
IGLP itself will be in SavedMutations via mutations added during Scheduler creation, thus falling back results in reapplying IGLP. In PostRA scheduling, if we have multiple regions with IGLP instructions, then we may have infinite loop. Disable the feature for now.
2704 lines
94 KiB
C++
2704 lines
94 KiB
C++
//===--- AMDGPUIGroupLP.cpp - AMDGPU IGroupLP ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// \file This file defines a set of schedule DAG mutations that can be used to
|
|
// override default scheduler behavior to enforce specific scheduling patterns.
|
|
// They should be used in cases where runtime performance considerations such as
|
|
// inter-wavefront interactions, mean that compile-time heuristics cannot
|
|
// predict the optimal instruction ordering, or in kernels where optimum
|
|
// instruction scheduling is important enough to warrant manual intervention.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUIGroupLP.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "llvm/ADT/BitmaskEnum.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/CodeGen/MachineScheduler.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "igrouplp"
|
|
|
|
namespace {
|
|
|
|
static cl::opt<bool> EnableExactSolver(
|
|
"amdgpu-igrouplp-exact-solver", cl::Hidden,
|
|
cl::desc("Whether to use the exponential time solver to fit "
|
|
"the instructions to the pipeline as closely as "
|
|
"possible."),
|
|
cl::init(false));
|
|
|
|
static cl::opt<unsigned> CutoffForExact(
|
|
"amdgpu-igrouplp-exact-solver-cutoff", cl::init(0), cl::Hidden,
|
|
cl::desc("The maximum number of scheduling group conflicts "
|
|
"which we attempt to solve with the exponential time "
|
|
"exact solver. Problem sizes greater than this will"
|
|
"be solved by the less accurate greedy algorithm. Selecting "
|
|
"solver by size is superseded by manually selecting "
|
|
"the solver (e.g. by amdgpu-igrouplp-exact-solver"));
|
|
|
|
static cl::opt<uint64_t> MaxBranchesExplored(
|
|
"amdgpu-igrouplp-exact-solver-max-branches", cl::init(0), cl::Hidden,
|
|
cl::desc("The amount of branches that we are willing to explore with"
|
|
"the exact algorithm before giving up."));
|
|
|
|
static cl::opt<bool> UseCostHeur(
|
|
"amdgpu-igrouplp-exact-solver-cost-heur", cl::init(true), cl::Hidden,
|
|
cl::desc("Whether to use the cost heuristic to make choices as we "
|
|
"traverse the search space using the exact solver. Defaulted "
|
|
"to on, and if turned off, we will use the node order -- "
|
|
"attempting to put the later nodes in the later sched groups. "
|
|
"Experimentally, results are mixed, so this should be set on a "
|
|
"case-by-case basis."));
|
|
|
|
// Components of the mask that determines which instruction types may be may be
|
|
// classified into a SchedGroup.
|
|
enum class SchedGroupMask {
|
|
NONE = 0u,
|
|
ALU = 1u << 0,
|
|
VALU = 1u << 1,
|
|
SALU = 1u << 2,
|
|
MFMA = 1u << 3,
|
|
VMEM = 1u << 4,
|
|
VMEM_READ = 1u << 5,
|
|
VMEM_WRITE = 1u << 6,
|
|
DS = 1u << 7,
|
|
DS_READ = 1u << 8,
|
|
DS_WRITE = 1u << 9,
|
|
TRANS = 1u << 10,
|
|
ALL = ALU | VALU | SALU | MFMA | VMEM | VMEM_READ | VMEM_WRITE | DS |
|
|
DS_READ | DS_WRITE | TRANS,
|
|
LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ ALL)
|
|
};
|
|
|
|
class SchedGroup;
|
|
|
|
// InstructionRule class is used to enact a filter which determines whether or
|
|
// not an SU maps to a given SchedGroup. It contains complementary data
|
|
// structures (e.g Cache) to help those filters.
|
|
class InstructionRule {
|
|
protected:
|
|
const SIInstrInfo *TII;
|
|
unsigned SGID;
|
|
// A cache made available to the Filter to store SUnits for subsequent
|
|
// invocations of the Filter
|
|
std::optional<SmallVector<SUnit *, 4>> Cache;
|
|
|
|
public:
|
|
virtual bool
|
|
apply(const SUnit *, const ArrayRef<SUnit *>,
|
|
SmallVectorImpl<SchedGroup> &) {
|
|
return true;
|
|
};
|
|
|
|
InstructionRule(const SIInstrInfo *TII, unsigned SGID,
|
|
bool NeedsCache = false)
|
|
: TII(TII), SGID(SGID) {
|
|
if (NeedsCache) {
|
|
Cache = SmallVector<SUnit *, 4>();
|
|
}
|
|
}
|
|
|
|
virtual ~InstructionRule() = default;
|
|
};
|
|
|
|
typedef DenseMap<SUnit *, SmallVector<int, 4>> SUnitsToCandidateSGsMap;
|
|
|
|
// Classify instructions into groups to enable fine tuned control over the
|
|
// scheduler. These groups may be more specific than current SchedModel
|
|
// instruction classes.
|
|
class SchedGroup {
|
|
private:
|
|
// Mask that defines which instruction types can be classified into this
|
|
// SchedGroup. The instruction types correspond to the mask from SCHED_BARRIER
|
|
// and SCHED_GROUP_BARRIER.
|
|
SchedGroupMask SGMask;
|
|
|
|
// Maximum number of SUnits that can be added to this group.
|
|
std::optional<unsigned> MaxSize;
|
|
|
|
// SchedGroups will only synchronize with other SchedGroups that have the same
|
|
// SyncID.
|
|
int SyncID = 0;
|
|
|
|
// SGID is used to map instructions to candidate SchedGroups
|
|
unsigned SGID;
|
|
|
|
// The different rules each instruction in this SchedGroup must conform to
|
|
SmallVector<std::shared_ptr<InstructionRule>, 4> Rules;
|
|
|
|
// Count of the number of created SchedGroups, used to initialize SGID.
|
|
static unsigned NumSchedGroups;
|
|
|
|
// Try to add and edge from SU A to SU B.
|
|
bool tryAddEdge(SUnit *A, SUnit *B);
|
|
|
|
// Use SGMask to determine whether we can classify MI as a member of this
|
|
// SchedGroup object.
|
|
bool canAddMI(const MachineInstr &MI) const;
|
|
|
|
public:
|
|
// Collection of SUnits that are classified as members of this group.
|
|
SmallVector<SUnit *, 32> Collection;
|
|
|
|
ScheduleDAGInstrs *DAG;
|
|
const SIInstrInfo *TII;
|
|
|
|
// Returns true if SU can be added to this SchedGroup.
|
|
bool canAddSU(SUnit &SU) const;
|
|
|
|
// Add DAG dependencies from all SUnits in this SchedGroup and this SU. If
|
|
// MakePred is true, SU will be a predecessor of the SUnits in this
|
|
// SchedGroup, otherwise SU will be a successor.
|
|
void link(SUnit &SU, bool MakePred = false);
|
|
|
|
// Add DAG dependencies and track which edges are added, and the count of
|
|
// missed edges
|
|
int link(SUnit &SU, bool MakePred,
|
|
std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges);
|
|
|
|
// Add DAG dependencies from all SUnits in this SchedGroup and this SU.
|
|
// Use the predicate to determine whether SU should be a predecessor (P =
|
|
// true) or a successor (P = false) of this SchedGroup.
|
|
void link(SUnit &SU, function_ref<bool(const SUnit *A, const SUnit *B)> P);
|
|
|
|
// Add DAG dependencies such that SUnits in this group shall be ordered
|
|
// before SUnits in OtherGroup.
|
|
void link(SchedGroup &OtherGroup);
|
|
|
|
// Returns true if no more instructions may be added to this group.
|
|
bool isFull() const { return MaxSize && Collection.size() >= *MaxSize; }
|
|
|
|
// Append a constraint that SUs must meet in order to fit into this
|
|
// SchedGroup. Since many rules involve the relationship between a SchedGroup
|
|
// and the SUnits in other SchedGroups, rules are checked at Pipeline Solve
|
|
// time (rather than SchedGroup init time.)
