
We can use *Set::insert_range to collapse: for (auto Elem : Range) Set.insert(E); down to: Set.insert_range(Range); In some cases, we can further fold that into the set declaration.
225 lines
8.2 KiB
C++
225 lines
8.2 KiB
C++
//===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the SSAUpdaterBulk class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
|
|
#include "llvm/Analysis/IteratedDominanceFrontier.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/Value.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "ssaupdaterbulk"
|
|
|
|
/// Helper function for finding a block which should have a value for the given
|
|
/// user. For PHI-nodes this block is the corresponding predecessor, for other
|
|
/// instructions it's their parent block.
|
|
static BasicBlock *getUserBB(Use *U) {
|
|
auto *User = cast<Instruction>(U->getUser());
|
|
|
|
if (auto *UserPN = dyn_cast<PHINode>(User))
|
|
return UserPN->getIncomingBlock(*U);
|
|
else
|
|
return User->getParent();
|
|
}
|
|
|
|
/// Add a new variable to the SSA rewriter. This needs to be called before
|
|
/// AddAvailableValue or AddUse calls.
|
|
unsigned SSAUpdaterBulk::AddVariable(StringRef Name, Type *Ty) {
|
|
unsigned Var = Rewrites.size();
|
|
LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": initialized with Ty = "
|
|
<< *Ty << ", Name = " << Name << "\n");
|
|
RewriteInfo RI(Name, Ty);
|
|
Rewrites.push_back(RI);
|
|
return Var;
|
|
}
|
|
|
|
/// Indicate that a rewritten value is available in the specified block with the
|
|
/// specified value.
|
|
void SSAUpdaterBulk::AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V) {
|
|
assert(Var < Rewrites.size() && "Variable not found!");
|
|
LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var
|
|
<< ": added new available value " << *V << " in "
|
|
<< BB->getName() << "\n");
|
|
Rewrites[Var].Defines.emplace_back(BB, V);
|
|
}
|
|
|
|
/// Record a use of the symbolic value. This use will be updated with a
|
|
/// rewritten value when RewriteAllUses is called.
|
|
void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) {
|
|
assert(Var < Rewrites.size() && "Variable not found!");
|
|
LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": added a use" << *U->get()
|
|
<< " in " << getUserBB(U)->getName() << "\n");
|
|
Rewrites[Var].Uses.push_back(U);
|
|
}
|
|
|
|
/// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks.
|
|
/// This is basically a subgraph limited by DefBlocks and UsingBlocks.
|
|
static void
|
|
ComputeLiveInBlocks(const SmallPtrSetImpl<BasicBlock *> &UsingBlocks,
|
|
const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
|
|
SmallPtrSetImpl<BasicBlock *> &LiveInBlocks,
|
|
PredIteratorCache &PredCache) {
|
|
// To determine liveness, we must iterate through the predecessors of blocks
|
|
// where the def is live. Blocks are added to the worklist if we need to
|
|
// check their predecessors. Start with all the using blocks.
|
|
SmallVector<BasicBlock *, 64> LiveInBlockWorklist(UsingBlocks.begin(),
|
|
UsingBlocks.end());
|
|
|
|
// Now that we have a set of blocks where the phi is live-in, recursively add
|
|
// their predecessors until we find the full region the value is live.
|
|
while (!LiveInBlockWorklist.empty()) {
|
|
BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
|
|
|
|
// The block really is live in here, insert it into the set. If already in
|
|
// the set, then it has already been processed.
|
|
if (!LiveInBlocks.insert(BB).second)
|
|
continue;
|
|
|
|
// Since the value is live into BB, it is either defined in a predecessor or
|
|
// live into it to. Add the preds to the worklist unless they are a
|
|
// defining block.
|
|
for (BasicBlock *P : PredCache.get(BB)) {
|
|
// The value is not live into a predecessor if it defines the value.
|
|
if (DefBlocks.count(P))
|
|
continue;
|
|
|
|
// Otherwise it is, add to the worklist.
|
|
LiveInBlockWorklist.push_back(P);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct BBValueInfo {
|
|
Value *LiveInValue = nullptr;
|
|
Value *LiveOutValue = nullptr;
|
|
};
|
|
|
|
/// Perform all the necessary updates, including new PHI-nodes insertion and the
|
|
/// requested uses update.
|
|
void SSAUpdaterBulk::RewriteAllUses(DominatorTree *DT,
|
|
SmallVectorImpl<PHINode *> *InsertedPHIs) {
|
|
DenseMap<BasicBlock *, BBValueInfo> BBInfos;
|
|
for (auto &R : Rewrites) {
|
|
BBInfos.clear();
|
|
|
|
// Compute locations for new phi-nodes.
|
|
// For that we need to initialize DefBlocks from definitions in R.Defines,
|
|
// UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use
|
|
// this set for computing iterated dominance frontier (IDF).
