
Previously, we rely on the InsertOp to gradually increase the size of the storage for all sparse tensors. We now allocate the full size values buffer for annotated all dense tensors when we first allocate the tensor. This avoids the cost of gradually increasing the buffer and allows accessing the values buffer as if it were a dense tensor. Reviewed By: Peiming Differential Revision: https://reviews.llvm.org/D141516
1039 lines
43 KiB
C++
1039 lines
43 KiB
C++
//===- SparseTensorCodegen.cpp - Sparse tensor primitives conversion ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A pass that converts sparse tensor types and primitives to actual compiler
|
|
// visible buffers and actual compiler IR that implements these primitives on
|
|
// the selected sparse tensor storage schemes. This pass provides an alternative
|
|
// to the SparseTensorConversion pass, eliminating the dependence on a runtime
|
|
// support library, and providing much more opportunities for subsequent
|
|
// compiler optimization of the generated code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodegenUtils.h"
|
|
#include "SparseTensorStorageLayout.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
namespace {
|
|
|
|
using FuncGeneratorType =
|
|
function_ref<void(OpBuilder &, ModuleOp, func::FuncOp, RankedTensorType)>;
|
|
|
|
static constexpr const char kInsertFuncNamePrefix[] = "_insert_";
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Flatten a list of operands that may contain sparse tensors.
|
|
static void flattenOperands(ValueRange operands,
|
|
SmallVectorImpl<Value> &flattened) {
|
|
// In case of
|
|
// sparse_tensor, c, sparse_tensor
|
|
// ==>
|
|
// memref ..., c, memref ...
|
|
for (auto operand : operands) {
|
|
if (getSparseTensorEncoding(operand.getType())) {
|
|
auto tuple = getTuple(operand);
|
|
// An unrealized_conversion_cast will be inserted by type converter to
|
|
// inter-mix the gap between 1:N conversion between sparse tensors and
|
|
// fields. In this case, take the operands in the cast and replace the
|
|
// sparse tensor output with the flattened type array.
|
|
flattened.append(tuple.getOperands().begin(), tuple.getOperands().end());
|
|
} else {
|
|
flattened.push_back(operand);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Adds index conversions where needed.
|
|
static Value toType(OpBuilder &builder, Location loc, Value value, Type tp) {
|
|
if (value.getType() != tp)
|
|
return builder.create<arith::IndexCastOp>(loc, tp, value);
|
|
return value;
|
|
}
|
|
|
|
/// Generates a load with proper index typing.
|
|
static Value genLoad(OpBuilder &builder, Location loc, Value mem, Value idx) {
|
|
idx = toType(builder, loc, idx, builder.getIndexType());
|
|
return builder.create<memref::LoadOp>(loc, mem, idx);
|
|
}
|
|
|
|
/// Generates a store with proper index typing and (for indices) proper value.
|
|
static void genStore(OpBuilder &builder, Location loc, Value val, Value mem,
|
|
Value idx) {
|
|
idx = toType(builder, loc, idx, builder.getIndexType());
|
|
val = toType(builder, loc, val,
|
|
mem.getType().cast<ShapedType>().getElementType());
|
|
builder.create<memref::StoreOp>(loc, val, mem, idx);
|
|
}
|
|
|
|
/// Creates a straightforward counting for-loop.
|
|
static scf::ForOp createFor(OpBuilder &builder, Location loc, Value upper,
|
|
MutableArrayRef<Value> fields,
|
|
Value lower = Value()) {
|
|
Type indexType = builder.getIndexType();
|
|
if (!lower)
|
|
lower = constantZero(builder, loc, indexType);
|
|
Value one = constantOne(builder, loc, indexType);
|
|
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lower, upper, one, fields);
|
|
for (unsigned i = 0, e = fields.size(); i < e; i++)
|
|
fields[i] = forOp.getRegionIterArg(i);
|
|
builder.setInsertionPointToStart(forOp.getBody());
|
|
return forOp;
|
|
}
|
|
|
|
/// Gets the dimension size for the given sparse tensor at the given
|
|
/// original dimension 'dim'. Returns std::nullopt if no sparse encoding is
|
|
/// attached to the given tensor type.
|
|
static std::optional<Value>
|
|
sizeFromTensorAtDim(OpBuilder &builder, Location loc,
|
|
const SparseTensorDescriptor &desc, unsigned dim) {
|
|
RankedTensorType rtp = desc.getTensorType();
|
|
// Access into static dimension can query original type directly.
|
|
// Note that this is typically already done by DimOp's folding.
|
|
auto shape = rtp.getShape();
|
|
if (!ShapedType::isDynamic(shape[dim]))
|
|
return constantIndex(builder, loc, shape[dim]);
|
|
|
|
// Any other query can consult the dimSizes array at field DimSizesIdx,
|
|
// accounting for the reordering applied to the sparse storage.
|
|
return desc.getDimSize(builder, loc, toStoredDim(rtp, dim));
|
|
}
|
|
|
|
// Gets the dimension size at the given stored dimension 'd', either as a
|
|
// constant for a static size, or otherwise dynamically through memSizes.
