llvm-project/llvm/lib/Transforms/Utils/AMDGPUEmitPrintf.cpp
Alex Voicu d4216b5d0b
[clang][CodeGen][AMDGPU] Enable AMDGPU printf for spirv64-amd-amdhsa (#97132)
This enables the AMDGPU specific implementation of `printf` when
compiling for AMDGCN flavoured SPIR-V, the consequence being that the
expansion into ROCDL calls & friends gets expanded before "lowering" to
SPIR-V and gets carried through. The only relatively "novel" aspect is
that the `callAppendStringN` is simplified to take the type of the
passed in arguments, as opposed to querying them from the module. This
is a neutral change since the arguments were passed directly to the
call, without any attempt to cast them, hence the assumption that the
actual types match the formal ones was already baked in.
2024-07-05 14:08:07 +01:00

535 lines
20 KiB
C++

//===- AMDGPUEmitPrintf.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Utility function to lower a printf call into a series of device
// library calls on the AMDGPU target.
//
// WARNING: This file knows about certain library functions. It recognizes them
// by name, and hardwires knowledge of their semantics.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/AMDGPUEmitPrintf.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
#define DEBUG_TYPE "amdgpu-emit-printf"
static Value *fitArgInto64Bits(IRBuilder<> &Builder, Value *Arg) {
auto Int64Ty = Builder.getInt64Ty();
auto Ty = Arg->getType();
if (auto IntTy = dyn_cast<IntegerType>(Ty)) {
switch (IntTy->getBitWidth()) {
case 32:
return Builder.CreateZExt(Arg, Int64Ty);
case 64:
return Arg;
}
}
if (Ty->getTypeID() == Type::DoubleTyID) {
return Builder.CreateBitCast(Arg, Int64Ty);
}
if (isa<PointerType>(Ty)) {
return Builder.CreatePtrToInt(Arg, Int64Ty);
}
llvm_unreachable("unexpected type");
}
static Value *callPrintfBegin(IRBuilder<> &Builder, Value *Version) {
auto Int64Ty = Builder.getInt64Ty();
auto M = Builder.GetInsertBlock()->getModule();
auto Fn = M->getOrInsertFunction("__ockl_printf_begin", Int64Ty, Int64Ty);
return Builder.CreateCall(Fn, Version);
}
static Value *callAppendArgs(IRBuilder<> &Builder, Value *Desc, int NumArgs,
Value *Arg0, Value *Arg1, Value *Arg2, Value *Arg3,
Value *Arg4, Value *Arg5, Value *Arg6,
bool IsLast) {
auto Int64Ty = Builder.getInt64Ty();
auto Int32Ty = Builder.getInt32Ty();
auto M = Builder.GetInsertBlock()->getModule();
auto Fn = M->getOrInsertFunction("__ockl_printf_append_args", Int64Ty,
Int64Ty, Int32Ty, Int64Ty, Int64Ty, Int64Ty,
Int64Ty, Int64Ty, Int64Ty, Int64Ty, Int32Ty);
auto IsLastValue = Builder.getInt32(IsLast);
auto NumArgsValue = Builder.getInt32(NumArgs);
return Builder.CreateCall(Fn, {Desc, NumArgsValue, Arg0, Arg1, Arg2, Arg3,
Arg4, Arg5, Arg6, IsLastValue});
}
static Value *appendArg(IRBuilder<> &Builder, Value *Desc, Value *Arg,
bool IsLast) {
auto Arg0 = fitArgInto64Bits(Builder, Arg);
auto Zero = Builder.getInt64(0);
return callAppendArgs(Builder, Desc, 1, Arg0, Zero, Zero, Zero, Zero, Zero,
Zero, IsLast);
}
// The device library does not provide strlen, so we build our own loop
// here. While we are at it, we also include the terminating null in the length.
static Value *getStrlenWithNull(IRBuilder<> &Builder, Value *Str) {
auto *Prev = Builder.GetInsertBlock();
Module *M = Prev->getModule();
auto CharZero = Builder.getInt8(0);
auto One = Builder.getInt64(1);
auto Zero = Builder.getInt64(0);
auto Int64Ty = Builder.getInt64Ty();
// The length is either zero for a null pointer, or the computed value for an
// actual string. We need a join block for a phi that represents the final
// value.
//
// Strictly speaking, the zero does not matter since
// __ockl_printf_append_string_n ignores the length if the pointer is null.
