llvm-project/llvm/lib/Transforms/Utils/PredicateInfo.cpp
Nikita Popov ab323eb0c6 [SCCP][PredicateInfo] Do not predicate argument of lifetime intrinsic
Replacing the argument with a no-op bitcast violates a verifier
constraint, even if only temporarily. Any replacement based on it
would result in a violation even after the copy has been removed.

Fixes https://github.com/llvm/llvm-project/issues/153013.
2025-08-12 12:56:08 +02:00

852 lines
32 KiB
C++

//===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------===//
//
// This file implements the PredicateInfo class.
//
//===----------------------------------------------------------------===//
#include "llvm/Transforms/Utils/PredicateInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/FormattedStream.h"
#define DEBUG_TYPE "predicateinfo"
using namespace llvm;
using namespace PatternMatch;
static cl::opt<bool> VerifyPredicateInfo(
"verify-predicateinfo", cl::init(false), cl::Hidden,
cl::desc("Verify PredicateInfo in legacy printer pass."));
DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
"Controls which variables are renamed with predicateinfo");
// Maximum number of conditions considered for renaming for each branch/assume.
// This limits renaming of deep and/or chains.
static const unsigned MaxCondsPerBranch = 8;
namespace {
// Given a predicate info that is a type of branching terminator, get the
// branching block.
const BasicBlock *getBranchBlock(const PredicateBase *PB) {
assert(isa<PredicateWithEdge>(PB) &&
"Only branches and switches should have PHIOnly defs that "
"require branch blocks.");
return cast<PredicateWithEdge>(PB)->From;
}
// Given a predicate info that is a type of branching terminator, get the
// branching terminator.
static Instruction *getBranchTerminator(const PredicateBase *PB) {
assert(isa<PredicateWithEdge>(PB) &&
"Not a predicate info type we know how to get a terminator from.");
return cast<PredicateWithEdge>(PB)->From->getTerminator();
}
// Given a predicate info that is a type of branching terminator, get the
// edge this predicate info represents
std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) {
assert(isa<PredicateWithEdge>(PB) &&
"Not a predicate info type we know how to get an edge from.");
const auto *PEdge = cast<PredicateWithEdge>(PB);
return std::make_pair(PEdge->From, PEdge->To);
}
}
namespace llvm {
enum LocalNum {
// Operations that must appear first in the block.
LN_First,
// Operations that are somewhere in the middle of the block, and are sorted on
// demand.
LN_Middle,
// Operations that must appear last in a block, like successor phi node uses.
LN_Last
};
// Associate global and local DFS info with defs (PInfo set) and uses (U set),
// so we can sort them into a global domination ordering.
struct ValueDFS {
int DFSIn = 0;
int DFSOut = 0;
unsigned int LocalNum = LN_Middle;
// Only one of U or PInfo will be set.
Use *U = nullptr;
PredicateBase *PInfo = nullptr;
};
// This compares ValueDFS structures. Doing so allows us to walk the minimum
// number of instructions necessary to compute our def/use ordering.
struct ValueDFS_Compare {
DominatorTree &DT;
ValueDFS_Compare(DominatorTree &DT) : DT(DT) {}
bool operator()(const ValueDFS &A, const ValueDFS &B) const {
if (&A == &B)
return false;
// Order by block first.
if (A.DFSIn != B.DFSIn)
return A.DFSIn < B.DFSIn;
assert(A.DFSOut == B.DFSOut &&
"Equal DFS-in numbers imply equal out numbers");
// Then order by first/middle/last.
if (A.LocalNum != B.LocalNum)
return A.LocalNum < B.LocalNum;
// We want to put the def that will get used for a given set of phi uses,
// before those phi uses.
// So we sort by edge, then by def.