|
|
Value sizeAtStoredDim(OpBuilder &builder, Location loc,
|
|
MutSparseTensorDescriptor desc, unsigned d) {
|
|
RankedTensorType rtp = desc.getTensorType();
|
|
unsigned dim = toOrigDim(rtp, d);
|
|
auto shape = rtp.getShape();
|
|
if (!ShapedType::isDynamic(shape[dim]))
|
|
return constantIndex(builder, loc, shape[dim]);
|
|
|
|
return desc.getDimSize(builder, loc, d);
|
|
}
|
|
|
|
static void createPushback(OpBuilder &builder, Location loc,
|
|
MutSparseTensorDescriptor desc,
|
|
SparseTensorFieldKind kind, Optional<unsigned> dim,
|
|
Value value, Value repeat = Value()) {
|
|
Type etp = desc.getMemRefElementType(kind, dim);
|
|
Value field = desc.getMemRefField(kind, dim);
|
|
StorageSpecifierKind specFieldKind = toSpecifierKind(kind);
|
|
|
|
auto pushBackOp = builder.create<PushBackOp>(
|
|
loc, desc.getSpecifierField(builder, loc, specFieldKind, dim), field,
|
|
toType(builder, loc, value, etp), repeat);
|
|
|
|
desc.setMemRefField(kind, dim, pushBackOp.getOutBuffer());
|
|
desc.setSpecifierField(builder, loc, specFieldKind, dim,
|
|
pushBackOp.getNewSize());
|
|
}
|
|
|
|
/// Generates code that allocates a sparse storage scheme for given rank.
|
|
static void allocSchemeForRank(OpBuilder &builder, Location loc,
|
|
MutSparseTensorDescriptor desc, unsigned r0) {
|
|
RankedTensorType rtp = desc.getTensorType();
|
|
unsigned rank = rtp.getShape().size();
|
|
Value linear = constantIndex(builder, loc, 1);
|
|
for (unsigned r = r0; r < rank; r++) {
|
|
if (isCompressedDim(rtp, r)) {
|
|
// Append linear x pointers, initialized to zero. Since each compressed
|
|
// dimension initially already has a single zero entry, this maintains
|
|
// the desired "linear + 1" length property at all times.
|
|
Type ptrType = getSparseTensorEncoding(rtp).getPointerType();
|
|
Value ptrZero = constantZero(builder, loc, ptrType);
|
|
createPushback(builder, loc, desc, SparseTensorFieldKind::PtrMemRef, r,
|
|
ptrZero, linear);
|
|
return;
|
|
}
|
|
if (isSingletonDim(rtp, r)) {
|
|
return; // nothing to do
|
|
}
|
|
// Keep compounding the size, but nothing needs to be initialized
|
|
// at this level. We will eventually reach a compressed level or
|
|
// otherwise the values array for the from-here "all-dense" case.
|
|
assert(isDenseDim(rtp, r));
|
|
Value size = sizeAtStoredDim(builder, loc, desc, r);
|
|
linear = builder.create<arith::MulIOp>(loc, linear, size);
|
|
}
|
|
// Reached values array so prepare for an insertion.
|
|
Value valZero = constantZero(builder, loc, rtp.getElementType());
|
|
createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
|
|
std::nullopt, valZero, linear);
|
|
}
|
|
|
|
/// Creates allocation operation.
|
|
static Value createAllocation(OpBuilder &builder, Location loc,
|
|
MemRefType memRefType, Value sz,
|
|
bool enableInit) {
|
|
Value buffer = builder.create<memref::AllocOp>(loc, memRefType, sz);
|
|
Type elemType = memRefType.getElementType();
|
|
if (enableInit) {
|
|
Value fillValue = constantZero(builder, loc, elemType);
|
|
builder.create<linalg::FillOp>(loc, fillValue, buffer);
|
|
}
|
|
return buffer;
|
|
}
|
|
|
|
/// Creates allocation for each field in sparse tensor type. Note that
|
|
/// for all dynamic memrefs, the memory size is really the capacity of
|
|
/// the "vector", while the actual size resides in the sizes array.
|
|
///
|
|
/// TODO: for efficiency, we will need heuristis to make educated guesses
|
|
/// on the required capacities (see heuristic variable).
|
|
///
|
|
static void createAllocFields(OpBuilder &builder, Location loc, Type type,
|
|
ValueRange dynSizes, bool enableInit,
|
|
SmallVectorImpl<Value> &fields) {
|
|
RankedTensorType rtp = type.cast<RankedTensorType>();
|
|
// Build original sizes.
|
|
SmallVector<Value> sizes;
|
|
auto shape = rtp.getShape();
|
|
unsigned rank = shape.size();
|
|
for (unsigned r = 0, o = 0; r < rank; r++) {
|
|
if (ShapedType::isDynamic(shape[r]))
|
|
sizes.push_back(dynSizes[o++]);
|
|
else
|
|
sizes.push_back(constantIndex(builder, loc, shape[r]));
|
|
}
|
|
|
|
Value heuristic = constantIndex(builder, loc, 16);
|
|
Value valHeuristic = heuristic;
|
|
SparseTensorEncodingAttr enc = getSparseTensorEncoding(rtp);
|
|
if (enc.isAllDense()) {
|
|
Value linear = sizes[0];
|
|
for (unsigned r = 1; r < rank; r++) {
|
|
linear = builder.create<arith::MulIOp>(loc, linear, sizes[r]);
|
|
}
|
|
valHeuristic = linear;
|
|
}
|
|
foreachFieldAndTypeInSparseTensor(
|
|
rtp,
|
|
[&builder, &fields, rtp, loc, heuristic, valHeuristic,
|
|
enableInit](Type fType, unsigned fIdx, SparseTensorFieldKind fKind,
|
|
unsigned /*dim*/, DimLevelType /*dlt*/) -> bool {
|
|
assert(fields.size() == fIdx);
|
|
Value field;
|
|
switch (fKind) {
|
|
case SparseTensorFieldKind::StorageSpec:
|
|
field = SparseTensorSpecifier::getInitValue(builder, loc, rtp);
|
|
break;
|
|
case SparseTensorFieldKind::PtrMemRef:
|
|
case SparseTensorFieldKind::IdxMemRef:
|
|
case SparseTensorFieldKind::ValMemRef:
|
|
field = createAllocation(builder, loc, fType.cast<MemRefType>(),
|
|
fKind == SparseTensorFieldKind::ValMemRef
|
|
? valHeuristic
|
|
: heuristic,
|
|
enableInit);
|
|
break;
|
|
}
|
|
assert(field);
|
|
fields.push_back(field);
|
|
// Returns true to continue the iteration.