BasicBlock *Join = nullptr;
if (Prev->getTerminator()) {
Join = Prev->splitBasicBlock(Builder.GetInsertPoint(),
"strlen.join");
Prev->getTerminator()->eraseFromParent();
} else {
Join = BasicBlock::Create(M->getContext(), "strlen.join",
Prev->getParent());
}
BasicBlock *While =
BasicBlock::Create(M->getContext(), "strlen.while",
Prev->getParent(), Join);
BasicBlock *WhileDone = BasicBlock::Create(
M->getContext(), "strlen.while.done",
Prev->getParent(), Join);
// Emit an early return for when the pointer is null.
Builder.SetInsertPoint(Prev);
auto CmpNull =
Builder.CreateICmpEQ(Str, Constant::getNullValue(Str->getType()));
BranchInst::Create(Join, While, CmpNull, Prev);
// Entry to the while loop.
Builder.SetInsertPoint(While);
auto PtrPhi = Builder.CreatePHI(Str->getType(), 2);
PtrPhi->addIncoming(Str, Prev);
auto PtrNext = Builder.CreateGEP(Builder.getInt8Ty(), PtrPhi, One);
PtrPhi->addIncoming(PtrNext, While);
// Condition for the while loop.
auto Data = Builder.CreateLoad(Builder.getInt8Ty(), PtrPhi);
auto Cmp = Builder.CreateICmpEQ(Data, CharZero);
Builder.CreateCondBr(Cmp, WhileDone, While);
// Add one to the computed length.
Builder.SetInsertPoint(WhileDone, WhileDone->begin());
auto Begin = Builder.CreatePtrToInt(Str, Int64Ty);
auto End = Builder.CreatePtrToInt(PtrPhi, Int64Ty);
auto Len = Builder.CreateSub(End, Begin);
Len = Builder.CreateAdd(Len, One);
// Final join.
BranchInst::Create(Join, WhileDone);
Builder.SetInsertPoint(Join, Join->begin());
auto LenPhi = Builder.CreatePHI(Len->getType(), 2);
LenPhi->addIncoming(Len, WhileDone);
LenPhi->addIncoming(Zero, Prev);
return LenPhi;
}
static Value *callAppendStringN(IRBuilder<> &Builder, Value *Desc, Value *Str,
Value *Length, bool isLast) {
auto Int64Ty = Builder.getInt64Ty();
auto IsLastInt32 = Builder.getInt32(isLast);
auto M = Builder.GetInsertBlock()->getModule();
auto Fn = M->getOrInsertFunction("__ockl_printf_append_string_n", Int64Ty,
Desc->getType(), Str->getType(),
Length->getType(), IsLastInt32->getType());
return Builder.CreateCall(Fn, {Desc, Str, Length, IsLastInt32});
}
static Value *appendString(IRBuilder<> &Builder, Value *Desc, Value *Arg,
bool IsLast) {
auto Length = getStrlenWithNull(Builder, Arg);
return callAppendStringN(Builder, Desc, Arg, Length, IsLast);
}
static Value *processArg(IRBuilder<> &Builder, Value *Desc, Value *Arg,
bool SpecIsCString, bool IsLast) {
if (SpecIsCString && isa<PointerType>(Arg->getType())) {
return appendString(Builder, Desc, Arg, IsLast);
}
// If the format specifies a string but the argument is not, the frontend will
// have printed a warning. We just rely on undefined behaviour and send the
// argument anyway.
return appendArg(Builder, Desc, Arg, IsLast);
}
// Scan the format string to locate all specifiers, and mark the ones that
// specify a string, i.e, the "%s" specifier with optional '*' characters.
static void locateCStrings(SparseBitVector<8> &BV, StringRef Str) {
static const char ConvSpecifiers[] = "diouxXfFeEgGaAcspn";
size_t SpecPos = 0;
// Skip the first argument, the format string.