// Note that only phi nodes uses and defs can come last.
if (A.LocalNum == LN_Last)
return comparePHIRelated(A, B);
// Use block-local ordering for instructions in the middle.
if (A.LocalNum == LN_Middle)
return localComesBefore(A, B);
// The order of PredicateInfo definitions at the start of the block does not
// matter.
assert(A.LocalNum == LN_First);
assert(A.PInfo && B.PInfo && "Must be predicate info def");
return false;
}
// For a phi use, or a non-materialized def, return the edge it represents.
std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const {
if (VD.U) {
auto *PHI = cast<PHINode>(VD.U->getUser());
return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
}
// This is really a non-materialized def.
return ::getBlockEdge(VD.PInfo);
}
// For two phi related values, return the ordering.
bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
BasicBlock *ASrc, *ADest, *BSrc, *BDest;
std::tie(ASrc, ADest) = getBlockEdge(A);
std::tie(BSrc, BDest) = getBlockEdge(B);
#ifndef NDEBUG
// This function should only be used for values in the same BB, check that.
DomTreeNode *DomASrc = DT.getNode(ASrc);
DomTreeNode *DomBSrc = DT.getNode(BSrc);
assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
"DFS numbers for A should match the ones of the source block");
assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
"DFS numbers for B should match the ones of the source block");
assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
#endif
(void)ASrc;
(void)BSrc;
// Use DFS numbers to compare destination blocks, to guarantee a
// deterministic order.
DomTreeNode *DomADest = DT.getNode(ADest);
DomTreeNode *DomBDest = DT.getNode(BDest);
unsigned AIn = DomADest->getDFSNumIn();
unsigned BIn = DomBDest->getDFSNumIn();
bool isAUse = A.U;
bool isBUse = B.U;
assert((!A.PInfo || !A.U) && (!B.PInfo || !B.U) &&
"Def and U cannot be set at the same time");
// Now sort by edge destination and then defs before uses.
return std::tie(AIn, isAUse) < std::tie(BIn, isBUse);
}
const Instruction *getDefOrUser(const ValueDFS &VD) const {
if (VD.U)
return cast<Instruction>(VD.U->getUser());
// For the purpose of ordering, we pretend the def is right after the
// assume, because that is where we will insert the info.
assert(VD.PInfo && "No use, and no predicateinfo should not occur");
assert(isa<PredicateAssume>(VD.PInfo) &&
"Middle of block should only occur for assumes");
return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode();
}
// This performs the necessary local basic block ordering checks to tell
// whether A comes before B, where both are in the same basic block.
bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
const Instruction *AInst = getDefOrUser(A);
const Instruction *BInst = getDefOrUser(B);
return AInst->comesBefore(BInst);
}
};
class PredicateInfoBuilder {
// Used to store information about each value we might rename.
struct ValueInfo {
SmallVector<PredicateBase *, 4> Infos;
};
PredicateInfo &PI;
Function &F;
DominatorTree &DT;
AssumptionCache &AC;
// This stores info about each operand or comparison result we make copies
// of. The real ValueInfos start at index 1, index 0 is unused so that we
// can more easily detect invalid indexing.
SmallVector<ValueInfo, 32> ValueInfos;
// This gives the index into the ValueInfos array for a given Value. Because
// 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
// whether it returned a valid result.
DenseMap<Value *, unsigned int> ValueInfoNums;
BumpPtrAllocator &Allocator;
ValueInfo &getOrCreateValueInfo(Value *);
const ValueInfo &getValueInfo(Value *) const;
void processAssume(IntrinsicInst *, BasicBlock *,
SmallVectorImpl<Value *> &OpsToRename);
void processBranch(BranchInst *, BasicBlock *,
SmallVectorImpl<Value *> &OpsToRename);
void processSwitch(SwitchInst *, BasicBlock *,
SmallVectorImpl<Value *> &OpsToRename);
void renameUses(SmallVectorImpl<Value *> &OpsToRename);
void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
PredicateBase *PB);
struct StackEntry {
const ValueDFS *V;
Value *Def = nullptr;
StackEntry(const ValueDFS *V) : V(V) {}
};
using ValueDFSStack = SmallVectorImpl<StackEntry>;
void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
public:
PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT,
AssumptionCache &AC, BumpPtrAllocator &Allocator)
: PI(PI), F(F), DT(DT), AC(AC), Allocator(Allocator) {
// Push an empty operand info so that we can detect 0 as not finding one
ValueInfos.resize(1);
}
void buildPredicateInfo();
};
bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack,
const ValueDFS &VDUse) const {
assert(!Stack.empty() && "Should not be called with empty stack");
// If it's a phi only use, make sure it's for this phi node edge, and that the
// use is in a phi node. If it's anything else, and the top of the stack is
// a LN_Last def, we need to pop the stack. We deliberately sort phi uses
// next to the defs they must go with so that we can know it's time to pop
// the stack when we hit the end of the phi uses for a given def.