|
|
return true;
|
|
});
|
|
|
|
MutSparseTensorDescriptor desc(rtp, fields);
|
|
|
|
// Initialize the storage scheme to an empty tensor. Initialized memSizes
|
|
// to all zeros, sets the dimSizes to known values and gives all pointer
|
|
// fields an initial zero entry, so that it is easier to maintain the
|
|
// "linear + 1" length property.
|
|
Value ptrZero =
|
|
constantZero(builder, loc, getSparseTensorEncoding(rtp).getPointerType());
|
|
for (unsigned r = 0; r < rank; r++) {
|
|
unsigned ro = toOrigDim(rtp, r);
|
|
// Fills dim sizes array.
|
|
desc.setDimSize(builder, loc, r, sizes[ro]);
|
|
|
|
// Pushes a leading zero to pointers memref.
|
|
if (isCompressedDim(rtp, r)) {
|
|
createPushback(builder, loc, desc, SparseTensorFieldKind::PtrMemRef, r,
|
|
ptrZero);
|
|
}
|
|
}
|
|
allocSchemeForRank(builder, loc, desc, /*rank=*/0);
|
|
}
|
|
|
|
/// Helper method that generates block specific to compressed case:
|
|
///
|
|
/// plo = pointers[d][pos[d-1]]
|
|
/// phi = pointers[d][pos[d-1]+1]
|
|
/// msz = indices[d].size()
|
|
/// if (plo < phi) {
|
|
/// present = indices[d][phi-1] == i[d]
|
|
/// } else { // first insertion
|
|
/// present = false
|
|
/// pointers[d][pos[d-1]] = msz
|
|
/// }
|
|
/// if (present) { // index already present
|
|
/// next = phi-1
|
|
/// } else {
|
|
/// indices[d].push_back(i[d])
|
|
/// pointers[d][pos[d-1]+1] = msz+1
|
|
/// next = msz
|
|
/// <prepare dimension d + 1>
|
|
/// }
|
|
/// pos[d] = next
|
|
static Value genCompressed(OpBuilder &builder, Location loc,
|
|
MutSparseTensorDescriptor desc,
|
|
SmallVectorImpl<Value> &indices, Value value,
|
|
Value pos, unsigned d) {
|
|
RankedTensorType rtp = desc.getTensorType();
|
|
unsigned rank = rtp.getShape().size();
|
|
SmallVector<Type> types;
|
|
Type indexType = builder.getIndexType();
|
|
Type boolType = builder.getIntegerType(1);
|
|
unsigned idxIndex;
|
|
unsigned idxStride;
|
|
std::tie(idxIndex, idxStride) = desc.getIdxMemRefIndexAndStride(d);
|
|
Value one = constantIndex(builder, loc, 1);
|
|
Value pp1 = builder.create<arith::AddIOp>(loc, pos, one);
|
|
Value plo = genLoad(builder, loc, desc.getPtrMemRef(d), pos);
|
|
Value phi = genLoad(builder, loc, desc.getPtrMemRef(d), pp1);
|
|
Value msz = desc.getIdxMemSize(builder, loc, d);
|
|
Value idxStrideC;
|
|
if (idxStride > 1) {
|
|
idxStrideC = constantIndex(builder, loc, idxStride);
|
|
msz = builder.create<arith::DivUIOp>(loc, msz, idxStrideC);
|
|
}
|
|
Value phim1 = builder.create<arith::SubIOp>(
|
|
loc, toType(builder, loc, phi, indexType), one);
|
|
// Conditional expression.
|
|
Value lt =
|
|
builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult, plo, phi);
|
|
types.push_back(boolType);
|
|
scf::IfOp ifOp1 = builder.create<scf::IfOp>(loc, types, lt, /*else*/ true);
|
|
types.pop_back();
|
|
builder.setInsertionPointToStart(&ifOp1.getThenRegion().front());
|
|
Value crd = genLoad(
|
|
builder, loc, desc.getMemRefField(idxIndex),
|
|
idxStride > 1 ? builder.create<arith::MulIOp>(loc, phim1, idxStrideC)
|
|
: phim1);
|
|
Value eq = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
|
|
toType(builder, loc, crd, indexType),
|
|
indices[d]);
|
|
builder.create<scf::YieldOp>(loc, eq);
|
|
builder.setInsertionPointToStart(&ifOp1.getElseRegion().front());
|
|
if (d > 0)
|
|
genStore(builder, loc, msz, desc.getPtrMemRef(d), pos);
|
|
builder.create<scf::YieldOp>(loc, constantI1(builder, loc, false));
|
|
builder.setInsertionPointAfter(ifOp1);
|
|
Value p = ifOp1.getResult(0);
|
|
// If present construct. Note that for a non-unique dimension level, we
|
|
// simply set the condition to false and rely on CSE/DCE to clean up the IR.
|
|
//
|
|
// TODO: generate less temporary IR?
|
|
//
|
|
for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
|
|
types.push_back(desc.getField(i).getType());
|
|
types.push_back(indexType);
|
|
if (!isUniqueDim(rtp, d))
|
|
p = constantI1(builder, loc, false);
|
|
scf::IfOp ifOp2 = builder.create<scf::IfOp>(loc, types, p, /*else*/ true);
|
|
// If present (fields unaffected, update next to phim1).