|
|
void addRule(std::shared_ptr<InstructionRule> NewRule) {
|
|
Rules.push_back(NewRule);
|
|
}
|
|
|
|
// Returns true if the SU matches all rules
|
|
bool allowedByRules(const SUnit *SU,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) const {
|
|
if (Rules.empty())
|
|
return true;
|
|
for (size_t I = 0; I < Rules.size(); I++) {
|
|
auto TheRule = Rules[I].get();
|
|
if (!TheRule->apply(SU, Collection, SyncPipe)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Add SU to the SchedGroup.
|
|
void add(SUnit &SU) {
|
|
LLVM_DEBUG(dbgs() << "For SchedGroup with mask "
|
|
<< format_hex((int)SGMask, 10, true) << " adding "
|
|
<< *SU.getInstr());
|
|
Collection.push_back(&SU);
|
|
}
|
|
|
|
// Remove last element in the SchedGroup
|
|
void pop() { Collection.pop_back(); }
|
|
|
|
// Identify and add all relevant SUs from the DAG to this SchedGroup.
|
|
void initSchedGroup();
|
|
|
|
// Add instructions to the SchedGroup bottom up starting from RIter.
|
|
// PipelineInstrs is a set of instructions that should not be added to the
|
|
// SchedGroup even when the other conditions for adding it are satisfied.
|
|
// RIter will be added to the SchedGroup as well, and dependencies will be
|
|
// added so that RIter will always be scheduled at the end of the group.
|
|
void initSchedGroup(std::vector<SUnit>::reverse_iterator RIter,
|
|
SUnitsToCandidateSGsMap &SyncedInstrs);
|
|
|
|
void initSchedGroup(SUnitsToCandidateSGsMap &SyncedInstrs);
|
|
|
|
int getSyncID() { return SyncID; }
|
|
|
|
int getSGID() { return SGID; }
|
|
|
|
SchedGroupMask getMask() { return SGMask; }
|
|
|
|
SchedGroup(SchedGroupMask SGMask, std::optional<unsigned> MaxSize,
|
|
ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
|
|
: SGMask(SGMask), MaxSize(MaxSize), DAG(DAG), TII(TII) {
|
|
SGID = NumSchedGroups++;
|
|
}
|
|
|
|
SchedGroup(SchedGroupMask SGMask, std::optional<unsigned> MaxSize, int SyncID,
|
|
ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
|
|
: SGMask(SGMask), MaxSize(MaxSize), SyncID(SyncID), DAG(DAG), TII(TII) {
|
|
SGID = NumSchedGroups++;
|
|
}
|
|
};
|
|
|
|
// Remove all existing edges from a SCHED_BARRIER or SCHED_GROUP_BARRIER.
|
|
static void resetEdges(SUnit &SU, ScheduleDAGInstrs *DAG) {
|
|
assert(SU.getInstr()->getOpcode() == AMDGPU::SCHED_BARRIER ||
|
|
SU.getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER ||
|
|
SU.getInstr()->getOpcode() == AMDGPU::IGLP_OPT);
|
|
|
|
while (!SU.Preds.empty())
|
|
for (auto &P : SU.Preds)
|
|
SU.removePred(P);
|
|
|
|
while (!SU.Succs.empty())
|
|
for (auto &S : SU.Succs)
|
|
for (auto &SP : S.getSUnit()->Preds)
|
|
if (SP.getSUnit() == &SU)
|
|
S.getSUnit()->removePred(SP);
|
|
}
|
|
|
|
typedef std::pair<SUnit *, SmallVector<int, 4>> SUToCandSGsPair;
|
|
typedef SmallVector<SUToCandSGsPair, 4> SUsToCandSGsVec;
|
|
|
|
// The PipelineSolver is used to assign SUnits to SchedGroups in a pipeline
|
|
// in non-trivial cases. For example, if the requested pipeline is
|
|
// {VMEM_READ, VALU, MFMA, VMEM_READ} and we encounter a VMEM_READ instruction
|
|
// in the DAG, then we will have an instruction that can not be trivially
|
|
// assigned to a SchedGroup. The PipelineSolver class implements two algorithms
|
|
// to find a good solution to the pipeline -- a greedy algorithm and an exact
|
|
// algorithm. The exact algorithm has an exponential time complexity and should
|
|
// only be used for small sized problems or medium sized problems where an exact
|
|
// solution is highly desired.
|
|
class PipelineSolver {
|
|
ScheduleDAGMI *DAG;
|
|
|
|
// Instructions that can be assigned to multiple SchedGroups
|
|
DenseMap<int, SUnitsToCandidateSGsMap> SyncedInstrs;
|
|
SmallVector<SUsToCandSGsVec, 4> PipelineInstrs;
|
|
DenseMap<int, SmallVector<SchedGroup, 4>> SyncedSchedGroups;
|
|
// The current working pipeline
|
|
SmallVector<SmallVector<SchedGroup, 4>, 4> CurrPipeline;
|
|
// The pipeline that has the best solution found so far
|
|
SmallVector<SmallVector<SchedGroup, 4>, 4> BestPipeline;
|
|
|
|
// Whether or not we actually have any SyncedInstrs to try to solve.
|
|
bool NeedsSolver = false;
|
|
|
|
// Compute an estimate of the size of search tree -- the true size is
|
|
// the product of each conflictedInst.Matches.size() across all SyncPipelines
|
|
unsigned computeProblemSize();
|
|
|
|
// The cost penalty of not assigning a SU to a SchedGroup
|
|
int MissPenalty = 0;
|
|
|
|
// Costs in terms of the number of edges we are unable to add
|
|
int BestCost = -1;
|
|
int CurrCost = 0;
|
|
|
|
// Index pointing to the conflicting instruction that is currently being
|
|
// fitted
|
|
int CurrConflInstNo = 0;
|
|
// Index to the pipeline that is currently being fitted
|
|
int CurrSyncGroupIdx = 0;
|
|
// The first non trivial pipeline
|
|
int BeginSyncGroupIdx = 0;
|
|
|
|
// How many branches we have explored
|
|
uint64_t BranchesExplored = 0;
|
|
|
|
// The direction in which we process the candidate SchedGroups per SU
|
|
bool IsBottomUp = 1;
|
|
|
|
// Update indices to fit next conflicting instruction
|
|
void advancePosition();
|
|
// Recede indices to attempt to find better fit for previous conflicting
|
|
// instruction
|
|
void retreatPosition();
|
|
|
|
// The exponential time algorithm which finds the provably best fit
|
|
bool solveExact();
|
|
// The polynomial time algorithm which attempts to find a good fit
|
|
bool solveGreedy();
|
|
// Find the best SchedGroup for the current SU using the heuristic given all
|
|
// current information. One step in the greedy algorithm. Templated against
|
|
// the SchedGroup iterator (either reverse or forward).
|
|
template <typename T>
|
|
void greedyFind(std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I,
|
|
T E);
|
|
// Whether or not the current solution is optimal
|
|
bool checkOptimal();
|
|
// Populate the ready list, prioiritizing fewest missed edges first
|
|
// Templated against the SchedGroup iterator (either reverse or forward).
|
|
template <typename T>
|
|
void populateReadyList(SmallVectorImpl<std::pair<int, int>> &ReadyList, T I,
|
|
T E);
|
|
// Add edges corresponding to the SchedGroups as assigned by solver
|
|
void makePipeline();
|
|
// Link the SchedGroups in the best found pipeline.
|
|
// Tmplated against the SchedGroup iterator (either reverse or forward).
|
|
template <typename T> void linkSchedGroups(T I, T E);
|
|
// Add the edges from the SU to the other SchedGroups in pipeline, and
|
|
// return the number of edges missed.
