llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp
Jeremy Morse 5328c732a4
[DebugInfo] Strip more debug-intrinsic code from local utils (#149037)
SROA and a few other facilities use generic-lambdas and some overloaded
functions to deal with both intrinsics and debug-records at the same time.
As part of stripping out intrinsic support, delete a swathe of this code
from things in the Utils directory.

This is a large diff, but is mostly about removing functions that were
duplicated during the migration to debug records. I've taken a few
opportunities to replace comments about "intrinsics" with "records",
and replace generic lambdas with plain lambdas (I believe this makes
it more readable).

All of this is chipping away at intrinsic-specific code until we get to
removing parts of findDbgUsers, which is the final boss -- we can't
remove that until almost everything else is gone.
2025-07-16 14:13:53 +01:00

1260 lines
49 KiB
C++

//===- CloneFunction.cpp - Clone a function into another function ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the CloneFunctionInto interface, which is used as the
// low-level function cloner. This is used by the CloneFunction and function
// inliner to do the dirty work of copying the body of a function around.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/AttributeMask.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <map>
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "clone-function"
STATISTIC(RemappedAtomMax, "Highest global NextAtomGroup (after mapping)");
void llvm::mapAtomInstance(const DebugLoc &DL, ValueToValueMapTy &VMap) {
auto CurGroup = DL->getAtomGroup();
if (!CurGroup)
return;
// Try inserting a new entry. If there's already a mapping for this atom
// then there's nothing to do.
auto [It, Inserted] = VMap.AtomMap.insert({{DL.getInlinedAt(), CurGroup}, 0});
if (!Inserted)
return;
// Map entry to a new atom group.
uint64_t NewGroup = DL->getContext().incNextDILocationAtomGroup();
assert(NewGroup > CurGroup && "Next should always be greater than current");
It->second = NewGroup;
RemappedAtomMax = std::max<uint64_t>(NewGroup, RemappedAtomMax);
}
namespace {
void collectDebugInfoFromInstructions(const Function &F,
DebugInfoFinder &DIFinder) {
const Module *M = F.getParent();
if (M) {
// Inspect instructions to process e.g. DILexicalBlocks of inlined functions
for (const auto &I : instructions(F))
DIFinder.processInstruction(*M, I);
}
}
// Create a predicate that matches the metadata that should be identity mapped
// during function cloning.
MetadataPredicate createIdentityMDPredicate(const Function &F,
CloneFunctionChangeType Changes) {
if (Changes >= CloneFunctionChangeType::DifferentModule)
return [](const Metadata *MD) { return false; };
DISubprogram *SPClonedWithinModule = F.getSubprogram();
// Don't clone inlined subprograms.
auto ShouldKeep = [SPClonedWithinModule](const DISubprogram *SP) -> bool {
return SP != SPClonedWithinModule;
};
return [=](const Metadata *MD) {
// Avoid cloning types, compile units, and (other) subprograms.
if (isa<DICompileUnit>(MD) || isa<DIType>(MD))
return true;
if (auto *SP = dyn_cast<DISubprogram>(MD))
return ShouldKeep(SP);
// If a subprogram isn't going to be cloned skip its lexical blocks as well.
if (auto *LScope = dyn_cast<DILocalScope>(MD))
return ShouldKeep(LScope->getSubprogram());
// Avoid cloning local variables of subprograms that won't be cloned.
if (auto *DV = dyn_cast<DILocalVariable>(MD))
if (auto *S = dyn_cast_or_null<DILocalScope>(DV->getScope()))
return ShouldKeep(S->getSubprogram());
return false;
};
}
} // namespace
/// See comments in Cloning.h.
BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
const Twine &NameSuffix, Function *F,
ClonedCodeInfo *CodeInfo, bool MapAtoms) {
BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
if (BB->hasName())
NewBB->setName(BB->getName() + NameSuffix);
bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false;
// Loop over all instructions, and copy them over.
for (const Instruction &I : *BB) {
Instruction *NewInst = I.clone();
if (I.hasName())
NewInst->setName(I.getName() + NameSuffix);
NewInst->insertBefore(*NewBB, NewBB->end());
NewInst->cloneDebugInfoFrom(&I);
VMap[&I] = NewInst; // Add instruction map to value.
if (MapAtoms) {
if (const DebugLoc &DL = NewInst->getDebugLoc())
mapAtomInstance(DL.get(), VMap);
}
if (isa<CallInst>(I) && !I.isDebugOrPseudoInst()) {
hasCalls = true;
hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_memprof);
hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_callsite);
}
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
if (!AI->isStaticAlloca()) {
hasDynamicAllocas = true;
}
}
}
if (CodeInfo) {
CodeInfo->ContainsCalls |= hasCalls;
CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
}
return NewBB;
}
void llvm::CloneFunctionAttributesInto(Function *NewFunc,
const Function *OldFunc,
ValueToValueMapTy &VMap,
bool ModuleLevelChanges,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
// Copy all attributes other than those stored in Function's AttributeList
// which holds e.g. parameters and return value attributes.
