llvm-project/llvm/lib/Target/AArch64/AArch64MIPeepholeOpt.cpp
David Green f42e321b9f
[AArch64] Use FMOVDr for clearing upper bits (#83107)
This adds some tablegen patterns for generating FMOVDr from concat(X,
zeroes), as the FMOV will implicitly zero the upper bits of the
register. An extra AArch64MIPeepholeOpt is needed to make sure we can
remove the FMOV in the same way we would remove the insert code.
2024-02-27 19:45:43 +00:00

782 lines
29 KiB
C++

//===- AArch64MIPeepholeOpt.cpp - AArch64 MI peephole optimization pass ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs below peephole optimizations on MIR level.
//
// 1. MOVi32imm + ANDWrr ==> ANDWri + ANDWri
// MOVi64imm + ANDXrr ==> ANDXri + ANDXri
//
// 2. MOVi32imm + ADDWrr ==> ADDWRi + ADDWRi
// MOVi64imm + ADDXrr ==> ANDXri + ANDXri
//
// 3. MOVi32imm + SUBWrr ==> SUBWRi + SUBWRi
// MOVi64imm + SUBXrr ==> SUBXri + SUBXri
//
// The mov pseudo instruction could be expanded to multiple mov instructions
// later. In this case, we could try to split the constant operand of mov
// instruction into two immediates which can be directly encoded into
// *Wri/*Xri instructions. It makes two AND/ADD/SUB instructions instead of
// multiple `mov` + `and/add/sub` instructions.
//
// 4. Remove redundant ORRWrs which is generated by zero-extend.
//
// %3:gpr32 = ORRWrs $wzr, %2, 0
// %4:gpr64 = SUBREG_TO_REG 0, %3, %subreg.sub_32
//
// If AArch64's 32-bit form of instruction defines the source operand of
// ORRWrs, we can remove the ORRWrs because the upper 32 bits of the source
// operand are set to zero.
//
// 5. %reg = INSERT_SUBREG %reg(tied-def 0), %subreg, subidx
// ==> %reg:subidx = SUBREG_TO_REG 0, %subreg, subidx
//
// 6. %intermediate:gpr32 = COPY %src:fpr128
// %dst:fpr128 = INSvi32gpr %dst_vec:fpr128, dst_index, %intermediate:gpr32
// ==> %dst:fpr128 = INSvi32lane %dst_vec:fpr128, dst_index, %src:fpr128, 0
//
// In cases where a source FPR is copied to a GPR in order to be copied
// to a destination FPR, we can directly copy the values between the FPRs,
// eliminating the use of the Integer unit. When we match a pattern of
// INSvi[X]gpr that is preceded by a chain of COPY instructions from a FPR
// source, we use the INSvi[X]lane to replace the COPY & INSvi[X]gpr
// instructions.
//
// 7. If MI sets zero for high 64-bits implicitly, remove `mov 0` for high
// 64-bits. For example,
//
// %1:fpr64 = nofpexcept FCVTNv4i16 %0:fpr128, implicit $fpcr
// %2:fpr64 = MOVID 0
// %4:fpr128 = IMPLICIT_DEF
// %3:fpr128 = INSERT_SUBREG %4:fpr128(tied-def 0), killed %2:fpr64, %subreg.dsub
// %6:fpr128 = IMPLICIT_DEF
// %5:fpr128 = INSERT_SUBREG %6:fpr128(tied-def 0), killed %1:fpr64, %subreg.dsub
// %7:fpr128 = INSvi64lane %5:fpr128(tied-def 0), 1, killed %3:fpr128, 0
// ==>
// %1:fpr64 = nofpexcept FCVTNv4i16 %0:fpr128, implicit $fpcr
// %6:fpr128 = IMPLICIT_DEF
// %7:fpr128 = INSERT_SUBREG %6:fpr128(tied-def 0), killed %1:fpr64, %subreg.dsub
//
//===----------------------------------------------------------------------===//
#include "AArch64ExpandImm.h"
#include "AArch64InstrInfo.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-mi-peephole-opt"
namespace {
struct AArch64MIPeepholeOpt : public MachineFunctionPass {
static char ID;
AArch64MIPeepholeOpt() : MachineFunctionPass(ID) {
initializeAArch64MIPeepholeOptPass(*PassRegistry::getPassRegistry());
}
const AArch64InstrInfo *TII;
const AArch64RegisterInfo *TRI;
MachineLoopInfo *MLI;
MachineRegisterInfo *MRI;
using OpcodePair = std::pair<unsigned, unsigned>;
template <typename T>
using SplitAndOpcFunc =
std::function<std::optional<OpcodePair>(T, unsigned, T &, T &)>;
using BuildMIFunc =
std::function<void(MachineInstr &, OpcodePair, unsigned, unsigned,
Register, Register, Register)>;
/// For instructions where an immediate operand could be split into two
/// separate immediate instructions, use the splitTwoPartImm two handle the
/// optimization.