|
|
int addEdges(SmallVectorImpl<SchedGroup> &SyncPipeline, SUnit *SU, int SGID,
|
|
std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges);
|
|
/// Link the pipeline as if \p SU was in the SchedGroup with ID \p SGID. It
|
|
/// returns the cost (in terms of missed pipeline edges), and tracks the edges
|
|
/// added in \p AddedEdges
|
|
template <typename T>
|
|
int linkSUnit(SUnit *SU, int SGID,
|
|
std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I, T E);
|
|
/// Remove the edges passed via \p AddedEdges
|
|
void removeEdges(const std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges);
|
|
// Convert the passed in maps to arrays for bidirectional iterators
|
|
void convertSyncMapsToArrays();
|
|
|
|
void reset();
|
|
|
|
public:
|
|
// Invoke the solver to map instructions to instruction groups. Heuristic &&
|
|
// command-line-option determines to use exact or greedy algorithm.
|
|
void solve();
|
|
|
|
PipelineSolver(DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
|
|
DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
|
|
ScheduleDAGMI *DAG, bool IsBottomUp = 1)
|
|
: DAG(DAG), SyncedInstrs(SyncedInstrs),
|
|
SyncedSchedGroups(SyncedSchedGroups), IsBottomUp(IsBottomUp) {
|
|
|
|
for (auto &PipelineInstrs : SyncedInstrs) {
|
|
if (PipelineInstrs.second.size() > 0) {
|
|
NeedsSolver = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!NeedsSolver)
|
|
return;
|
|
|
|
convertSyncMapsToArrays();
|
|
|
|
CurrPipeline = BestPipeline;
|
|
|
|
while (static_cast<size_t>(BeginSyncGroupIdx) < PipelineInstrs.size() &&
|
|
PipelineInstrs[BeginSyncGroupIdx].size() == 0)
|
|
++BeginSyncGroupIdx;
|
|
|
|
if (static_cast<size_t>(BeginSyncGroupIdx) >= PipelineInstrs.size())
|
|
return;
|
|
}
|
|
};
|
|
|
|
void PipelineSolver::reset() {
|
|
|
|
for (auto &SyncPipeline : CurrPipeline) {
|
|
for (auto &SG : SyncPipeline) {
|
|
SmallVector<SUnit *, 32> TempCollection = SG.Collection;
|
|
SG.Collection.clear();
|
|
auto SchedBarr = llvm::find_if(TempCollection, [](SUnit *SU) {
|
|
return SU->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER;
|
|
});
|
|
if (SchedBarr != TempCollection.end())
|
|
SG.Collection.push_back(*SchedBarr);
|
|
}
|
|
}
|
|
|
|
CurrSyncGroupIdx = BeginSyncGroupIdx;
|
|
CurrConflInstNo = 0;
|
|
CurrCost = 0;
|
|
}
|
|
|
|
void PipelineSolver::convertSyncMapsToArrays() {
|
|
for (auto &SyncPipe : SyncedSchedGroups) {
|
|
BestPipeline.insert(BestPipeline.begin(), SyncPipe.second);
|
|
}
|
|
|
|
int PipelineIDx = SyncedInstrs.size() - 1;
|
|
PipelineInstrs.resize(SyncedInstrs.size());
|
|
for (auto &SyncInstrMap : SyncedInstrs) {
|
|
for (auto &SUsToCandSGs : SyncInstrMap.second) {
|
|
if (PipelineInstrs[PipelineIDx].size() == 0) {
|
|
PipelineInstrs[PipelineIDx].push_back(
|
|
std::pair(SUsToCandSGs.first, SUsToCandSGs.second));
|
|
continue;
|
|
}
|
|
auto SortPosition = PipelineInstrs[PipelineIDx].begin();
|
|
// Insert them in sorted order -- this allows for good parsing order in
|
|
// the greedy algorithm
|
|
while (SortPosition != PipelineInstrs[PipelineIDx].end() &&
|
|
SUsToCandSGs.first->NodeNum > SortPosition->first->NodeNum)
|
|
++SortPosition;
|
|
PipelineInstrs[PipelineIDx].insert(
|
|
SortPosition, std::pair(SUsToCandSGs.first, SUsToCandSGs.second));
|
|
}
|
|
--PipelineIDx;
|
|
}
|
|
}
|
|
|
|
template <typename T> void PipelineSolver::linkSchedGroups(T I, T E) {
|
|
for (; I != E; ++I) {
|
|
auto &GroupA = *I;
|
|
for (auto J = std::next(I); J != E; ++J) {
|
|
auto &GroupB = *J;
|
|
GroupA.link(GroupB);
|
|
}
|
|
}
|
|
}
|
|
|
|
void PipelineSolver::makePipeline() {
|
|
// Preserve the order of barrier for subsequent SchedGroupBarrier mutations
|
|
for (auto &SyncPipeline : BestPipeline) {
|
|
LLVM_DEBUG(dbgs() << "Printing SchedGroups\n");
|
|
for (auto &SG : SyncPipeline) {
|
|
LLVM_DEBUG(dbgs() << "SchedGroup with SGID " << SG.getSGID()
|
|
<< " has: \n");
|
|
SUnit *SGBarr = nullptr;
|
|
for (auto &SU : SG.Collection) {
|
|
if (SU->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER)
|
|
SGBarr = SU;
|
|
LLVM_DEBUG(dbgs() << "SU(" << SU->NodeNum << ")\n");
|
|
}
|
|
// Command line requested IGroupLP doesn't have SGBarr
|
|
if (!SGBarr)
|
|
continue;
|
|
resetEdges(*SGBarr, DAG);
|
|
SG.link(*SGBarr, false);
|
|
}
|
|
}
|
|
|
|
for (auto &SyncPipeline : BestPipeline) {
|
|
IsBottomUp ? linkSchedGroups(SyncPipeline.rbegin(), SyncPipeline.rend())
|
|
: linkSchedGroups(SyncPipeline.begin(), SyncPipeline.end());
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
int PipelineSolver::linkSUnit(
|
|
SUnit *SU, int SGID, std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges,
|
|
T I, T E) {
|
|
bool MakePred = false;
|
|
int AddedCost = 0;
|
|
for (; I < E; ++I) {
|
|
if (I->getSGID() == SGID) {
|
|
MakePred = true;
|
|
continue;
|
|
}
|
|
auto Group = *I;
|
|
AddedCost += Group.link(*SU, MakePred, AddedEdges);
|
|
assert(AddedCost >= 0);
|
|
}
|
|
return AddedCost;
|
|
}
|
|
|
|
int PipelineSolver::addEdges(
|
|
SmallVectorImpl<SchedGroup> &SyncPipeline, SUnit *SU, int SGID,
|
|
std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges) {
|
|
|
|
// For IsBottomUp, the first SchedGroup in SyncPipeline contains the
|
|
// instructions that are the ultimate successors in the resultant mutation.
|
|
// Therefore, in such a configuration, the SchedGroups occurring before the
|
|
// candidate SGID are successors of the candidate SchedGroup, thus the current
|
|
// SU should be linked as a predecessor to SUs in those SchedGroups. The
|
|
// opposite is true if !IsBottomUp. IsBottomUp occurs in the case of multiple
|
|
// SCHED_GROUP_BARRIERS, or if a user specifies IGLP_OPT SchedGroups using
|
|
// IsBottomUp (in reverse).
|
|
return IsBottomUp ? linkSUnit(SU, SGID, AddedEdges, SyncPipeline.rbegin(),
|
|
SyncPipeline.rend())
|
|
: linkSUnit(SU, SGID, AddedEdges, SyncPipeline.begin(),
|
|
SyncPipeline.end());
|
|
}
|
|
|
|
void PipelineSolver::removeEdges(
|
|
const std::vector<std::pair<SUnit *, SUnit *>> &EdgesToRemove) {
|
|
// Only remove the edges that we have added when testing
|
|
// the fit.