|
|
builder.setInsertionPointToStart(&ifOp2.getThenRegion().front());
|
|
|
|
// FIXME: This does not looks like a clean way, but probably the most
|
|
// efficient way.
|
|
desc.getFields().push_back(phim1);
|
|
builder.create<scf::YieldOp>(loc, desc.getFields());
|
|
desc.getFields().pop_back();
|
|
|
|
// If !present (changes fields, update next).
|
|
builder.setInsertionPointToStart(&ifOp2.getElseRegion().front());
|
|
Value mszp1 = builder.create<arith::AddIOp>(loc, msz, one);
|
|
genStore(builder, loc, mszp1, desc.getPtrMemRef(d), pp1);
|
|
createPushback(builder, loc, desc, SparseTensorFieldKind::IdxMemRef, d,
|
|
indices[d]);
|
|
// Prepare the next dimension "as needed".
|
|
if ((d + 1) < rank)
|
|
allocSchemeForRank(builder, loc, desc, d + 1);
|
|
|
|
desc.getFields().push_back(msz);
|
|
builder.create<scf::YieldOp>(loc, desc.getFields());
|
|
desc.getFields().pop_back();
|
|
|
|
// Update fields and return next pos.
|
|
builder.setInsertionPointAfter(ifOp2);
|
|
unsigned o = 0;
|
|
for (unsigned i = 0, e = desc.getNumFields(); i < e; i++)
|
|
desc.setField(i, ifOp2.getResult(o++));
|
|
return ifOp2.getResult(o);
|
|
}
|
|
|
|
/// Generates code along an insertion path without the need for a "cursor".
|
|
/// This current insertion strategy comes at the expense of some testing
|
|
/// overhead for each insertion. The strategy will be optimized later for
|
|
/// common insertion patterns. The current insertion strategy also assumes
|
|
/// insertions occur in "a reasonable order" that enables building the
|
|
/// storage scheme in an appending/inserting kind of fashion (i.e. no
|
|
/// in-between insertions that need data movement). The implementation
|
|
/// relies on CSE/DCE to clean up all bookkeeping that is not needed.
|
|
///
|
|
/// TODO: better unord/not-unique; also generalize, optimize, specialize!
|
|
///
|
|
static void genInsertBody(OpBuilder &builder, ModuleOp module,
|
|
func::FuncOp func, RankedTensorType rtp) {
|
|
OpBuilder::InsertionGuard insertionGuard(builder);
|
|
Block *entryBlock = func.addEntryBlock();
|
|
builder.setInsertionPointToStart(entryBlock);
|
|
|
|
Location loc = func.getLoc();
|
|
ValueRange args = entryBlock->getArguments();
|
|
unsigned rank = rtp.getShape().size();
|
|
|
|
// Construct fields and indices arrays from parameters.
|
|
ValueRange tmp = args.drop_back(rank + 1);
|
|
SmallVector<Value> fields(tmp.begin(), tmp.end());
|
|
MutSparseTensorDescriptor desc(rtp, fields);
|
|
tmp = args.take_back(rank + 1).drop_back();
|
|
SmallVector<Value> indices(tmp.begin(), tmp.end());
|
|
Value value = args.back();
|
|
Value pos = constantZero(builder, loc, builder.getIndexType());
|
|
// Generate code for every dimension.
|
|
for (unsigned d = 0; d < rank; d++) {
|
|
if (isCompressedDim(rtp, d)) {
|
|
// Create:
|
|
// if (!present) {
|
|
// indices[d].push_back(i[d])
|
|
// <update pointers and prepare dimension d + 1>
|
|
// }
|
|
// pos[d] = indices.size() - 1
|
|
// <insert @ pos[d] at next dimension d + 1>
|
|
pos = genCompressed(builder, loc, desc, indices, value, pos, d);
|
|
} else if (isSingletonDim(rtp, d)) {
|
|
// Create:
|
|
// indices[d].push_back(i[d])
|
|
// pos[d] = pos[d-1]
|
|
// <insert @ pos[d] at next dimension d + 1>
|
|
createPushback(builder, loc, desc, SparseTensorFieldKind::IdxMemRef, d,
|
|
indices[d]);
|
|
} else {
|
|
assert(isDenseDim(rtp, d));
|
|
// Construct the new position as:
|
|
// pos[d] = size * pos[d-1] + i[d]
|
|
// <insert @ pos[d] at next dimension d + 1>
|
|
Value size = sizeAtStoredDim(builder, loc, desc, d);
|
|
Value mult = builder.create<arith::MulIOp>(loc, size, pos);
|
|
pos = builder.create<arith::AddIOp>(loc, mult, indices[d]);
|
|
}
|
|
}
|
|
// Reached the actual value append/insert.
|
|
if (!isDenseDim(rtp, rank - 1))
|
|
createPushback(builder, loc, desc, SparseTensorFieldKind::ValMemRef,
|
|
std::nullopt, value);
|
|
else
|
|
genStore(builder, loc, value, desc.getValMemRef(), pos);
|
|
builder.create<func::ReturnOp>(loc, fields);
|
|
}
|
|
|
|
/// Generates a call to a function to perform an insertion operation. If the
|
|
/// function doesn't exist yet, call `createFunc` to generate the function.
