llvm-project/llvm/lib/Target/AMDGPU/SIMachineFunctionInfo.cpp
Christudasan Devadasan b78b36e1a2 [AMDGPU] Implement whole wave register spill
To reduce the register pressure during allocation,
when the allocator spills a virtual register that
corresponds to a whole wave mode operation, the
spill loads and restores should be activated for
all lanes by temporarily flipping all bits in exec
register to one just before the spills. It is not
implemented in the compiler as of today and this
patch enables the necessary support.

This is a pre-patch before the SGPR spill to virtual
VGPR lanes that would eventually causes the whole
wave register spills during allocation.

Reviewed By: arsenm, cdevadas

Differential Revision: https://reviews.llvm.org/D143759
2023-07-07 22:51:45 +05:30

792 lines
26 KiB
C++

//===- SIMachineFunctionInfo.cpp - SI Machine Function Info ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SIMachineFunctionInfo.h"
#include "AMDGPUTargetMachine.h"
#include "AMDGPUSubtarget.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include <cassert>
#include <optional>
#include <vector>
#define MAX_LANES 64
using namespace llvm;
const GCNTargetMachine &getTM(const GCNSubtarget *STI) {
const SITargetLowering *TLI = STI->getTargetLowering();
return static_cast<const GCNTargetMachine &>(TLI->getTargetMachine());
}
SIMachineFunctionInfo::SIMachineFunctionInfo(const Function &F,
const GCNSubtarget *STI)
: AMDGPUMachineFunction(F, *STI),
Mode(F),
GWSResourcePSV(getTM(STI)),
PrivateSegmentBuffer(false),
DispatchPtr(false),
QueuePtr(false),
KernargSegmentPtr(false),
DispatchID(false),
FlatScratchInit(false),
WorkGroupIDX(false),
WorkGroupIDY(false),
WorkGroupIDZ(false),
WorkGroupInfo(false),
LDSKernelId(false),
PrivateSegmentWaveByteOffset(false),
WorkItemIDX(false),
WorkItemIDY(false),
WorkItemIDZ(false),
ImplicitBufferPtr(false),
ImplicitArgPtr(false),
GITPtrHigh(0xffffffff),
HighBitsOf32BitAddress(0) {
const GCNSubtarget &ST = *static_cast<const GCNSubtarget *>(STI);
FlatWorkGroupSizes = ST.getFlatWorkGroupSizes(F);
WavesPerEU = ST.getWavesPerEU(F);
Occupancy = ST.computeOccupancy(F, getLDSSize());
CallingConv::ID CC = F.getCallingConv();
VRegFlags.reserve(1024);
// FIXME: Should have analysis or something rather than attribute to detect
// calls.
const bool HasCalls = F.hasFnAttribute("amdgpu-calls");
const bool IsKernel = CC == CallingConv::AMDGPU_KERNEL ||
CC == CallingConv::SPIR_KERNEL;
if (IsKernel) {
if (!F.arg_empty() || ST.getImplicitArgNumBytes(F) != 0)
KernargSegmentPtr = true;
WorkGroupIDX = true;
WorkItemIDX = true;
} else if (CC == CallingConv::AMDGPU_PS) {
PSInputAddr = AMDGPU::getInitialPSInputAddr(F);
}
MayNeedAGPRs = ST.hasMAIInsts();
if (!isEntryFunction()) {
if (CC != CallingConv::AMDGPU_Gfx)
ArgInfo = AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
// TODO: Pick a high register, and shift down, similar to a kernel.
FrameOffsetReg = AMDGPU::SGPR33;
StackPtrOffsetReg = AMDGPU::SGPR32;
if (!ST.enableFlatScratch()) {
// Non-entry functions have no special inputs for now, other registers
// required for scratch access.
ScratchRSrcReg = AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3;
ArgInfo.PrivateSegmentBuffer =
ArgDescriptor::createRegister(ScratchRSrcReg);
}
if (!F.hasFnAttribute("amdgpu-no-implicitarg-ptr"))
ImplicitArgPtr = true;
} else {
ImplicitArgPtr = false;
MaxKernArgAlign = std::max(ST.getAlignmentForImplicitArgPtr(),
MaxKernArgAlign);
if (ST.hasGFX90AInsts() &&
ST.getMaxNumVGPRs(F) <= AMDGPU::VGPR_32RegClass.getNumRegs() &&
!mayUseAGPRs(F))
MayNeedAGPRs = false; // We will select all MAI with VGPR operands.