///
/// To implement, the following function types must be passed to
/// splitTwoPartImm. A SplitAndOpcFunc must be implemented that determines if
/// splitting the immediate is valid and returns the associated new opcode. A
/// BuildMIFunc must be implemented to build the two immediate instructions.
///
/// Example Pattern (where IMM would require 2+ MOV instructions):
/// %dst = <Instr>rr %src IMM [...]
/// becomes:
/// %tmp = <Instr>ri %src (encode half IMM) [...]
/// %dst = <Instr>ri %tmp (encode half IMM) [...]
template <typename T>
bool splitTwoPartImm(MachineInstr &MI,
SplitAndOpcFunc<T> SplitAndOpc, BuildMIFunc BuildInstr);
bool checkMovImmInstr(MachineInstr &MI, MachineInstr *&MovMI,
MachineInstr *&SubregToRegMI);
template <typename T>
bool visitADDSUB(unsigned PosOpc, unsigned NegOpc, MachineInstr &MI);
template <typename T>
bool visitADDSSUBS(OpcodePair PosOpcs, OpcodePair NegOpcs, MachineInstr &MI);
template <typename T>
bool visitAND(unsigned Opc, MachineInstr &MI);
bool visitORR(MachineInstr &MI);
bool visitINSERT(MachineInstr &MI);
bool visitINSviGPR(MachineInstr &MI, unsigned Opc);
bool visitINSvi64lane(MachineInstr &MI);
bool visitFMOVDr(MachineInstr &MI);
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "AArch64 MI Peephole Optimization pass";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
char AArch64MIPeepholeOpt::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS(AArch64MIPeepholeOpt, "aarch64-mi-peephole-opt",
"AArch64 MI Peephole Optimization", false, false)
template <typename T>
static bool splitBitmaskImm(T Imm, unsigned RegSize, T &Imm1Enc, T &Imm2Enc) {
T UImm = static_cast<T>(Imm);
if (AArch64_AM::isLogicalImmediate(UImm, RegSize))
return false;
// If this immediate can be handled by one instruction, do not split it.
SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
AArch64_IMM::expandMOVImm(UImm, RegSize, Insn);
if (Insn.size() == 1)
return false;
// The bitmask immediate consists of consecutive ones. Let's say there is
// constant 0b00000000001000000000010000000000 which does not consist of
// consecutive ones. We can split it in to two bitmask immediate like
// 0b00000000001111111111110000000000 and 0b11111111111000000000011111111111.
// If we do AND with these two bitmask immediate, we can see original one.
unsigned LowestBitSet = llvm::countr_zero(UImm);
unsigned HighestBitSet = Log2_64(UImm);
// Create a mask which is filled with one from the position of lowest bit set
// to the position of highest bit set.
T NewImm1 = (static_cast<T>(2) << HighestBitSet) -
(static_cast<T>(1) << LowestBitSet);
// Create a mask which is filled with one outside the position of lowest bit
// set and the position of highest bit set.
T NewImm2 = UImm | ~NewImm1;
// If the split value is not valid bitmask immediate, do not split this
// constant.
if (!AArch64_AM::isLogicalImmediate(NewImm2, RegSize))
return false;
Imm1Enc = AArch64_AM::encodeLogicalImmediate(NewImm1, RegSize);
Imm2Enc = AArch64_AM::encodeLogicalImmediate(NewImm2, RegSize);
return true;
}
template <typename T>
bool AArch64MIPeepholeOpt::visitAND(
unsigned Opc, MachineInstr &MI) {
// Try below transformation.