|
|
for (auto &PredSuccPair : EdgesToRemove) {
|
|
SUnit *Pred = PredSuccPair.first;
|
|
SUnit *Succ = PredSuccPair.second;
|
|
|
|
auto Match = llvm::find_if(
|
|
Succ->Preds, [&Pred](SDep &P) { return P.getSUnit() == Pred; });
|
|
if (Match != Succ->Preds.end()) {
|
|
assert(Match->isArtificial());
|
|
Succ->removePred(*Match);
|
|
}
|
|
}
|
|
}
|
|
|
|
void PipelineSolver::advancePosition() {
|
|
++CurrConflInstNo;
|
|
|
|
if (static_cast<size_t>(CurrConflInstNo) >=
|
|
PipelineInstrs[CurrSyncGroupIdx].size()) {
|
|
CurrConflInstNo = 0;
|
|
++CurrSyncGroupIdx;
|
|
// Advance to next non-trivial pipeline
|
|
while (static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size() &&
|
|
PipelineInstrs[CurrSyncGroupIdx].size() == 0)
|
|
++CurrSyncGroupIdx;
|
|
}
|
|
}
|
|
|
|
void PipelineSolver::retreatPosition() {
|
|
assert(CurrConflInstNo >= 0);
|
|
assert(CurrSyncGroupIdx >= 0);
|
|
|
|
if (CurrConflInstNo > 0) {
|
|
--CurrConflInstNo;
|
|
return;
|
|
}
|
|
|
|
if (CurrConflInstNo == 0) {
|
|
// If we return to the starting position, we have explored
|
|
// the entire tree
|
|
if (CurrSyncGroupIdx == BeginSyncGroupIdx)
|
|
return;
|
|
|
|
--CurrSyncGroupIdx;
|
|
// Go to previous non-trivial pipeline
|
|
while (PipelineInstrs[CurrSyncGroupIdx].size() == 0)
|
|
--CurrSyncGroupIdx;
|
|
|
|
CurrConflInstNo = PipelineInstrs[CurrSyncGroupIdx].size() - 1;
|
|
}
|
|
}
|
|
|
|
bool PipelineSolver::checkOptimal() {
|
|
if (static_cast<size_t>(CurrSyncGroupIdx) == PipelineInstrs.size()) {
|
|
if (BestCost == -1 || CurrCost < BestCost) {
|
|
BestPipeline = CurrPipeline;
|
|
BestCost = CurrCost;
|
|
LLVM_DEBUG(dbgs() << "Found Fit with cost " << BestCost << "\n");
|
|
}
|
|
assert(BestCost >= 0);
|
|
}
|
|
|
|
bool DoneExploring = false;
|
|
if (MaxBranchesExplored > 0 && BranchesExplored >= MaxBranchesExplored)
|
|
DoneExploring = true;
|
|
|
|
return (DoneExploring || BestCost == 0);
|
|
}
|
|
|
|
template <typename T>
|
|
void PipelineSolver::populateReadyList(
|
|
SmallVectorImpl<std::pair<int, int>> &ReadyList, T I, T E) {
|
|
SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
|
|
auto SyncPipeline = CurrPipeline[CurrSyncGroupIdx];
|
|
assert(CurrSU.second.size() >= 1);
|
|
|
|
for (; I != E; ++I) {
|
|
std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
|
|
int CandSGID = *I;
|
|
SchedGroup *Match = llvm::find_if(SyncPipeline, [CandSGID](SchedGroup &SG) {
|
|
return SG.getSGID() == CandSGID;
|
|
});
|
|
assert(Match);
|
|
|
|
if (UseCostHeur) {
|
|
if (Match->isFull()) {
|
|
ReadyList.push_back(std::pair(*I, MissPenalty));
|
|
continue;
|
|
}
|
|
|
|
int TempCost = addEdges(SyncPipeline, CurrSU.first, CandSGID, AddedEdges);
|
|
ReadyList.push_back(std::pair(*I, TempCost));
|
|
removeEdges(AddedEdges);
|
|
} else
|
|
ReadyList.push_back(std::pair(*I, -1));
|
|
}
|
|
|
|
if (UseCostHeur) {
|
|
std::sort(ReadyList.begin(), ReadyList.end(),
|
|
[](std::pair<int, int> A, std::pair<int, int> B) {
|
|
return A.second < B.second;
|
|
});
|
|
}
|
|
|
|
assert(ReadyList.size() == CurrSU.second.size());
|
|
}
|
|
|
|
bool PipelineSolver::solveExact() {
|
|
if (checkOptimal())
|
|
return true;
|
|
|
|
if (static_cast<size_t>(CurrSyncGroupIdx) == PipelineInstrs.size())
|
|
return false;
|
|
|
|
assert(static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size());
|
|
assert(static_cast<size_t>(CurrConflInstNo) <
|
|
PipelineInstrs[CurrSyncGroupIdx].size());
|
|
SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
|
|
LLVM_DEBUG(dbgs() << "Fitting SU(" << CurrSU.first->NodeNum
|
|
<< ") in Pipeline # " << CurrSyncGroupIdx << "\n");
|
|
|
|
// SchedGroup -> Cost pairs
|
|
SmallVector<std::pair<int, int>, 4> ReadyList;
|
|
// Prioritize the candidate sched groups in terms of lowest cost first
|
|
IsBottomUp ? populateReadyList(ReadyList, CurrSU.second.rbegin(),
|
|
CurrSU.second.rend())
|
|
: populateReadyList(ReadyList, CurrSU.second.begin(),
|
|
CurrSU.second.end());
|
|
|
|
auto I = ReadyList.begin();
|
|
auto E = ReadyList.end();
|
|
for (; I != E; ++I) {
|
|
// If we are trying SGs in least cost order, and the current SG is cost
|
|
// infeasible, then all subsequent SGs will also be cost infeasible, so we
|
|
// can prune.
|
|
if (BestCost != -1 && (CurrCost + I->second > BestCost))
|
|
return false;
|
|
|
|
int CandSGID = I->first;
|
|
int AddedCost = 0;
|
|
std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
|
|
auto &SyncPipeline = CurrPipeline[CurrSyncGroupIdx];
|
|
SchedGroup *Match;
|
|
for (auto &SG : SyncPipeline) {
|
|
if (SG.getSGID() == CandSGID)
|
|
Match = &SG;
|
|
}
|
|
|
|
if (Match->isFull())
|
|
continue;
|
|
|
|
if (!Match->allowedByRules(CurrSU.first, SyncPipeline))
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Assigning to SchedGroup with Mask "
|
|
<< (int)Match->getMask() << "and ID " << CandSGID
|
|
<< "\n");
|
|
Match->add(*CurrSU.first);
|
|
AddedCost = addEdges(SyncPipeline, CurrSU.first, CandSGID, AddedEdges);
|
|
LLVM_DEBUG(dbgs() << "Cost of Assignment: " << AddedCost << "\n");
|
|
CurrCost += AddedCost;
|
|
advancePosition();
|
|
++BranchesExplored;
|
|
bool FinishedExploring = false;
|
|
// If the Cost after adding edges is greater than a known solution,
|
|
// backtrack
|
|
if (CurrCost < BestCost || BestCost == -1) {
|
|
if (solveExact()) {
|
|
FinishedExploring = BestCost != 0;
|
|
if (!FinishedExploring)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
retreatPosition();
|
|
CurrCost -= AddedCost;
|
|
removeEdges(AddedEdges);
|
|
Match->pop();
|
|
CurrPipeline[CurrSyncGroupIdx] = SyncPipeline;
|
|
if (FinishedExploring)
|
|
return true;
|
|
}
|
|
|
|
// Try the pipeline where the current instruction is omitted
|
|
// Potentially if we omit a problematic instruction from the pipeline,
|
|
// all the other instructions can nicely fit.
|
|
CurrCost += MissPenalty;
|
|
advancePosition();
|
|
|
|
LLVM_DEBUG(dbgs() << "NOT Assigned (" << CurrSU.first->NodeNum << ")\n");
|
|
|
|
bool FinishedExploring = false;
|
|
if (CurrCost < BestCost || BestCost == -1) {
|
|
if (solveExact()) {
|
|
bool FinishedExploring = BestCost != 0;
|
|
if (!FinishedExploring)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
retreatPosition();
|
|
CurrCost -= MissPenalty;
|
|
return FinishedExploring;
|
|
}
|
|
|
|
template <typename T>
|
|
void PipelineSolver::greedyFind(
|
|
std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges, T I, T E) {
|
|
SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
|
|
int BestNodeCost = -1;
|
|
int TempCost;
|
|
SchedGroup *BestGroup = nullptr;
|
|
int BestGroupID = -1;
|
|
auto &SyncPipeline = CurrPipeline[CurrSyncGroupIdx];
|
|
LLVM_DEBUG(dbgs() << "Fitting SU(" << CurrSU.first->NodeNum
|
|
<< ") in Pipeline # " << CurrSyncGroupIdx << "\n");
|
|
|
|
// Since we have added the potential SchedGroups from bottom up, but
|
|
// traversed the DAG from top down, parse over the groups from last to
|
|
// first. If we fail to do this for the greedy algorithm, the solution will
|
|
// likely not be good in more complex cases.