const ValueDFS &Top = *Stack.back().V;
if (Top.LocalNum == LN_Last && Top.PInfo) {
if (!VDUse.U)
return false;
auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
if (!PHI)
return false;
// Check edge
BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
if (EdgePred != getBranchBlock(Top.PInfo))
return false;
// Use dominates, which knows how to handle edge dominance.
return DT.dominates(getBlockEdge(Top.PInfo), *VDUse.U);
}
return VDUse.DFSIn >= Top.DFSIn && VDUse.DFSOut <= Top.DFSOut;
}
void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack,
const ValueDFS &VD) {
while (!Stack.empty() && !stackIsInScope(Stack, VD))
Stack.pop_back();
}
// Convert the uses of Op into a vector of uses, associating global and local
// DFS info with each one.
void PredicateInfoBuilder::convertUsesToDFSOrdered(
Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
for (auto &U : Op->uses()) {
if (auto *I = dyn_cast<Instruction>(U.getUser())) {
// Lifetime intrinsics must work directly on alloca, do not replace them
// with a predicated copy.
if (I->isLifetimeStartOrEnd())
continue;
ValueDFS VD;
// Put the phi node uses in the incoming block.
BasicBlock *IBlock;
if (auto *PN = dyn_cast<PHINode>(I)) {
IBlock = PN->getIncomingBlock(U);
// Make phi node users appear last in the incoming block
// they are from.
VD.LocalNum = LN_Last;
} else {
// If it's not a phi node use, it is somewhere in the middle of the
// block.
IBlock = I->getParent();
VD.LocalNum = LN_Middle;
}
DomTreeNode *DomNode = DT.getNode(IBlock);
// It's possible our use is in an unreachable block. Skip it if so.
if (!DomNode)
continue;
VD.DFSIn = DomNode->getDFSNumIn();
VD.DFSOut = DomNode->getDFSNumOut();
VD.U = &U;
DFSOrderedSet.push_back(VD);
}
}
}
bool shouldRename(Value *V) {
// Only want real values, not constants. Additionally, operands with one use
// are only being used in the comparison, which means they will not be useful
// for us to consider for predicateinfo.
return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse();
}
// Collect relevant operations from Comparison that we may want to insert copies
// for.
void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
auto *Op0 = Comparison->getOperand(0);
auto *Op1 = Comparison->getOperand(1);
if (Op0 == Op1)
return;
CmpOperands.push_back(Op0);
CmpOperands.push_back(Op1);
}
// Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename,
Value *Op, PredicateBase *PB) {
auto &OperandInfo = getOrCreateValueInfo(Op);
if (OperandInfo.Infos.empty())
OpsToRename.push_back(Op);
OperandInfo.Infos.push_back(PB);
}
// Process an assume instruction and place relevant operations we want to rename
// into OpsToRename.