//
// MOVi32imm + ANDWrr ==> ANDWri + ANDWri
// MOVi64imm + ANDXrr ==> ANDXri + ANDXri
//
// The mov pseudo instruction could be expanded to multiple mov instructions
// later. Let's try to split the constant operand of mov instruction into two
// bitmask immediates. It makes only two AND instructions intead of multiple
// mov + and instructions.
return splitTwoPartImm<T>(
MI,
[Opc](T Imm, unsigned RegSize, T &Imm0,
T &Imm1) -> std::optional<OpcodePair> {
if (splitBitmaskImm(Imm, RegSize, Imm0, Imm1))
return std::make_pair(Opc, Opc);
return std::nullopt;
},
[&TII = TII](MachineInstr &MI, OpcodePair Opcode, unsigned Imm0,
unsigned Imm1, Register SrcReg, Register NewTmpReg,
Register NewDstReg) {
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
BuildMI(*MBB, MI, DL, TII->get(Opcode.first), NewTmpReg)
.addReg(SrcReg)
.addImm(Imm0);
BuildMI(*MBB, MI, DL, TII->get(Opcode.second), NewDstReg)
.addReg(NewTmpReg)
.addImm(Imm1);
});
}
bool AArch64MIPeepholeOpt::visitORR(MachineInstr &MI) {
// Check this ORR comes from below zero-extend pattern.
//
// def : Pat<(i64 (zext GPR32:$src)),
// (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>;
if (MI.getOperand(3).getImm() != 0)
return false;
if (MI.getOperand(1).getReg() != AArch64::WZR)
return false;
MachineInstr *SrcMI = MRI->getUniqueVRegDef(MI.getOperand(2).getReg());
if (!SrcMI)
return false;
// From https://developer.arm.com/documentation/dui0801/b/BABBGCAC
//
// When you use the 32-bit form of an instruction, the upper 32 bits of the
// source registers are ignored and the upper 32 bits of the destination
// register are set to zero.
//
// If AArch64's 32-bit form of instruction defines the source operand of
// zero-extend, we do not need the zero-extend. Let's check the MI's opcode is
// real AArch64 instruction and if it is not, do not process the opcode
// conservatively.
if (SrcMI->getOpcode() == TargetOpcode::COPY &&
SrcMI->getOperand(1).getReg().isVirtual()) {
const TargetRegisterClass *RC =
MRI->getRegClass(SrcMI->getOperand(1).getReg());
// A COPY from an FPR will become a FMOVSWr, so do so now so that we know
// that the upper bits are zero.
if (RC != &AArch64::FPR32RegClass &&
((RC != &AArch64::FPR64RegClass && RC != &AArch64::FPR128RegClass) ||
SrcMI->getOperand(1).getSubReg() != AArch64::ssub))
return false;
Register CpySrc = SrcMI->getOperand(1).getReg();
if (SrcMI->getOperand(1).getSubReg() == AArch64::ssub) {
CpySrc = MRI->createVirtualRegister(&AArch64::FPR32RegClass);
BuildMI(*SrcMI->getParent(), SrcMI, SrcMI->getDebugLoc(),
TII->get(TargetOpcode::COPY), CpySrc)
.add(SrcMI->getOperand(1));
}
BuildMI(*SrcMI->getParent(), SrcMI, SrcMI->getDebugLoc(),
TII->get(AArch64::FMOVSWr), SrcMI->getOperand(0).getReg())
.addReg(CpySrc);
SrcMI->eraseFromParent();
}
else if (SrcMI->getOpcode() <= TargetOpcode::GENERIC_OP_END)
return false;
Register DefReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(2).getReg();
MRI->replaceRegWith(DefReg, SrcReg);
MRI->clearKillFlags(SrcReg);
LLVM_DEBUG(dbgs() << "Removed: " << MI << "\n");
MI.eraseFromParent();
return true;
}
bool AArch64MIPeepholeOpt::visitINSERT(MachineInstr &MI) {
// Check this INSERT_SUBREG comes from below zero-extend pattern.
