
Incorporated two header files directly into other since other parts were used (and it makes it hard to find the definitions). Removed TODOs that are less likely to be done. Reviewed By: yinying-lisa-li Differential Revision: https://reviews.llvm.org/D159381
932 lines
46 KiB
C++
932 lines
46 KiB
C++
//===- SparseTensorRuntime.cpp - SparseTensor runtime support lib ---------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a light-weight runtime support library for
|
|
// manipulating sparse tensors from MLIR. More specifically, it provides
|
|
// C-API wrappers so that MLIR-generated code can call into the C++ runtime
|
|
// support library. The functionality provided in this library is meant
|
|
// to simplify benchmarking, testing, and debugging of MLIR code operating
|
|
// on sparse tensors. However, the provided functionality is **not**
|
|
// part of core MLIR itself.
|
|
//
|
|
// The following memory-resident sparse storage schemes are supported:
|
|
//
|
|
// (a) A coordinate scheme for temporarily storing and lexicographically
|
|
// sorting a sparse tensor by coordinate (SparseTensorCOO).
|
|
//
|
|
// (b) A "one-size-fits-all" sparse tensor storage scheme defined by
|
|
// per-dimension sparse/dense annnotations together with a dimension
|
|
// ordering used by MLIR compiler-generated code (SparseTensorStorage).
|
|
//
|
|
// The following external formats are supported:
|
|
//
|
|
// (1) Matrix Market Exchange (MME): *.mtx
|
|
// https://math.nist.gov/MatrixMarket/formats.html
|
|
//
|
|
// (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
|
|
// http://frostt.io/tensors/file-formats.html
|
|
//
|
|
// Two public APIs are supported:
|
|
//
|
|
// (I) Methods operating on MLIR buffers (memrefs) to interact with sparse
|
|
// tensors. These methods should be used exclusively by MLIR
|
|
// compiler-generated code.
|
|
//
|
|
// (II) Methods that accept C-style data structures to interact with sparse
|
|
// tensors. These methods can be used by any external runtime that wants
|
|
// to interact with MLIR compiler-generated code.
|
|
//
|
|
// In both cases (I) and (II), the SparseTensorStorage format is externally
|
|
// only visible as an opaque pointer.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/ExecutionEngine/SparseTensorRuntime.h"
|
|
|
|
#ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
|
|
|
|
#include "mlir/ExecutionEngine/SparseTensor/ArithmeticUtils.h"
|
|
#include "mlir/ExecutionEngine/SparseTensor/COO.h"
|
|
#include "mlir/ExecutionEngine/SparseTensor/ErrorHandling.h"
|
|
#include "mlir/ExecutionEngine/SparseTensor/File.h"
|
|
#include "mlir/ExecutionEngine/SparseTensor/Storage.h"
|
|
|
|
#include <cstring>
|
|
#include <numeric>
|
|
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation details for public functions, which don't have a good
|
|
// place to live in the C++ library this file is wrapping.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Wrapper class to avoid memory leakage issues. The `SparseTensorCOO<V>`
|
|
/// class provides a standard C++ iterator interface, where the iterator
|
|
/// is implemented as per `std::vector`'s iterator. However, for MLIR's
|
|
/// usage we need to have an iterator which also holds onto the underlying
|
|
/// `SparseTensorCOO<V>` so that it can be freed whenever the iterator
|
|
/// is freed.
|
|
//
|
|
// We name this `SparseTensorIterator` rather than `SparseTensorCOOIterator`
|
|
// for future-proofing, since the use of `SparseTensorCOO` is an
|
|
// implementation detail that we eventually want to change (e.g., to
|
|
// use `SparseTensorEnumerator` directly, rather than constructing the
|
|
// intermediate `SparseTensorCOO` at all).
|
|
template <typename V>
|
|
class SparseTensorIterator final {
|
|
public:
|
|
/// This ctor requires `coo` to be a non-null pointer to a dynamically
|
|
/// allocated object, and takes ownership of that object. Therefore,
|
|
/// callers must not free the underlying COO object, since the iterator's
|
|
/// dtor will do so.
|
|
explicit SparseTensorIterator(const SparseTensorCOO<V> *coo)
|
|
: coo(coo), it(coo->begin()), end(coo->end()) {}
|
|
|
|
~SparseTensorIterator() { delete coo; }
|
|
|
|
// Disable copy-ctor and copy-assignment, to prevent double-free.
|
|
SparseTensorIterator(const SparseTensorIterator<V> &) = delete;
|
|
SparseTensorIterator<V> &operator=(const SparseTensorIterator<V> &) = delete;
|
|
|
|
/// Gets the next element. If there are no remaining elements, then
|
|
/// returns nullptr.
|
|
const Element<V> *getNext() { return it < end ? &*it++ : nullptr; }
|
|
|
|
private:
|
|
const SparseTensorCOO<V> *const coo; // Owning pointer.
|
|
typename SparseTensorCOO<V>::const_iterator it;
|
|
const typename SparseTensorCOO<V>::const_iterator end;
|
|
};
|
|
|
|
// TODO: When using this library from MLIR, the `toMLIRSparseTensor`/
|
|
// `IMPL_CONVERTTOMLIRSPARSETENSOR` and `fromMLIRSparseTensor`/
|
|
// `IMPL_CONVERTFROMMLIRSPARSETENSOR` constructs will be codegened away;
|
|
// therefore, these functions are only used by PyTACO, one place in the
|
|
// Python integration tests, and possibly by out-of-tree projects.
|
|
// This is notable because neither function can be easily generalized
|
|
// to handle non-permutations. In particular, while we could adjust
|
|
// the functions to take all the arguments they'd need, that would just
|
|
// push the problem into client code. So if we want to generalize these
|
|
// functions to support non-permutations, we'll need to figure out how
|
|
// to do so without putting undue burden on clients.
|
|
|
|
/// Initializes sparse tensor from an external COO-flavored format.
|
|
/// The `rank` argument is both dimension-rank and level-rank, and the
|
|
/// `dim2lvl` argument must be a permutation.
|
|
/// Used by `IMPL_CONVERTTOMLIRSPARSETENSOR`.
|
|
//
|
|
// TODO: generalize beyond 64-bit overhead types.
