
NOTE: For brevity the following talks about ConstantInt but everything extends to cover ConstantFP as well. Whilst ConstantInt::get() supports the creation of vectors whereby each lane has the same value, it achieves this via other constants: * ConstantVector for fixed-length vectors * ConstantExprs for scalable vectors However, ConstantExprs are being deprecated and ConstantVector is not space efficient for larger vector types. By extending ConstantInt we can represent vector splats by only storing the underlying scalar value. More specifically: * ConstantInt gains an ElementCount variant of get(). * LLVMContext is extended to map <EC,APInt>->ConstantInt. * BitcodeReader/Writer support is extended to allow vector types. Whilst this patch adds the base support, more work is required before it's production ready. For example, there's likely to be many places where isa<ConstantInt> assumes a scalar type. Accordingly the default behaviour of ConstantInt::get() remains unchanged but a set of flags are added to allow wider testing and thus help with the migration: --use-constant-int-for-fixed-length-splat --use-constant-fp-for-fixed-length-splat --use-constant-int-for-scalable-splat --use-constant-fp-for-scalable-splat NOTE: No change is required to the bitcode format because types and values are handled separately. NOTE: For similar reasons as above, code generation doesn't work out-the-box.
255 lines
8.4 KiB
C++
255 lines
8.4 KiB
C++
//===- LLVMContextImpl.cpp - Implement LLVMContextImpl --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the opaque LLVMContextImpl.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "LLVMContextImpl.h"
|
|
#include "AttributeImpl.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/StringMapEntry.h"
|
|
#include "llvm/ADT/iterator.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/IR/DiagnosticHandler.h"
|
|
#include "llvm/IR/LLVMRemarkStreamer.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/OptBisect.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/Remarks/RemarkStreamer.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/TypeSize.h"
|
|
#include <cassert>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
LLVMContextImpl::LLVMContextImpl(LLVMContext &C)
|
|
: DiagHandler(std::make_unique<DiagnosticHandler>()),
|
|
VoidTy(C, Type::VoidTyID), LabelTy(C, Type::LabelTyID),
|
|
HalfTy(C, Type::HalfTyID), BFloatTy(C, Type::BFloatTyID),
|
|
FloatTy(C, Type::FloatTyID), DoubleTy(C, Type::DoubleTyID),
|
|
MetadataTy(C, Type::MetadataTyID), TokenTy(C, Type::TokenTyID),
|
|
X86_FP80Ty(C, Type::X86_FP80TyID), FP128Ty(C, Type::FP128TyID),
|
|
PPC_FP128Ty(C, Type::PPC_FP128TyID), X86_MMXTy(C, Type::X86_MMXTyID),
|
|
X86_AMXTy(C, Type::X86_AMXTyID), Int1Ty(C, 1), Int8Ty(C, 8),
|
|
Int16Ty(C, 16), Int32Ty(C, 32), Int64Ty(C, 64), Int128Ty(C, 128) {}
|
|
|
|
LLVMContextImpl::~LLVMContextImpl() {
|
|
#ifndef NDEBUG
|
|
// Check that any variable location records that fell off the end of a block
|
|
// when it's terminator was removed were eventually replaced. This assertion
|
|
// firing indicates that DPValues went missing during the lifetime of the
|
|
// LLVMContext.
|
|
assert(TrailingDPValues.empty() && "DPValue records in blocks not cleaned");
|
|
#endif
|
|
|
|
// NOTE: We need to delete the contents of OwnedModules, but Module's dtor
|
|
// will call LLVMContextImpl::removeModule, thus invalidating iterators into
|
|
// the container. Avoid iterators during this operation:
|
|
while (!OwnedModules.empty())
|
|
delete *OwnedModules.begin();
|
|
|
|
#ifndef NDEBUG
|
|
// Check for metadata references from leaked Values.
|
|
for (auto &Pair : ValueMetadata)
|
|
Pair.first->dump();
|
|
assert(ValueMetadata.empty() && "Values with metadata have been leaked");
|
|
#endif
|
|
|
|
// Drop references for MDNodes. Do this before Values get deleted to avoid
|
|
// unnecessary RAUW when nodes are still unresolved.