//
// From %reg = INSERT_SUBREG %reg(tied-def 0), %subreg, subidx
// To %reg:subidx = SUBREG_TO_REG 0, %subreg, subidx
//
// We're assuming the first operand to INSERT_SUBREG is irrelevant because a
// COPY would destroy the upper part of the register anyway
if (!MI.isRegTiedToDefOperand(1))
return false;
Register DstReg = MI.getOperand(0).getReg();
const TargetRegisterClass *RC = MRI->getRegClass(DstReg);
MachineInstr *SrcMI = MRI->getUniqueVRegDef(MI.getOperand(2).getReg());
if (!SrcMI)
return false;
// From https://developer.arm.com/documentation/dui0801/b/BABBGCAC
//
// When you use the 32-bit form of an instruction, the upper 32 bits of the
// source registers are ignored and the upper 32 bits of the destination
// register are set to zero.
//
// If AArch64's 32-bit form of instruction defines the source operand of
// zero-extend, we do not need the zero-extend. Let's check the MI's opcode is
// real AArch64 instruction and if it is not, do not process the opcode
// conservatively.
if ((SrcMI->getOpcode() <= TargetOpcode::GENERIC_OP_END) ||
!AArch64::GPR64allRegClass.hasSubClassEq(RC))
return false;
// Build a SUBREG_TO_REG instruction
MachineInstr *SubregMI =
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
TII->get(TargetOpcode::SUBREG_TO_REG), DstReg)
.addImm(0)
.add(MI.getOperand(2))
.add(MI.getOperand(3));
LLVM_DEBUG(dbgs() << MI << " replace by:\n: " << *SubregMI << "\n");
(void)SubregMI;
MI.eraseFromParent();
return true;
}
template <typename T>
static bool splitAddSubImm(T Imm, unsigned RegSize, T &Imm0, T &Imm1) {
// The immediate must be in the form of ((imm0 << 12) + imm1), in which both
// imm0 and imm1 are non-zero 12-bit unsigned int.
if ((Imm & 0xfff000) == 0 || (Imm & 0xfff) == 0 ||
(Imm & ~static_cast<T>(0xffffff)) != 0)
return false;
// The immediate can not be composed via a single instruction.
SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
AArch64_IMM::expandMOVImm(Imm, RegSize, Insn);
if (Insn.size() == 1)
return false;
// Split Imm into (Imm0 << 12) + Imm1;
Imm0 = (Imm >> 12) & 0xfff;
Imm1 = Imm & 0xfff;
return true;
}
template <typename T>
bool AArch64MIPeepholeOpt::visitADDSUB(
unsigned PosOpc, unsigned NegOpc, MachineInstr &MI) {
// Try below transformation.
//
// ADDWrr X, MOVi32imm ==> ADDWri + ADDWri
// ADDXrr X, MOVi64imm ==> ADDXri + ADDXri
//
// SUBWrr X, MOVi32imm ==> SUBWri + SUBWri
// SUBXrr X, MOVi64imm ==> SUBXri + SUBXri
//
// The mov pseudo instruction could be expanded to multiple mov instructions
// later. Let's try to split the constant operand of mov instruction into two
// legal add/sub immediates. It makes only two ADD/SUB instructions intead of
// multiple `mov` + `and/sub` instructions.
// We can sometimes have ADDWrr WZR, MULi32imm that have not been constant
// folded. Make sure that we don't generate invalid instructions that use XZR
// in those cases.