|
|
static void genInsertionCallHelper(OpBuilder &builder,
|
|
MutSparseTensorDescriptor desc,
|
|
SmallVectorImpl<Value> &indices, Value value,
|
|
func::FuncOp insertPoint,
|
|
StringRef namePrefix,
|
|
FuncGeneratorType createFunc) {
|
|
// The mangled name of the function has this format:
|
|
// <namePrefix>_<DLT>_<shape>_<ordering>_<eltType>
|
|
// _<indexBitWidth>_<pointerBitWidth>
|
|
RankedTensorType rtp = desc.getTensorType();
|
|
SmallString<32> nameBuffer;
|
|
llvm::raw_svector_ostream nameOstream(nameBuffer);
|
|
nameOstream << namePrefix;
|
|
unsigned rank = rtp.getShape().size();
|
|
assert(rank == indices.size());
|
|
for (unsigned d = 0; d < rank; d++) {
|
|
nameOstream << toMLIRString(getDimLevelType(rtp, d)) << "_";
|
|
}
|
|
// Static dim sizes are used in the generated code while dynamic sizes are
|
|
// loaded from the dimSizes buffer. This is the reason for adding the shape
|
|
// to the function name.
|
|
for (auto d : rtp.getShape())
|
|
nameOstream << d << "_";
|
|
SparseTensorEncodingAttr enc = getSparseTensorEncoding(rtp);
|
|
// Permutation information is also used in generating insertion.
|
|
if (enc.getDimOrdering() && !enc.getDimOrdering().isIdentity())
|
|
nameOstream << enc.getDimOrdering() << "_";
|
|
nameOstream << rtp.getElementType() << "_";
|
|
nameOstream << enc.getIndexBitWidth() << "_" << enc.getPointerBitWidth();
|
|
|
|
// Look up the function.
|
|
ModuleOp module = insertPoint->getParentOfType<ModuleOp>();
|
|
MLIRContext *context = module.getContext();
|
|
auto result = SymbolRefAttr::get(context, nameOstream.str());
|
|
auto func = module.lookupSymbol<func::FuncOp>(result.getAttr());
|
|
|
|
// Construct parameters for fields and indices.
|
|
SmallVector<Value> operands(desc.getFields().begin(), desc.getFields().end());
|
|
operands.append(indices.begin(), indices.end());
|
|
operands.push_back(value);
|
|
Location loc = insertPoint.getLoc();
|
|
|
|
if (!func) {
|
|
// Create the function.
|
|
OpBuilder::InsertionGuard insertionGuard(builder);
|
|
builder.setInsertionPoint(insertPoint);
|
|
|
|
func = builder.create<func::FuncOp>(
|
|
loc, nameOstream.str(),
|
|
FunctionType::get(context, ValueRange(operands).getTypes(),
|
|
ValueRange(desc.getFields()).getTypes()));
|
|
func.setPrivate();
|
|
createFunc(builder, module, func, rtp);
|
|
}
|
|
|
|
// Generate a call to perform the insertion and update `fields` with values
|
|
// returned from the call.
|
|
func::CallOp call = builder.create<func::CallOp>(loc, func, operands);
|
|
for (size_t i = 0, e = desc.getNumFields(); i < e; i++) {
|
|
desc.getFields()[i] = call.getResult(i);
|
|
}
|
|
}
|
|
|
|
/// Generations insertion finalization code.
|
|
static void genEndInsert(OpBuilder &builder, Location loc,
|
|
MutSparseTensorDescriptor desc) {
|
|
RankedTensorType rtp = desc.getTensorType();
|
|
unsigned rank = rtp.getShape().size();
|
|
for (unsigned d = 0; d < rank; d++) {
|
|
if (isCompressedDim(rtp, d)) {
|
|
// Compressed dimensions need a pointer cleanup for all entries
|
|
// that were not visited during the insertion pass.
|
|
//
|
|
// TODO: avoid cleanup and keep compressed scheme consistent at all
|
|
// times?
|
|
//
|
|
if (d > 0) {
|
|
Type ptrType = getSparseTensorEncoding(rtp).getPointerType();
|
|
Value ptrMemRef = desc.getPtrMemRef(d);
|
|
Value hi = desc.getPtrMemSize(builder, loc, d);
|
|
Value zero = constantIndex(builder, loc, 0);
|
|
Value one = constantIndex(builder, loc, 1);
|
|
// Vector of only one, but needed by createFor's prototype.
|
|
SmallVector<Value, 1> inits{genLoad(builder, loc, ptrMemRef, zero)};
|
|
scf::ForOp loop = createFor(builder, loc, hi, inits, one);
|
|
Value i = loop.getInductionVar();
|
|
Value oldv = loop.getRegionIterArg(0);
|
|
Value newv = genLoad(builder, loc, ptrMemRef, i);
|
|
Value ptrZero = constantZero(builder, loc, ptrType);
|
|
Value cond = builder.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::eq, newv, ptrZero);
|
|
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, TypeRange(ptrType),
|
|
cond, /*else*/ true);
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
genStore(builder, loc, oldv, ptrMemRef, i);
|
|
builder.create<scf::YieldOp>(loc, oldv);
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
builder.create<scf::YieldOp>(loc, newv);
|
|
builder.setInsertionPointAfter(ifOp);
|
|
builder.create<scf::YieldOp>(loc, ifOp.getResult(0));
|
|
builder.setInsertionPointAfter(loop);
|
|
}
|
|
} else {
|
|
assert(isDenseDim(rtp, d) || isSingletonDim(rtp, d));
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Codegen rules.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Sparse tensor storage conversion rule for returns.
|
|
class SparseReturnConverter : public OpConversionPattern<func::ReturnOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
SmallVector<Value> flattened;
|
|
flattenOperands(adaptor.getOperands(), flattened);
|
|
// Create a return with the flattened value extracted from sparse tensors.
|
|
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, flattened);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse tensor storage conversion rule for calls.
|
|
class SparseCallConverter : public OpConversionPattern<func::CallOp> {
|
|
public:
|
|
// The default CallOp converter can not handle 1:N type conversion.