AttributeList NewAttrs = NewFunc->getAttributes();
NewFunc->copyAttributesFrom(OldFunc);
NewFunc->setAttributes(NewAttrs);
const RemapFlags FuncGlobalRefFlags =
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
// Fix up the personality function that got copied over.
if (OldFunc->hasPersonalityFn())
NewFunc->setPersonalityFn(MapValue(OldFunc->getPersonalityFn(), VMap,
FuncGlobalRefFlags, TypeMapper,
Materializer));
if (OldFunc->hasPrefixData()) {
NewFunc->setPrefixData(MapValue(OldFunc->getPrefixData(), VMap,
FuncGlobalRefFlags, TypeMapper,
Materializer));
}
if (OldFunc->hasPrologueData()) {
NewFunc->setPrologueData(MapValue(OldFunc->getPrologueData(), VMap,
FuncGlobalRefFlags, TypeMapper,
Materializer));
}
SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
AttributeList OldAttrs = OldFunc->getAttributes();
// Clone any argument attributes that are present in the VMap.
for (const Argument &OldArg : OldFunc->args()) {
if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
// Remap the parameter indices.
NewArgAttrs[NewArg->getArgNo()] =
OldAttrs.getParamAttrs(OldArg.getArgNo());
}
}
NewFunc->setAttributes(
AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(),
OldAttrs.getRetAttrs(), NewArgAttrs));
}
void llvm::CloneFunctionMetadataInto(Function &NewFunc, const Function &OldFunc,
ValueToValueMapTy &VMap,
RemapFlags RemapFlag,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer,
const MetadataPredicate *IdentityMD) {
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
OldFunc.getAllMetadata(MDs);
for (auto MD : MDs) {
NewFunc.addMetadata(MD.first,
*MapMetadata(MD.second, VMap, RemapFlag, TypeMapper,
Materializer, IdentityMD));
}
}
void llvm::CloneFunctionBodyInto(Function &NewFunc, const Function &OldFunc,
ValueToValueMapTy &VMap, RemapFlags RemapFlag,
SmallVectorImpl<ReturnInst *> &Returns,
const char *NameSuffix,
ClonedCodeInfo *CodeInfo,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer,
const MetadataPredicate *IdentityMD) {
if (OldFunc.isDeclaration())
return;
// Loop over all of the basic blocks in the function, cloning them as
// appropriate. Note that we save BE this way in order to handle cloning of
// recursive functions into themselves.
for (const BasicBlock &BB : OldFunc) {
// Create a new basic block and copy instructions into it!
BasicBlock *CBB =
CloneBasicBlock(&BB, VMap, NameSuffix, &NewFunc, CodeInfo);
// Add basic block mapping.
VMap[&BB] = CBB;
// It is only legal to clone a function if a block address within that
// function is never referenced outside of the function. Given that, we
// want to map block addresses from the old function to block addresses in
// the clone. (This is different from the generic ValueMapper
// implementation, which generates an invalid blockaddress when
// cloning a function.)
if (BB.hasAddressTaken()) {
Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(&OldFunc),
const_cast<BasicBlock *>(&BB));
VMap[OldBBAddr] = BlockAddress::get(&NewFunc, CBB);
}
// Note return instructions for the caller.
if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
Returns.push_back(RI);
}
// Loop over all of the instructions in the new function, fixing up operand
// references as we go. This uses VMap to do all the hard work.
for (Function::iterator
BB = cast<BasicBlock>(VMap[&OldFunc.front()])->getIterator(),
BE = NewFunc.end();
BB != BE; ++BB)
// Loop over all instructions, fixing each one as we find it, and any
// attached debug-info records.
for (Instruction &II : *BB) {
RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer,
IdentityMD);
RemapDbgRecordRange(II.getModule(), II.getDbgRecordRange(), VMap,
RemapFlag, TypeMapper, Materializer, IdentityMD);
}
}
// Clone OldFunc into NewFunc, transforming the old arguments into references to
// VMap values.
void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
ValueToValueMapTy &VMap,
CloneFunctionChangeType Changes,
SmallVectorImpl<ReturnInst *> &Returns,
const char *NameSuffix, ClonedCodeInfo *CodeInfo,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
assert(NameSuffix && "NameSuffix cannot be null!");
#ifndef NDEBUG
for (const Argument &I : OldFunc->args())
assert(VMap.count(&I) && "No mapping from source argument specified!");
#endif
bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
CloneFunctionAttributesInto(NewFunc, OldFunc, VMap, ModuleLevelChanges,
TypeMapper, Materializer);
// Everything else beyond this point deals with function instructions,
// so if we are dealing with a function declaration, we're done.
if (OldFunc->isDeclaration())
return;
if (Changes < CloneFunctionChangeType::DifferentModule) {
assert((NewFunc->getParent() == nullptr ||
NewFunc->getParent() == OldFunc->getParent()) &&
"Expected NewFunc to have the same parent, or no parent");
} else {
assert((NewFunc->getParent() == nullptr ||
NewFunc->getParent() != OldFunc->getParent()) &&
"Expected NewFunc to have different parents, or no parent");
if (Changes == CloneFunctionChangeType::DifferentModule) {
assert(NewFunc->getParent() &&
"Need parent of new function to maintain debug info invariants");
}
}
MetadataPredicate IdentityMD = createIdentityMDPredicate(*OldFunc, Changes);
// Cloning is always a Module level operation, since Metadata needs to be
// cloned.