|
|
for (; I != E; ++I) {
|
|
std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
|
|
int CandSGID = *I;
|
|
SchedGroup *Match = llvm::find_if(SyncPipeline, [CandSGID](SchedGroup &SG) {
|
|
return SG.getSGID() == CandSGID;
|
|
});
|
|
assert(Match);
|
|
|
|
LLVM_DEBUG(dbgs() << "Trying SGID # " << CandSGID << " with Mask "
|
|
<< (int)Match->getMask() << "\n");
|
|
|
|
if (Match->isFull()) {
|
|
LLVM_DEBUG(dbgs() << "SGID # " << CandSGID << " is full\n");
|
|
continue;
|
|
}
|
|
if (!Match->allowedByRules(CurrSU.first, SyncPipeline)) {
|
|
LLVM_DEBUG(dbgs() << "SGID # " << CandSGID << " has conflicting rule\n");
|
|
continue;
|
|
}
|
|
TempCost = addEdges(SyncPipeline, CurrSU.first, CandSGID, AddedEdges);
|
|
LLVM_DEBUG(dbgs() << "Cost of Group " << TempCost << "\n");
|
|
if (TempCost < BestNodeCost || BestNodeCost == -1) {
|
|
BestGroup = Match;
|
|
BestNodeCost = TempCost;
|
|
BestGroupID = CandSGID;
|
|
}
|
|
removeEdges(AddedEdges);
|
|
if (BestNodeCost == 0)
|
|
break;
|
|
}
|
|
|
|
if (BestGroupID != -1) {
|
|
BestGroup->add(*CurrSU.first);
|
|
addEdges(SyncPipeline, CurrSU.first, BestGroupID, AddedEdges);
|
|
LLVM_DEBUG(dbgs() << "Best Group has ID: " << BestGroupID << " and Mask"
|
|
<< (int)BestGroup->getMask() << "\n");
|
|
BestCost += TempCost;
|
|
} else
|
|
BestCost += MissPenalty;
|
|
|
|
CurrPipeline[CurrSyncGroupIdx] = SyncPipeline;
|
|
}
|
|
|
|
bool PipelineSolver::solveGreedy() {
|
|
BestCost = 0;
|
|
std::vector<std::pair<SUnit *, SUnit *>> AddedEdges;
|
|
|
|
while (static_cast<size_t>(CurrSyncGroupIdx) < PipelineInstrs.size()) {
|
|
SUToCandSGsPair CurrSU = PipelineInstrs[CurrSyncGroupIdx][CurrConflInstNo];
|
|
IsBottomUp
|
|
? greedyFind(AddedEdges, CurrSU.second.rbegin(), CurrSU.second.rend())
|
|
: greedyFind(AddedEdges, CurrSU.second.begin(), CurrSU.second.end());
|
|
advancePosition();
|
|
}
|
|
BestPipeline = CurrPipeline;
|
|
removeEdges(AddedEdges);
|
|
return false;
|
|
}
|
|
|
|
unsigned PipelineSolver::computeProblemSize() {
|
|
unsigned ProblemSize = 0;
|
|
for (auto &PipeConflicts : PipelineInstrs) {
|
|
ProblemSize += PipeConflicts.size();
|
|
}
|
|
|
|
return ProblemSize;
|
|
}
|
|
|
|
void PipelineSolver::solve() {
|
|
if (!NeedsSolver)
|
|
return;
|
|
|
|
unsigned ProblemSize = computeProblemSize();
|
|
assert(ProblemSize > 0);
|
|
|
|
bool BelowCutoff = (CutoffForExact > 0) && ProblemSize <= CutoffForExact;
|
|
MissPenalty = (ProblemSize / 2) + 1;
|
|
|
|
LLVM_DEBUG(DAG->dump());
|
|
if (EnableExactSolver || BelowCutoff) {
|
|
LLVM_DEBUG(dbgs() << "Starting Greedy pipeline solver\n");
|
|
solveGreedy();
|
|
reset();
|
|
LLVM_DEBUG(dbgs() << "Greedy produced best cost of " << BestCost << "\n");
|
|
if (BestCost > 0) {
|
|
LLVM_DEBUG(dbgs() << "Starting EXACT pipeline solver\n");
|
|
solveExact();
|
|
LLVM_DEBUG(dbgs() << "Exact produced best cost of " << BestCost << "\n");
|
|
}
|
|
} else { // Use the Greedy Algorithm by default
|
|
LLVM_DEBUG(dbgs() << "Starting GREEDY pipeline solver\n");
|
|
solveGreedy();
|
|
}
|
|
|
|
makePipeline();
|
|
LLVM_DEBUG(dbgs() << "After applying mutation\n");
|
|
LLVM_DEBUG(DAG->dump());
|
|
}
|
|
|
|
enum IGLPStrategyID : int {
|
|
MFMASmallGemmOptID = 0,
|
|
MFMASmallGemmSingleWaveOptID = 1,
|
|
MFMAExpInterleave = 2
|
|
};
|
|
|
|
// Implement a IGLP scheduling strategy.
|
|
class IGLPStrategy {
|
|
protected:
|
|
ScheduleDAGInstrs *DAG;
|
|
|
|
const SIInstrInfo *TII;
|
|
|
|
public:
|
|
/// Add SchedGroups to \p SyncedSchedGroups to implement this Strategy.
|
|
virtual bool applyIGLPStrategy(
|
|
DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
|
|
DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
|
|
AMDGPU::SchedulingPhase Phase) = 0;
|
|
|
|
// Returns true if this strategy should be applied to a ScheduleDAG.
|
|
virtual bool shouldApplyStrategy(ScheduleDAGInstrs *DAG,
|
|
AMDGPU::SchedulingPhase Phase) = 0;
|
|
|
|
bool IsBottomUp = 1;
|
|
|
|
IGLPStrategy(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
|
|
: DAG(DAG), TII(TII) {}
|
|
|
|
virtual ~IGLPStrategy() = default;
|
|
};
|
|
|
|
class MFMASmallGemmOpt final : public IGLPStrategy {
|
|
private:
|
|
public:
|
|
bool applyIGLPStrategy(
|
|
DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
|
|
DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
|
|
AMDGPU::SchedulingPhase Phase) override;
|
|
|
|
bool shouldApplyStrategy(ScheduleDAGInstrs *DAG,
|
|
AMDGPU::SchedulingPhase Phase) override {
|
|
return true;
|
|
}
|
|
|
|
MFMASmallGemmOpt(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
|
|
: IGLPStrategy(DAG, TII) {
|
|
IsBottomUp = 1;
|
|
}
|
|
};
|
|
|
|
bool MFMASmallGemmOpt::applyIGLPStrategy(
|
|
DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
|
|
DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
|
|
AMDGPU::SchedulingPhase Phase) {
|
|
// Count the number of MFMA instructions.