|
|
template <typename V>
|
|
static SparseTensorStorage<uint64_t, uint64_t, V> *
|
|
toMLIRSparseTensor(uint64_t rank, uint64_t nse, const uint64_t *dimSizes,
|
|
const V *values, const uint64_t *dimCoordinates,
|
|
const uint64_t *dim2lvl, const DimLevelType *lvlTypes) {
|
|
#ifndef NDEBUG
|
|
// Verify that the sparsity values are supported.
|
|
// TODO: update this check to match what we actually support.
|
|
for (uint64_t i = 0; i < rank; ++i)
|
|
if (lvlTypes[i] != DimLevelType::Dense &&
|
|
lvlTypes[i] != DimLevelType::Compressed)
|
|
MLIR_SPARSETENSOR_FATAL("unsupported level type: %d\n",
|
|
static_cast<uint8_t>(lvlTypes[i]));
|
|
#endif
|
|
// Verify that `dim2lvl` is a permutation of `[0..(rank-1)]`.
|
|
// NOTE: The construction of `lvlSizes` and `lvl2dim` don't generalize
|
|
// to arbitrary `dim2lvl` mappings. Whereas constructing `lvlCoords` from
|
|
// `dimCoords` does (though the details would have to be updated, just
|
|
// like for `IMPL_ADDELT`).
|
|
const detail::PermutationRef d2l(rank, dim2lvl);
|
|
// Convert external format to internal COO.
|
|
const auto lvlSizes = d2l.pushforward(rank, dimSizes);
|
|
auto *lvlCOO = new SparseTensorCOO<V>(lvlSizes, nse);
|
|
std::vector<uint64_t> lvlCoords(rank);
|
|
const uint64_t *dimCoords = dimCoordinates;
|
|
for (uint64_t i = 0; i < nse; ++i) {
|
|
d2l.pushforward(rank, dimCoords, lvlCoords.data());
|
|
lvlCOO->add(lvlCoords, values[i]);
|
|
dimCoords += rank;
|
|
}
|
|
// Return sparse tensor storage format as opaque pointer.
|
|
const auto lvl2dim = d2l.inverse();
|
|
auto *tensor = SparseTensorStorage<uint64_t, uint64_t, V>::newFromCOO(
|
|
rank, dimSizes, rank, lvlTypes, lvl2dim.data(), *lvlCOO);
|
|
delete lvlCOO;
|
|
return tensor;
|
|
}
|
|
|
|
/// Converts a sparse tensor to an external COO-flavored format.
|
|
/// Used by `IMPL_CONVERTFROMMLIRSPARSETENSOR`.
|
|
//
|
|
// TODO: Currently, values are copied from SparseTensorStorage to
|
|
// SparseTensorCOO, then to the output. We may want to reduce the number
|
|
// of copies.
|
|
//
|
|
// TODO: generalize beyond 64-bit overhead types, no dim ordering,
|
|
// all dimensions compressed
|
|
template <typename V>
|
|
static void
|
|
fromMLIRSparseTensor(const SparseTensorStorage<uint64_t, uint64_t, V> *tensor,
|
|
uint64_t *pRank, uint64_t *pNse, uint64_t **pShape,
|
|
V **pValues, uint64_t **pCoordinates) {
|
|
assert(tensor && "Received nullptr for tensor");
|
|
const uint64_t dimRank = tensor->getDimRank();
|
|
const auto &dimSizes = tensor->getDimSizes();
|
|
std::vector<uint64_t> identityPerm(dimRank);
|
|
std::iota(identityPerm.begin(), identityPerm.end(), 0);
|
|
SparseTensorCOO<V> *coo =
|
|
tensor->toCOO(dimRank, dimSizes.data(), dimRank, identityPerm.data());
|
|
|
|
const std::vector<Element<V>> &elements = coo->getElements();
|
|
const uint64_t nse = elements.size();
|
|
|
|
const auto &cooSizes = coo->getDimSizes();
|
|
assert(cooSizes.size() == dimRank && "Rank mismatch");
|
|
uint64_t *dimShape = new uint64_t[dimRank];
|
|
std::memcpy(static_cast<void *>(dimShape),
|
|
static_cast<const void *>(cooSizes.data()),
|
|
sizeof(uint64_t) * dimRank);
|
|
|
|
V *values = new V[nse];
|
|
uint64_t *coordinates = new uint64_t[dimRank * nse];
|
|
|
|
for (uint64_t i = 0, base = 0; i < nse; ++i) {
|
|
values[i] = elements[i].value;
|
|
for (uint64_t d = 0; d < dimRank; ++d)
|
|
coordinates[base + d] = elements[i].coords[d];
|
|
base += dimRank;
|
|
}
|
|
|
|
delete coo;
|
|
*pRank = dimRank;
|
|
*pNse = nse;
|
|
*pShape = dimShape;
|
|
*pValues = values;
|
|
*pCoordinates = coordinates;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Utilities for manipulating `StridedMemRefType`.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// We shouldn't need to use `detail::safelyEQ` here since the `1` is a literal.
|
|
#define ASSERT_NO_STRIDE(MEMREF) \
|
|
do { \
|
|
assert((MEMREF) && "Memref is nullptr"); \
|
|
assert(((MEMREF)->strides[0] == 1) && "Memref has non-trivial stride"); \
|
|
} while (false)
|
|
|
|
// All our functions use `uint64_t` for ranks, but `StridedMemRefType::sizes`
|
|
// uses `int64_t` on some platforms. So we explicitly cast this lookup to
|
|
// ensure we get a consistent type, and we use `checkOverflowCast` rather
|
|
// than `static_cast` just to be extremely sure that the casting can't
|
|
// go awry. (The cast should aways be safe since (1) sizes should never
|
|
// be negative, and (2) the maximum `int64_t` is smaller than the maximum
|
|
// `uint64_t`. But it's better to be safe than sorry.)
|
|
#define MEMREF_GET_USIZE(MEMREF) \
|
|
detail::checkOverflowCast<uint64_t>((MEMREF)->sizes[0])
|
|
|
|
#define ASSERT_USIZE_EQ(MEMREF, SZ) \
|
|
assert(detail::safelyEQ(MEMREF_GET_USIZE(MEMREF), (SZ)) && \
|
|
"Memref size mismatch")
|
|
|
|
#define MEMREF_GET_PAYLOAD(MEMREF) ((MEMREF)->data + (MEMREF)->offset)
|
|
|
|
/// Initializes the memref with the provided size and data pointer. This
|
|
/// is designed for functions which want to "return" a memref that aliases
|
|
/// into memory owned by some other object (e.g., `SparseTensorStorage`),
|
|
/// without doing any actual copying. (The "return" is in scarequotes
|
|
/// because the `_mlir_ciface_` calling convention migrates any returned
|
|
/// memrefs into an out-parameter passed before all the other function
|
|
/// parameters.)