}
bool isAmdHsaOrMesa = ST.isAmdHsaOrMesa(F);
if (isAmdHsaOrMesa && !ST.enableFlatScratch())
PrivateSegmentBuffer = true;
else if (ST.isMesaGfxShader(F))
ImplicitBufferPtr = true;
if (!AMDGPU::isGraphics(CC) ||
(CC == CallingConv::AMDGPU_CS && ST.hasArchitectedSGPRs())) {
if (IsKernel || !F.hasFnAttribute("amdgpu-no-workgroup-id-x"))
WorkGroupIDX = true;
if (!F.hasFnAttribute("amdgpu-no-workgroup-id-y"))
WorkGroupIDY = true;
if (!F.hasFnAttribute("amdgpu-no-workgroup-id-z"))
WorkGroupIDZ = true;
}
if (!AMDGPU::isGraphics(CC)) {
if (IsKernel || !F.hasFnAttribute("amdgpu-no-workitem-id-x"))
WorkItemIDX = true;
if (!F.hasFnAttribute("amdgpu-no-workitem-id-y") &&
ST.getMaxWorkitemID(F, 1) != 0)
WorkItemIDY = true;
if (!F.hasFnAttribute("amdgpu-no-workitem-id-z") &&
ST.getMaxWorkitemID(F, 2) != 0)
WorkItemIDZ = true;
if (!F.hasFnAttribute("amdgpu-no-dispatch-ptr"))
DispatchPtr = true;
if (!F.hasFnAttribute("amdgpu-no-queue-ptr"))
QueuePtr = true;
if (!F.hasFnAttribute("amdgpu-no-dispatch-id"))
DispatchID = true;
if (!IsKernel && !F.hasFnAttribute("amdgpu-no-lds-kernel-id"))
LDSKernelId = true;
}
// FIXME: This attribute is a hack, we just need an analysis on the function
// to look for allocas.
bool HasStackObjects = F.hasFnAttribute("amdgpu-stack-objects");
// TODO: This could be refined a lot. The attribute is a poor way of
// detecting calls or stack objects that may require it before argument
// lowering.
if (ST.hasFlatAddressSpace() && isEntryFunction() &&
(isAmdHsaOrMesa || ST.enableFlatScratch()) &&
(HasCalls || HasStackObjects || ST.enableFlatScratch()) &&
!ST.flatScratchIsArchitected()) {
FlatScratchInit = true;
}
if (isEntryFunction()) {
// X, XY, and XYZ are the only supported combinations, so make sure Y is
// enabled if Z is.
if (WorkItemIDZ)
WorkItemIDY = true;
if (!ST.flatScratchIsArchitected()) {
PrivateSegmentWaveByteOffset = true;
// HS and GS always have the scratch wave offset in SGPR5 on GFX9.
if (ST.getGeneration() >= AMDGPUSubtarget::GFX9 &&
(CC == CallingConv::AMDGPU_HS || CC == CallingConv::AMDGPU_GS))
ArgInfo.PrivateSegmentWaveByteOffset =
ArgDescriptor::createRegister(AMDGPU::SGPR5);
}
}
Attribute A = F.getFnAttribute("amdgpu-git-ptr-high");
StringRef S = A.getValueAsString();
if (!S.empty())
S.consumeInteger(0, GITPtrHigh);
A = F.getFnAttribute("amdgpu-32bit-address-high-bits");
S = A.getValueAsString();
if (!S.empty())
S.consumeInteger(0, HighBitsOf32BitAddress);
// On GFX908, in order to guarantee copying between AGPRs, we need a scratch
// VGPR available at all times. For now, reserve highest available VGPR. After
// RA, shift it to the lowest available unused VGPR if the one exist.
