *IvNext;
|
|
BinaryOperator *Iv2Next;
|
|
auto MatchOuterIV = [&](Value *V1, Value *V2) {
|
|
if (match(V2, m_c_BinOp(m_Specific(V1), m_BinOp(Iv2Next))) ||
|
|
match(V2, m_GEP(m_Specific(V1), m_BinOp(Iv2Next)))) {
|
|
Start = V1;
|
|
IvNext = cast<Instruction>(V2);
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
if (!MatchOuterIV(PN.getIncomingValue(0), PN.getIncomingValue(1)) &&
|
|
!MatchOuterIV(PN.getIncomingValue(1), PN.getIncomingValue(0)))
|
|
return nullptr;
|
|
|
|
PHINode *Iv2;
|
|
Value *Iv2Start, *Iv2Step;
|
|
if (!matchSimpleRecurrence(Iv2Next, Iv2, Iv2Start, Iv2Step) ||
|
|
Iv2->getParent() != BB)
|
|
return nullptr;
|
|
|
|
auto *BO = dyn_cast<BinaryOperator>(IvNext);
|
|
Constant *Identity =
|
|
BO ? ConstantExpr::getBinOpIdentity(BO->getOpcode(), Iv2Start->getType())
|
|
: Constant::getNullValue(Iv2Start->getType());
|
|
if (Iv2Start != Identity)
|
|
return nullptr;
|
|
|
|
Builder.SetInsertPoint(&*BB, BB->getFirstInsertionPt());
|
|
if (!BO) {
|
|
auto *GEP = cast<GEPOperator>(IvNext);
|
|
return Builder.CreateGEP(GEP->getSourceElementType(), Start, Iv2, "",
|
|
cast<GEPOperator>(IvNext)->getNoWrapFlags());
|
|
}
|
|
|
|
assert(BO->isCommutative() && "Must be commutative");
|
|
Value *Res = Builder.CreateBinOp(BO->getOpcode(), Iv2, Start);
|
|
cast<Instruction>(Res)->copyIRFlags(BO);
|
|
return Res;
|
|
}
|
|
|
|
// PHINode simplification
|
|
//
|
|
Instruction *InstCombinerImpl::visitPHINode(PHINode &PN) {
|
|
if (Value *V = simplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
|
|
return replaceInstUsesWith(PN, V);
|
|
|
|
if (Instruction *Result = foldPHIArgZextsIntoPHI(PN))
|
|
return Result;
|
|
|
|
if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN))
|
|
return Result;
|
|
|
|
// If all PHI operands are the same operation, pull them through the PHI,
|
|
// reducing code size.
|
|
auto *Inst0 = dyn_cast<Instruction>(PN.getIncomingValue(0));
|
|
auto *Inst1 = dyn_cast<Instruction>(PN.getIncomingValue(1));
|
|
if (Inst0 && Inst1 && Inst0->getOpcode() == Inst1->getOpcode() &&
|
|
Inst0->hasOneUser())
|
|
if (Instruction *Result = foldPHIArgOpIntoPHI(PN))
|
|
return Result;
|
|
|
|
// If the incoming values are pointer casts of the same original value,
|
|
// replace the phi with a single cast iff we can insert a non-PHI instruction.
|
|
if (PN.getType()->isPointerTy() &&
|
|
PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) {
|
|
Value *IV0 = PN.getIncomingValue(0);
|
|
Value *IV0Stripped = IV0->stripPointerCasts();
|
|
// Set to keep track of values known to be equal to IV0Stripped after
|
|
// stripping pointer casts.
|
|
SmallPtrSet<Value *, 4> CheckedIVs;
|
|
CheckedIVs.insert(IV0);
|
|
if (IV0 != IV0Stripped &&
|
|
all_of(PN.incoming_values(), [&CheckedIVs, IV0Stripped](Value *IV) {
|
|
return !CheckedIVs.insert(IV).second ||
|
|
IV0Stripped == IV->stripPointerCasts();
|
|
})) {
|
|
return CastInst::CreatePointerCast(IV0Stripped, PN.getType());
|
|
}
|
|
}
|
|
|
|
if (foldDeadPhiWeb(PN))
|
|
return nullptr;
|
|
|
|
// Optimization when the phi only has one use
|
|
if (PN.hasOneUse()) {
|
|
if (foldIntegerTypedPHI(PN))
|
|
return nullptr;
|
|
|
|
// If this phi has a single use, and if that use just computes a value for
|
|
// the next iteration of a loop, delete the phi. This occurs with unused
|
|
// induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
|
|
// common case here is good because the only other things that catch this
|
|
// are induction variable analysis (sometimes) and ADCE, which is only run
|
|
// late.