const auto RemapFlag = RF_None;
CloneFunctionMetadataInto(*NewFunc, *OldFunc, VMap, RemapFlag, TypeMapper,
Materializer, &IdentityMD);
CloneFunctionBodyInto(*NewFunc, *OldFunc, VMap, RemapFlag, Returns,
NameSuffix, CodeInfo, TypeMapper, Materializer,
&IdentityMD);
// Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
// same module, the compile unit will already be listed (or not). When
// cloning a module, CloneModule() will handle creating the named metadata.
if (Changes != CloneFunctionChangeType::DifferentModule)
return;
// Update !llvm.dbg.cu with compile units added to the new module if this
// function is being cloned in isolation.
//
// FIXME: This is making global / module-level changes, which doesn't seem
// like the right encapsulation Consider dropping the requirement to update
// !llvm.dbg.cu (either obsoleting the node, or restricting it to
// non-discardable compile units) instead of discovering compile units by
// visiting the metadata attached to global values, which would allow this
// code to be deleted. Alternatively, perhaps give responsibility for this
// update to CloneFunctionInto's callers.
auto *NewModule = NewFunc->getParent();
auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
// Avoid multiple insertions of the same DICompileUnit to NMD.
SmallPtrSet<const void *, 8> Visited(llvm::from_range, NMD->operands());
// Collect and clone all the compile units referenced from the instructions in
// the function (e.g. as instructions' scope).
DebugInfoFinder DIFinder;
collectDebugInfoFromInstructions(*OldFunc, DIFinder);
for (auto *Unit : DIFinder.compile_units()) {
MDNode *MappedUnit =
MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
if (Visited.insert(MappedUnit).second)
NMD->addOperand(MappedUnit);
}
}
/// Return a copy of the specified function and add it to that function's
/// module. Also, any references specified in the VMap are changed to refer to
/// their mapped value instead of the original one. If any of the arguments to
/// the function are in the VMap, the arguments are deleted from the resultant
/// function. The VMap is updated to include mappings from all of the
/// instructions and basicblocks in the function from their old to new values.
///
Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
ClonedCodeInfo *CodeInfo) {
std::vector<Type *> ArgTypes;
// The user might be deleting arguments to the function by specifying them in
// the VMap. If so, we need to not add the arguments to the arg ty vector
//
for (const Argument &I : F->args())
if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
ArgTypes.push_back(I.getType());
// Create a new function type...
FunctionType *FTy =
FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
F->getFunctionType()->isVarArg());
// Create the new function...
Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
F->getName(), F->getParent());
// Loop over the arguments, copying the names of the mapped arguments over...
Function::arg_iterator DestI = NewF->arg_begin();
for (const Argument &I : F->args())
if (VMap.count(&I) == 0) { // Is this argument preserved?
DestI->setName(I.getName()); // Copy the name over...
VMap[&I] = &*DestI++; // Add mapping to VMap
}
SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
Returns, "", CodeInfo);
return NewF;
}
namespace {
/// This is a private class used to implement CloneAndPruneFunctionInto.
struct PruningFunctionCloner {
Function *NewFunc;
const Function *OldFunc;
ValueToValueMapTy &VMap;
bool ModuleLevelChanges;
const char *NameSuffix;
ClonedCodeInfo *CodeInfo;
bool HostFuncIsStrictFP;
Instruction *cloneInstruction(BasicBlock::const_iterator II);
public:
PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
ValueToValueMapTy &valueMap, bool moduleLevelChanges,
const char *nameSuffix, ClonedCodeInfo *codeInfo)
: NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
CodeInfo(codeInfo) {
HostFuncIsStrictFP =
newFunc->getAttributes().hasFnAttr(Attribute::StrictFP);
}
/// The specified block is found to be reachable, clone it and
/// anything that it can reach.
void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
std::vector<const BasicBlock *> &ToClone);
};
} // namespace
Instruction *
PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) {
const Instruction &OldInst = *II;
Instruction *NewInst = nullptr;
if (HostFuncIsStrictFP) {
Intrinsic::ID CIID = getConstrainedIntrinsicID(OldInst);
if (CIID != Intrinsic::not_intrinsic) {
// Instead of cloning the instruction, a call to constrained intrinsic
// should be created.
// Assume the first arguments of constrained intrinsics are the same as
// the operands of original instruction.
// Determine overloaded types of the intrinsic.
SmallVector<Type *, 2> TParams;
SmallVector<Intrinsic::IITDescriptor, 8> Descriptor;
getIntrinsicInfoTableEntries(CIID, Descriptor);
for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) {
Intrinsic::IITDescriptor Operand = Descriptor[I];
switch (Operand.Kind) {
case Intrinsic::IITDescriptor::Argument:
if (Operand.getArgumentKind() !=
Intrinsic::IITDescriptor::AK_MatchType) {
if (I == 0)
TParams.push_back(OldInst.getType());
else
TParams.push_back(OldInst.getOperand(I - 1)->getType());
}
break;
case Intrinsic::IITDescriptor::SameVecWidthArgument:
++I;
break;
default:
break;
}
}
// Create intrinsic call.