|
|
///
|
|
/// We make this a function rather than a macro mainly for type safety
|
|
/// reasons. This function does not modify the data pointer, but it
|
|
/// cannot be marked `const` because it is stored into the (necessarily)
|
|
/// non-`const` memref. This function is templated over the `DataSizeT`
|
|
/// to work around signedness warnings due to many data types having
|
|
/// varying signedness across different platforms. The templating allows
|
|
/// this function to ensure that it does the right thing and never
|
|
/// introduces errors due to implicit conversions.
|
|
template <typename DataSizeT, typename T>
|
|
static inline void aliasIntoMemref(DataSizeT size, T *data,
|
|
StridedMemRefType<T, 1> &ref) {
|
|
ref.basePtr = ref.data = data;
|
|
ref.offset = 0;
|
|
using MemrefSizeT = typename std::remove_reference_t<decltype(ref.sizes[0])>;
|
|
ref.sizes[0] = detail::checkOverflowCast<MemrefSizeT>(size);
|
|
ref.strides[0] = 1;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
extern "C" {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Public functions which operate on MLIR buffers (memrefs) to interact
|
|
// with sparse tensors (which are only visible as opaque pointers externally).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define CASE(p, c, v, P, C, V) \
|
|
if (posTp == (p) && crdTp == (c) && valTp == (v)) { \
|
|
switch (action) { \
|
|
case Action::kEmpty: \
|
|
return SparseTensorStorage<P, C, V>::newEmpty( \
|
|
dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, lvl2dim); \
|
|
case Action::kFromCOO: { \
|
|
assert(ptr && "Received nullptr for SparseTensorCOO object"); \
|
|
auto &coo = *static_cast<SparseTensorCOO<V> *>(ptr); \
|
|
return SparseTensorStorage<P, C, V>::newFromCOO( \
|
|
dimRank, dimSizes, lvlRank, lvlTypes, lvl2dim, coo); \
|
|
} \
|
|
case Action::kSparseToSparse: { \
|
|
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
|
|
auto &tensor = *static_cast<SparseTensorStorageBase *>(ptr); \
|
|
return SparseTensorStorage<P, C, V>::newFromSparseTensor( \
|
|
dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, lvl2dim, dimRank, \
|
|
dim2lvl, tensor); \
|
|
} \
|
|
case Action::kEmptyCOO: \
|
|
return new SparseTensorCOO<V>(lvlRank, lvlSizes); \
|
|
case Action::kToCOO: { \
|
|
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
|
|
auto &tensor = *static_cast<SparseTensorStorage<P, C, V> *>(ptr); \
|
|
return tensor.toCOO(lvlRank, lvlSizes, dimRank, dim2lvl); \
|
|
} \
|
|
case Action::kToIterator: { \
|
|
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
|
|
auto &tensor = *static_cast<SparseTensorStorage<P, C, V> *>(ptr); \
|
|
auto *coo = tensor.toCOO(lvlRank, lvlSizes, dimRank, dim2lvl); \
|
|
return new SparseTensorIterator<V>(coo); \
|
|
} \
|
|
case Action::kPack: { \
|
|
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
|
|
intptr_t *buffers = static_cast<intptr_t *>(ptr); \
|
|
return SparseTensorStorage<P, C, V>::packFromLvlBuffers( \
|
|
dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, lvl2dim, dimRank, \
|
|
dim2lvl, buffers); \
|
|
} \
|
|
} \
|
|
MLIR_SPARSETENSOR_FATAL("unknown action: %d\n", \
|
|
static_cast<uint32_t>(action)); \
|
|
}
|
|
|
|
#define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V)
|
|
|
|
// Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor
|
|
// can safely rewrite kIndex to kU64. We make this assertion to guarantee
|
|
// that this file cannot get out of sync with its header.
|
|
static_assert(std::is_same<index_type, uint64_t>::value,
|
|
"Expected index_type == uint64_t");
|
|
|
|
// TODO: this swiss-army-knife should be split up into separate functions
|
|
// for each action, since the various actions don't agree on (1) whether
|
|
// the first two arguments are "sizes" vs "shapes", (2) whether the "lvl"
|
|
// arguments are actually storage-levels vs target tensor-dimensions,
|
|
// (3) whether all the arguments are actually used/required.
|
|
void *_mlir_ciface_newSparseTensor( // NOLINT
|
|
StridedMemRefType<index_type, 1> *dimSizesRef,
|
|
StridedMemRefType<index_type, 1> *lvlSizesRef,
|
|
StridedMemRefType<DimLevelType, 1> *lvlTypesRef,
|
|
StridedMemRefType<index_type, 1> *lvl2dimRef,
|
|
StridedMemRefType<index_type, 1> *dim2lvlRef, OverheadType posTp,
|
|
OverheadType crdTp, PrimaryType valTp, Action action, void *ptr) {
|
|
ASSERT_NO_STRIDE(dimSizesRef);
|
|
ASSERT_NO_STRIDE(lvlSizesRef);
|
|
ASSERT_NO_STRIDE(lvlTypesRef);
|
|
ASSERT_NO_STRIDE(lvl2dimRef);
|
|
ASSERT_NO_STRIDE(dim2lvlRef);
|
|
const uint64_t dimRank = MEMREF_GET_USIZE(dimSizesRef);
|
|
const uint64_t lvlRank = MEMREF_GET_USIZE(lvlSizesRef);
|
|
ASSERT_USIZE_EQ(dim2lvlRef, dimRank);
|
|
ASSERT_USIZE_EQ(lvlTypesRef, lvlRank);
|
|
ASSERT_USIZE_EQ(lvl2dimRef, lvlRank);
|
|
const index_type *dimSizes = MEMREF_GET_PAYLOAD(dimSizesRef);
|
|
const index_type *lvlSizes = MEMREF_GET_PAYLOAD(lvlSizesRef);
|
|
const DimLevelType *lvlTypes = MEMREF_GET_PAYLOAD(lvlTypesRef);
|
|
const index_type *lvl2dim = MEMREF_GET_PAYLOAD(lvl2dimRef);
|
|
const index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef);
|
|
|
|
// Rewrite kIndex to kU64, to avoid introducing a bunch of new cases.