unsigned ArgIdx = 1;
while ((SpecPos = Str.find_first_of('%', SpecPos)) != StringRef::npos) {
if (Str[SpecPos + 1] == '%') {
SpecPos += 2;
continue;
}
auto SpecEnd = Str.find_first_of(ConvSpecifiers, SpecPos);
if (SpecEnd == StringRef::npos)
return;
auto Spec = Str.slice(SpecPos, SpecEnd + 1);
ArgIdx += Spec.count('*');
if (Str[SpecEnd] == 's') {
BV.set(ArgIdx);
}
SpecPos = SpecEnd + 1;
++ArgIdx;
}
}
// helper struct to package the string related data
struct StringData {
StringRef Str;
Value *RealSize = nullptr;
Value *AlignedSize = nullptr;
bool IsConst = true;
StringData(StringRef ST, Value *RS, Value *AS, bool IC)
: Str(ST), RealSize(RS), AlignedSize(AS), IsConst(IC) {}
};
// Calculates frame size required for current printf expansion and allocates
// space on printf buffer. Printf frame includes following contents
// [ ControlDWord , format string/Hash , Arguments (each aligned to 8 byte) ]
static Value *callBufferedPrintfStart(
IRBuilder<> &Builder, ArrayRef<Value *> Args, Value *Fmt,
bool isConstFmtStr, SparseBitVector<8> &SpecIsCString,
SmallVectorImpl<StringData> &StringContents, Value *&ArgSize) {
Module *M = Builder.GetInsertBlock()->getModule();
Value *NonConstStrLen = nullptr;
Value *LenWithNull = nullptr;
Value *LenWithNullAligned = nullptr;
Value *TempAdd = nullptr;
// First 4 bytes to be reserved for control dword
size_t BufSize = 4;
if (isConstFmtStr)
// First 8 bytes of MD5 hash
BufSize += 8;
else {
LenWithNull = getStrlenWithNull(Builder, Fmt);
// Align the computed length to next 8 byte boundary
TempAdd = Builder.CreateAdd(LenWithNull,
ConstantInt::get(LenWithNull->getType(), 7U));
NonConstStrLen = Builder.CreateAnd(
TempAdd, ConstantInt::get(LenWithNull->getType(), ~7U));
StringContents.push_back(
StringData(StringRef(), LenWithNull, NonConstStrLen, false));
}
for (size_t i = 1; i < Args.size(); i++) {
if (SpecIsCString.test(i)) {
StringRef ArgStr;
if (getConstantStringInfo(Args[i], ArgStr)) {
auto alignedLen = alignTo(ArgStr.size() + 1, 8);
StringContents.push_back(StringData(
ArgStr,
/*RealSize*/ nullptr, /*AlignedSize*/ nullptr, /*IsConst*/ true));
BufSize += alignedLen;
} else {
LenWithNull = getStrlenWithNull(Builder, Args[i]);
// Align the computed length to next 8 byte boundary
TempAdd = Builder.CreateAdd(
LenWithNull, ConstantInt::get(LenWithNull->getType(), 7U));
LenWithNullAligned = Builder.CreateAnd(
TempAdd, ConstantInt::get(LenWithNull->getType(), ~7U));
if (NonConstStrLen) {
auto Val = Builder.CreateAdd(LenWithNullAligned, NonConstStrLen,
"cumulativeAdd");
NonConstStrLen = Val;
} else
NonConstStrLen = LenWithNullAligned;
StringContents.push_back(
StringData(StringRef(), LenWithNull, LenWithNullAligned, false));
}
} else {
int AllocSize = M->getDataLayout().getTypeAllocSize(Args[i]->getType());
// We end up expanding non string arguments to 8 bytes
// (args smaller than 8 bytes)
BufSize += std::max(AllocSize, 8);
}
}
// calculate final size value to be passed to printf_alloc
Value *SizeToReserve = ConstantInt::get(Builder.getInt64Ty(), BufSize, false);
SmallVector<Value *, 1> Alloc_args;
if (NonConstStrLen)
SizeToReserve = Builder.CreateAdd(NonConstStrLen, SizeToReserve);
ArgSize = Builder.CreateTrunc(SizeToReserve, Builder.getInt32Ty());
Alloc_args.push_back(ArgSize);
// call the printf_alloc function
AttributeList Attr = AttributeList::get(
Builder.getContext(), AttributeList::FunctionIndex, Attribute::NoUnwind);
Type *Tys_alloc[1] = {Builder.getInt32Ty()};
Type *PtrTy =
Builder.getPtrTy(M->getDataLayout().getDefaultGlobalsAddressSpace());
FunctionType *FTy_alloc = FunctionType::get(PtrTy, Tys_alloc, false);
auto PrintfAllocFn =
M->getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr);
return Builder.CreateCall(PrintfAllocFn, Alloc_args, "printf_alloc_fn");
}
// Prepare constant string argument to push onto the buffer
static void processConstantStringArg(StringData *SD, IRBuilder<> &Builder,
SmallVectorImpl<Value *> &WhatToStore) {
std::string Str(SD->Str.str() + '\0');
DataExtractor Extractor(Str, /*IsLittleEndian=*/true, 8);
DataExtractor::Cursor Offset(0);
while (Offset && Offset.tell() < Str.size()) {
const uint64_t ReadSize = 4;
uint64_t ReadNow = std::min(ReadSize, Str.size() - Offset.tell());
uint64_t ReadBytes = 0;
switch (ReadNow) {
default:
llvm_unreachable("min(4, X) > 4?");
case 1:
ReadBytes = Extractor.getU8(Offset);
break;
case 2:
ReadBytes = Extractor.getU16(Offset);
break;
case 3:
ReadBytes = Extractor.getU24(Offset);
break;
case 4:
ReadBytes = Extractor.getU32(Offset);
break;
}
cantFail(Offset.takeError(), "failed to read bytes from constant array");
APInt IntVal(8 * ReadSize, ReadBytes);
// TODO: Should not bother aligning up.
