llvm-project/llvm/lib/Transforms/Utils/SplitModuleByCategory.cpp
Kazu Hirata 908ef45606 [Utils] Fix a warning
This patch fixes:

  llvm/lib/Transforms/Utils/SplitModuleByCategory.cpp:321:14: error:
  moving a temporary object prevents copy elision
  [-Werror,-Wpessimizing-move]
2025-08-05 07:24:10 -07:00

324 lines
11 KiB
C++

//===-------- SplitModuleByCategory.cpp - split a module by categories ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// See comments in the header.
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SplitModuleByCategory.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <map>
#include <string>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "split-module-by-category"
namespace {
// A vector that contains a group of function with the same category.
using EntryPointSet = SetVector<const Function *>;
/// Represents a group of functions with one category.
struct EntryPointGroup {
int ID;
EntryPointSet Functions;
EntryPointGroup() = default;
EntryPointGroup(int ID, EntryPointSet &&Functions = EntryPointSet())
: ID(ID), Functions(std::move(Functions)) {}
void clear() { Functions.clear(); }
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void dump() const {
constexpr size_t INDENT = 4;
dbgs().indent(INDENT) << "ENTRY POINTS"
<< " " << ID << " {\n";
for (const Function *F : Functions)
dbgs().indent(INDENT) << " " << F->getName() << "\n";
dbgs().indent(INDENT) << "}\n";
}
#endif
};
/// Annotates an llvm::Module with information necessary to perform and track
/// the result of code (llvm::Module instances) splitting:
/// - entry points group from the module.
class ModuleDesc {
std::unique_ptr<Module> M;
EntryPointGroup EntryPoints;
public:
ModuleDesc(std::unique_ptr<Module> M,
EntryPointGroup &&EntryPoints = EntryPointGroup())
: M(std::move(M)), EntryPoints(std::move(EntryPoints)) {
assert(this->M && "Module should be non-null");
}
Module &getModule() { return *M; }
const Module &getModule() const { return *M; }
std::unique_ptr<Module> releaseModule() {
EntryPoints.clear();
return std::move(M);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void dump() const {
dbgs() << "ModuleDesc[" << M->getName() << "] {\n";
EntryPoints.dump();
dbgs() << "}\n";
}
#endif
};
bool isKernel(const Function &F) {
return F.getCallingConv() == CallingConv::SPIR_KERNEL ||
F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
F.getCallingConv() == CallingConv::PTX_Kernel;
}
// Represents "dependency" or "use" graph of global objects (functions and
// global variables) in a module. It is used during code split to
// understand which global variables and functions (other than entry points)
// should be included into a split module.
//
// Nodes of the graph represent LLVM's GlobalObjects, edges "A" -> "B" represent
// the fact that if "A" is included into a module, then "B" should be included
// as well.
//
// Examples of dependencies which are represented in this graph:
// - Function FA calls function FB
// - Function FA uses global variable GA
// - Global variable GA references (initialized with) function FB
// - Function FA stores address of a function FB somewhere
//
// The following cases are treated as dependencies between global objects:
// 1. Global object A is used by a global object B in any way (store,
// bitcast, phi node, call, etc.): "A" -> "B" edge will be added to the
// graph;
// 2. function A performs an indirect call of a function with signature S and
// there is a function B with signature S. "A" -> "B" edge will be added to
// the graph;
class DependencyGraph {
public:
using GlobalSet = SmallPtrSet<const GlobalValue *, 16>;
DependencyGraph(const Module &M) {
// Group functions by their signature to handle case (2) described above
DenseMap<const FunctionType *, DependencyGraph::GlobalSet>
FuncTypeToFuncsMap;
for (const Function &F : M.functions()) {
// Kernels can't be called (either directly or indirectly).
if (isKernel(F))
continue;
FuncTypeToFuncsMap[F.getFunctionType()].insert(&F);
}
for (const Function &F : M.functions()) {
// case (1), see comment above the class definition
for (const Value *U : F.users())
addUserToGraphRecursively(cast<const User>(U), &F);
// case (2), see comment above the class definition
for (const Instruction &I : instructions(F)) {
const CallBase *CB = dyn_cast<CallBase>(&I);
if (!CB || !CB->isIndirectCall()) // Direct calls were handled above
continue;
const FunctionType *Signature = CB->getFunctionType();
GlobalSet &PotentialCallees = FuncTypeToFuncsMap[Signature];
Graph[&F].insert(PotentialCallees.begin(), PotentialCallees.end());
}
}
// And every global variable (but their handling is a bit simpler)
for (const GlobalVariable &GV : M.globals())
for (const Value *U : GV.users())
addUserToGraphRecursively(cast<const User>(U), &GV);
}
iterator_range<GlobalSet::const_iterator>
dependencies(const GlobalValue *Val) const {
auto It = Graph.find(Val);
return (It == Graph.end())
? make_range(EmptySet.begin(), EmptySet.end())
: make_range(It->second.begin(), It->second.end());
}
private:
void addUserToGraphRecursively(const User *Root, const GlobalValue *V) {
SmallVector<const User *, 8> WorkList;
WorkList.push_back(Root);
while (!WorkList.empty()) {