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(func::CallOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
// In case of:
|
|
// sparse_tensor, f, sparse_tensor = call @foo(...)
|
|
// ==>
|
|
// memref..., f, memref = call @foo(...) replace with
|
|
// cast(memref...)->sparse_tensor, f, cast(memref...)->sparse_tensor
|
|
SmallVector<Type> finalRetTy;
|
|
if (failed(typeConverter->convertTypes(op.getResultTypes(), finalRetTy)))
|
|
return failure();
|
|
|
|
// (1) Genereates new call with flattened return value.
|
|
SmallVector<Value> flattened;
|
|
flattenOperands(adaptor.getOperands(), flattened);
|
|
auto newCall = rewriter.create<func::CallOp>(loc, op.getCallee(),
|
|
finalRetTy, flattened);
|
|
// (2) Create cast operation for sparse tensor returns.
|
|
SmallVector<Value> castedRet;
|
|
// Tracks the offset of current return value (of the orignal call)
|
|
// relative to the new call (after sparse tensor flattening);
|
|
unsigned retOffset = 0;
|
|
// Temporal buffer to hold the flattened list of type for
|
|
// a sparse tensor.
|
|
SmallVector<Type> sparseFlat;
|
|
for (auto ret : op.getResults()) {
|
|
assert(retOffset < newCall.getNumResults());
|
|
auto retType = ret.getType();
|
|
if (failed(typeConverter->convertType(retType, sparseFlat)))
|
|
// This should never happen.
|
|
llvm_unreachable("Failed to convert type in sparse tensor codegen");
|
|
|
|
// Converted types can not be empty when the type conversion succeed.
|
|
assert(!sparseFlat.empty());
|
|
if (sparseFlat.size() > 1) {
|
|
auto flatSize = sparseFlat.size();
|
|
ValueRange fields(iterator_range<ResultRange::iterator>(
|
|
newCall.result_begin() + retOffset,
|
|
newCall.result_begin() + retOffset + flatSize));
|
|
castedRet.push_back(genTuple(rewriter, loc, retType, fields));
|
|
retOffset += flatSize;
|
|
} else {
|
|
// If this is an 1:1 conversion, no need for casting.
|
|
castedRet.push_back(newCall.getResult(retOffset));
|
|
retOffset++;
|
|
}
|
|
sparseFlat.clear();
|
|
}
|
|
|
|
assert(castedRet.size() == op.getNumResults());
|
|
rewriter.replaceOp(op, castedRet);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for dimension accesses.
|
|
class SparseDimOpConverter : public OpConversionPattern<tensor::DimOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(tensor::DimOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
std::optional<int64_t> index = op.getConstantIndex();
|
|
if (!index || !getSparseTensorEncoding(adaptor.getSource().getType()))
|
|
return failure();
|
|
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getSource());
|
|
auto sz = sizeFromTensorAtDim(rewriter, op.getLoc(), desc, *index);
|
|
|
|
if (!sz)
|
|
return failure();
|
|
|
|
rewriter.replaceOp(op, *sz);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for trivial tensor casts.
|
|
class SparseCastConverter : public OpConversionPattern<tensor::CastOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(tensor::CastOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Only rewrite identically annotated source/dest.
|
|
auto encDst = getSparseTensorEncoding(op.getType());
|
|
auto encSrc = getSparseTensorEncoding(op.getSource().getType());
|
|
if (!encDst || encDst != encSrc)
|
|
return failure();
|
|
rewriter.replaceOp(op, adaptor.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codgen rule for the alloc operator.
|
|
class SparseTensorAllocConverter
|
|
: public OpConversionPattern<bufferization::AllocTensorOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
SparseTensorAllocConverter(TypeConverter &typeConverter, MLIRContext *context,
|
|
bool enableInit)
|
|
: OpConversionPattern(typeConverter, context),
|
|
enableBufferInitialization(enableInit) {}
|
|
|
|
LogicalResult
|
|
matchAndRewrite(bufferization::AllocTensorOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
RankedTensorType resType = op.getType();
|
|
auto enc = getSparseTensorEncoding(resType);
|
|
if (!enc)
|
|
return failure();
|
|
if (op.getCopy())
|
|
return rewriter.notifyMatchFailure(op, "tensor copy not implemented");
|
|
|
|
// Construct allocation for each field.
|
|
Location loc = op.getLoc();
|
|
SmallVector<Value> fields;
|
|
createAllocFields(rewriter, loc, resType, adaptor.getOperands(),
|
|
enableBufferInitialization, fields);
|
|
// Replace operation with resulting memrefs.
|
|
rewriter.replaceOp(op, genTuple(rewriter, loc, resType, fields));
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
bool enableBufferInitialization;
|
|
};
|
|
|
|
/// Sparse codegen rule for the dealloc operator.
|
|
class SparseTensorDeallocConverter
|
|
: public OpConversionPattern<bufferization::DeallocTensorOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(bufferization::DeallocTensorOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto enc = getSparseTensorEncoding(op.getTensor().getType());
|
|
if (!enc)
|
|
return failure();
|
|
|
|
// Replace the sparse tensor deallocation with field deallocations.
|
|
Location loc = op.getLoc();
|
|
SmallVector<Value> fields;
|
|
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
|
|
for (auto input : desc.getMemRefFields())
|
|
// Deallocate every buffer used to store the sparse tensor handler.
|
|
rewriter.create<memref::DeallocOp>(loc, input);
|
|
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for tensor rematerialization.
|
|
class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(LoadOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Prepare descriptor.
|
|
SmallVector<Value> fields;
|
|
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
|
|
// Generate optional insertion finalization code.