void PredicateInfoBuilder::processAssume(
IntrinsicInst *II, BasicBlock *AssumeBB,
SmallVectorImpl<Value *> &OpsToRename) {
SmallVector<Value *, 4> Worklist;
SmallPtrSet<Value *, 4> Visited;
Worklist.push_back(II->getOperand(0));
while (!Worklist.empty()) {
Value *Cond = Worklist.pop_back_val();
if (!Visited.insert(Cond).second)
continue;
if (Visited.size() > MaxCondsPerBranch)
break;
Value *Op0, *Op1;
if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
Worklist.push_back(Op1);
Worklist.push_back(Op0);
}
SmallVector<Value *, 4> Values;
Values.push_back(Cond);
if (auto *Cmp = dyn_cast<CmpInst>(Cond))
collectCmpOps(Cmp, Values);
else if (match(Cond, m_NUWTrunc(m_Value(Op0))))
Values.push_back(Op0);
for (Value *V : Values) {
if (shouldRename(V)) {
auto *PA = new (Allocator) PredicateAssume(V, II, Cond);
addInfoFor(OpsToRename, V, PA);
}
}
}
}
// Process a block terminating branch, and place relevant operations to be
// renamed into OpsToRename.
void PredicateInfoBuilder::processBranch(
BranchInst *BI, BasicBlock *BranchBB,
SmallVectorImpl<Value *> &OpsToRename) {
BasicBlock *FirstBB = BI->getSuccessor(0);
BasicBlock *SecondBB = BI->getSuccessor(1);
for (BasicBlock *Succ : {FirstBB, SecondBB}) {
bool TakenEdge = Succ == FirstBB;
// Don't try to insert on a self-edge. This is mainly because we will
// eliminate during renaming anyway.
if (Succ == BranchBB)
continue;
SmallVector<Value *, 4> Worklist;
SmallPtrSet<Value *, 4> Visited;
Worklist.push_back(BI->getCondition());
while (!Worklist.empty()) {
Value *Cond = Worklist.pop_back_val();
if (!Visited.insert(Cond).second)
continue;
if (Visited.size() > MaxCondsPerBranch)
break;
Value *Op0, *Op1;
if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))
: match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
Worklist.push_back(Op1);
Worklist.push_back(Op0);
}
SmallVector<Value *, 4> Values;
Values.push_back(Cond);
if (auto *Cmp = dyn_cast<CmpInst>(Cond))
collectCmpOps(Cmp, Values);
else if (match(Cond, m_NUWTrunc(m_Value(Op0))))
Values.push_back(Op0);
for (Value *V : Values) {
if (shouldRename(V)) {
PredicateBase *PB = new (Allocator)
PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge);
addInfoFor(OpsToRename, V, PB);
}
}
}
}
}
// Process a block terminating switch, and place relevant operations to be
// renamed into OpsToRename.
void PredicateInfoBuilder::processSwitch(
SwitchInst *SI, BasicBlock *BranchBB,
SmallVectorImpl<Value *> &OpsToRename) {
Value *Op = SI->getCondition();
if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
return;
// Remember how many outgoing edges there are to every successor.
SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
for (BasicBlock *TargetBlock : successors(BranchBB))
++SwitchEdges[TargetBlock];
// Now propagate info for each case value
for (auto C : SI->cases()) {
BasicBlock *TargetBlock = C.getCaseSuccessor();
if (SwitchEdges.lookup(TargetBlock) == 1) {
PredicateSwitch *PS = new (Allocator) PredicateSwitch(
Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
addInfoFor(OpsToRename, Op, PS);
}
}
}
// Build predicate info for our function
void PredicateInfoBuilder::buildPredicateInfo() {
DT.updateDFSNumbers();
// Collect operands to rename from all conditional branch terminators, as well
// as assume statements.
SmallVector<Value *, 8> OpsToRename;
for (BasicBlock &BB : F) {
if (!DT.isReachableFromEntry(&BB))
continue;
if (auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
if (!BI->isConditional())
continue;
// Can't insert conditional information if they all go to the same place.
if (BI->getSuccessor(0) == BI->getSuccessor(1))
continue;
processBranch(BI, &BB, OpsToRename);
} else if (auto *SI = dyn_cast<SwitchInst>(BB.getTerminator())) {
processSwitch(SI, &BB, OpsToRename);
}
}
for (auto &Assume : AC.assumptions()) {
if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
if (DT.isReachableFromEntry(II->getParent()))
processAssume(II, II->getParent(), OpsToRename);
}
// Now rename all our operations.
renameUses(OpsToRename);
}
// Given the renaming stack, make all the operands currently on the stack real
// by inserting them into the IR. Return the last operation's value.
Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter,
ValueDFSStack &RenameStack,
Value *OrigOp) {
// Find the first thing we have to materialize
auto RevIter = RenameStack.rbegin();
for (; RevIter != RenameStack.rend(); ++RevIter)
if (RevIter->Def)
break;
size_t Start = RevIter - RenameStack.rbegin();
// The maximum number of things we should be trying to materialize at once
// right now is 4, depending on if we had an assume, a branch, and both used
// and of conditions.
for (auto RenameIter = RenameStack.end() - Start;
RenameIter != RenameStack.end(); ++RenameIter) {
auto *Op =
RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
StackEntry &Result = *RenameIter;
auto *ValInfo = Result.V->PInfo;
ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin()
? OrigOp
: (RenameStack.end() - Start - 1)->Def;
auto CreateSSACopy = [](Instruction *InsertPt, Value *Op,
const Twine &Name = "") {
// Use a no-op bitcast to represent ssa copy.
return new BitCastInst(Op, Op->getType(), Name, InsertPt->getIterator());
};
// For edge predicates, we can just place the operand in the block before
// the terminator. For assume, we have to place it right after the assume
// to ensure we dominate all uses except assume itself. Always insert
// right before the terminator or after the assume, so that we insert in
// proper order in the case of multiple predicateinfo in the same block.
if (isa<PredicateWithEdge>(ValInfo)) {
BitCastInst *PIC = CreateSSACopy(getBranchTerminator(ValInfo), Op,
Op->getName() + "." + Twine(Counter++));
PI.PredicateMap.insert({PIC, ValInfo});
Result.Def = PIC;
} else {
auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
assert(PAssume &&
"Should not have gotten here without it being an assume");
// Insert the predicate directly after the assume. While it also holds
// directly before it, assume(i1 true) is not a useful fact.
BitCastInst *PIC = CreateSSACopy(PAssume->AssumeInst->getNextNode(), Op);
PI.PredicateMap.insert({PIC, ValInfo});
Result.Def = PIC;
}
}
return RenameStack.back().Def;
}
// Instead of the standard SSA renaming algorithm, which is O(Number of
// instructions), and walks the entire dominator tree, we walk only the defs +
// uses. The standard SSA renaming algorithm does not really rely on the
// dominator tree except to order the stack push/pops of the renaming stacks, so
// that defs end up getting pushed before hitting the correct uses. This does
// not require the dominator tree, only the *order* of the dominator tree. The
// complete and correct ordering of the defs and uses, in dominator tree is
// contained in the DFS numbering of the dominator tree. So we sort the defs and
// uses into the DFS ordering, and then just use the renaming stack as per
// normal, pushing when we hit a def (which is a predicateinfo instruction),
// popping when we are out of the dfs scope for that def, and replacing any uses
// with top of stack if it exists. In order to handle liveness without
// propagating liveness info, we don't actually insert the predicateinfo
// instruction def until we see a use that it would dominate. Once we see such
// a use, we materialize the predicateinfo instruction in the right place and
// use it.
//
// TODO: Use this algorithm to perform fast single-variable renaming in
// promotememtoreg and memoryssa.
void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
ValueDFS_Compare Compare(DT);
// Compute liveness, and rename in O(uses) per Op.
for (auto *Op : OpsToRename) {
LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
unsigned Counter = 0;
SmallVector<ValueDFS, 16> OrderedUses;
const auto &ValueInfo = getValueInfo(Op);
// Insert the possible copies into the def/use list.
// They will become real copies if we find a real use for them, and never
// created otherwise.
for (const auto &PossibleCopy : ValueInfo.Infos) {
ValueDFS VD;
// Determine where we are going to place the copy by the copy type.
// The predicate info for branches always come first, they will get
// materialized in the split block at the top of the block.