if (ST.hasMAIInsts() && !ST.hasGFX90AInsts()) {
VGPRForAGPRCopy =
AMDGPU::VGPR_32RegClass.getRegister(ST.getMaxNumVGPRs(F) - 1);
}
}
MachineFunctionInfo *SIMachineFunctionInfo::clone(
BumpPtrAllocator &Allocator, MachineFunction &DestMF,
const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB)
const {
return DestMF.cloneInfo<SIMachineFunctionInfo>(*this);
}
void SIMachineFunctionInfo::limitOccupancy(const MachineFunction &MF) {
limitOccupancy(getMaxWavesPerEU());
const GCNSubtarget& ST = MF.getSubtarget<GCNSubtarget>();
limitOccupancy(ST.getOccupancyWithLocalMemSize(getLDSSize(),
MF.getFunction()));
}
Register SIMachineFunctionInfo::addPrivateSegmentBuffer(
const SIRegisterInfo &TRI) {
ArgInfo.PrivateSegmentBuffer =
ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SGPR_128RegClass));
NumUserSGPRs += 4;
return ArgInfo.PrivateSegmentBuffer.getRegister();
}
Register SIMachineFunctionInfo::addDispatchPtr(const SIRegisterInfo &TRI) {
ArgInfo.DispatchPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.DispatchPtr.getRegister();
}
Register SIMachineFunctionInfo::addQueuePtr(const SIRegisterInfo &TRI) {
ArgInfo.QueuePtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.QueuePtr.getRegister();
}
Register SIMachineFunctionInfo::addKernargSegmentPtr(const SIRegisterInfo &TRI) {
ArgInfo.KernargSegmentPtr
= ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.KernargSegmentPtr.getRegister();
}
Register SIMachineFunctionInfo::addDispatchID(const SIRegisterInfo &TRI) {
ArgInfo.DispatchID = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.DispatchID.getRegister();
}
Register SIMachineFunctionInfo::addFlatScratchInit(const SIRegisterInfo &TRI) {
ArgInfo.FlatScratchInit = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.FlatScratchInit.getRegister();
}
Register SIMachineFunctionInfo::addImplicitBufferPtr(const SIRegisterInfo &TRI) {
ArgInfo.ImplicitBufferPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.ImplicitBufferPtr.getRegister();
}
Register SIMachineFunctionInfo::addLDSKernelId() {
ArgInfo.LDSKernelId = ArgDescriptor::createRegister(getNextUserSGPR());
NumUserSGPRs += 1;
return ArgInfo.LDSKernelId.getRegister();
}
void SIMachineFunctionInfo::allocateWWMSpill(MachineFunction &MF, Register VGPR,
uint64_t Size, Align Alignment) {
// Skip if it is an entry function or the register is already added.
if (isEntryFunction() || WWMSpills.count(VGPR))
return;
WWMSpills.insert(std::make_pair(
VGPR, MF.getFrameInfo().CreateSpillStackObject(Size, Alignment)));
}
// Separate out the callee-saved and scratch registers.
void SIMachineFunctionInfo::splitWWMSpillRegisters(
MachineFunction &MF,
SmallVectorImpl<std::pair<Register, int>> &CalleeSavedRegs,
SmallVectorImpl<std::pair<Register, int>> &ScratchRegs) const {
const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
for (auto &Reg : WWMSpills) {
if (isCalleeSavedReg(CSRegs, Reg.first))
CalleeSavedRegs.push_back(Reg);
else
ScratchRegs.push_back(Reg);
}
}
bool SIMachineFunctionInfo::isCalleeSavedReg(const MCPhysReg *CSRegs,
MCPhysReg Reg) const {
for (unsigned I = 0; CSRegs[I]; ++I) {
if (CSRegs[I] == Reg)
return true;
}
return false;
}
bool SIMachineFunctionInfo::allocateVGPRForSGPRSpills(MachineFunction &MF,
int FI,
unsigned LaneIndex) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
Register LaneVGPR;
if (!LaneIndex) {
LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF);
if (LaneVGPR == AMDGPU::NoRegister) {
// We have no VGPRs left for spilling SGPRs. Reset because we will not
// partially spill the SGPR to VGPRs.
SGPRSpillToVGPRLanes.erase(FI);
return false;
}
SpillVGPRs.push_back(LaneVGPR);
// Add this register as live-in to all blocks to avoid machine verifier
// complaining about use of an undefined physical register.
for (MachineBasicBlock &BB : MF)
BB.addLiveIn(LaneVGPR);
} else {
LaneVGPR = SpillVGPRs.back();
}
SGPRSpillToVGPRLanes[FI].push_back(
SIRegisterInfo::SpilledReg(LaneVGPR, LaneIndex));
return true;
}
bool SIMachineFunctionInfo::allocateVGPRForPrologEpilogSGPRSpills(
MachineFunction &MF, int FI, unsigned LaneIndex) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
Register LaneVGPR;
if (!LaneIndex) {
LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF);
if (LaneVGPR == AMDGPU::NoRegister) {
// We have no VGPRs left for spilling SGPRs. Reset because we will not
// partially spill the SGPR to VGPRs.