|
|
unsigned MFMACount = 0;
|
|
for (const MachineInstr &I : *DAG)
|
|
if (TII->isMFMAorWMMA(I))
|
|
++MFMACount;
|
|
|
|
const unsigned PipelineSyncID = 0;
|
|
SchedGroup *SG = nullptr;
|
|
for (unsigned I = 0; I < MFMACount * 3; ++I) {
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::DS, 2, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
class MFMAExpInterleaveOpt final : public IGLPStrategy {
|
|
private:
|
|
// The count of TRANS SUs involved in the interleaved pipeline
|
|
static unsigned TransPipeCount;
|
|
// The count of MFMA SUs involved in the interleaved pipeline
|
|
static unsigned MFMAPipeCount;
|
|
// The count of Add SUs involved in the interleaved pipeline
|
|
static unsigned AddPipeCount;
|
|
// The number of transitive MFMA successors for each TRANS SU
|
|
static unsigned MFMAEnablement;
|
|
// The number of transitive TRANS predecessors for each MFMA SU
|
|
static unsigned ExpRequirement;
|
|
// The count of independent "chains" of MFMA instructions in the pipeline
|
|
static unsigned MFMAChains;
|
|
// The length of each independent "chain" of MFMA instructions
|
|
static unsigned MFMAChainLength;
|
|
// Whether or not the pipeline has V_CVT instructions
|
|
static bool HasCvt;
|
|
// Whether or not there are instructions between the TRANS instruction and
|
|
// V_CVT
|
|
static bool HasChainBetweenCvt;
|
|
// The first occuring DS_READ which feeds an MFMA chain
|
|
static std::optional<unsigned> FirstPipeDSR;
|
|
// The MFMAPipe SUs with no MFMA predecessors
|
|
SmallVector<SUnit *, 4> MFMAChainSeeds;
|
|
// Compute the heuristics for the pipeline, returning whether or not the DAG
|
|
// is well formatted for the mutation
|
|
bool analyzeDAG(const SIInstrInfo *TII);
|
|
|
|
/// Whether or not the instruction is a transitive predecessor of an MFMA
|
|
/// instruction
|
|
class IsPipeExp final : public InstructionRule {
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
|
|
auto DAG = SyncPipe[0].DAG;
|
|
|
|
if (Cache->empty()) {
|
|
auto I = DAG->SUnits.rbegin();
|
|
auto E = DAG->SUnits.rend();
|
|
for (; I != E; I++) {
|
|
if (TII->isMFMAorWMMA(*I->getInstr()))
|
|
Cache->push_back(&*I);
|
|
}
|
|
if (Cache->empty())
|
|
return false;
|
|
}
|
|
|
|
auto Reaches = (std::any_of(
|
|
Cache->begin(), Cache->end(), [&SU, &DAG](SUnit *TargetSU) {
|
|
return DAG->IsReachable(TargetSU, const_cast<SUnit *>(SU));
|
|
}));
|
|
|
|
return Reaches;
|
|
}
|
|
IsPipeExp(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache) {}
|
|
};
|
|
|
|
/// Whether or not the instruction is a transitive predecessor of the
|
|
/// \p Number th MFMA of the MFMAs occuring after a TRANS instruction
|
|
class EnablesNthMFMA final : public InstructionRule {
|
|
private:
|
|
unsigned Number = 1;
|
|
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
bool FoundTrans = false;
|
|
unsigned Counter = 1;
|
|
auto DAG = SyncPipe[0].DAG;
|
|
|
|
if (Cache->empty()) {
|
|
SmallVector<SUnit *, 8> Worklist;
|
|
|
|
auto I = DAG->SUnits.begin();
|
|
auto E = DAG->SUnits.end();
|
|
for (; I != E; I++) {
|
|
if (FoundTrans && TII->isMFMAorWMMA(*I->getInstr())) {
|
|
if (Counter == Number) {
|
|
Cache->push_back(&*I);
|
|
break;
|
|
}
|
|
++Counter;
|
|
}
|
|
if (!FoundTrans && TII->isTRANS(I->getInstr()->getOpcode()))
|
|
FoundTrans = true;
|
|
}
|
|
if (Cache->empty())
|
|
return false;
|
|
}
|
|
|
|
return DAG->IsReachable((*Cache)[0], const_cast<SUnit *>(SU));
|
|
}
|
|
|
|
EnablesNthMFMA(unsigned Number, const SIInstrInfo *TII, unsigned SGID,
|
|
bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache), Number(Number) {}
|
|
};
|
|
|
|
/// Whether or not the instruction enables the exact MFMA that is the \p
|
|
/// Number th MFMA in the chain starting with \p ChainSeed
|
|
class EnablesNthMFMAInChain final : public InstructionRule {
|
|
private:
|
|
unsigned Number = 1;
|
|
SUnit *ChainSeed;
|
|
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
auto DAG = SyncPipe[0].DAG;
|
|
|
|
if (!SU || !TII->isMFMAorWMMA(*ChainSeed->getInstr()))
|
|
return false;
|
|
|
|
if (Cache->empty()) {
|
|
auto TempSU = ChainSeed;
|
|
auto Depth = Number;
|
|
while (Depth > 0) {
|
|
--Depth;
|
|
bool Found = false;
|
|
for (auto &Succ : TempSU->Succs) {
|
|
if (TII->isMFMAorWMMA(*Succ.getSUnit()->getInstr())) {
|
|
TempSU = Succ.getSUnit();
|
|
Found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!Found)
|
|
return false;
|
|
}
|
|
|
|
Cache->push_back(TempSU);
|
|
}
|
|
// If we failed to find the instruction to be placed into the cache, we
|
|
// would have already exited.
|
|
assert(!Cache->empty());
|
|
|
|
return DAG->IsReachable((*Cache)[0], const_cast<SUnit *>(SU));
|
|
}
|
|
|
|
EnablesNthMFMAInChain(unsigned Number, SUnit *ChainSeed,
|
|
const SIInstrInfo *TII, unsigned SGID,
|
|
bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache), Number(Number),
|
|
ChainSeed(ChainSeed) {}
|
|
};
|
|
|
|
/// Whether or not the instruction has less than \p Size immediate successors.
|
|
/// If \p HasIntermediary is true, this tests also whether all successors of
|
|
/// the SUnit have less than \p Size successors.
|
|
class LessThanNSuccs final : public InstructionRule {
|
|
private:
|
|
unsigned Size = 1;
|
|
bool HasIntermediary = false;
|
|
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
if (!SyncPipe.size())
|
|
return false;
|
|
|
|
auto SuccSize = std::count_if(
|
|
SU->Succs.begin(), SU->Succs.end(),
|
|
[](const SDep &Succ) { return Succ.getKind() == SDep::Data; });
|
|
if (SuccSize >= Size)
|
|
return false;
|
|
|
|
if (HasIntermediary) {
|
|
for (auto Succ : SU->Succs) {
|
|
auto SuccSize = std::count_if(
|
|
Succ.getSUnit()->Succs.begin(), Succ.getSUnit()->Succs.end(),
|
|
[](const SDep &SuccSucc) {
|
|
return SuccSucc.getKind() == SDep::Data;
|
|
});
|
|
if (SuccSize >= Size)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
LessThanNSuccs(unsigned Size, const SIInstrInfo *TII, unsigned SGID,
|
|
bool HasIntermediary = false, bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache), Size(Size),
|
|
HasIntermediary(HasIntermediary) {}
|
|
};
|
|
|
|
/// Whether or not the instruction has greater than or equal to \p Size
|
|
/// immediate successors. If \p HasIntermediary is true, this tests also
|
|
/// whether all successors of the SUnit have greater than or equal to \p Size
|
|
/// successors.
|
|
class GreaterThanOrEqualToNSuccs final : public InstructionRule {
|
|
private:
|
|
unsigned Size = 1;
|
|
bool HasIntermediary = false;
|
|
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
if (!SyncPipe.size())
|
|
return false;
|
|
|
|
auto SuccSize = std::count_if(
|
|
SU->Succs.begin(), SU->Succs.end(),
|
|
[](const SDep &Succ) { return Succ.getKind() == SDep::Data; });
|
|
if (SuccSize >= Size)
|
|
return true;
|
|
|
|
if (HasIntermediary) {
|
|
for (auto Succ : SU->Succs) {
|
|
auto SuccSize = std::count_if(
|
|
Succ.getSUnit()->Succs.begin(), Succ.getSUnit()->Succs.end(),
|
|
[](const SDep &SuccSucc) {
|
|
return SuccSucc.getKind() == SDep::Data;
|
|
});
|
|
if (SuccSize >= Size)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
GreaterThanOrEqualToNSuccs(unsigned Size, const SIInstrInfo *TII,
|
|
unsigned SGID, bool HasIntermediary = false,
|
|
bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache), Size(Size),
|
|
HasIntermediary(HasIntermediary) {}
|
|
};
|
|
|
|
// Whether or not the instruction is a relevant V_CVT instruction.