|
|
for (auto *I : DistinctMDNodes)
|
|
I->dropAllReferences();
|
|
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
|
|
for (auto *I : CLASS##s) \
|
|
I->dropAllReferences();
|
|
#include "llvm/IR/Metadata.def"
|
|
|
|
// Also drop references that come from the Value bridges.
|
|
for (auto &Pair : ValuesAsMetadata)
|
|
Pair.second->dropUsers();
|
|
for (auto &Pair : MetadataAsValues)
|
|
Pair.second->dropUse();
|
|
// Do not untrack ValueAsMetadata references for DIArgLists, as they have
|
|
// already been more efficiently untracked above.
|
|
for (DIArgList *AL : DIArgLists) {
|
|
AL->dropAllReferences(/* Untrack */ false);
|
|
delete AL;
|
|
}
|
|
DIArgLists.clear();
|
|
|
|
// Destroy MDNodes.
|
|
for (MDNode *I : DistinctMDNodes)
|
|
I->deleteAsSubclass();
|
|
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
|
|
for (CLASS * I : CLASS##s) \
|
|
delete I;
|
|
#include "llvm/IR/Metadata.def"
|
|
|
|
// Free the constants.
|
|
for (auto *I : ExprConstants)
|
|
I->dropAllReferences();
|
|
for (auto *I : ArrayConstants)
|
|
I->dropAllReferences();
|
|
for (auto *I : StructConstants)
|
|
I->dropAllReferences();
|
|
for (auto *I : VectorConstants)
|
|
I->dropAllReferences();
|
|
ExprConstants.freeConstants();
|
|
ArrayConstants.freeConstants();
|
|
StructConstants.freeConstants();
|
|
VectorConstants.freeConstants();
|
|
InlineAsms.freeConstants();
|
|
|
|
CAZConstants.clear();
|
|
CPNConstants.clear();
|
|
CTNConstants.clear();
|
|
UVConstants.clear();
|
|
PVConstants.clear();
|
|
IntZeroConstants.clear();
|
|
IntOneConstants.clear();
|
|
IntConstants.clear();
|
|
IntSplatConstants.clear();
|
|
FPConstants.clear();
|
|
FPSplatConstants.clear();
|
|
CDSConstants.clear();
|
|
|
|
// Destroy attribute node lists.
|
|
for (FoldingSetIterator<AttributeSetNode> I = AttrsSetNodes.begin(),
|
|
E = AttrsSetNodes.end(); I != E; ) {
|
|
FoldingSetIterator<AttributeSetNode> Elem = I++;
|
|
delete &*Elem;
|
|
}
|
|
|
|
// Destroy MetadataAsValues.
|
|
{
|
|
SmallVector<MetadataAsValue *, 8> MDVs;
|
|
MDVs.reserve(MetadataAsValues.size());
|
|
for (auto &Pair : MetadataAsValues)
|
|
MDVs.push_back(Pair.second);
|
|
MetadataAsValues.clear();
|
|
for (auto *V : MDVs)
|
|
delete V;
|
|
}
|
|
|
|
// Destroy ValuesAsMetadata.
|
|
for (auto &Pair : ValuesAsMetadata)
|
|
delete Pair.second;
|
|
}
|
|
|
|
void LLVMContextImpl::dropTriviallyDeadConstantArrays() {
|
|
SmallSetVector<ConstantArray *, 4> WorkList;
|
|
|
|
// When ArrayConstants are of substantial size and only a few in them are
|
|
// dead, starting WorkList with all elements of ArrayConstants can be
|
|
// wasteful. Instead, starting WorkList with only elements that have empty
|
|
// uses.