if (MI.getOperand(1).getReg() == AArch64::XZR ||
MI.getOperand(1).getReg() == AArch64::WZR)
return false;
return splitTwoPartImm<T>(
MI,
[PosOpc, NegOpc](T Imm, unsigned RegSize, T &Imm0,
T &Imm1) -> std::optional<OpcodePair> {
if (splitAddSubImm(Imm, RegSize, Imm0, Imm1))
return std::make_pair(PosOpc, PosOpc);
if (splitAddSubImm(-Imm, RegSize, Imm0, Imm1))
return std::make_pair(NegOpc, NegOpc);
return std::nullopt;
},
[&TII = TII](MachineInstr &MI, OpcodePair Opcode, unsigned Imm0,
unsigned Imm1, Register SrcReg, Register NewTmpReg,
Register NewDstReg) {
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
BuildMI(*MBB, MI, DL, TII->get(Opcode.first), NewTmpReg)
.addReg(SrcReg)
.addImm(Imm0)
.addImm(12);
BuildMI(*MBB, MI, DL, TII->get(Opcode.second), NewDstReg)
.addReg(NewTmpReg)
.addImm(Imm1)
.addImm(0);
});
}
template <typename T>
bool AArch64MIPeepholeOpt::visitADDSSUBS(
OpcodePair PosOpcs, OpcodePair NegOpcs, MachineInstr &MI) {
// Try the same transformation as ADDSUB but with additional requirement
// that the condition code usages are only for Equal and Not Equal
if (MI.getOperand(1).getReg() == AArch64::XZR ||
MI.getOperand(1).getReg() == AArch64::WZR)
return false;
return splitTwoPartImm<T>(
MI,
[PosOpcs, NegOpcs, &MI, &TRI = TRI,
&MRI = MRI](T Imm, unsigned RegSize, T &Imm0,
T &Imm1) -> std::optional<OpcodePair> {
OpcodePair OP;
if (splitAddSubImm(Imm, RegSize, Imm0, Imm1))
OP = PosOpcs;
else if (splitAddSubImm(-Imm, RegSize, Imm0, Imm1))
OP = NegOpcs;
else
return std::nullopt;
// Check conditional uses last since it is expensive for scanning
// proceeding instructions
MachineInstr &SrcMI = *MRI->getUniqueVRegDef(MI.getOperand(1).getReg());
std::optional<UsedNZCV> NZCVUsed = examineCFlagsUse(SrcMI, MI, *TRI);
if (!NZCVUsed || NZCVUsed->C || NZCVUsed->V)
return std::nullopt;
return OP;
},
[&TII = TII](MachineInstr &MI, OpcodePair Opcode, unsigned Imm0,
unsigned Imm1, Register SrcReg, Register NewTmpReg,
Register NewDstReg) {
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
BuildMI(*MBB, MI, DL, TII->get(Opcode.first), NewTmpReg)
.addReg(SrcReg)
.addImm(Imm0)
.addImm(12);
BuildMI(*MBB, MI, DL, TII->get(Opcode.second), NewDstReg)
.addReg(NewTmpReg)
.addImm(Imm1)
.addImm(0);
});
}
// Checks if the corresponding MOV immediate instruction is applicable for
// this peephole optimization.
bool AArch64MIPeepholeOpt::checkMovImmInstr(MachineInstr &MI,
MachineInstr *&MovMI,
MachineInstr *&SubregToRegMI) {
// Check whether current MBB is in loop and the AND is loop invariant.
MachineBasicBlock *MBB = MI.getParent();
MachineLoop *L = MLI->getLoopFor(MBB);
if (L && !L->isLoopInvariant(MI))
return false;
// Check whether current MI's operand is MOV with immediate.
MovMI = MRI->getUniqueVRegDef(MI.getOperand(2).getReg());
if (!MovMI)
return false;
// If it is SUBREG_TO_REG, check its operand.
SubregToRegMI = nullptr;
if (MovMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) {
SubregToRegMI = MovMI;
MovMI = MRI->getUniqueVRegDef(MovMI->getOperand(2).getReg());
if (!MovMI)
return false;
}
if (MovMI->getOpcode() != AArch64::MOVi32imm &&
MovMI->getOpcode() != AArch64::MOVi64imm)
return false;
// If the MOV has multiple uses, do not split the immediate because it causes
// more instructions.
if (!MRI->hasOneUse(MovMI->getOperand(0).getReg()))
return false;
if (SubregToRegMI && !MRI->hasOneUse(SubregToRegMI->getOperand(0).getReg()))
return false;
// It is OK to perform this peephole optimization.
return true;
}
template <typename T>
bool AArch64MIPeepholeOpt::splitTwoPartImm(
MachineInstr &MI,
SplitAndOpcFunc<T> SplitAndOpc, BuildMIFunc BuildInstr) {
unsigned RegSize = sizeof(T) * 8;
assert((RegSize == 32 || RegSize == 64) &&
"Invalid RegSize for legal immediate peephole optimization");
// Perform several essential checks against current MI.