|
|
class IsCvt final : public InstructionRule {
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
auto Opc = SU->getInstr()->getOpcode();
|
|
return Opc == AMDGPU::V_CVT_F16_F32_e32 ||
|
|
Opc == AMDGPU::V_CVT_I32_F32_e32;
|
|
}
|
|
IsCvt(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache) {}
|
|
};
|
|
|
|
// Whether or not the instruction is FMA_F32.
|
|
class IsFMA final : public InstructionRule {
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
return SU->getInstr()->getOpcode() == AMDGPU::V_FMA_F32_e64 ||
|
|
SU->getInstr()->getOpcode() == AMDGPU::V_PK_FMA_F32;
|
|
}
|
|
IsFMA(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache) {}
|
|
};
|
|
|
|
// Whether or not the instruction is a V_ADD_F32 instruction.
|
|
class IsPipeAdd final : public InstructionRule {
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
return SU->getInstr()->getOpcode() == AMDGPU::V_ADD_F32_e32;
|
|
}
|
|
IsPipeAdd(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache) {}
|
|
};
|
|
|
|
/// Whether or not the instruction is an immediate RAW successor
|
|
/// of the SchedGroup \p Distance steps before.
|
|
class IsSuccOfPrevNthGroup final : public InstructionRule {
|
|
private:
|
|
unsigned Distance = 1;
|
|
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
SchedGroup *OtherGroup = nullptr;
|
|
if (!SyncPipe.size())
|
|
return false;
|
|
|
|
for (auto &PipeSG : SyncPipe) {
|
|
if ((unsigned)PipeSG.getSGID() == SGID - Distance)
|
|
OtherGroup = &PipeSG;
|
|
}
|
|
|
|
if (!OtherGroup)
|
|
return false;
|
|
if (!OtherGroup->Collection.size())
|
|
return true;
|
|
|
|
for (auto &OtherEle : OtherGroup->Collection) {
|
|
for (auto &Succ : OtherEle->Succs) {
|
|
if (Succ.getSUnit() == SU && Succ.getKind() == SDep::Data)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
IsSuccOfPrevNthGroup(unsigned Distance, const SIInstrInfo *TII,
|
|
unsigned SGID, bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache), Distance(Distance) {}
|
|
};
|
|
|
|
/// Whether or not the instruction is a transitive successor of any
|
|
/// instruction the the SchedGroup \p Distance steps before.
|
|
class IsReachableFromPrevNthGroup final : public InstructionRule {
|
|
private:
|
|
unsigned Distance = 1;
|
|
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
SchedGroup *OtherGroup = nullptr;
|
|
if (!SyncPipe.size())
|
|
return false;
|
|
|
|
for (auto &PipeSG : SyncPipe) {
|
|
if ((unsigned)PipeSG.getSGID() == SGID - Distance)
|
|
OtherGroup = &PipeSG;
|
|
}
|
|
|
|
if (!OtherGroup)
|
|
return false;
|
|
if (!OtherGroup->Collection.size())
|
|
return true;
|
|
|
|
auto DAG = SyncPipe[0].DAG;
|
|
|
|
for (auto &OtherEle : OtherGroup->Collection)
|
|
if (DAG->IsReachable(const_cast<SUnit *>(SU), OtherEle))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
IsReachableFromPrevNthGroup(unsigned Distance, const SIInstrInfo *TII,
|
|
unsigned SGID, bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache), Distance(Distance) {}
|
|
};
|
|
|
|
/// Whether or not the instruction occurs after the SU with NodeNUm \p Number
|
|
class OccursAtOrAfterNode final : public InstructionRule {
|
|
private:
|
|
unsigned Number = 1;
|
|
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
|
|
return SU->NodeNum >= Number;
|
|
}
|
|
OccursAtOrAfterNode(unsigned Number, const SIInstrInfo *TII, unsigned SGID,
|
|
bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache), Number(Number) {}
|
|
};
|
|
|
|
/// Whether or not the SU is exactly the \p Number th MFMA in the chain
|
|
/// starting with \p ChainSeed
|
|
class IsExactMFMA final : public InstructionRule {
|
|
private:
|
|
unsigned Number = 1;
|
|
SUnit *ChainSeed;
|
|
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
if (!SU || !TII->isMFMAorWMMA(*ChainSeed->getInstr()))
|
|
return false;
|
|
|
|
if (Cache->empty()) {
|
|
auto TempSU = ChainSeed;
|
|
auto Depth = Number;
|
|
while (Depth > 0) {
|
|
--Depth;
|
|
bool Found = false;
|
|
for (auto &Succ : TempSU->Succs) {
|
|
if (TII->isMFMAorWMMA(*Succ.getSUnit()->getInstr())) {
|
|
TempSU = Succ.getSUnit();
|
|
Found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!Found) {
|
|
return false;
|
|
}
|
|
}
|
|
Cache->push_back(TempSU);
|
|
}
|
|
// If we failed to find the instruction to be placed into the cache, we
|
|
// would have already exited.
|
|
assert(!Cache->empty());
|
|
|
|
return (*Cache)[0] == SU;
|
|
}
|
|
|
|
IsExactMFMA(unsigned Number, SUnit *ChainSeed, const SIInstrInfo *TII,
|
|
unsigned SGID, bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache), Number(Number),
|
|
ChainSeed(ChainSeed) {}
|
|
};
|
|
|
|
// Whether the instruction occurs after the first TRANS instruction. This
|
|
// implies the instruction can not be a predecessor of the first TRANS
|
|
// insruction
|
|
class OccursAfterExp final : public InstructionRule {
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
|
|
SmallVector<SUnit *, 12> Worklist;
|
|
auto DAG = SyncPipe[0].DAG;
|
|
if (Cache->empty()) {
|
|
for (auto &SU : DAG->SUnits)
|
|
if (TII->isTRANS(SU.getInstr()->getOpcode())) {
|
|
Cache->push_back(&SU);
|
|
break;
|
|
}
|
|
if (Cache->empty())
|
|
return false;
|
|
}
|
|
|
|
return SU->NodeNum > (*Cache)[0]->NodeNum;
|
|
}
|
|
|
|
OccursAfterExp(const SIInstrInfo *TII, unsigned SGID,
|
|
bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache) {}
|
|
};
|
|
|
|
public:
|
|
bool applyIGLPStrategy(
|
|
DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
|
|
DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
|
|
AMDGPU::SchedulingPhase Phase) override;
|
|
|
|
bool shouldApplyStrategy(ScheduleDAGInstrs *DAG,
|
|
AMDGPU::SchedulingPhase Phase) override;
|
|
|
|
MFMAExpInterleaveOpt(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
|
|
: IGLPStrategy(DAG, TII) {
|
|
IsBottomUp = 0;
|
|
}
|
|
};
|
|
|
|
unsigned MFMAExpInterleaveOpt::TransPipeCount = 0;
|
|
unsigned MFMAExpInterleaveOpt::MFMAPipeCount = 0;
|
|
unsigned MFMAExpInterleaveOpt::AddPipeCount = 0;
|
|
unsigned MFMAExpInterleaveOpt::MFMAEnablement = 0;