LLVMContext &Ctx = NewFunc->getContext();
Function *IFn = Intrinsic::getOrInsertDeclaration(NewFunc->getParent(),
CIID, TParams);
SmallVector<Value *, 4> Args;
unsigned NumOperands = OldInst.getNumOperands();
if (isa<CallInst>(OldInst))
--NumOperands;
for (unsigned I = 0; I < NumOperands; ++I) {
Value *Op = OldInst.getOperand(I);
Args.push_back(Op);
}
if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) {
FCmpInst::Predicate Pred = CmpI->getPredicate();
StringRef PredName = FCmpInst::getPredicateName(Pred);
Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName)));
}
// The last arguments of a constrained intrinsic are metadata that
// represent rounding mode (absents in some intrinsics) and exception
// behavior. The inlined function uses default settings.
if (Intrinsic::hasConstrainedFPRoundingModeOperand(CIID))
Args.push_back(
MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest")));
Args.push_back(
MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore")));
NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict");
}
}
if (!NewInst)
NewInst = II->clone();
return NewInst;
}
/// The specified block is found to be reachable, clone it and
/// anything that it can reach.
void PruningFunctionCloner::CloneBlock(
const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
std::vector<const BasicBlock *> &ToClone) {
WeakTrackingVH &BBEntry = VMap[BB];
// Have we already cloned this block?
if (BBEntry)
return;
// Nope, clone it now.
BasicBlock *NewBB;
Twine NewName(BB->hasName() ? Twine(BB->getName()) + NameSuffix : "");
BBEntry = NewBB = BasicBlock::Create(BB->getContext(), NewName, NewFunc);
// It is only legal to clone a function if a block address within that
// function is never referenced outside of the function. Given that, we
// want to map block addresses from the old function to block addresses in
// the clone. (This is different from the generic ValueMapper
// implementation, which generates an invalid blockaddress when
// cloning a function.)
//
// Note that we don't need to fix the mapping for unreachable blocks;
// the default mapping there is safe.
if (BB->hasAddressTaken()) {
Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
const_cast<BasicBlock *>(BB));
VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
}
bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
bool hasMemProfMetadata = false;
// Keep a cursor pointing at the last place we cloned debug-info records from.
BasicBlock::const_iterator DbgCursor = StartingInst;
auto CloneDbgRecordsToHere =
[&DbgCursor](Instruction *NewInst, BasicBlock::const_iterator II) {
// Clone debug-info records onto this instruction. Iterate through any
// source-instructions we've cloned and then subsequently optimised
// away, so that their debug-info doesn't go missing.
for (; DbgCursor != II; ++DbgCursor)
NewInst->cloneDebugInfoFrom(&*DbgCursor, std::nullopt, false);
NewInst->cloneDebugInfoFrom(&*II);
DbgCursor = std::next(II);
};
// Loop over all instructions, and copy them over, DCE'ing as we go. This
// loop doesn't include the terminator.
for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
++II) {
// Don't clone fake_use as it may suppress many optimizations
// due to inlining, especially SROA.
if (auto *IntrInst = dyn_cast<IntrinsicInst>(II))
if (IntrInst->getIntrinsicID() == Intrinsic::fake_use)
continue;
Instruction *NewInst = cloneInstruction(II);
NewInst->insertInto(NewBB, NewBB->end());
if (HostFuncIsStrictFP) {
// All function calls in the inlined function must get 'strictfp'
// attribute to prevent undesirable optimizations.
if (auto *Call = dyn_cast<CallInst>(NewInst))
Call->addFnAttr(Attribute::StrictFP);
}
// Eagerly remap operands to the newly cloned instruction, except for PHI
// nodes for which we defer processing until we update the CFG.
if (!isa<PHINode>(NewInst)) {
RemapInstruction(NewInst, VMap,
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
// Eagerly constant fold the newly cloned instruction. If successful, add
// a mapping to the new value. Non-constant operands may be incomplete at
// this stage, thus instruction simplification is performed after
// processing phi-nodes.
if (Value *V = ConstantFoldInstruction(
NewInst, BB->getDataLayout())) {
if (isInstructionTriviallyDead(NewInst)) {
VMap[&*II] = V;
NewInst->eraseFromParent();
continue;
}
}
}
if (II->hasName())
NewInst->setName(II->getName() + NameSuffix);
VMap[&*II] = NewInst; // Add instruction map to value.
if (isa<CallInst>(II) && !II->isDebugOrPseudoInst()) {
hasCalls = true;
hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_memprof);
hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_callsite);
}
CloneDbgRecordsToHere(NewInst, II);
if (CodeInfo) {
CodeInfo->OrigVMap[&*II] = NewInst;
if (auto *CB = dyn_cast<CallBase>(&*II))
if (CB->hasOperandBundles())
CodeInfo->OperandBundleCallSites.push_back(NewInst);
}
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
if (isa<ConstantInt>(AI->getArraySize()))
hasStaticAllocas = true;
else
hasDynamicAllocas = true;
}
}
// Finally, clone over the terminator.
const Instruction *OldTI = BB->getTerminator();
bool TerminatorDone = false;
if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
if (BI->isConditional()) {
// If the condition was a known constant in the callee...
ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
// Or is a known constant in the caller...
if (!Cond) {
Value *V = VMap.lookup(BI->getCondition());
Cond = dyn_cast_or_null<ConstantInt>(V);
}
// Constant fold to uncond branch!
if (Cond) {
BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
auto *NewBI = BranchInst::Create(Dest, NewBB);
NewBI->setDebugLoc(BI->getDebugLoc());
VMap[OldTI] = NewBI;
ToClone.push_back(Dest);
TerminatorDone = true;
}
}
} else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
// If switching on a value known constant in the caller.
ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
if (!Cond) { // Or known constant after constant prop in the callee...
Value *V = VMap.lookup(SI->getCondition());
Cond = dyn_cast_or_null<ConstantInt>(V);
}
if (Cond) { // Constant fold to uncond branch!
SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
auto *NewBI = BranchInst::Create(Dest, NewBB);
NewBI->setDebugLoc(SI->getDebugLoc());
VMap[OldTI] = NewBI;
ToClone.push_back(Dest);
TerminatorDone = true;
}
}
if (!TerminatorDone) {
Instruction *NewInst = OldTI->clone();
if (OldTI->hasName())
NewInst->setName(OldTI->getName() + NameSuffix);
NewInst->insertInto(NewBB, NewBB->end());
CloneDbgRecordsToHere(NewInst, OldTI->getIterator());
VMap[OldTI] = NewInst; // Add instruction map to value.
if (CodeInfo) {
CodeInfo->OrigVMap[OldTI] = NewInst;
if (auto *CB = dyn_cast<CallBase>(OldTI))
if (CB->hasOperandBundles())
CodeInfo->OperandBundleCallSites.push_back(NewInst);
}
// Recursively clone any reachable successor blocks.
append_range(ToClone, successors(BB->getTerminator()));
} else {
// If we didn't create a new terminator, clone DbgVariableRecords from the
// old terminator onto the new terminator.
Instruction *NewInst = NewBB->getTerminator();
assert(NewInst);
CloneDbgRecordsToHere(NewInst, OldTI->getIterator());
}
if (CodeInfo) {
CodeInfo->ContainsCalls |= hasCalls;
CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
CodeInfo->ContainsDynamicAllocas |=
hasStaticAllocas && BB != &BB->getParent()->front();
}
}
/// This works like CloneAndPruneFunctionInto, except that it does not clone the
/// entire function. Instead it starts at an instruction provided by the caller
/// and copies (and prunes) only the code reachable from that instruction.
void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
const Instruction *StartingInst,
ValueToValueMapTy &VMap,
bool ModuleLevelChanges,
SmallVectorImpl<ReturnInst *> &Returns,
const char *NameSuffix,
ClonedCodeInfo *CodeInfo) {
assert(NameSuffix && "NameSuffix cannot be null!");
ValueMapTypeRemapper *TypeMapper = nullptr;
ValueMaterializer *Materializer = nullptr;
#ifndef NDEBUG
// If the cloning starts at the beginning of the function, verify that
// the function arguments are mapped.
if (!StartingInst)
for (const Argument &II : OldFunc->args())
assert(VMap.count(&II) && "No mapping from source argument specified!");
#endif
PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
NameSuffix, CodeInfo);
const BasicBlock *StartingBB;
if (StartingInst)
StartingBB = StartingInst->getParent();
else {
StartingBB = &OldFunc->getEntryBlock();
StartingInst = &StartingBB->front();
}
// Clone the entry block, and anything recursively reachable from it.
std::vector<const BasicBlock *> CloneWorklist;
PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
while (!CloneWorklist.empty()) {
const BasicBlock *BB = CloneWorklist.back();
CloneWorklist.pop_back();
PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
}
// Loop over all of the basic blocks in the old function. If the block was
// reachable, we have cloned it and the old block is now in the value map:
// insert it into the new function in the right order. If not, ignore it.
//
// Defer PHI resolution until rest of function is resolved.
SmallVector<const PHINode *, 16> PHIToResolve;
for (const BasicBlock &BI : *OldFunc) {
Value *V = VMap.lookup(&BI);
BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
if (!NewBB)
continue; // Dead block.
// Move the new block to preserve the order in the original function.
NewBB->moveBefore(NewFunc->end());
// Handle PHI nodes specially, as we have to remove references to dead
// blocks.
for (const PHINode &PN : BI.phis()) {
// PHI nodes may have been remapped to non-PHI nodes by the caller or
// during the cloning process.
if (isa<PHINode>(VMap[&PN]))
PHIToResolve.push_back(&PN);
else
break;
}
// Finally, remap the terminator instructions, as those can't be remapped
// until all BBs are mapped.