MachineInstr *MovMI, *SubregToRegMI;
if (!checkMovImmInstr(MI, MovMI, SubregToRegMI))
return false;
// Split the immediate to Imm0 and Imm1, and calculate the Opcode.
T Imm = static_cast<T>(MovMI->getOperand(1).getImm()), Imm0, Imm1;
// For the 32 bit form of instruction, the upper 32 bits of the destination
// register are set to zero. If there is SUBREG_TO_REG, set the upper 32 bits
// of Imm to zero. This is essential if the Immediate value was a negative
// number since it was sign extended when we assign to the 64-bit Imm.
if (SubregToRegMI)
Imm &= 0xFFFFFFFF;
OpcodePair Opcode;
if (auto R = SplitAndOpc(Imm, RegSize, Imm0, Imm1))
Opcode = *R;
else
return false;
// Create new MIs using the first and second opcodes. Opcodes might differ for
// flag setting operations that should only set flags on second instruction.
// NewTmpReg = Opcode.first SrcReg Imm0
// NewDstReg = Opcode.second NewTmpReg Imm1
// Determine register classes for destinations and register operands
MachineFunction *MF = MI.getMF();
const TargetRegisterClass *FirstInstrDstRC =
TII->getRegClass(TII->get(Opcode.first), 0, TRI, *MF);
const TargetRegisterClass *FirstInstrOperandRC =
TII->getRegClass(TII->get(Opcode.first), 1, TRI, *MF);
const TargetRegisterClass *SecondInstrDstRC =
(Opcode.first == Opcode.second)
? FirstInstrDstRC
: TII->getRegClass(TII->get(Opcode.second), 0, TRI, *MF);
const TargetRegisterClass *SecondInstrOperandRC =
(Opcode.first == Opcode.second)
? FirstInstrOperandRC
: TII->getRegClass(TII->get(Opcode.second), 1, TRI, *MF);
// Get old registers destinations and new register destinations
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
Register NewTmpReg = MRI->createVirtualRegister(FirstInstrDstRC);
// In the situation that DstReg is not Virtual (likely WZR or XZR), we want to
// reuse that same destination register.
Register NewDstReg = DstReg.isVirtual()
? MRI->createVirtualRegister(SecondInstrDstRC)
: DstReg;
// Constrain registers based on their new uses
MRI->constrainRegClass(SrcReg, FirstInstrOperandRC);
MRI->constrainRegClass(NewTmpReg, SecondInstrOperandRC);
if (DstReg != NewDstReg)
MRI->constrainRegClass(NewDstReg, MRI->getRegClass(DstReg));
// Call the delegating operation to build the instruction
BuildInstr(MI, Opcode, Imm0, Imm1, SrcReg, NewTmpReg, NewDstReg);
// replaceRegWith changes MI's definition register. Keep it for SSA form until
// deleting MI. Only if we made a new destination register.
if (DstReg != NewDstReg) {
MRI->replaceRegWith(DstReg, NewDstReg);
MI.getOperand(0).setReg(DstReg);
}
// Record the MIs need to be removed.