|
|
// This is safe because of the static_assert above.
|
|
if (posTp == OverheadType::kIndex)
|
|
posTp = OverheadType::kU64;
|
|
if (crdTp == OverheadType::kIndex)
|
|
crdTp = OverheadType::kU64;
|
|
|
|
// Double matrices with all combinations of overhead storage.
|
|
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t,
|
|
uint64_t, double);
|
|
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t,
|
|
uint32_t, double);
|
|
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t,
|
|
uint16_t, double);
|
|
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t,
|
|
uint8_t, double);
|
|
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t,
|
|
uint64_t, double);
|
|
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t,
|
|
uint32_t, double);
|
|
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t,
|
|
uint16_t, double);
|
|
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t,
|
|
uint8_t, double);
|
|
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t,
|
|
uint64_t, double);
|
|
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t,
|
|
uint32_t, double);
|
|
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t,
|
|
uint16_t, double);
|
|
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t,
|
|
uint8_t, double);
|
|
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t,
|
|
uint64_t, double);
|
|
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t,
|
|
uint32_t, double);
|
|
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t,
|
|
uint16_t, double);
|
|
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t,
|
|
uint8_t, double);
|
|
|
|
// Float matrices with all combinations of overhead storage.
|
|
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t,
|
|
uint64_t, float);
|
|
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t,
|
|
uint32_t, float);
|
|
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t,
|
|
uint16_t, float);
|
|
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t,
|
|
uint8_t, float);
|
|
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t,
|
|
uint64_t, float);
|
|
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t,
|
|
uint32_t, float);
|
|
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t,
|
|
uint16_t, float);
|
|
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t,
|
|
uint8_t, float);
|
|
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t,
|
|
uint64_t, float);
|
|
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t,
|
|
uint32_t, float);
|
|
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t,
|
|
uint16_t, float);
|
|
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t,
|
|
uint8_t, float);
|
|
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t,
|
|
uint64_t, float);
|
|
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t,
|
|
uint32_t, float);
|
|
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t,
|
|
uint16_t, float);
|
|
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t,
|
|
uint8_t, float);
|
|
|
|
// Two-byte floats with both overheads of the same type.
|
|
CASE_SECSAME(OverheadType::kU64, PrimaryType::kF16, uint64_t, f16);
|
|
CASE_SECSAME(OverheadType::kU64, PrimaryType::kBF16, uint64_t, bf16);
|
|
CASE_SECSAME(OverheadType::kU32, PrimaryType::kF16, uint32_t, f16);
|
|
CASE_SECSAME(OverheadType::kU32, PrimaryType::kBF16, uint32_t, bf16);
|
|
CASE_SECSAME(OverheadType::kU16, PrimaryType::kF16, uint16_t, f16);
|
|
CASE_SECSAME(OverheadType::kU16, PrimaryType::kBF16, uint16_t, bf16);
|
|
CASE_SECSAME(OverheadType::kU8, PrimaryType::kF16, uint8_t, f16);
|
|
CASE_SECSAME(OverheadType::kU8, PrimaryType::kBF16, uint8_t, bf16);
|
|
|
|
// Integral matrices with both overheads of the same type.
|
|
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t);
|
|
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t);
|
|
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t);
|
|
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t);
|
|
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI64, uint32_t, int64_t);
|
|
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t);
|
|
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t);
|
|
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t);
|
|
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI64, uint16_t, int64_t);
|
|
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t);
|
|
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t);
|
|
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t);
|
|
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI64, uint8_t, int64_t);
|
|
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t);
|
|
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t);
|
|
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t);
|
|
|
|
// Complex matrices with wide overhead.
|
|
CASE_SECSAME(OverheadType::kU64, PrimaryType::kC64, uint64_t, complex64);
|
|
CASE_SECSAME(OverheadType::kU64, PrimaryType::kC32, uint64_t, complex32);
|
|
|
|
// Unsupported case (add above if needed).
|
|
// TODO: better pretty-printing of enum values!
|
|
MLIR_SPARSETENSOR_FATAL(
|
|
"unsupported combination of types: <P=%d, C=%d, V=%d>\n",
|
|
static_cast<int>(posTp), static_cast<int>(crdTp),
|
|
static_cast<int>(valTp));
|
|
}
|
|
#undef CASE
|
|
#undef CASE_SECSAME
|
|
|
|
#define IMPL_SPARSEVALUES(VNAME, V) \
|
|
void _mlir_ciface_sparseValues##VNAME(StridedMemRefType<V, 1> *ref, \
|
|
void *tensor) { \
|
|
assert(ref &&tensor); \
|
|
std::vector<V> *v; \
|
|
static_cast<SparseTensorStorageBase *>(tensor)->getValues(&v); \
|
|
assert(v); \
|
|
aliasIntoMemref(v->size(), v->data(), *ref); \
|
|
}
|
|
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_SPARSEVALUES)
|
|
#undef IMPL_SPARSEVALUES
|
|
|
|
#define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \
|
|
void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \
|
|
index_type lvl) { \
|
|
assert(ref &&tensor); \
|
|
std::vector<TYPE> *v; \
|
|
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, lvl); \
|
|
assert(v); \
|
|
aliasIntoMemref(v->size(), v->data(), *ref); \
|
|
}
|
|
#define IMPL_SPARSEPOSITIONS(PNAME, P) \
|
|
IMPL_GETOVERHEAD(sparsePositions##PNAME, P, getPositions)
|
|
MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSEPOSITIONS)
|
|
#undef IMPL_SPARSEPOSITIONS
|
|
|
|
#define IMPL_SPARSECOORDINATES(CNAME, C) \
|
|
IMPL_GETOVERHEAD(sparseCoordinates##CNAME, C, getCoordinates)
|
|
MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSECOORDINATES)
|
|
#undef IMPL_SPARSECOORDINATES
|
|
#undef IMPL_GETOVERHEAD
|
|
|
|
// TODO: while this API design will work for arbitrary dim2lvl mappings,
|
|
// we should probably move the `dimCoords`-to-`lvlCoords` computation into
|
|
// codegen (since that could enable optimizations to remove the intermediate
|
|
// memref).