|
|
if (op.getHasInserts())
|
|
genEndInsert(rewriter, op.getLoc(), desc);
|
|
// Replace operation with resulting memrefs.
|
|
rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), desc));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for the expand op.
|
|
class SparseExpandConverter : public OpConversionPattern<ExpandOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ExpandOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (!getSparseTensorEncoding(op.getTensor().getType()))
|
|
return failure();
|
|
Location loc = op->getLoc();
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
|
|
RankedTensorType srcType =
|
|
op.getTensor().getType().cast<RankedTensorType>();
|
|
Type eltType = srcType.getElementType();
|
|
Type boolType = rewriter.getIntegerType(1);
|
|
Type idxType = rewriter.getIndexType();
|
|
// All initialization should be done on entry of the loop nest.
|
|
rewriter.setInsertionPointAfter(op.getTensor().getDefiningOp());
|
|
// Determine the size for access expansion (always the innermost stored
|
|
// dimension size, translated back to original dimension). Note that we
|
|
// recursively rewrite the new DimOp on the **original** tensor.
|
|
unsigned innerDim = toOrigDim(srcType, srcType.getRank() - 1);
|
|
auto sz = sizeFromTensorAtDim(rewriter, loc, desc, innerDim);
|
|
assert(sz); // This for sure is a sparse tensor
|
|
// Generate a memref for `sz` elements of type `t`.
|
|
auto genAlloc = [&](Type t) {
|
|
auto memTp = MemRefType::get({ShapedType::kDynamic}, t);
|
|
return rewriter.create<memref::AllocOp>(loc, memTp, ValueRange{*sz});
|
|
};
|
|
// Allocate temporary buffers for values/filled-switch and added.
|
|
// We do not use stack buffers for this, since the expanded size may
|
|
// be rather large (as it envelops a single expanded dense dimension).
|
|
Value values = genAlloc(eltType);
|
|
Value filled = genAlloc(boolType);
|
|
Value added = genAlloc(idxType);
|
|
Value zero = constantZero(rewriter, loc, idxType);
|
|
// Reset the values/filled-switch to all-zero/false. Note that this
|
|
// introduces an O(N) operation into the computation, but this reset
|
|
// operation is amortized over the innermost loops for the access
|
|
// pattern expansion. As noted in the operation doc, we would like
|
|
// to amortize this setup cost even between kernels.
|
|
rewriter.create<linalg::FillOp>(
|
|
loc, ValueRange{constantZero(rewriter, loc, eltType)},
|
|
ValueRange{values});
|
|
rewriter.create<linalg::FillOp>(
|
|
loc, ValueRange{constantZero(rewriter, loc, boolType)},
|
|
ValueRange{filled});
|
|
// Replace expansion op with these buffers and initial index.
|
|
assert(op.getNumResults() == 4);
|
|
rewriter.replaceOp(op, {values, filled, added, zero});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for the compress operator.
|
|
class SparseCompressConverter : public OpConversionPattern<CompressOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(CompressOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op->getLoc();
|
|
SmallVector<Value> fields;
|
|
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
|
|
Value values = adaptor.getValues();
|
|
Value filled = adaptor.getFilled();
|
|
Value added = adaptor.getAdded();
|
|
Value count = adaptor.getCount();
|
|
RankedTensorType dstType = desc.getTensorType();
|
|
Type eltType = dstType.getElementType();
|
|
// Prepare indices.
|
|
SmallVector<Value> indices(adaptor.getIndices());
|
|
// If the innermost dimension is ordered, we need to sort the indices
|
|
// in the "added" array prior to applying the compression.
|
|
unsigned rank = dstType.getShape().size();
|
|
if (isOrderedDim(dstType, rank - 1))
|
|
rewriter.create<SortOp>(loc, count, ValueRange{added}, ValueRange{});
|
|
// While performing the insertions, we also need to reset the elements
|
|
// of the values/filled-switch by only iterating over the set elements,
|
|
// to ensure that the runtime complexity remains proportional to the
|
|
// sparsity of the expanded access pattern.
|
|
//
|
|
// Generate
|
|
// out_memrefs = for (i = 0; i < count; i++)(in_memrefs) {
|
|
// index = added[i];
|
|
// value = values[index];
|
|
// insert({prev_indices, index}, value);
|
|
// new_memrefs = insert(in_memrefs, {prev_indices, index}, value);
|
|
// values[index] = 0;
|
|
// filled[index] = false;
|
|
// yield new_memrefs
|
|
// }
|
|
scf::ForOp loop = createFor(rewriter, loc, count, desc.getFields());
|
|
Value i = loop.getInductionVar();
|
|
Value index = genLoad(rewriter, loc, added, i);
|
|
Value value = genLoad(rewriter, loc, values, index);
|
|
indices.push_back(index);
|
|
// TODO: faster for subsequent insertions?
|
|
auto insertPoint = op->template getParentOfType<func::FuncOp>();
|
|
genInsertionCallHelper(rewriter, desc, indices, value, insertPoint,
|
|
kInsertFuncNamePrefix, genInsertBody);
|
|
genStore(rewriter, loc, constantZero(rewriter, loc, eltType), values,
|
|
index);
|
|
genStore(rewriter, loc, constantI1(rewriter, loc, false), filled, index);
|
|
rewriter.create<scf::YieldOp>(loc, desc.getFields());
|
|
rewriter.setInsertionPointAfter(loop);
|
|
Value result = genTuple(rewriter, loc, dstType, loop->getResults());
|
|
// Deallocate the buffers on exit of the full loop nest.
|
|
Operation *parent = getTop(op);
|
|
rewriter.setInsertionPointAfter(parent);
|
|
rewriter.create<memref::DeallocOp>(loc, values);
|
|
rewriter.create<memref::DeallocOp>(loc, filled);
|
|
rewriter.create<memref::DeallocOp>(loc, added);
|
|
// Replace operation with resulting memrefs.