if (ReadNow < ReadSize)
IntVal = IntVal.zext(8 * ReadSize);
Type *IntTy = Type::getIntNTy(Builder.getContext(), IntVal.getBitWidth());
WhatToStore.push_back(ConstantInt::get(IntTy, IntVal));
}
// Additional padding for 8 byte alignment
int Rem = (Str.size() % 8);
if (Rem > 0 && Rem <= 4)
WhatToStore.push_back(ConstantInt::get(Builder.getInt32Ty(), 0));
}
static Value *processNonStringArg(Value *Arg, IRBuilder<> &Builder) {
const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
auto Ty = Arg->getType();
if (auto IntTy = dyn_cast<IntegerType>(Ty)) {
if (IntTy->getBitWidth() < 64) {
return Builder.CreateZExt(Arg, Builder.getInt64Ty());
}
}
if (Ty->isFloatingPointTy()) {
if (DL.getTypeAllocSize(Ty) < 8) {
return Builder.CreateFPExt(Arg, Builder.getDoubleTy());
}
}
return Arg;
}
static void
callBufferedPrintfArgPush(IRBuilder<> &Builder, ArrayRef<Value *> Args,
Value *PtrToStore, SparseBitVector<8> &SpecIsCString,
SmallVectorImpl<StringData> &StringContents,
bool IsConstFmtStr) {
Module *M = Builder.GetInsertBlock()->getModule();
const DataLayout &DL = M->getDataLayout();
auto StrIt = StringContents.begin();
size_t i = IsConstFmtStr ? 1 : 0;
for (; i < Args.size(); i++) {
SmallVector<Value *, 32> WhatToStore;
if ((i == 0) || SpecIsCString.test(i)) {
if (StrIt->IsConst) {
processConstantStringArg(StrIt, Builder, WhatToStore);
StrIt++;
} else {
// This copies the contents of the string, however the next offset
// is at aligned length, the extra space that might be created due
// to alignment padding is not populated with any specific value
// here. This would be safe as long as runtime is sync with
// the offsets.
Builder.CreateMemCpy(PtrToStore, /*DstAlign*/ Align(1), Args[i],
/*SrcAlign*/ Args[i]->getPointerAlignment(DL),
StrIt->RealSize);
PtrToStore =
Builder.CreateInBoundsGEP(Builder.getInt8Ty(), PtrToStore,
{StrIt->AlignedSize}, "PrintBuffNextPtr");
LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:"
<< *PtrToStore << '\n');
// done with current argument, move to next
StrIt++;
continue;
}
} else {
WhatToStore.push_back(processNonStringArg(Args[i], Builder));
}
for (Value *toStore : WhatToStore) {
StoreInst *StBuff = Builder.CreateStore(toStore, PtrToStore);
LLVM_DEBUG(dbgs() << "inserting store to printf buffer:" << *StBuff
<< '\n');
(void)StBuff;
PtrToStore = Builder.CreateConstInBoundsGEP1_32(
Builder.getInt8Ty(), PtrToStore,
M->getDataLayout().getTypeAllocSize(toStore->getType()),
"PrintBuffNextPtr");
LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:" << *PtrToStore
<< '\n');
}
}
}
Value *llvm::emitAMDGPUPrintfCall(IRBuilder<> &Builder, ArrayRef<Value *> Args,
bool IsBuffered) {
auto NumOps = Args.size();
assert(NumOps >= 1);
auto Fmt = Args[0];
SparseBitVector<8> SpecIsCString;
StringRef FmtStr;
if (getConstantStringInfo(Fmt, FmtStr))
locateCStrings(SpecIsCString, FmtStr);
if (IsBuffered) {
SmallVector<StringData, 8> StringContents;
Module *M = Builder.GetInsertBlock()->getModule();
LLVMContext &Ctx = Builder.getContext();
auto Int8Ty = Builder.getInt8Ty();
auto Int32Ty = Builder.getInt32Ty();
bool IsConstFmtStr = !FmtStr.empty();
Value *ArgSize = nullptr;
Value *Ptr =
callBufferedPrintfStart(Builder, Args, Fmt, IsConstFmtStr,
SpecIsCString, StringContents, ArgSize);
// The buffered version still follows OpenCL printf standards for
// printf return value, i.e 0 on success, -1 on failure.