|
|
#define IMPL_ADDELT(VNAME, V) \
|
|
void *_mlir_ciface_addElt##VNAME( \
|
|
void *lvlCOO, StridedMemRefType<V, 0> *vref, \
|
|
StridedMemRefType<index_type, 1> *dimCoordsRef, \
|
|
StridedMemRefType<index_type, 1> *dim2lvlRef) { \
|
|
assert(lvlCOO &&vref); \
|
|
ASSERT_NO_STRIDE(dimCoordsRef); \
|
|
ASSERT_NO_STRIDE(dim2lvlRef); \
|
|
const uint64_t rank = MEMREF_GET_USIZE(dimCoordsRef); \
|
|
ASSERT_USIZE_EQ(dim2lvlRef, rank); \
|
|
const index_type *dimCoords = MEMREF_GET_PAYLOAD(dimCoordsRef); \
|
|
const index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef); \
|
|
std::vector<index_type> lvlCoords(rank); \
|
|
for (uint64_t d = 0; d < rank; ++d) \
|
|
lvlCoords[dim2lvl[d]] = dimCoords[d]; \
|
|
V *value = MEMREF_GET_PAYLOAD(vref); \
|
|
static_cast<SparseTensorCOO<V> *>(lvlCOO)->add(lvlCoords, *value); \
|
|
return lvlCOO; \
|
|
}
|
|
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_ADDELT)
|
|
#undef IMPL_ADDELT
|
|
|
|
// NOTE: the `cref` argument uses the same coordinate-space as the `iter`
|
|
// (which can be either dim- or lvl-coords, depending on context).
|
|
#define IMPL_GETNEXT(VNAME, V) \
|
|
bool _mlir_ciface_getNext##VNAME(void *iter, \
|
|
StridedMemRefType<index_type, 1> *cref, \
|
|
StridedMemRefType<V, 0> *vref) { \
|
|
assert(iter &&vref); \
|
|
ASSERT_NO_STRIDE(cref); \
|
|
index_type *coords = MEMREF_GET_PAYLOAD(cref); \
|
|
V *value = MEMREF_GET_PAYLOAD(vref); \
|
|
const uint64_t rank = MEMREF_GET_USIZE(cref); \
|
|
const Element<V> *elem = \
|
|
static_cast<SparseTensorIterator<V> *>(iter)->getNext(); \
|
|
if (elem == nullptr) \
|
|
return false; \
|
|
for (uint64_t d = 0; d < rank; d++) \
|
|
coords[d] = elem->coords[d]; \
|
|
*value = elem->value; \
|
|
return true; \
|
|
}
|
|
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_GETNEXT)
|
|
#undef IMPL_GETNEXT
|
|
|
|
#define IMPL_LEXINSERT(VNAME, V) \
|
|
void _mlir_ciface_lexInsert##VNAME( \
|
|
void *t, StridedMemRefType<index_type, 1> *lvlCoordsRef, \
|
|
StridedMemRefType<V, 0> *vref) { \
|
|
assert(t &&vref); \
|
|
auto &tensor = *static_cast<SparseTensorStorageBase *>(t); \
|
|
ASSERT_NO_STRIDE(lvlCoordsRef); \
|
|
index_type *lvlCoords = MEMREF_GET_PAYLOAD(lvlCoordsRef); \
|
|
assert(lvlCoords); \
|
|
V *value = MEMREF_GET_PAYLOAD(vref); \
|
|
tensor.lexInsert(lvlCoords, *value); \
|
|
}
|
|
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_LEXINSERT)
|
|
#undef IMPL_LEXINSERT
|
|
|
|
#define IMPL_EXPINSERT(VNAME, V) \
|
|
void _mlir_ciface_expInsert##VNAME( \
|
|
void *t, StridedMemRefType<index_type, 1> *lvlCoordsRef, \
|
|
StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \
|
|
StridedMemRefType<index_type, 1> *aref, index_type count) { \
|
|
assert(t); \
|
|
auto &tensor = *static_cast<SparseTensorStorageBase *>(t); \
|
|
ASSERT_NO_STRIDE(lvlCoordsRef); \
|
|
ASSERT_NO_STRIDE(vref); \
|
|
ASSERT_NO_STRIDE(fref); \
|
|
ASSERT_NO_STRIDE(aref); \
|
|
ASSERT_USIZE_EQ(vref, MEMREF_GET_USIZE(fref)); \
|
|
index_type *lvlCoords = MEMREF_GET_PAYLOAD(lvlCoordsRef); \
|
|
V *values = MEMREF_GET_PAYLOAD(vref); \
|
|
bool *filled = MEMREF_GET_PAYLOAD(fref); \
|
|
index_type *added = MEMREF_GET_PAYLOAD(aref); \
|
|
tensor.expInsert(lvlCoords, values, filled, added, count); \
|
|
}
|
|
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_EXPINSERT)
|
|
#undef IMPL_EXPINSERT
|
|
|
|
void *_mlir_ciface_createCheckedSparseTensorReader(
|
|
char *filename, StridedMemRefType<index_type, 1> *dimShapeRef,
|
|
PrimaryType valTp) {
|
|
ASSERT_NO_STRIDE(dimShapeRef);
|
|
const uint64_t dimRank = MEMREF_GET_USIZE(dimShapeRef);
|
|
const index_type *dimShape = MEMREF_GET_PAYLOAD(dimShapeRef);
|
|
auto *reader = SparseTensorReader::create(filename, dimRank, dimShape, valTp);
|
|
return static_cast<void *>(reader);
|
|
}
|
|
|
|
void _mlir_ciface_getSparseTensorReaderDimSizes(
|
|
StridedMemRefType<index_type, 1> *out, void *p) {
|
|
assert(out && p);
|
|
SparseTensorReader &reader = *static_cast<SparseTensorReader *>(p);
|
|
auto *dimSizes = const_cast<uint64_t *>(reader.getDimSizes());
|
|
aliasIntoMemref(reader.getRank(), dimSizes, *out);
|
|
}
|
|
|
|
#define IMPL_GETNEXT(VNAME, V) \
|
|
void _mlir_ciface_getSparseTensorReaderNext##VNAME( \
|
|
void *p, StridedMemRefType<index_type, 1> *dimCoordsRef, \
|
|