|
|
// The IDF blocks are the blocks where we need to insert new phi-nodes.
|
|
ForwardIDFCalculator IDF(*DT);
|
|
LLVM_DEBUG(dbgs() << "SSAUpdater: rewriting " << R.Uses.size()
|
|
<< " use(s)\n");
|
|
|
|
SmallPtrSet<BasicBlock *, 2> DefBlocks(llvm::from_range,
|
|
llvm::make_first_range(R.Defines));
|
|
IDF.setDefiningBlocks(DefBlocks);
|
|
|
|
SmallPtrSet<BasicBlock *, 2> UsingBlocks;
|
|
for (Use *U : R.Uses)
|
|
UsingBlocks.insert(getUserBB(U));
|
|
|
|
SmallVector<BasicBlock *, 32> IDFBlocks;
|
|
SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
|
|
ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks, PredCache);
|
|
IDF.setLiveInBlocks(LiveInBlocks);
|
|
IDF.calculate(IDFBlocks);
|
|
|
|
// Reserve sufficient buckets to prevent map growth. [1]
|
|
BBInfos.reserve(LiveInBlocks.size() + DefBlocks.size());
|
|
|
|
for (auto [BB, V] : R.Defines)
|
|
BBInfos[BB].LiveOutValue = V;
|
|
|
|
// We've computed IDF, now insert new phi-nodes there.
|
|
for (auto *FrontierBB : IDFBlocks) {
|
|
IRBuilder<> B(FrontierBB, FrontierBB->begin());
|
|
PHINode *PN = B.CreatePHI(R.Ty, 0, R.Name);
|
|
BBInfos[FrontierBB].LiveInValue = PN;
|
|
if (InsertedPHIs)
|
|
InsertedPHIs->push_back(PN);
|
|
}
|
|
|
|
// IsLiveOut indicates whether we are computing live-out values (true) or
|
|
// live-in values (false).
|
|
auto ComputeValue = [&](BasicBlock *BB, bool IsLiveOut) -> Value * {
|
|
auto *BBInfo = &BBInfos[BB];
|
|
|
|
if (IsLiveOut && BBInfo->LiveOutValue)
|
|
return BBInfo->LiveOutValue;
|
|
|
|
if (BBInfo->LiveInValue)
|
|
return BBInfo->LiveInValue;
|
|
|
|
SmallVector<BBValueInfo *, 4> Stack = {BBInfo};
|
|
Value *V = nullptr;
|
|
|
|
while (DT->isReachableFromEntry(BB) && !PredCache.get(BB).empty() &&
|
|
(BB = DT->getNode(BB)->getIDom()->getBlock())) {
|
|
BBInfo = &BBInfos[BB];
|
|
|
|
if (BBInfo->LiveOutValue) {
|
|
V = BBInfo->LiveOutValue;
|
|
break;
|
|
}
|
|
|
|
if (BBInfo->LiveInValue) {
|
|
V = BBInfo->LiveInValue;
|
|
break;
|
|
}
|
|
|
|
Stack.emplace_back(BBInfo);
|
|
}
|
|
|
|
if (!V)
|
|
V = UndefValue::get(R.Ty);
|
|
|
|
for (auto *BBInfo : Stack)
|
|
// Loop above can insert new entries into the BBInfos map: assume the
|
|
// map shouldn't grow due to [1] and BBInfo references are valid.
|
|
BBInfo->LiveInValue = V;
|
|
|
|
return V;
|
|
};
|
|
|
|
// Fill in arguments of the inserted PHIs.
|
|
for (auto *BB : IDFBlocks) {
|
|
auto *PHI = cast<PHINode>(&BB->front());
|
|
for (BasicBlock *Pred : PredCache.get(BB))
|
|
PHI->addIncoming(ComputeValue(Pred, /*IsLiveOut=*/true), Pred);
|
|
}
|
|
|
|
// Rewrite actual uses with the inserted definitions.
|
|
SmallPtrSet<Use *, 4> ProcessedUses;
|
|
for (Use *U : R.Uses) {
|
|
if (!ProcessedUses.insert(U).second)
|
|
continue;
|
|
|
|
auto *User = cast<Instruction>(U->getUser());
|
|
BasicBlock *BB = getUserBB(U);
|
|
Value *V = ComputeValue(BB, /*IsLiveOut=*/BB != User->getParent());
|
|
Value *OldVal = U->get();
|
|
assert(OldVal && "Invalid use!");
|
|
// Notify that users of the existing value that it is being replaced.
|
|
if (OldVal != V && OldVal->hasValueHandle())
|
|
ValueHandleBase::ValueIsRAUWd(OldVal, V);
|
|
LLVM_DEBUG(dbgs() << "SSAUpdater: replacing " << *OldVal << " with " << *V
|
|
<< "\n");
|
|
U->set(V);
|
|
}
|
|
}
|
|
}
|