MI.eraseFromParent();
if (SubregToRegMI)
SubregToRegMI->eraseFromParent();
MovMI->eraseFromParent();
return true;
}
bool AArch64MIPeepholeOpt::visitINSviGPR(MachineInstr &MI, unsigned Opc) {
// Check if this INSvi[X]gpr comes from COPY of a source FPR128
//
// From
// %intermediate1:gpr64 = COPY %src:fpr128
// %intermediate2:gpr32 = COPY %intermediate1:gpr64
// %dst:fpr128 = INSvi[X]gpr %dst_vec:fpr128, dst_index, %intermediate2:gpr32
// To
// %dst:fpr128 = INSvi[X]lane %dst_vec:fpr128, dst_index, %src:fpr128,
// src_index
// where src_index = 0, X = [8|16|32|64]
MachineInstr *SrcMI = MRI->getUniqueVRegDef(MI.getOperand(3).getReg());
// For a chain of COPY instructions, find the initial source register
// and check if it's an FPR128
while (true) {
if (!SrcMI || SrcMI->getOpcode() != TargetOpcode::COPY)
return false;
if (!SrcMI->getOperand(1).getReg().isVirtual())
return false;
if (MRI->getRegClass(SrcMI->getOperand(1).getReg()) ==
&AArch64::FPR128RegClass) {
break;
}
SrcMI = MRI->getUniqueVRegDef(SrcMI->getOperand(1).getReg());
}
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = SrcMI->getOperand(1).getReg();
MachineInstr *INSvilaneMI =
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opc), DstReg)
.add(MI.getOperand(1))
.add(MI.getOperand(2))
.addUse(SrcReg, getRegState(SrcMI->getOperand(1)))
.addImm(0);
LLVM_DEBUG(dbgs() << MI << " replace by:\n: " << *INSvilaneMI << "\n");
(void)INSvilaneMI;
MI.eraseFromParent();
return true;
}
// All instructions that set a FPR64 will implicitly zero the top bits of the
// register.
static bool is64bitDefwithZeroHigh64bit(MachineInstr *MI,
MachineRegisterInfo *MRI) {
if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
return false;
const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg());
if (RC != &AArch64::FPR64RegClass)
return false;
return MI->getOpcode() > TargetOpcode::GENERIC_OP_END;
}
bool AArch64MIPeepholeOpt::visitINSvi64lane(MachineInstr &MI) {
// Check the MI for low 64-bits sets zero for high 64-bits implicitly.
// We are expecting below case.
//
// %1:fpr64 = nofpexcept FCVTNv4i16 %0:fpr128, implicit $fpcr
// %6:fpr128 = IMPLICIT_DEF
// %5:fpr128 = INSERT_SUBREG %6:fpr128(tied-def 0), killed %1:fpr64, %subreg.dsub
// %7:fpr128 = INSvi64lane %5:fpr128(tied-def 0), 1, killed %3:fpr128, 0
MachineInstr *Low64MI = MRI->getUniqueVRegDef(MI.getOperand(1).getReg());
if (Low64MI->getOpcode() != AArch64::INSERT_SUBREG)
return false;
Low64MI = MRI->getUniqueVRegDef(Low64MI->getOperand(2).getReg());
if (!Low64MI || !is64bitDefwithZeroHigh64bit(Low64MI, MRI))
return false;
// Check there is `mov 0` MI for high 64-bits.
// We are expecting below cases.
//
// %2:fpr64 = MOVID 0
// %4:fpr128 = IMPLICIT_DEF
// %3:fpr128 = INSERT_SUBREG %4:fpr128(tied-def 0), killed %2:fpr64, %subreg.dsub
// %7:fpr128 = INSvi64lane %5:fpr128(tied-def 0), 1, killed %3:fpr128, 0
// or
// %5:fpr128 = MOVIv2d_ns 0
// %6:fpr64 = COPY %5.dsub:fpr128
// %8:fpr128 = IMPLICIT_DEF
// %7:fpr128 = INSERT_SUBREG %8:fpr128(tied-def 0), killed %6:fpr64, %subreg.dsub
// %11:fpr128 = INSvi64lane %9:fpr128(tied-def 0), 1, killed %7:fpr128, 0
MachineInstr *High64MI = MRI->getUniqueVRegDef(MI.getOperand(3).getReg());
if (!High64MI || High64MI->getOpcode() != AArch64::INSERT_SUBREG)
return false;
High64MI = MRI->getUniqueVRegDef(High64MI->getOperand(2).getReg());
if (High64MI && High64MI->getOpcode() == TargetOpcode::COPY)
High64MI = MRI->getUniqueVRegDef(High64MI->getOperand(1).getReg());
if (!High64MI || (High64MI->getOpcode() != AArch64::MOVID &&
High64MI->getOpcode() != AArch64::MOVIv2d_ns))
return false;
if (High64MI->getOperand(1).getImm() != 0)
return false;
// Let's remove MIs for high 64-bits.