StridedMemRefType<V, 0> *vref) { \
|
|
assert(p &&vref); \
|
|
auto &reader = *static_cast<SparseTensorReader *>(p); \
|
|
ASSERT_NO_STRIDE(dimCoordsRef); \
|
|
const uint64_t dimRank = MEMREF_GET_USIZE(dimCoordsRef); \
|
|
index_type *dimCoords = MEMREF_GET_PAYLOAD(dimCoordsRef); \
|
|
V *value = MEMREF_GET_PAYLOAD(vref); \
|
|
*value = reader.readElement<V>(dimRank, dimCoords); \
|
|
}
|
|
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_GETNEXT)
|
|
#undef IMPL_GETNEXT
|
|
|
|
#define IMPL_GETNEXT(VNAME, V, CNAME, C) \
|
|
bool _mlir_ciface_getSparseTensorReaderReadToBuffers##CNAME##VNAME( \
|
|
void *p, StridedMemRefType<index_type, 1> *dim2lvlRef, \
|
|
StridedMemRefType<C, 1> *cref, StridedMemRefType<V, 1> *vref) { \
|
|
assert(p); \
|
|
auto &reader = *static_cast<SparseTensorReader *>(p); \
|
|
ASSERT_NO_STRIDE(cref); \
|
|
ASSERT_NO_STRIDE(vref); \
|
|
ASSERT_NO_STRIDE(dim2lvlRef); \
|
|
const uint64_t cSize = MEMREF_GET_USIZE(cref); \
|
|
const uint64_t vSize = MEMREF_GET_USIZE(vref); \
|
|
const uint64_t lvlRank = reader.getRank(); \
|
|
assert(vSize *lvlRank <= cSize); \
|
|
assert(vSize >= reader.getNSE() && "Not enough space in buffers"); \
|
|
ASSERT_USIZE_EQ(dim2lvlRef, lvlRank); \
|
|
(void)cSize; \
|
|
(void)vSize; \
|
|
(void)lvlRank; \
|
|
C *lvlCoordinates = MEMREF_GET_PAYLOAD(cref); \
|
|
V *values = MEMREF_GET_PAYLOAD(vref); \
|
|
index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef); \
|
|
return reader.readToBuffers<C, V>(lvlRank, dim2lvl, lvlCoordinates, \
|
|
values); \
|
|
}
|
|
MLIR_SPARSETENSOR_FOREVERY_V_O(IMPL_GETNEXT)
|
|
#undef IMPL_GETNEXT
|
|
|
|
void *_mlir_ciface_newSparseTensorFromReader(
|
|
void *p, StridedMemRefType<index_type, 1> *lvlSizesRef,
|
|
StridedMemRefType<DimLevelType, 1> *lvlTypesRef,
|
|
StridedMemRefType<index_type, 1> *lvl2dimRef,
|
|
StridedMemRefType<index_type, 1> *dim2lvlRef, OverheadType posTp,
|
|
OverheadType crdTp, PrimaryType valTp) {
|
|
assert(p);
|
|
SparseTensorReader &reader = *static_cast<SparseTensorReader *>(p);
|
|
ASSERT_NO_STRIDE(lvlSizesRef);
|
|
ASSERT_NO_STRIDE(lvlTypesRef);
|
|
ASSERT_NO_STRIDE(lvl2dimRef);
|
|
ASSERT_NO_STRIDE(dim2lvlRef);
|
|
const uint64_t dimRank = reader.getRank();
|
|
const uint64_t lvlRank = MEMREF_GET_USIZE(lvlSizesRef);
|
|
ASSERT_USIZE_EQ(lvlTypesRef, lvlRank);
|
|
ASSERT_USIZE_EQ(lvl2dimRef, lvlRank);
|
|
ASSERT_USIZE_EQ(dim2lvlRef, dimRank);
|
|
(void)dimRank;
|
|
const index_type *lvlSizes = MEMREF_GET_PAYLOAD(lvlSizesRef);
|
|
const DimLevelType *lvlTypes = MEMREF_GET_PAYLOAD(lvlTypesRef);
|
|
const index_type *lvl2dim = MEMREF_GET_PAYLOAD(lvl2dimRef);
|
|
const index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef);
|
|
#define CASE(p, c, v, P, C, V) \
|
|
if (posTp == OverheadType::p && crdTp == OverheadType::c && \
|
|
valTp == PrimaryType::v) \
|
|
return static_cast<void *>(reader.readSparseTensor<P, C, V>( \
|
|
lvlRank, lvlSizes, lvlTypes, lvl2dim, dim2lvl));
|
|
#define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V)
|
|
// Rewrite kIndex to kU64, to avoid introducing a bunch of new cases.
|
|
// This is safe because of the static_assert above.
|
|
if (posTp == OverheadType::kIndex)
|
|
posTp = OverheadType::kU64;
|
|
if (crdTp == OverheadType::kIndex)
|
|
crdTp = OverheadType::kU64;
|
|
// Double matrices with all combinations of overhead storage.
|
|
CASE(kU64, kU64, kF64, uint64_t, uint64_t, double);
|
|
CASE(kU64, kU32, kF64, uint64_t, uint32_t, double);
|
|
CASE(kU64, kU16, kF64, uint64_t, uint16_t, double);
|
|
CASE(kU64, kU8, kF64, uint64_t, uint8_t, double);
|
|
CASE(kU32, kU64, kF64, uint32_t, uint64_t, double);
|
|
CASE(kU32, kU32, kF64, uint32_t, uint32_t, double);
|
|
CASE(kU32, kU16, kF64, uint32_t, uint16_t, double);
|
|
CASE(kU32, kU8, kF64, uint32_t, uint8_t, double);
|
|
CASE(kU16, kU64, kF64, uint16_t, uint64_t, double);
|
|
CASE(kU16, kU32, kF64, uint16_t, uint32_t, double);
|
|
CASE(kU16, kU16, kF64, uint16_t, uint16_t, double);
|
|
CASE(kU16, kU8, kF64, uint16_t, uint8_t, double);
|
|
CASE(kU8, kU64, kF64, uint8_t, uint64_t, double);
|
|
CASE(kU8, kU32, kF64, uint8_t, uint32_t, double);
|
|
CASE(kU8, kU16, kF64, uint8_t, uint16_t, double);
|
|
CASE(kU8, kU8, kF64, uint8_t, uint8_t, double);
|
|
// Float matrices with all combinations of overhead storage.