RemapInstruction(NewBB->getTerminator(), VMap,
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
TypeMapper, Materializer);
}
// Defer PHI resolution until rest of function is resolved, PHI resolution
// requires the CFG to be up-to-date.
for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
const PHINode *OPN = PHIToResolve[phino];
unsigned NumPreds = OPN->getNumIncomingValues();
const BasicBlock *OldBB = OPN->getParent();
BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
// Map operands for blocks that are live and remove operands for blocks
// that are dead.
for (; phino != PHIToResolve.size() &&
PHIToResolve[phino]->getParent() == OldBB;
++phino) {
OPN = PHIToResolve[phino];
PHINode *PN = cast<PHINode>(VMap[OPN]);
for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
Value *V = VMap.lookup(PN->getIncomingBlock(pred));
if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
Value *InVal =
MapValue(PN->getIncomingValue(pred), VMap,
ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
assert(InVal && "Unknown input value?");
PN->setIncomingValue(pred, InVal);
PN->setIncomingBlock(pred, MappedBlock);
} else {
PN->removeIncomingValue(pred, false);
--pred; // Revisit the next entry.
--e;
}
}
}
// The loop above has removed PHI entries for those blocks that are dead
// and has updated others. However, if a block is live (i.e. copied over)
// but its terminator has been changed to not go to this block, then our
// phi nodes will have invalid entries. Update the PHI nodes in this
// case.
PHINode *PN = cast<PHINode>(NewBB->begin());
NumPreds = pred_size(NewBB);
if (NumPreds != PN->getNumIncomingValues()) {
assert(NumPreds < PN->getNumIncomingValues());
// Count how many times each predecessor comes to this block.
std::map<BasicBlock *, unsigned> PredCount;
for (BasicBlock *Pred : predecessors(NewBB))
--PredCount[Pred];
// Figure out how many entries to remove from each PHI.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
++PredCount[PN->getIncomingBlock(i)];
// At this point, the excess predecessor entries are positive in the
// map. Loop over all of the PHIs and remove excess predecessor
// entries.
BasicBlock::iterator I = NewBB->begin();
for (; (PN = dyn_cast<PHINode>(I)); ++I) {
for (const auto &PCI : PredCount) {
BasicBlock *Pred = PCI.first;
for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
PN->removeIncomingValue(Pred, false);
}
}
}
// If the loops above have made these phi nodes have 0 or 1 operand,
// replace them with poison or the input value. We must do this for
// correctness, because 0-operand phis are not valid.
PN = cast<PHINode>(NewBB->begin());
if (PN->getNumIncomingValues() == 0) {
BasicBlock::iterator I = NewBB->begin();
BasicBlock::const_iterator OldI = OldBB->begin();
while ((PN = dyn_cast<PHINode>(I++))) {
Value *NV = PoisonValue::get(PN->getType());
PN->replaceAllUsesWith(NV);
assert(VMap[&*OldI] == PN && "VMap mismatch");
VMap[&*OldI] = NV;
PN->eraseFromParent();
++OldI;
}
}
}
// Drop all incompatible return attributes that cannot be applied to NewFunc
// during cloning, so as to allow instruction simplification to reason on the
// old state of the function. The original attributes are restored later.
AttributeList Attrs = NewFunc->getAttributes();
AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
OldFunc->getReturnType(), Attrs.getRetAttrs());
NewFunc->removeRetAttrs(IncompatibleAttrs);
// As phi-nodes have been now remapped, allow incremental simplification of
// newly-cloned instructions.
const DataLayout &DL = NewFunc->getDataLayout();
for (const auto &BB : *OldFunc) {
for (const auto &I : BB) {
auto *NewI = dyn_cast_or_null<Instruction>(VMap.lookup(&I));
if (!NewI)
continue;
if (Value *V = simplifyInstruction(NewI, DL)) {
NewI->replaceAllUsesWith(V);
if (isInstructionTriviallyDead(NewI)) {
NewI->eraseFromParent();
} else {
// Did not erase it? Restore the new instruction into VMap previously
// dropped by `ValueIsRAUWd`.
VMap[&I] = NewI;
}
}
}
}
// Restore attributes.
NewFunc->setAttributes(Attrs);
// Remap debug records operands now that all values have been mapped.
// Doing this now (late) preserves use-before-defs in debug records. If
// we didn't do this, ValueAsMetadata(use-before-def) operands would be
// replaced by empty metadata. This would signal later cleanup passes to
// remove the debug records, potentially causing incorrect locations.
Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
for (BasicBlock &BB : make_range(Begin, NewFunc->end())) {
for (Instruction &I : BB) {
RemapDbgRecordRange(I.getModule(), I.getDbgRecordRange(), VMap,
ModuleLevelChanges ? RF_None
: RF_NoModuleLevelChanges,
TypeMapper, Materializer);
}
}
// Simplify conditional branches and switches with a constant operand. We try
// to prune these out when cloning, but if the simplification required
// looking through PHI nodes, those are only available after forming the full
// basic block. That may leave some here, and we still want to prune the dead
// code as early as possible.
for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
ConstantFoldTerminator(&BB);
// Some blocks may have become unreachable as a result. Find and delete them.