Register OldDef = MI.getOperand(0).getReg();
Register NewDef = MI.getOperand(1).getReg();
MRI->constrainRegClass(NewDef, MRI->getRegClass(OldDef));
MRI->replaceRegWith(OldDef, NewDef);
MI.eraseFromParent();
return true;
}
bool AArch64MIPeepholeOpt::visitFMOVDr(MachineInstr &MI) {
// An FMOVDr sets the high 64-bits to zero implicitly, similar to ORR for GPR.
MachineInstr *Low64MI = MRI->getUniqueVRegDef(MI.getOperand(1).getReg());
if (!Low64MI || !is64bitDefwithZeroHigh64bit(Low64MI, MRI))
return false;
// Let's remove MIs for high 64-bits.
Register OldDef = MI.getOperand(0).getReg();
Register NewDef = MI.getOperand(1).getReg();
MRI->constrainRegClass(NewDef, MRI->getRegClass(OldDef));
MRI->replaceRegWith(OldDef, NewDef);
LLVM_DEBUG(dbgs() << "Removed: " << MI << "\n");
MI.eraseFromParent();
return true;
}
bool AArch64MIPeepholeOpt::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
TRI = static_cast<const AArch64RegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
MLI = &getAnalysis<MachineLoopInfo>();
MRI = &MF.getRegInfo();
assert(MRI->isSSA() && "Expected to be run on SSA form!");
bool Changed = false;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : make_early_inc_range(MBB)) {
switch (MI.getOpcode()) {
default:
break;
case AArch64::INSERT_SUBREG:
Changed |= visitINSERT(MI);
break;
case AArch64::ANDWrr:
Changed |= visitAND<uint32_t>(AArch64::ANDWri, MI);
break;
case AArch64::ANDXrr:
Changed |= visitAND<uint64_t>(AArch64::ANDXri, MI);
break;
case AArch64::ORRWrs:
Changed |= visitORR(MI);
break;
case AArch64::ADDWrr:
Changed |= visitADDSUB<uint32_t>(AArch64::ADDWri, AArch64::SUBWri, MI);
break;
case AArch64::SUBWrr:
Changed |= visitADDSUB<uint32_t>(AArch64::SUBWri, AArch64::ADDWri, MI);
break;
case AArch64::ADDXrr:
Changed |= visitADDSUB<uint64_t>(AArch64::ADDXri, AArch64::SUBXri, MI);
break;
case AArch64::SUBXrr:
Changed |= visitADDSUB<uint64_t>(AArch64::SUBXri, AArch64::ADDXri, MI);
break;
case AArch64::ADDSWrr:
Changed |=
visitADDSSUBS<uint32_t>({AArch64::ADDWri, AArch64::ADDSWri},
{AArch64::SUBWri, AArch64::SUBSWri}, MI);
break;
case AArch64::SUBSWrr:
Changed |=
visitADDSSUBS<uint32_t>({AArch64::SUBWri, AArch64::SUBSWri},
{AArch64::ADDWri, AArch64::ADDSWri}, MI);
break;
case AArch64::ADDSXrr:
Changed |=
visitADDSSUBS<uint64_t>({AArch64::ADDXri, AArch64::ADDSXri},
{AArch64::SUBXri, AArch64::SUBSXri}, MI);
break;
case AArch64::SUBSXrr:
Changed |=
visitADDSSUBS<uint64_t>({AArch64::SUBXri, AArch64::SUBSXri},
{AArch64::ADDXri, AArch64::ADDSXri}, MI);
break;
case AArch64::INSvi64gpr:
Changed |= visitINSviGPR(MI, AArch64::INSvi64lane);
break;
case AArch64::INSvi32gpr:
Changed |= visitINSviGPR(MI, AArch64::INSvi32lane);
break;
case AArch64::INSvi16gpr:
Changed |= visitINSviGPR(MI, AArch64::INSvi16lane);
break;
case AArch64::INSvi8gpr:
Changed |= visitINSviGPR(MI, AArch64::INSvi8lane);
break;
case AArch64::INSvi64lane:
Changed |= visitINSvi64lane(MI);
break;
case AArch64::FMOVDr:
Changed |= visitFMOVDr(MI);
break;
}
}
}
return Changed;
}
FunctionPass *llvm::createAArch64MIPeepholeOptPass() {
return new AArch64MIPeepholeOpt();
}