|
|
for (ConstantArray *C : ArrayConstants)
|
|
if (C->use_empty())
|
|
WorkList.insert(C);
|
|
|
|
while (!WorkList.empty()) {
|
|
ConstantArray *C = WorkList.pop_back_val();
|
|
if (C->use_empty()) {
|
|
for (const Use &Op : C->operands()) {
|
|
if (auto *COp = dyn_cast<ConstantArray>(Op))
|
|
WorkList.insert(COp);
|
|
}
|
|
C->destroyConstant();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Module::dropTriviallyDeadConstantArrays() {
|
|
Context.pImpl->dropTriviallyDeadConstantArrays();
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
/// Make MDOperand transparent for hashing.
|
|
///
|
|
/// This overload of an implementation detail of the hashing library makes
|
|
/// MDOperand hash to the same value as a \a Metadata pointer.
|
|
///
|
|
/// Note that overloading \a hash_value() as follows:
|
|
///
|
|
/// \code
|
|
/// size_t hash_value(const MDOperand &X) { return hash_value(X.get()); }
|
|
/// \endcode
|
|
///
|
|
/// does not cause MDOperand to be transparent. In particular, a bare pointer
|
|
/// doesn't get hashed before it's combined, whereas \a MDOperand would.
|
|
static const Metadata *get_hashable_data(const MDOperand &X) { return X.get(); }
|
|
|
|
} // end namespace llvm
|
|
|
|
unsigned MDNodeOpsKey::calculateHash(MDNode *N, unsigned Offset) {
|
|
unsigned Hash = hash_combine_range(N->op_begin() + Offset, N->op_end());
|
|
#ifndef NDEBUG
|
|
{
|
|
SmallVector<Metadata *, 8> MDs(drop_begin(N->operands(), Offset));
|
|
unsigned RawHash = calculateHash(MDs);
|
|
assert(Hash == RawHash &&
|
|
"Expected hash of MDOperand to equal hash of Metadata*");
|
|
}
|
|
#endif
|
|
return Hash;
|
|
}
|
|
|
|
unsigned MDNodeOpsKey::calculateHash(ArrayRef<Metadata *> Ops) {
|
|
return hash_combine_range(Ops.begin(), Ops.end());
|
|
}
|
|
|
|
StringMapEntry<uint32_t> *LLVMContextImpl::getOrInsertBundleTag(StringRef Tag) {
|
|
uint32_t NewIdx = BundleTagCache.size();
|
|
return &*(BundleTagCache.insert(std::make_pair(Tag, NewIdx)).first);
|
|
}
|
|
|
|
void LLVMContextImpl::getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const {
|
|
Tags.resize(BundleTagCache.size());
|
|
for (const auto &T : BundleTagCache)
|
|
Tags[T.second] = T.first();
|
|
}
|
|
|
|
uint32_t LLVMContextImpl::getOperandBundleTagID(StringRef Tag) const {
|
|
auto I = BundleTagCache.find(Tag);
|
|
assert(I != BundleTagCache.end() && "Unknown tag!");
|
|
return I->second;
|
|
}
|
|
|
|
SyncScope::ID LLVMContextImpl::getOrInsertSyncScopeID(StringRef SSN) {
|
|
auto NewSSID = SSC.size();
|
|
assert(NewSSID < std::numeric_limits<SyncScope::ID>::max() &&
|
|
"Hit the maximum number of synchronization scopes allowed!");
|
|
return SSC.insert(std::make_pair(SSN, SyncScope::ID(NewSSID))).first->second;
|
|
}
|
|
|
|
void LLVMContextImpl::getSyncScopeNames(
|
|
SmallVectorImpl<StringRef> &SSNs) const {
|
|
SSNs.resize(SSC.size());
|
|
for (const auto &SSE : SSC)
|
|
SSNs[SSE.second] = SSE.first();
|
|
}
|
|
|
|
/// Gets the OptPassGate for this LLVMContextImpl, which defaults to the
|
|
/// singleton OptBisect if not explicitly set.
|
|
OptPassGate &LLVMContextImpl::getOptPassGate() const {
|
|
if (!OPG)
|
|
OPG = &getGlobalPassGate();
|
|
return *OPG;
|
|
}
|
|
|
|
void LLVMContextImpl::setOptPassGate(OptPassGate& OPG) {
|
|
this->OPG = &OPG;
|
|
}
|