|
|
CASE(kU64, kU64, kF32, uint64_t, uint64_t, float);
|
|
CASE(kU64, kU32, kF32, uint64_t, uint32_t, float);
|
|
CASE(kU64, kU16, kF32, uint64_t, uint16_t, float);
|
|
CASE(kU64, kU8, kF32, uint64_t, uint8_t, float);
|
|
CASE(kU32, kU64, kF32, uint32_t, uint64_t, float);
|
|
CASE(kU32, kU32, kF32, uint32_t, uint32_t, float);
|
|
CASE(kU32, kU16, kF32, uint32_t, uint16_t, float);
|
|
CASE(kU32, kU8, kF32, uint32_t, uint8_t, float);
|
|
CASE(kU16, kU64, kF32, uint16_t, uint64_t, float);
|
|
CASE(kU16, kU32, kF32, uint16_t, uint32_t, float);
|
|
CASE(kU16, kU16, kF32, uint16_t, uint16_t, float);
|
|
CASE(kU16, kU8, kF32, uint16_t, uint8_t, float);
|
|
CASE(kU8, kU64, kF32, uint8_t, uint64_t, float);
|
|
CASE(kU8, kU32, kF32, uint8_t, uint32_t, float);
|
|
CASE(kU8, kU16, kF32, uint8_t, uint16_t, float);
|
|
CASE(kU8, kU8, kF32, uint8_t, uint8_t, float);
|
|
// Two-byte floats with both overheads of the same type.
|
|
CASE_SECSAME(kU64, kF16, uint64_t, f16);
|
|
CASE_SECSAME(kU64, kBF16, uint64_t, bf16);
|
|
CASE_SECSAME(kU32, kF16, uint32_t, f16);
|
|
CASE_SECSAME(kU32, kBF16, uint32_t, bf16);
|
|
CASE_SECSAME(kU16, kF16, uint16_t, f16);
|
|
CASE_SECSAME(kU16, kBF16, uint16_t, bf16);
|
|
CASE_SECSAME(kU8, kF16, uint8_t, f16);
|
|
CASE_SECSAME(kU8, kBF16, uint8_t, bf16);
|
|
// Integral matrices with both overheads of the same type.
|
|
CASE_SECSAME(kU64, kI64, uint64_t, int64_t);
|
|
CASE_SECSAME(kU64, kI32, uint64_t, int32_t);
|
|
CASE_SECSAME(kU64, kI16, uint64_t, int16_t);
|
|
CASE_SECSAME(kU64, kI8, uint64_t, int8_t);
|
|
CASE_SECSAME(kU32, kI64, uint32_t, int64_t);
|
|
CASE_SECSAME(kU32, kI32, uint32_t, int32_t);
|
|
CASE_SECSAME(kU32, kI16, uint32_t, int16_t);
|
|
CASE_SECSAME(kU32, kI8, uint32_t, int8_t);
|
|
CASE_SECSAME(kU16, kI64, uint16_t, int64_t);
|
|
CASE_SECSAME(kU16, kI32, uint16_t, int32_t);
|
|
CASE_SECSAME(kU16, kI16, uint16_t, int16_t);
|
|
CASE_SECSAME(kU16, kI8, uint16_t, int8_t);
|
|
CASE_SECSAME(kU8, kI64, uint8_t, int64_t);
|
|
CASE_SECSAME(kU8, kI32, uint8_t, int32_t);
|
|
CASE_SECSAME(kU8, kI16, uint8_t, int16_t);
|
|
CASE_SECSAME(kU8, kI8, uint8_t, int8_t);
|
|
// Complex matrices with wide overhead.
|
|
CASE_SECSAME(kU64, kC64, uint64_t, complex64);
|
|
CASE_SECSAME(kU64, kC32, uint64_t, complex32);
|
|
|
|
// Unsupported case (add above if needed).
|
|
// TODO: better pretty-printing of enum values!
|
|
MLIR_SPARSETENSOR_FATAL(
|
|
"unsupported combination of types: <P=%d, C=%d, V=%d>\n",
|
|
static_cast<int>(posTp), static_cast<int>(crdTp),
|
|
static_cast<int>(valTp));
|
|
#undef CASE_SECSAME
|
|
#undef CASE
|
|
}
|
|
|
|
void _mlir_ciface_outSparseTensorWriterMetaData(
|
|
void *p, index_type dimRank, index_type nse,
|
|
StridedMemRefType<index_type, 1> *dimSizesRef) {
|
|
assert(p);
|
|
ASSERT_NO_STRIDE(dimSizesRef);
|
|
assert(dimRank != 0);
|
|
index_type *dimSizes = MEMREF_GET_PAYLOAD(dimSizesRef);
|
|
SparseTensorWriter &file = *static_cast<SparseTensorWriter *>(p);
|
|
file << dimRank << " " << nse << std::endl;
|
|
for (index_type d = 0; d < dimRank - 1; ++d)
|
|
file << dimSizes[d] << " ";
|
|
file << dimSizes[dimRank - 1] << std::endl;
|
|
}
|
|
|
|
#define IMPL_OUTNEXT(VNAME, V) \
|
|
void _mlir_ciface_outSparseTensorWriterNext##VNAME( \
|
|
void *p, index_type dimRank, \
|
|
StridedMemRefType<index_type, 1> *dimCoordsRef, \
|
|
StridedMemRefType<V, 0> *vref) { \
|
|
assert(p &&vref); \
|
|
ASSERT_NO_STRIDE(dimCoordsRef); \
|
|
const index_type *dimCoords = MEMREF_GET_PAYLOAD(dimCoordsRef); \
|
|
SparseTensorWriter &file = *static_cast<SparseTensorWriter *>(p); \
|
|
for (index_type d = 0; d < dimRank; ++d) \
|
|
file << (dimCoords[d] + 1) << " "; \
|
|
V *value = MEMREF_GET_PAYLOAD(vref); \
|
|
file << *value << std::endl; \
|
|
}
|
|
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_OUTNEXT)
|
|
#undef IMPL_OUTNEXT
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Public functions which accept only C-style data structures to interact
|
|
// with sparse tensors (which are only visible as opaque pointers externally).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
index_type sparseLvlSize(void *tensor, index_type l) {
|
|
return static_cast<SparseTensorStorageBase *>(tensor)->getLvlSize(l);
|
|
}
|
|
|
|
index_type sparseDimSize(void *tensor, index_type d) {
|
|