|
|
Instruction *PHIUser = cast<Instruction>(PN.user_back());
|
|
if (PHIUser->hasOneUse() &&
|
|
(isa<BinaryOperator>(PHIUser) || isa<UnaryOperator>(PHIUser) ||
|
|
isa<GetElementPtrInst>(PHIUser)) &&
|
|
PHIUser->user_back() == &PN) {
|
|
return replaceInstUsesWith(PN, PoisonValue::get(PN.getType()));
|
|
}
|
|
}
|
|
|
|
// When a PHI is used only to be compared with zero, it is safe to replace
|
|
// an incoming value proved as known nonzero with any non-zero constant.
|
|
// For example, in the code below, the incoming value %v can be replaced
|
|
// with any non-zero constant based on the fact that the PHI is only used to
|
|
// be compared with zero and %v is a known non-zero value:
|
|
// %v = select %cond, 1, 2
|
|
// %p = phi [%v, BB] ...
|
|
// icmp eq, %p, 0
|
|
// FIXME: To be simple, handle only integer type for now.
|
|
// This handles a small number of uses to keep the complexity down, and an
|
|
// icmp(or(phi)) can equally be replaced with any non-zero constant as the
|
|
// "or" will only add bits.
|
|
if (!PN.hasNUsesOrMore(3)) {
|
|
SmallVector<Instruction *> DropPoisonFlags;
|
|
bool AllUsesOfPhiEndsInCmp = all_of(PN.users(), [&](User *U) {
|
|
auto *CmpInst = dyn_cast<ICmpInst>(U);
|
|
if (!CmpInst) {
|
|
// This is always correct as OR only add bits and we are checking
|
|
// against 0.
|
|
if (U->hasOneUse() && match(U, m_c_Or(m_Specific(&PN), m_Value()))) {
|
|
DropPoisonFlags.push_back(cast<Instruction>(U));
|
|
CmpInst = dyn_cast<ICmpInst>(U->user_back());
|
|
}
|
|
}
|
|
if (!CmpInst || !isa<IntegerType>(PN.getType()) ||
|
|
!CmpInst->isEquality() || !match(CmpInst->getOperand(1), m_Zero())) {
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
// All uses of PHI results in a compare with zero.
|
|
if (AllUsesOfPhiEndsInCmp) {
|
|
ConstantInt *NonZeroConst = nullptr;
|
|
bool MadeChange = false;
|
|
for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
|
|
Instruction *CtxI = PN.getIncomingBlock(I)->getTerminator();
|
|
Value *VA = PN.getIncomingValue(I);
|
|
if (isKnownNonZero(VA, getSimplifyQuery().getWithInstruction(CtxI))) {
|
|
if (!NonZeroConst)
|
|
NonZeroConst = getAnyNonZeroConstInt(PN);
|
|
if (NonZeroConst != VA) {
|
|
replaceOperand(PN, I, NonZeroConst);
|
|
// The "disjoint" flag may no longer hold after the transform.
|
|
for (Instruction *I : DropPoisonFlags)
|
|
I->dropPoisonGeneratingFlags();
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
}
|
|
if (MadeChange)
|
|
return &PN;
|
|
}
|
|
}
|
|
|
|
// We sometimes end up with phi cycles that non-obviously end up being the
|
|
// same value, for example:
|
|
// z = some value; x = phi (y, z); y = phi (x, z)
|
|
// where the phi nodes don't necessarily need to be in the same block. Do a
|
|
// quick check to see if the PHI node only contains a single non-phi value, if
|
|
// so, scan to see if the phi cycle is actually equal to that value. If the
|
|
// phi has no non-phi values then allow the "NonPhiInVal" to be set later if
|
|
// one of the phis itself does not have a single input.