PrologEpilogSGPRSpillToVGPRLanes.erase(FI);
return false;
}
allocateWWMSpill(MF, LaneVGPR);
} else {
LaneVGPR = WWMSpills.back().first;
}
PrologEpilogSGPRSpillToVGPRLanes[FI].push_back(
SIRegisterInfo::SpilledReg(LaneVGPR, LaneIndex));
return true;
}
bool SIMachineFunctionInfo::allocateSGPRSpillToVGPRLane(MachineFunction &MF,
int FI,
bool IsPrologEpilog) {
std::vector<SIRegisterInfo::SpilledReg> &SpillLanes =
IsPrologEpilog ? PrologEpilogSGPRSpillToVGPRLanes[FI]
: SGPRSpillToVGPRLanes[FI];
// This has already been allocated.
if (!SpillLanes.empty())
return true;
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
unsigned WaveSize = ST.getWavefrontSize();
unsigned Size = FrameInfo.getObjectSize(FI);
unsigned NumLanes = Size / 4;
if (NumLanes > WaveSize)
return false;
assert(Size >= 4 && "invalid sgpr spill size");
assert(ST.getRegisterInfo()->spillSGPRToVGPR() &&
"not spilling SGPRs to VGPRs");
unsigned &NumSpillLanes =
IsPrologEpilog ? NumVGPRPrologEpilogSpillLanes : NumVGPRSpillLanes;
for (unsigned I = 0; I < NumLanes; ++I, ++NumSpillLanes) {
unsigned LaneIndex = (NumSpillLanes % WaveSize);
bool Allocated =
IsPrologEpilog
? allocateVGPRForPrologEpilogSGPRSpills(MF, FI, LaneIndex)
: allocateVGPRForSGPRSpills(MF, FI, LaneIndex);
if (!Allocated) {
NumSpillLanes -= I;
return false;
}
}
return true;
}
/// Reserve AGPRs or VGPRs to support spilling for FrameIndex \p FI.
/// Either AGPR is spilled to VGPR to vice versa.
/// Returns true if a \p FI can be eliminated completely.
bool SIMachineFunctionInfo::allocateVGPRSpillToAGPR(MachineFunction &MF,
int FI,
bool isAGPRtoVGPR) {
MachineRegisterInfo &MRI = MF.getRegInfo();
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
assert(ST.hasMAIInsts() && FrameInfo.isSpillSlotObjectIndex(FI));
auto &Spill = VGPRToAGPRSpills[FI];
// This has already been allocated.
if (!Spill.Lanes.empty())
return Spill.FullyAllocated;
unsigned Size = FrameInfo.getObjectSize(FI);
unsigned NumLanes = Size / 4;
Spill.Lanes.resize(NumLanes, AMDGPU::NoRegister);
const TargetRegisterClass &RC =
isAGPRtoVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::AGPR_32RegClass;
auto Regs = RC.getRegisters();
auto &SpillRegs = isAGPRtoVGPR ? SpillAGPR : SpillVGPR;
const SIRegisterInfo *TRI = ST.getRegisterInfo();
Spill.FullyAllocated = true;
// FIXME: Move allocation logic out of MachineFunctionInfo and initialize
// once.
BitVector OtherUsedRegs;
OtherUsedRegs.resize(TRI->getNumRegs());
const uint32_t *CSRMask =
TRI->getCallPreservedMask(MF, MF.getFunction().getCallingConv());
if (CSRMask)
OtherUsedRegs.setBitsInMask(CSRMask);
// TODO: Should include register tuples, but doesn't matter with current
// usage.