{
SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
SmallVector<BasicBlock *, 16> Worklist;
Worklist.push_back(&*Begin);
while (!Worklist.empty()) {
BasicBlock *BB = Worklist.pop_back_val();
if (ReachableBlocks.insert(BB).second)
append_range(Worklist, successors(BB));
}
SmallVector<BasicBlock *, 16> UnreachableBlocks;
for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
if (!ReachableBlocks.contains(&BB))
UnreachableBlocks.push_back(&BB);
DeleteDeadBlocks(UnreachableBlocks);
}
// Now that the inlined function body has been fully constructed, go through
// and zap unconditional fall-through branches. This happens all the time when
// specializing code: code specialization turns conditional branches into
// uncond branches, and this code folds them.
Function::iterator I = Begin;
while (I != NewFunc->end()) {
BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
if (!BI || BI->isConditional()) {
++I;
continue;
}
BasicBlock *Dest = BI->getSuccessor(0);
if (!Dest->getSinglePredecessor() || Dest->hasAddressTaken()) {
++I;
continue;
}
// We shouldn't be able to get single-entry PHI nodes here, as instsimplify
// above should have zapped all of them..
assert(!isa<PHINode>(Dest->begin()));
// We know all single-entry PHI nodes in the inlined function have been
// removed, so we just need to splice the blocks.
BI->eraseFromParent();
// Make all PHI nodes that referred to Dest now refer to I as their source.
Dest->replaceAllUsesWith(&*I);
// Move all the instructions in the succ to the pred.
I->splice(I->end(), Dest);
// Remove the dest block.
Dest->eraseFromParent();
// Do not increment I, iteratively merge all things this block branches to.
}
// Make a final pass over the basic blocks from the old function to gather
// any return instructions which survived folding. We have to do this here
// because we can iteratively remove and merge returns above.
for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
E = NewFunc->end();
I != E; ++I)
if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
Returns.push_back(RI);
}
/// This works exactly like CloneFunctionInto,
/// except that it does some simple constant prop and DCE on the fly. The
/// effect of this is to copy significantly less code in cases where (for
/// example) a function call with constant arguments is inlined, and those
/// constant arguments cause a significant amount of code in the callee to be
/// dead. Since this doesn't produce an exact copy of the input, it can't be
/// used for things like CloneFunction or CloneModule.
void llvm::CloneAndPruneFunctionInto(
Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
}
/// Remaps instructions in \p Blocks using the mapping in \p VMap.
void llvm::remapInstructionsInBlocks(ArrayRef<BasicBlock *> Blocks,
ValueToValueMapTy &VMap) {
// Rewrite the code to refer to itself.
for (auto *BB : Blocks) {
for (auto &Inst : *BB) {
RemapDbgRecordRange(Inst.getModule(), Inst.getDbgRecordRange(), VMap,
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
RemapInstruction(&Inst, VMap,
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
}
}
}
/// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
/// Blocks.
///
/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
/// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
Loop *OrigLoop, ValueToValueMapTy &VMap,
const Twine &NameSuffix, LoopInfo *LI,
DominatorTree *DT,
SmallVectorImpl<BasicBlock *> &Blocks) {
Function *F = OrigLoop->getHeader()->getParent();
Loop *ParentLoop = OrigLoop->getParentLoop();
DenseMap<Loop *, Loop *> LMap;
Loop *NewLoop = LI->AllocateLoop();
LMap[OrigLoop] = NewLoop;
if (ParentLoop)
ParentLoop->addChildLoop(NewLoop);
else
LI->addTopLevelLoop(NewLoop);
BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
assert(OrigPH && "No preheader");
BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
// To rename the loop PHIs.
VMap[OrigPH] = NewPH;
Blocks.push_back(NewPH);
// Update LoopInfo.
if (ParentLoop)
ParentLoop->addBasicBlockToLoop(NewPH, *LI);
// Update DominatorTree.
DT->addNewBlock(NewPH, LoopDomBB);
for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
Loop *&NewLoop = LMap[CurLoop];
if (!NewLoop) {
NewLoop = LI->AllocateLoop();
// Establish the parent/child relationship.
Loop *OrigParent = CurLoop->getParentLoop();
assert(OrigParent && "Could not find the original parent loop");
Loop *NewParentLoop = LMap[OrigParent];
assert(NewParentLoop && "Could not find the new parent loop");
NewParentLoop->addChildLoop(NewLoop);
}
}
for (BasicBlock *BB : OrigLoop->getBlocks()) {
Loop *CurLoop = LI->getLoopFor(BB);
Loop *&NewLoop = LMap[CurLoop];
assert(NewLoop && "Expecting new loop to be allocated");
BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
VMap[BB] = NewBB;
// Update LoopInfo.
NewLoop->addBasicBlockToLoop(NewBB, *LI);
// Add DominatorTree node. After seeing all blocks, update to correct
// IDom.
DT->addNewBlock(NewBB, NewPH);
Blocks.push_back(NewBB);
}
for (BasicBlock *BB : OrigLoop->getBlocks()) {
// Update loop headers.
Loop *CurLoop = LI->getLoopFor(BB);
if (BB == CurLoop->getHeader())
LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
// Update DominatorTree.
BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
cast<BasicBlock>(VMap[IDomBB]));
}
// Move them physically from the end of the block list.