|
|
{
|
|
unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
|
|
// Scan for the first non-phi operand.
|
|
while (InValNo != NumIncomingVals &&
|
|
isa<PHINode>(PN.getIncomingValue(InValNo)))
|
|
++InValNo;
|
|
|
|
Value *NonPhiInVal =
|
|
InValNo != NumIncomingVals ? PN.getIncomingValue(InValNo) : nullptr;
|
|
|
|
// Scan the rest of the operands to see if there are any conflicts, if so
|
|
// there is no need to recursively scan other phis.
|
|
if (NonPhiInVal)
|
|
for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
|
|
Value *OpVal = PN.getIncomingValue(InValNo);
|
|
if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
|
|
break;
|
|
}
|
|
|
|
// If we scanned over all operands, then we have one unique value plus
|
|
// phi values. Scan PHI nodes to see if they all merge in each other or
|
|
// the value.
|
|
if (InValNo == NumIncomingVals) {
|
|
SmallPtrSet<PHINode *, 16> ValueEqualPHIs;
|
|
if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
|
|
return replaceInstUsesWith(PN, NonPhiInVal);
|
|
}
|
|
}
|
|
|
|
// If there are multiple PHIs, sort their operands so that they all list
|
|
// the blocks in the same order. This will help identical PHIs be eliminated
|
|
// by other passes. Other passes shouldn't depend on this for correctness
|
|
// however.
|
|
auto Res = PredOrder.try_emplace(PN.getParent());
|
|
if (!Res.second) {
|
|
const auto &Preds = Res.first->second;
|
|
for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) {
|
|
BasicBlock *BBA = PN.getIncomingBlock(I);
|
|
BasicBlock *BBB = Preds[I];
|
|
if (BBA != BBB) {
|
|
Value *VA = PN.getIncomingValue(I);
|
|
unsigned J = PN.getBasicBlockIndex(BBB);
|
|
Value *VB = PN.getIncomingValue(J);
|
|
PN.setIncomingBlock(I, BBB);
|
|
PN.setIncomingValue(I, VB);
|
|
PN.setIncomingBlock(J, BBA);
|
|
PN.setIncomingValue(J, VA);
|
|
// NOTE: Instcombine normally would want us to "return &PN" if we
|
|
// modified any of the operands of an instruction. However, since we
|
|
// aren't adding or removing uses (just rearranging them) we don't do
|
|
// this in this case.
|
|
}
|
|
}
|
|
} else {
|
|
// Remember the block order of the first encountered phi node.
|
|
append_range(Res.first->second, PN.blocks());
|
|
}
|
|
|
|
// Is there an identical PHI node in this basic block?
|
|
for (PHINode &IdenticalPN : PN.getParent()->phis()) {
|
|
// Ignore the PHI node itself.
|
|
if (&IdenticalPN == &PN)
|
|
continue;
|
|
// Note that even though we've just canonicalized this PHI, due to the
|
|
// worklist visitation order, there are no guarantess that *every* PHI
|
|
// has been canonicalized, so we can't just compare operands ranges.
|
|
if (!PN.isIdenticalToWhenDefined(&IdenticalPN))
|
|
continue;
|
|
// Just use that PHI instead then.
|
|
++NumPHICSEs;
|
|
return replaceInstUsesWith(PN, &IdenticalPN);
|
|
}
|
|
|
|
// If this is an integer PHI and we know that it has an illegal type, see if
|
|
// it is only used by trunc or trunc(lshr) operations. If so, we split the
|
|
// PHI into the various pieces being extracted. This sort of thing is
|
|
// introduced when SROA promotes an aggregate to a single large integer type.
|
|
if (PN.getType()->isIntegerTy() &&
|
|
!DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
|
|
if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
|
|
return Res;
|
|
|
|
// Ultimately, try to replace this Phi with a dominating condition.
|
|
if (auto *V = simplifyUsingControlFlow(*this, PN, DT))
|
|
return replaceInstUsesWith(PN, V);
|
|
|
|
if (Value *Res = foldDependentIVs(PN, Builder))
|
|
return replaceInstUsesWith(PN, Res);
|
|
|
|
return nullptr;
|
|
}
|