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for the insert operator.
|
|
class SparseInsertConverter : public OpConversionPattern<InsertOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(InsertOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
SmallVector<Value> fields;
|
|
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
|
|
// Prepare and indices.
|
|
SmallVector<Value> indices(adaptor.getIndices());
|
|
// Generate insertion.
|
|
Value value = adaptor.getValue();
|
|
auto insertPoint = op->template getParentOfType<func::FuncOp>();
|
|
genInsertionCallHelper(rewriter, desc, indices, value, insertPoint,
|
|
kInsertFuncNamePrefix, genInsertBody);
|
|
|
|
// Replace operation with resulting memrefs.
|
|
rewriter.replaceOp(op, genTuple(rewriter, op.getLoc(), desc));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for pointer accesses.
|
|
class SparseToPointersConverter : public OpConversionPattern<ToPointersOp> {
|
|
public:
|
|
using OpAdaptor = typename ToPointersOp::Adaptor;
|
|
using OpConversionPattern<ToPointersOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToPointersOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Replace the requested pointer access with corresponding field.
|
|
// The cast_op is inserted by type converter to intermix 1:N type
|
|
// conversion.
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
|
|
uint64_t dim = op.getDimension().getZExtValue();
|
|
rewriter.replaceOp(op, desc.getPtrMemRef(dim));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for index accesses.
|
|
class SparseToIndicesConverter : public OpConversionPattern<ToIndicesOp> {
|
|
public:
|
|
using OpAdaptor = typename ToIndicesOp::Adaptor;
|
|
using OpConversionPattern<ToIndicesOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToIndicesOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Replace the requested pointer access with corresponding field.
|
|
// The cast_op is inserted by type converter to intermix 1:N type
|
|
// conversion.
|
|
Location loc = op.getLoc();
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
|
|
uint64_t dim = op.getDimension().getZExtValue();
|
|
Value field = desc.getIdxMemRefOrView(rewriter, loc, dim);
|
|
|
|
// Insert a cast to bridge the actual type to the user expected type. If the
|
|
// actual type and the user expected type aren't compatible, the compiler or
|
|
// the runtime will issue an error.
|
|
Type resType = op.getResult().getType();
|
|
if (resType != field.getType())
|
|
field = rewriter.create<memref::CastOp>(loc, resType, field);
|
|
rewriter.replaceOp(op, field);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for accessing the linear indices buffer.
|
|
class SparseToIndicesBufferConverter
|
|
: public OpConversionPattern<ToIndicesBufferOp> {
|
|
public:
|
|
using OpAdaptor = typename ToIndicesBufferOp::Adaptor;
|
|
using OpConversionPattern<ToIndicesBufferOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToIndicesBufferOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Replace the requested pointer access with corresponding field.
|
|
// The cast_op is inserted by type converter to intermix 1:N type
|
|
// conversion.
|
|
SmallVector<Value> fields;
|
|
auto desc = getMutDescriptorFromTensorTuple(adaptor.getTensor(), fields);
|
|
rewriter.replaceOp(op, desc.getAOSMemRef());
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for value accesses.
|
|
class SparseToValuesConverter : public OpConversionPattern<ToValuesOp> {
|
|
public:
|
|
using OpAdaptor = typename ToValuesOp::Adaptor;
|
|
using OpConversionPattern<ToValuesOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ToValuesOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Replace the requested pointer access with corresponding field.
|
|
// The cast_op is inserted by type converter to intermix 1:N type
|
|
// conversion.
|
|
auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
|
|
rewriter.replaceOp(op, desc.getValMemRef());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for the convert operator.
|
|
class SparseConvertConverter : public OpConversionPattern<ConvertOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ConvertOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
SparseTensorEncodingAttr encDst = getSparseTensorEncoding(op.getType());
|
|
SparseTensorEncodingAttr encSrc =
|
|
getSparseTensorEncoding(op.getSource().getType());
|
|
if (encDst != encSrc) {
|
|
// This should be handled by rewriting before codegen.
|
|
return failure();
|
|
}
|
|
rewriter.replaceOp(op, adaptor.getSource());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Sparse codegen rule for number of entries operator.
|
|
class SparseNumberOfEntriesConverter
|
|
: public OpConversionPattern<NumberOfEntriesOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Query memSizes for the actually stored values.
|
|
rewriter.replaceOp(
|
|
op, genValMemSize(rewriter, op.getLoc(), adaptor.getTensor()));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public method for populating conversion rules.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Populates the given patterns list with conversion rules required for
|
|
/// the sparsification of linear algebra operations.
|
|
void mlir::populateSparseTensorCodegenPatterns(
|
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
bool enableBufferInitialization) {
|
|
patterns.add<SparseReturnConverter, SparseCallConverter, SparseDimOpConverter,
|
|
SparseCastConverter, SparseTensorDeallocConverter,
|
|
SparseTensorLoadConverter, SparseExpandConverter,
|
|
SparseCompressConverter, SparseInsertConverter,
|
|
SparseToPointersConverter, SparseToIndicesConverter,
|
|
SparseToIndicesBufferConverter, SparseToValuesConverter,
|
|
SparseConvertConverter, SparseNumberOfEntriesConverter>(
|
|
typeConverter, patterns.getContext());
|
|
patterns.add<SparseTensorAllocConverter>(typeConverter, patterns.getContext(),
|
|
enableBufferInitialization);
|
|
}
|