// The predicate info for assumes will be somewhere in the middle,
// it will get materialized right after the assume.
if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
VD.LocalNum = LN_Middle;
DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
if (!DomNode)
continue;
VD.DFSIn = DomNode->getDFSNumIn();
VD.DFSOut = DomNode->getDFSNumOut();
VD.PInfo = PossibleCopy;
OrderedUses.push_back(VD);
} else if (isa<PredicateWithEdge>(PossibleCopy)) {
// If we can only do phi uses, we treat it like it's in the branch
// block, and handle it specially. We know that it goes last, and only
// dominate phi uses.
auto BlockEdge = getBlockEdge(PossibleCopy);
if (!BlockEdge.second->getSinglePredecessor()) {
VD.LocalNum = LN_Last;
auto *DomNode = DT.getNode(BlockEdge.first);
if (DomNode) {
VD.DFSIn = DomNode->getDFSNumIn();
VD.DFSOut = DomNode->getDFSNumOut();
VD.PInfo = PossibleCopy;
OrderedUses.push_back(VD);
}
} else {
// Otherwise, we are in the split block (even though we perform
// insertion in the branch block).
// Insert a possible copy at the split block and before the branch.
VD.LocalNum = LN_First;
auto *DomNode = DT.getNode(BlockEdge.second);
if (DomNode) {
VD.DFSIn = DomNode->getDFSNumIn();
VD.DFSOut = DomNode->getDFSNumOut();
VD.PInfo = PossibleCopy;
OrderedUses.push_back(VD);
}
}
}
}
convertUsesToDFSOrdered(Op, OrderedUses);
// Here we require a stable sort because we do not bother to try to
// assign an order to the operands the uses represent. Thus, two
// uses in the same instruction do not have a strict sort order
// currently and will be considered equal. We could get rid of the
// stable sort by creating one if we wanted.
llvm::stable_sort(OrderedUses, Compare);
SmallVector<StackEntry, 8> RenameStack;
// For each use, sorted into dfs order, push values and replaces uses with
// top of stack, which will represent the reaching def.
for (const ValueDFS &VD : OrderedUses) {
// We currently do not materialize copy over copy, but we should decide if
// we want to.
if (RenameStack.empty()) {
LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
} else {
LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
<< RenameStack.back().V->DFSIn << ","
<< RenameStack.back().V->DFSOut << ")\n");
}
LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
<< VD.DFSOut << ")\n");
// Sync to our current scope.
popStackUntilDFSScope(RenameStack, VD);
if (VD.PInfo) {
RenameStack.push_back(&VD);
continue;
}
// If we get to this point, and the stack is empty we must have a use
// with no renaming needed, just skip it.
if (RenameStack.empty())
continue;
if (!DebugCounter::shouldExecute(RenameCounter)) {
LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
continue;
}
StackEntry &Result = RenameStack.back();
// If the possible copy dominates something, materialize our stack up to
// this point. This ensures every comparison that affects our operation
// ends up with predicateinfo.
if (!Result.Def)
Result.Def = materializeStack(Counter, RenameStack, Op);
LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
<< *VD.U->get() << " in " << *(VD.U->getUser())
<< "\n");
assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
"Predicateinfo def should have dominated this use");
VD.U->set(Result.Def);
}
}
}
PredicateInfoBuilder::ValueInfo &
PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) {
auto Res = ValueInfoNums.try_emplace(Operand, ValueInfos.size());
if (Res.second) {
// Allocate space for new ValueInfo.