for (MCPhysReg Reg : SpillAGPR)
OtherUsedRegs.set(Reg);
for (MCPhysReg Reg : SpillVGPR)
OtherUsedRegs.set(Reg);
SmallVectorImpl<MCPhysReg>::const_iterator NextSpillReg = Regs.begin();
for (int I = NumLanes - 1; I >= 0; --I) {
NextSpillReg = std::find_if(
NextSpillReg, Regs.end(), [&MRI, &OtherUsedRegs](MCPhysReg Reg) {
return MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg) &&
!OtherUsedRegs[Reg];
});
if (NextSpillReg == Regs.end()) { // Registers exhausted
Spill.FullyAllocated = false;
break;
}
OtherUsedRegs.set(*NextSpillReg);
SpillRegs.push_back(*NextSpillReg);
MRI.reserveReg(*NextSpillReg, TRI);
Spill.Lanes[I] = *NextSpillReg++;
}
return Spill.FullyAllocated;
}
bool SIMachineFunctionInfo::removeDeadFrameIndices(
MachineFrameInfo &MFI, bool ResetSGPRSpillStackIDs) {
// Remove dead frame indices from function frame. And also make sure to remove
// the frame indices from `SGPRSpillToVGPRLanes` data structure, otherwise, it
// could result in an unexpected side effect and bug, in case of any
// re-mapping of freed frame indices by later pass(es) like "stack slot
// coloring".
for (auto &R : make_early_inc_range(SGPRSpillToVGPRLanes)) {
MFI.RemoveStackObject(R.first);
SGPRSpillToVGPRLanes.erase(R.first);
}
bool HaveSGPRToMemory = false;
if (ResetSGPRSpillStackIDs) {
// All other SGPRs must be allocated on the default stack, so reset the
// stack ID.
for (int I = MFI.getObjectIndexBegin(), E = MFI.getObjectIndexEnd(); I != E;
++I) {
if (!checkIndexInPrologEpilogSGPRSpills(I)) {
if (MFI.getStackID(I) == TargetStackID::SGPRSpill) {
MFI.setStackID(I, TargetStackID::Default);
HaveSGPRToMemory = true;
}
}
}
}
for (auto &R : VGPRToAGPRSpills) {
if (R.second.IsDead)
MFI.RemoveStackObject(R.first);
}
return HaveSGPRToMemory;
}
int SIMachineFunctionInfo::getScavengeFI(MachineFrameInfo &MFI,
const SIRegisterInfo &TRI) {
if (ScavengeFI)
return *ScavengeFI;
if (isEntryFunction()) {
ScavengeFI = MFI.CreateFixedObject(
TRI.getSpillSize(AMDGPU::SGPR_32RegClass), 0, false);
} else {
ScavengeFI = MFI.CreateStackObject(
TRI.getSpillSize(AMDGPU::SGPR_32RegClass),
TRI.getSpillAlign(AMDGPU::SGPR_32RegClass), false);
}
return *ScavengeFI;
}
MCPhysReg SIMachineFunctionInfo::getNextUserSGPR() const {
assert(NumSystemSGPRs == 0 && "System SGPRs must be added after user SGPRs");
return AMDGPU::SGPR0 + NumUserSGPRs;
}
MCPhysReg SIMachineFunctionInfo::getNextSystemSGPR() const {
return AMDGPU::SGPR0 + NumUserSGPRs + NumSystemSGPRs;
}
void SIMachineFunctionInfo::MRI_NoteNewVirtualRegister(Register Reg) {
VRegFlags.grow(Reg);
}
void SIMachineFunctionInfo::MRI_NoteCloneVirtualRegister(Register NewReg,
Register SrcReg) {
VRegFlags.grow(NewReg);
VRegFlags[NewReg] = VRegFlags[SrcReg];
}
Register
SIMachineFunctionInfo::getGITPtrLoReg(const MachineFunction &MF) const {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
if (!ST.isAmdPalOS())
return Register();
Register GitPtrLo = AMDGPU::SGPR0; // Low GIT address passed in
if (ST.hasMergedShaders()) {
switch (MF.getFunction().getCallingConv()) {
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_GS:
// Low GIT address is passed in s8 rather than s0 for an LS+HS or
// ES+GS merged shader on gfx9+.
GitPtrLo = AMDGPU::SGPR8;
return GitPtrLo;
default:
return GitPtrLo;
}
}
return GitPtrLo;
}
static yaml::StringValue regToString(Register Reg,
const TargetRegisterInfo &TRI) {
yaml::StringValue Dest;
{
raw_string_ostream OS(Dest.Value);
OS << printReg(Reg, &TRI);
}
return Dest;
}
static std::optional<yaml::SIArgumentInfo>
convertArgumentInfo(const AMDGPUFunctionArgInfo &ArgInfo,
const TargetRegisterInfo &TRI) {
yaml::SIArgumentInfo AI;
auto convertArg = [&](std::optional<yaml::SIArgument> &A,
const ArgDescriptor &Arg) {
if (!Arg)
return false;
// Create a register or stack argument.