const User *U = WorkList.pop_back_val();
if (const auto *I = dyn_cast<const Instruction>(U)) {
const Function *UFunc = I->getFunction();
Graph[UFunc].insert(V);
} else if (isa<const Constant>(U)) {
if (const auto *GV = dyn_cast<const GlobalVariable>(U))
Graph[GV].insert(V);
// This could be a global variable or some constant expression (like
// bitcast or gep). We trace users of this constant further to reach
// global objects they are used by and add them to the graph.
for (const User *UU : U->users())
WorkList.push_back(UU);
} else {
llvm_unreachable("Unhandled type of function user");
}
}
}
DenseMap<const GlobalValue *, GlobalSet> Graph;
SmallPtrSet<const GlobalValue *, 1> EmptySet;
};
void collectFunctionsAndGlobalVariablesToExtract(
SetVector<const GlobalValue *> &GVs, const Module &M,
const EntryPointGroup &ModuleEntryPoints, const DependencyGraph &DG) {
// We start with module entry points
for (const Function *F : ModuleEntryPoints.Functions)
GVs.insert(F);
// Non-discardable global variables are also include into the initial set
for (const GlobalVariable &GV : M.globals())
if (!GV.isDiscardableIfUnused())
GVs.insert(&GV);
// GVs has SetVector type. This type inserts a value only if it is not yet
// present there. So, recursion is not expected here.
size_t Idx = 0;
while (Idx < GVs.size()) {
const GlobalValue *Obj = GVs[Idx++];
for (const GlobalValue *Dep : DG.dependencies(Obj)) {
if (const auto *Func = dyn_cast<const Function>(Dep)) {
if (!Func->isDeclaration())
GVs.insert(Func);
} else {
GVs.insert(Dep); // Global variables are added unconditionally
}
}
}
}
ModuleDesc extractSubModule(const Module &M,
const SetVector<const GlobalValue *> &GVs,
EntryPointGroup &&ModuleEntryPoints) {
ValueToValueMapTy VMap;
// Clone definitions only for needed globals. Others will be added as
// declarations and removed later.
std::unique_ptr<Module> SubM = CloneModule(
M, VMap, [&](const GlobalValue *GV) { return GVs.contains(GV); });
// Replace entry points with cloned ones.
EntryPointSet NewEPs;
const EntryPointSet &EPs = ModuleEntryPoints.Functions;
llvm::for_each(
EPs, [&](const Function *F) { NewEPs.insert(cast<Function>(VMap[F])); });
ModuleEntryPoints.Functions = std::move(NewEPs);
return ModuleDesc{std::move(SubM), std::move(ModuleEntryPoints)};
}
// The function produces a copy of input LLVM IR module M with only those
// functions and globals that can be called from entry points that are specified
// in ModuleEntryPoints vector, in addition to the entry point functions.
ModuleDesc extractCallGraph(const Module &M,
EntryPointGroup &&ModuleEntryPoints,
const DependencyGraph &DG) {
SetVector<const GlobalValue *> GVs;
collectFunctionsAndGlobalVariablesToExtract(GVs, M, ModuleEntryPoints, DG);
ModuleDesc SplitM = extractSubModule(M, GVs, std::move(ModuleEntryPoints));
LLVM_DEBUG(SplitM.dump());
return SplitM;
}
using EntryPointGroupVec = SmallVector<EntryPointGroup>;
/// Module Splitter.
/// It gets a module and a collection of entry points groups.
/// Each group specifies subset entry points from input module that should be
/// included in a split module.
class ModuleSplitter {
private:
std::unique_ptr<Module> M;
EntryPointGroupVec Groups;
DependencyGraph DG;
private:
EntryPointGroup drawEntryPointGroup() {
assert(Groups.size() > 0 && "Reached end of entry point groups list.");
EntryPointGroup Group = std::move(Groups.back());
Groups.pop_back();
return Group;
}
public:
ModuleSplitter(std::unique_ptr<Module> Module, EntryPointGroupVec &&GroupVec)
: M(std::move(Module)), Groups(std::move(GroupVec)), DG(*M) {
assert(!Groups.empty() && "Entry points groups collection is empty!");
}
/// Gets next subsequence of entry points in an input module and provides
/// split submodule containing these entry points and their dependencies.
ModuleDesc getNextSplit() {
return extractCallGraph(*M, drawEntryPointGroup(), DG);
}
/// Check that there are still submodules to split.
bool hasMoreSplits() const { return Groups.size() > 0; }
};
EntryPointGroupVec selectEntryPointGroups(
const Module &M, function_ref<std::optional<int>(const Function &F)> EPC) {
// std::map is used here to ensure stable ordering of entry point groups,
// which is based on their contents, this greatly helps LIT tests
// Note: EPC is allowed to return big identifiers. Therefore, we use
// std::map + SmallVector approach here.
std::map<int, EntryPointSet> EntryPointsMap;
for (const auto &F : M.functions())
if (std::optional<int> Category = EPC(F); Category)
EntryPointsMap[*Category].insert(&F);
EntryPointGroupVec Groups;
Groups.reserve(EntryPointsMap.size());
for (auto &[Key, EntryPoints] : EntryPointsMap)
Groups.emplace_back(Key, std::move(EntryPoints));
return Groups;
}
} // namespace
void llvm::splitModuleTransitiveFromEntryPoints(
std::unique_ptr<Module> M,
function_ref<std::optional<int>(const Function &F)> EntryPointCategorizer,
function_ref<void(std::unique_ptr<Module> Part)> Callback) {
EntryPointGroupVec Groups = selectEntryPointGroups(*M, EntryPointCategorizer);
ModuleSplitter Splitter(std::move(M), std::move(Groups));
while (Splitter.hasMoreSplits()) {
ModuleDesc MD = Splitter.getNextSplit();
Callback(MD.releaseModule());
}
}