ConstantPointerNull *zeroIntPtr =
ConstantPointerNull::get(cast<PointerType>(Ptr->getType()));
auto *Cmp = cast<ICmpInst>(Builder.CreateICmpNE(Ptr, zeroIntPtr, ""));
BasicBlock *End = BasicBlock::Create(Ctx, "end.block",
Builder.GetInsertBlock()->getParent());
BasicBlock *ArgPush = BasicBlock::Create(
Ctx, "argpush.block", Builder.GetInsertBlock()->getParent());
BranchInst::Create(ArgPush, End, Cmp, Builder.GetInsertBlock());
Builder.SetInsertPoint(ArgPush);
// Create controlDWord and store as the first entry, format as follows
// Bit 0 (LSB) -> stream (1 if stderr, 0 if stdout, printf always outputs to
// stdout) Bit 1 -> constant format string (1 if constant) Bits 2-31 -> size
// of printf data frame
auto ConstantTwo = Builder.getInt32(2);
auto ControlDWord = Builder.CreateShl(ArgSize, ConstantTwo);
if (IsConstFmtStr)
ControlDWord = Builder.CreateOr(ControlDWord, ConstantTwo);
Builder.CreateStore(ControlDWord, Ptr);
Ptr = Builder.CreateConstInBoundsGEP1_32(Int8Ty, Ptr, 4);
// Create MD5 hash for costant format string, push low 64 bits of the
// same onto buffer and metadata.
NamedMDNode *metaD = M->getOrInsertNamedMetadata("llvm.printf.fmts");
if (IsConstFmtStr) {
MD5 Hasher;
MD5::MD5Result Hash;
Hasher.update(FmtStr);
Hasher.final(Hash);
// Try sticking to llvm.printf.fmts format, although we are not going to
// use the ID and argument size fields while printing,
std::string MetadataStr =
"0:0:" + llvm::utohexstr(Hash.low(), /*LowerCase=*/true) + "," +
FmtStr.str();
MDString *fmtStrArray = MDString::get(Ctx, MetadataStr);
MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
metaD->addOperand(myMD);
Builder.CreateStore(Builder.getInt64(Hash.low()), Ptr);
Ptr = Builder.CreateConstInBoundsGEP1_32(Int8Ty, Ptr, 8);
} else {
// Include a dummy metadata instance in case of only non constant
// format string usage, This might be an absurd usecase but needs to
// be done for completeness
if (metaD->getNumOperands() == 0) {
MDString *fmtStrArray =
MDString::get(Ctx, "0:0:ffffffff,\"Non const format string\"");
MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
metaD->addOperand(myMD);
}
}
// Push The printf arguments onto buffer
callBufferedPrintfArgPush(Builder, Args, Ptr, SpecIsCString, StringContents,
IsConstFmtStr);
// End block, returns -1 on failure
BranchInst::Create(End, ArgPush);
Builder.SetInsertPoint(End);
return Builder.CreateSExt(Builder.CreateNot(Cmp), Int32Ty, "printf_result");
}
auto Desc = callPrintfBegin(Builder, Builder.getIntN(64, 0));
Desc = appendString(Builder, Desc, Fmt, NumOps == 1);
// FIXME: This invokes hostcall once for each argument. We can pack up to
// seven scalar printf arguments in a single hostcall. See the signature of
// callAppendArgs().
for (unsigned int i = 1; i != NumOps; ++i) {
bool IsLast = i == NumOps - 1;
bool IsCString = SpecIsCString.test(i);
Desc = processArg(Builder, Desc, Args[i], IsCString, IsLast);
}
return Builder.CreateTrunc(Desc, Builder.getInt32Ty());
}