yaml::SIArgument SA = yaml::SIArgument::createArgument(Arg.isRegister());
if (Arg.isRegister()) {
raw_string_ostream OS(SA.RegisterName.Value);
OS << printReg(Arg.getRegister(), &TRI);
} else
SA.StackOffset = Arg.getStackOffset();
// Check and update the optional mask.
if (Arg.isMasked())
SA.Mask = Arg.getMask();
A = SA;
return true;
};
bool Any = false;
Any |= convertArg(AI.PrivateSegmentBuffer, ArgInfo.PrivateSegmentBuffer);
Any |= convertArg(AI.DispatchPtr, ArgInfo.DispatchPtr);
Any |= convertArg(AI.QueuePtr, ArgInfo.QueuePtr);
Any |= convertArg(AI.KernargSegmentPtr, ArgInfo.KernargSegmentPtr);
Any |= convertArg(AI.DispatchID, ArgInfo.DispatchID);
Any |= convertArg(AI.FlatScratchInit, ArgInfo.FlatScratchInit);
Any |= convertArg(AI.LDSKernelId, ArgInfo.LDSKernelId);
Any |= convertArg(AI.PrivateSegmentSize, ArgInfo.PrivateSegmentSize);
Any |= convertArg(AI.WorkGroupIDX, ArgInfo.WorkGroupIDX);
Any |= convertArg(AI.WorkGroupIDY, ArgInfo.WorkGroupIDY);
Any |= convertArg(AI.WorkGroupIDZ, ArgInfo.WorkGroupIDZ);
Any |= convertArg(AI.WorkGroupInfo, ArgInfo.WorkGroupInfo);
Any |= convertArg(AI.PrivateSegmentWaveByteOffset,
ArgInfo.PrivateSegmentWaveByteOffset);
Any |= convertArg(AI.ImplicitArgPtr, ArgInfo.ImplicitArgPtr);
Any |= convertArg(AI.ImplicitBufferPtr, ArgInfo.ImplicitBufferPtr);
Any |= convertArg(AI.WorkItemIDX, ArgInfo.WorkItemIDX);
Any |= convertArg(AI.WorkItemIDY, ArgInfo.WorkItemIDY);
Any |= convertArg(AI.WorkItemIDZ, ArgInfo.WorkItemIDZ);
if (Any)
return AI;
return std::nullopt;
}
yaml::SIMachineFunctionInfo::SIMachineFunctionInfo(
const llvm::SIMachineFunctionInfo &MFI, const TargetRegisterInfo &TRI,
const llvm::MachineFunction &MF)
: ExplicitKernArgSize(MFI.getExplicitKernArgSize()),
MaxKernArgAlign(MFI.getMaxKernArgAlign()), LDSSize(MFI.getLDSSize()),
GDSSize(MFI.getGDSSize()),
DynLDSAlign(MFI.getDynLDSAlign()), IsEntryFunction(MFI.isEntryFunction()),
NoSignedZerosFPMath(MFI.hasNoSignedZerosFPMath()),
MemoryBound(MFI.isMemoryBound()), WaveLimiter(MFI.needsWaveLimiter()),
HasSpilledSGPRs(MFI.hasSpilledSGPRs()),
HasSpilledVGPRs(MFI.hasSpilledVGPRs()),
HighBitsOf32BitAddress(MFI.get32BitAddressHighBits()),
Occupancy(MFI.getOccupancy()),
ScratchRSrcReg(regToString(MFI.getScratchRSrcReg(), TRI)),
FrameOffsetReg(regToString(MFI.getFrameOffsetReg(), TRI)),
StackPtrOffsetReg(regToString(MFI.getStackPtrOffsetReg(), TRI)),
BytesInStackArgArea(MFI.getBytesInStackArgArea()),
ReturnsVoid(MFI.returnsVoid()),
ArgInfo(convertArgumentInfo(MFI.getArgInfo(), TRI)),
PSInputAddr(MFI.getPSInputAddr()),
PSInputEnable(MFI.getPSInputEnable()),
Mode(MFI.getMode()) {
for (Register Reg : MFI.getWWMReservedRegs())
WWMReservedRegs.push_back(regToString(Reg, TRI));
if (MFI.getLongBranchReservedReg())
LongBranchReservedReg = regToString(MFI.getLongBranchReservedReg(), TRI);
if (MFI.getVGPRForAGPRCopy())
VGPRForAGPRCopy = regToString(MFI.getVGPRForAGPRCopy(), TRI);
if (MFI.getSGPRForEXECCopy())
SGPRForEXECCopy = regToString(MFI.getSGPRForEXECCopy(), TRI);
auto SFI = MFI.getOptionalScavengeFI();
if (SFI)