ValueInfos.resize(ValueInfos.size() + 1);
}
return ValueInfos[Res.first->second];
}
const PredicateInfoBuilder::ValueInfo &
PredicateInfoBuilder::getValueInfo(Value *Operand) const {
auto OINI = ValueInfoNums.lookup(Operand);
assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
assert(OINI < ValueInfos.size() &&
"Value Info Number greater than size of Value Info Table");
return ValueInfos[OINI];
}
PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
AssumptionCache &AC, BumpPtrAllocator &Allocator)
: F(F) {
PredicateInfoBuilder Builder(*this, F, DT, AC, Allocator);
Builder.buildPredicateInfo();
}
std::optional<PredicateConstraint> PredicateBase::getConstraint() const {
switch (Type) {
case PT_Assume:
case PT_Branch: {
bool TrueEdge = true;
if (auto *PBranch = dyn_cast<PredicateBranch>(this))
TrueEdge = PBranch->TrueEdge;
if (Condition == RenamedOp) {
return {{CmpInst::ICMP_EQ,
TrueEdge ? ConstantInt::getTrue(Condition->getType())
: ConstantInt::getFalse(Condition->getType())}};
}
if (match(Condition, m_NUWTrunc(m_Specific(RenamedOp)))) {
return {{TrueEdge ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ,
ConstantInt::getNullValue(RenamedOp->getType())}};
}
CmpInst *Cmp = dyn_cast<CmpInst>(Condition);
if (!Cmp) {
// TODO: Make this an assertion once RenamedOp is fully accurate.
return std::nullopt;
}
CmpInst::Predicate Pred;
Value *OtherOp;
if (Cmp->getOperand(0) == RenamedOp) {
Pred = Cmp->getPredicate();
OtherOp = Cmp->getOperand(1);
} else if (Cmp->getOperand(1) == RenamedOp) {
Pred = Cmp->getSwappedPredicate();
OtherOp = Cmp->getOperand(0);
} else {
// TODO: Make this an assertion once RenamedOp is fully accurate.
return std::nullopt;
}
// Invert predicate along false edge.
if (!TrueEdge)
Pred = CmpInst::getInversePredicate(Pred);
return {{Pred, OtherOp}};
}
case PT_Switch:
if (Condition != RenamedOp) {
// TODO: Make this an assertion once RenamedOp is fully accurate.
return std::nullopt;
}
return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}};
}
llvm_unreachable("Unknown predicate type");
}
void PredicateInfo::verifyPredicateInfo() const {}
// Replace bitcasts created by PredicateInfo with their operand.
static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
for (Instruction &Inst : llvm::make_early_inc_range(instructions(F))) {
const auto *PI = PredInfo.getPredicateInfoFor(&Inst);
if (!PI)
continue;
assert(isa<BitCastInst>(Inst) &&
Inst.getType() == Inst.getOperand(0)->getType());
Inst.replaceAllUsesWith(Inst.getOperand(0));
Inst.eraseFromParent();
}
}
PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
OS << "PredicateInfo for function: " << F.getName() << "\n";
BumpPtrAllocator Allocator;
auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC, Allocator);
PredInfo->print(OS);
replaceCreatedSSACopys(*PredInfo, F);
return PreservedAnalyses::all();
}
/// An assembly annotator class to print PredicateInfo information in
/// comments.
class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
friend class PredicateInfo;
const PredicateInfo *PredInfo;
public:
PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
void emitBasicBlockStartAnnot(const BasicBlock *BB,
formatted_raw_ostream &OS) override {}
void emitInstructionAnnot(const Instruction *I,
formatted_raw_ostream &OS) override {
if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
OS << "; Has predicate info\n";
if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
<< " Comparison:" << *PB->Condition << " Edge: [";
PB->From->printAsOperand(OS);
OS << ",";
PB->To->printAsOperand(OS);
OS << "]";
} else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
<< " Switch:" << *PS->Switch << " Edge: [";
PS->From->printAsOperand(OS);
OS << ",";
PS->To->printAsOperand(OS);
OS << "]";
} else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
OS << "; assume predicate info {"
<< " Comparison:" << *PA->Condition;
}
OS << ", RenamedOp: ";
PI->RenamedOp->printAsOperand(OS, false);
OS << " }\n";
}
}
};
void PredicateInfo::print(raw_ostream &OS) const {
PredicateInfoAnnotatedWriter Writer(this);
F.print(OS, &Writer);
}
void PredicateInfo::dump() const {
PredicateInfoAnnotatedWriter Writer(this);
F.print(dbgs(), &Writer);
}
PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
BumpPtrAllocator Allocator;
std::make_unique<PredicateInfo>(F, DT, AC, Allocator)->verifyPredicateInfo();
return PreservedAnalyses::all();
}
}