return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d);
|
|
}
|
|
|
|
void endInsert(void *tensor) {
|
|
return static_cast<SparseTensorStorageBase *>(tensor)->endInsert();
|
|
}
|
|
|
|
#define IMPL_OUTSPARSETENSOR(VNAME, V) \
|
|
void outSparseTensor##VNAME(void *coo, void *dest, bool sort) { \
|
|
assert(coo && "Got nullptr for COO object"); \
|
|
auto &coo_ = *static_cast<SparseTensorCOO<V> *>(coo); \
|
|
if (sort) \
|
|
coo_.sort(); \
|
|
return writeExtFROSTT(coo_, static_cast<char *>(dest)); \
|
|
}
|
|
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_OUTSPARSETENSOR)
|
|
#undef IMPL_OUTSPARSETENSOR
|
|
|
|
void delSparseTensor(void *tensor) {
|
|
delete static_cast<SparseTensorStorageBase *>(tensor);
|
|
}
|
|
|
|
#define IMPL_DELCOO(VNAME, V) \
|
|
void delSparseTensorCOO##VNAME(void *coo) { \
|
|
delete static_cast<SparseTensorCOO<V> *>(coo); \
|
|
}
|
|
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_DELCOO)
|
|
#undef IMPL_DELCOO
|
|
|
|
#define IMPL_DELITER(VNAME, V) \
|
|
void delSparseTensorIterator##VNAME(void *iter) { \
|
|
delete static_cast<SparseTensorIterator<V> *>(iter); \
|
|
}
|
|
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_DELITER)
|
|
#undef IMPL_DELITER
|
|
|
|
char *getTensorFilename(index_type id) {
|
|
constexpr size_t BUF_SIZE = 80;
|
|
char var[BUF_SIZE];
|
|
snprintf(var, BUF_SIZE, "TENSOR%" PRIu64, id);
|
|
char *env = getenv(var);
|
|
if (!env)
|
|
MLIR_SPARSETENSOR_FATAL("Environment variable %s is not set\n", var);
|
|
return env;
|
|
}
|
|
|
|
void readSparseTensorShape(char *filename, std::vector<uint64_t> *out) {
|
|
assert(out && "Received nullptr for out-parameter");
|
|
SparseTensorReader reader(filename);
|
|
reader.openFile();
|
|
reader.readHeader();
|
|
reader.closeFile();
|
|
const uint64_t dimRank = reader.getRank();
|
|
const uint64_t *dimSizes = reader.getDimSizes();
|
|
out->reserve(dimRank);
|
|
out->assign(dimSizes, dimSizes + dimRank);
|
|
}
|
|
|
|
// We can't use `static_cast` here because `DimLevelType` is an enum-class.
|
|
#define IMPL_CONVERTTOMLIRSPARSETENSOR(VNAME, V) \
|
|
void *convertToMLIRSparseTensor##VNAME( \
|
|
uint64_t rank, uint64_t nse, uint64_t *dimSizes, V *values, \
|
|
uint64_t *dimCoordinates, uint64_t *dim2lvl, uint8_t *lvlTypes) { \
|
|
return toMLIRSparseTensor<V>(rank, nse, dimSizes, values, dimCoordinates, \
|
|
dim2lvl, \
|
|
reinterpret_cast<DimLevelType *>(lvlTypes)); \
|
|
}
|
|
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_CONVERTTOMLIRSPARSETENSOR)
|
|
#undef IMPL_CONVERTTOMLIRSPARSETENSOR
|
|
|
|
#define IMPL_CONVERTFROMMLIRSPARSETENSOR(VNAME, V) \
|
|
void convertFromMLIRSparseTensor##VNAME( \
|
|
void *tensor, uint64_t *pRank, uint64_t *pNse, uint64_t **pShape, \
|
|
V **pValues, uint64_t **pCoordinates) { \
|
|
fromMLIRSparseTensor<V>( \
|
|
static_cast<SparseTensorStorage<uint64_t, uint64_t, V> *>(tensor), \
|
|
pRank, pNse, pShape, pValues, pCoordinates); \
|
|
}
|
|
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_CONVERTFROMMLIRSPARSETENSOR)
|
|
#undef IMPL_CONVERTFROMMLIRSPARSETENSOR
|
|
|
|
index_type getSparseTensorReaderRank(void *p) {
|
|
return static_cast<SparseTensorReader *>(p)->getRank();
|
|
}
|
|
|
|
bool getSparseTensorReaderIsSymmetric(void *p) {
|
|
return static_cast<SparseTensorReader *>(p)->isSymmetric();
|
|
}
|
|
|
|
index_type getSparseTensorReaderNSE(void *p) {
|
|
return static_cast<SparseTensorReader *>(p)->getNSE();
|
|
}
|
|
|
|
index_type getSparseTensorReaderDimSize(void *p, index_type d) {
|
|
return static_cast<SparseTensorReader *>(p)->getDimSize(d);
|
|
}
|
|
|
|
void delSparseTensorReader(void *p) {
|
|
delete static_cast<SparseTensorReader *>(p);
|
|
}
|
|
|
|
void *createSparseTensorWriter(char *filename) {
|
|
SparseTensorWriter *file =
|
|
(filename[0] == 0) ? &std::cout : new std::ofstream(filename);
|
|
*file << "# extended FROSTT format\n";
|
|
return static_cast<void *>(file);
|
|
}
|
|
|
|
void delSparseTensorWriter(void *p) {
|
|
SparseTensorWriter *file = static_cast<SparseTensorWriter *>(p);
|
|
file->flush();
|
|
assert(file->good());
|
|
if (file != &std::cout)
|
|
delete file;
|
|
}
|
|
|
|
} // extern "C"
|
|
|
|
#undef MEMREF_GET_PAYLOAD
|
|
#undef ASSERT_USIZE_EQ
|
|
#undef MEMREF_GET_USIZE
|
|
#undef ASSERT_NO_STRIDE
|
|
|
|
#endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
|