F->splice(Before->getIterator(), F, NewPH->getIterator());
F->splice(Before->getIterator(), F, NewLoop->getHeader()->getIterator(),
F->end());
return NewLoop;
}
/// Duplicate non-Phi instructions from the beginning of block up to
/// StopAt instruction into a split block between BB and its predecessor.
BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
assert(count(successors(PredBB), BB) == 1 &&
"There must be a single edge between PredBB and BB!");
// We are going to have to map operands from the original BB block to the new
// copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
// account for entry from PredBB.
BasicBlock::iterator BI = BB->begin();
for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
BasicBlock *NewBB = SplitEdge(PredBB, BB);
NewBB->setName(PredBB->getName() + ".split");
Instruction *NewTerm = NewBB->getTerminator();
// FIXME: SplitEdge does not yet take a DTU, so we include the split edge
// in the update set here.
DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
{DominatorTree::Insert, PredBB, NewBB},
{DominatorTree::Insert, NewBB, BB}});
// Clone the non-phi instructions of BB into NewBB, keeping track of the
// mapping and using it to remap operands in the cloned instructions.
// Stop once we see the terminator too. This covers the case where BB's
// terminator gets replaced and StopAt == BB's terminator.
for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
Instruction *New = BI->clone();
New->setName(BI->getName());
New->insertBefore(NewTerm->getIterator());
New->cloneDebugInfoFrom(&*BI);
ValueMapping[&*BI] = New;
// Remap operands to patch up intra-block references.
for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
auto I = ValueMapping.find(Inst);
if (I != ValueMapping.end())
New->setOperand(i, I->second);
}
// Remap debug variable operands.
remapDebugVariable(ValueMapping, New);
}
return NewBB;
}
void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
DenseMap<MDNode *, MDNode *> &ClonedScopes,
StringRef Ext, LLVMContext &Context) {
MDBuilder MDB(Context);
for (auto *ScopeList : NoAliasDeclScopes) {
for (const auto &MDOperand : ScopeList->operands()) {
if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
AliasScopeNode SNANode(MD);
std::string Name;
auto ScopeName = SNANode.getName();
if (!ScopeName.empty())
Name = (Twine(ScopeName) + ":" + Ext).str();
else
Name = std::string(Ext);
MDNode *NewScope = MDB.createAnonymousAliasScope(
const_cast<MDNode *>(SNANode.getDomain()), Name);
ClonedScopes.insert(std::make_pair(MD, NewScope));
}
}
}
}
void llvm::adaptNoAliasScopes(Instruction *I,
const DenseMap<MDNode *, MDNode *> &ClonedScopes,
LLVMContext &Context) {
auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
bool NeedsReplacement = false;
SmallVector<Metadata *, 8> NewScopeList;
for (const auto &MDOp : ScopeList->operands()) {
if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
if (auto *NewMD = ClonedScopes.lookup(MD)) {
NewScopeList.push_back(NewMD);
NeedsReplacement = true;
continue;
}
NewScopeList.push_back(MD);
}
}
if (NeedsReplacement)
return MDNode::get(Context, NewScopeList);
return nullptr;
};
if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
Decl->setScopeList(NewScopeList);
auto replaceWhenNeeded = [&](unsigned MD_ID) {
if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
if (auto *NewScopeList = CloneScopeList(CSNoAlias))
I->setMetadata(MD_ID, NewScopeList);
};
replaceWhenNeeded(LLVMContext::MD_noalias);
replaceWhenNeeded(LLVMContext::MD_alias_scope);
}
void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
ArrayRef<BasicBlock *> NewBlocks,
LLVMContext &Context, StringRef Ext) {
if (NoAliasDeclScopes.empty())
return;
DenseMap<MDNode *, MDNode *> ClonedScopes;
LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
<< NoAliasDeclScopes.size() << " node(s)\n");
cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
// Identify instructions using metadata that needs adaptation
for (BasicBlock *NewBlock : NewBlocks)
for (Instruction &I : *NewBlock)
adaptNoAliasScopes(&I, ClonedScopes, Context);
}
void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
Instruction *IStart, Instruction *IEnd,
LLVMContext &Context, StringRef Ext) {
if (NoAliasDeclScopes.empty())
return;
DenseMap<MDNode *, MDNode *> ClonedScopes;
LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
<< NoAliasDeclScopes.size() << " node(s)\n");
cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
// Identify instructions using metadata that needs adaptation
assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
auto ItStart = IStart->getIterator();
auto ItEnd = IEnd->getIterator();
++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
for (auto &I : llvm::make_range(ItStart, ItEnd))
adaptNoAliasScopes(&I, ClonedScopes, Context);
}
void llvm::identifyNoAliasScopesToClone(
ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
for (BasicBlock *BB : BBs)
for (Instruction &I : *BB)
if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
NoAliasDeclScopes.push_back(Decl->getScopeList());
}
void llvm::identifyNoAliasScopesToClone(
BasicBlock::iterator Start, BasicBlock::iterator End,
SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
for (Instruction &I : make_range(Start, End))
if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
NoAliasDeclScopes.push_back(Decl->getScopeList());
}