ScavengeFI = yaml::FrameIndex(*SFI, MF.getFrameInfo());
}
void yaml::SIMachineFunctionInfo::mappingImpl(yaml::IO &YamlIO) {
MappingTraits<SIMachineFunctionInfo>::mapping(YamlIO, *this);
}
bool SIMachineFunctionInfo::initializeBaseYamlFields(
const yaml::SIMachineFunctionInfo &YamlMFI, const MachineFunction &MF,
PerFunctionMIParsingState &PFS, SMDiagnostic &Error, SMRange &SourceRange) {
ExplicitKernArgSize = YamlMFI.ExplicitKernArgSize;
MaxKernArgAlign = YamlMFI.MaxKernArgAlign;
LDSSize = YamlMFI.LDSSize;
GDSSize = YamlMFI.GDSSize;
DynLDSAlign = YamlMFI.DynLDSAlign;
PSInputAddr = YamlMFI.PSInputAddr;
PSInputEnable = YamlMFI.PSInputEnable;
HighBitsOf32BitAddress = YamlMFI.HighBitsOf32BitAddress;
Occupancy = YamlMFI.Occupancy;
IsEntryFunction = YamlMFI.IsEntryFunction;
NoSignedZerosFPMath = YamlMFI.NoSignedZerosFPMath;
MemoryBound = YamlMFI.MemoryBound;
WaveLimiter = YamlMFI.WaveLimiter;
HasSpilledSGPRs = YamlMFI.HasSpilledSGPRs;
HasSpilledVGPRs = YamlMFI.HasSpilledVGPRs;
BytesInStackArgArea = YamlMFI.BytesInStackArgArea;
ReturnsVoid = YamlMFI.ReturnsVoid;
if (YamlMFI.ScavengeFI) {
auto FIOrErr = YamlMFI.ScavengeFI->getFI(MF.getFrameInfo());
if (!FIOrErr) {
// Create a diagnostic for a the frame index.
const MemoryBuffer &Buffer =
*PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1,
SourceMgr::DK_Error, toString(FIOrErr.takeError()),
"", std::nullopt, std::nullopt);
SourceRange = YamlMFI.ScavengeFI->SourceRange;
return true;
}
ScavengeFI = *FIOrErr;
} else {
ScavengeFI = std::nullopt;
}
return false;
}
bool SIMachineFunctionInfo::mayUseAGPRs(const Function &F) const {
for (const BasicBlock &BB : F) {
for (const Instruction &I : BB) {
const auto *CB = dyn_cast<CallBase>(&I);
if (!CB)
continue;
if (CB->isInlineAsm()) {
const InlineAsm *IA = dyn_cast<InlineAsm>(CB->getCalledOperand());
for (const auto &CI : IA->ParseConstraints()) {
for (StringRef Code : CI.Codes) {
Code.consume_front("{");
if (Code.startswith("a"))
return true;
}
}
continue;
}
const Function *Callee =
dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
if (!Callee)
return true;
if (Callee->getIntrinsicID() == Intrinsic::not_intrinsic)
return true;
}
}
return false;
}
bool SIMachineFunctionInfo::usesAGPRs(const MachineFunction &MF) const {
if (UsesAGPRs)
return *UsesAGPRs;
if (!mayNeedAGPRs()) {
UsesAGPRs = false;
return false;
}
if (!AMDGPU::isEntryFunctionCC(MF.getFunction().getCallingConv()) ||
MF.getFrameInfo().hasCalls()) {
UsesAGPRs = true;
return true;
}
const MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
const Register Reg = Register::index2VirtReg(I);
const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
if (RC && SIRegisterInfo::isAGPRClass(RC)) {
UsesAGPRs = true;
return true;
} else if (!RC && !MRI.use_empty(Reg) && MRI.getType(Reg).isValid()) {
// Defer caching UsesAGPRs, function might not yet been regbank selected.
return true;
}
}
for (MCRegister Reg : AMDGPU::AGPR_32RegClass) {
if (MRI.isPhysRegUsed(Reg)) {
UsesAGPRs = true;
return true;
}
}
UsesAGPRs = false;
return false;
}