|
|
unsigned MFMAExpInterleaveOpt::ExpRequirement = 0;
|
|
unsigned MFMAExpInterleaveOpt::MFMAChains = 0;
|
|
unsigned MFMAExpInterleaveOpt::MFMAChainLength = 0;
|
|
bool MFMAExpInterleaveOpt::HasCvt = false;
|
|
bool MFMAExpInterleaveOpt::HasChainBetweenCvt = false;
|
|
std::optional<unsigned> MFMAExpInterleaveOpt::FirstPipeDSR = std::nullopt;
|
|
|
|
bool MFMAExpInterleaveOpt::analyzeDAG(const SIInstrInfo *TII) {
|
|
SmallVector<SUnit *, 10> ExpPipeCands;
|
|
SmallVector<SUnit *, 10> MFMAPipeCands;
|
|
SmallVector<SUnit *, 10> MFMAPipeSUs;
|
|
SmallVector<SUnit *, 10> PackSUs;
|
|
SmallVector<SUnit *, 10> CvtSUs;
|
|
|
|
auto isBitPack = [](unsigned Opc) {
|
|
return Opc == AMDGPU::V_PACK_B32_F16_e64 || Opc == AMDGPU::V_PERM_B32_e64;
|
|
};
|
|
|
|
auto isCvt = [](unsigned Opc) {
|
|
return Opc == AMDGPU::V_CVT_F16_F32_e32 || Opc == AMDGPU::V_CVT_I32_F32_e32;
|
|
};
|
|
|
|
auto isAdd = [](unsigned Opc) { return Opc == AMDGPU::V_ADD_F32_e32; };
|
|
|
|
AddPipeCount = 0;
|
|
for (SUnit &SU : DAG->SUnits) {
|
|
auto Opc = SU.getInstr()->getOpcode();
|
|
if (TII->isTRANS(Opc)) {
|
|
// Avoid counting a potential bonus V_EXP which all the MFMA depend on
|
|
if (SU.Succs.size() >= 7)
|
|
continue;
|
|
for (auto &Succ : SU.Succs) {
|
|
if (Succ.getSUnit()->Succs.size() >= 7)
|
|
continue;
|
|
}
|
|
ExpPipeCands.push_back(&SU);
|
|
}
|
|
|
|
if (TII->isMFMAorWMMA(*SU.getInstr()))
|
|
MFMAPipeCands.push_back(&SU);
|
|
|
|
if (isBitPack(Opc))
|
|
PackSUs.push_back(&SU);
|
|
|
|
if (isCvt(Opc))
|
|
CvtSUs.push_back(&SU);
|
|
|
|
if (isAdd(Opc))
|
|
++AddPipeCount;
|
|
}
|
|
|
|
if (!(PackSUs.size() && MFMAPipeCands.size() && ExpPipeCands.size()))
|
|
return false;
|
|
|
|
TransPipeCount = 0;
|
|
|
|
std::optional<SUnit *> TempMFMA;
|
|
std::optional<SUnit *> TempExp;
|
|
// Count the number of EXPs that reach an MFMA
|
|
for (auto &PredSU : ExpPipeCands) {
|
|
for (auto &SuccSU : MFMAPipeCands) {
|
|
if (DAG->IsReachable(SuccSU, PredSU)) {
|
|
if (!TempExp) {
|
|
TempExp = PredSU;
|
|
TempMFMA = SuccSU;
|
|
}
|
|
MFMAPipeSUs.push_back(SuccSU);
|
|
++TransPipeCount;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!(TempExp && TempMFMA))
|
|
return false;
|
|
|
|
HasChainBetweenCvt =
|
|
std::find_if((*TempExp)->Succs.begin(), (*TempExp)->Succs.end(),
|
|
[&isCvt](SDep &Succ) {
|
|
return isCvt(Succ.getSUnit()->getInstr()->getOpcode());
|
|
}) == (*TempExp)->Succs.end();
|
|
|
|
// Count the number of MFMAs that are reached by an EXP
|
|
for (auto &SuccSU : MFMAPipeCands) {
|
|
if (MFMAPipeSUs.size() &&
|
|
std::find_if(MFMAPipeSUs.begin(), MFMAPipeSUs.end(),
|
|
[&SuccSU](SUnit *PotentialMatch) {
|
|
return PotentialMatch->NodeNum == SuccSU->NodeNum;
|
|
}) != MFMAPipeSUs.end())
|
|
continue;
|
|
|
|
for (auto &PredSU : ExpPipeCands) {
|
|
if (DAG->IsReachable(SuccSU, PredSU)) {
|
|
MFMAPipeSUs.push_back(SuccSU);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
MFMAPipeCount = MFMAPipeSUs.size();
|
|
|
|
assert(TempExp && TempMFMA);
|
|
assert(MFMAPipeCount > 0);
|
|
|
|
std::optional<SUnit *> TempCvt;
|
|
for (auto &SuccSU : CvtSUs) {
|
|
if (DAG->IsReachable(SuccSU, *TempExp)) {
|
|
TempCvt = SuccSU;
|
|
break;
|
|
}
|
|
}
|
|
|
|
HasCvt = false;
|
|
if (TempCvt.has_value()) {
|
|
for (auto &SuccSU : MFMAPipeSUs) {
|
|
if (DAG->IsReachable(SuccSU, *TempCvt)) {
|
|
HasCvt = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
MFMAChains = 0;
|
|
for (auto &MFMAPipeSU : MFMAPipeSUs) {
|
|
if (MFMAChainSeeds.size() &&
|
|
std::find(MFMAChainSeeds.begin(), MFMAChainSeeds.end(), MFMAPipeSU) !=
|
|
MFMAChainSeeds.end())
|
|
continue;
|
|
if (!std::any_of(MFMAPipeSU->Preds.begin(), MFMAPipeSU->Preds.end(),
|
|
[&TII](SDep &Succ) {
|
|
return TII->isMFMAorWMMA(*Succ.getSUnit()->getInstr());
|
|
})) {
|
|
MFMAChainSeeds.push_back(MFMAPipeSU);
|
|
++MFMAChains;
|
|
}
|
|
}
|
|
|
|
if (!MFMAChains)
|
|
return false;
|
|
|
|
for (auto Pred : MFMAChainSeeds[0]->Preds) {
|
|
if (TII->isDS(Pred.getSUnit()->getInstr()->getOpcode()) &&
|
|
Pred.getSUnit()->getInstr()->mayLoad())
|
|
FirstPipeDSR = Pred.getSUnit()->NodeNum;
|
|
}
|
|
|
|
MFMAChainLength = MFMAPipeCount / MFMAChains;
|
|
|
|
// The number of bit pack operations that depend on a single V_EXP
|
|
unsigned PackSuccCount = std::count_if(
|
|
PackSUs.begin(), PackSUs.end(), [this, &TempExp](SUnit *VPack) {
|
|
return DAG->IsReachable(VPack, *TempExp);
|
|
});
|
|
|
|
// The number of bit pack operations an MFMA depends on
|
|
unsigned PackPredCount =
|
|
std::count_if((*TempMFMA)->Preds.begin(), (*TempMFMA)->Preds.end(),
|
|
[&isBitPack](SDep &Pred) {
|
|
auto Opc = Pred.getSUnit()->getInstr()->getOpcode();
|
|
return isBitPack(Opc);
|
|
});
|
|
|
|
auto PackPred =
|
|
std::find_if((*TempMFMA)->Preds.begin(), (*TempMFMA)->Preds.end(),
|
|
[&isBitPack](SDep &Pred) {
|
|
auto Opc = Pred.getSUnit()->getInstr()->getOpcode();
|
|
return isBitPack(Opc);
|
|
});
|
|
|
|
if (PackPred == (*TempMFMA)->Preds.end())
|
|
return false;
|
|
|
|
MFMAEnablement = 0;
|
|
ExpRequirement = 0;
|
|
// How many MFMAs depend on a single bit pack operation
|
|
MFMAEnablement =
|
|
std::count_if(PackPred->getSUnit()->Succs.begin(),
|
|
PackPred->getSUnit()->Succs.end(), [&TII](SDep &Succ) {
|
|
return TII->isMFMAorWMMA(*Succ.getSUnit()->getInstr());
|
|
});
|
|
|
|
// The number of MFMAs that depend on a single V_EXP
|
|
MFMAEnablement *= PackSuccCount;
|
|
|
|
// The number of V_EXPs required to resolve all dependencies for an MFMA
|
|
ExpRequirement =
|
|
std::count_if(ExpPipeCands.begin(), ExpPipeCands.end(),
|
|
[this, &PackPred](SUnit *ExpBase) {
|
|
return DAG->IsReachable(PackPred->getSUnit(), ExpBase);
|
|
});
|
|
|
|
ExpRequirement *= PackPredCount;
|
|
return true;
|
|
}
|
|
|
|
bool MFMAExpInterleaveOpt::shouldApplyStrategy(ScheduleDAGInstrs *DAG,
|
|
AMDGPU::SchedulingPhase Phase) {
|
|
const GCNSubtarget &ST = DAG->MF.getSubtarget<GCNSubtarget>();
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
|
|
if (Phase != AMDGPU::SchedulingPhase::PostRA)
|
|
MFMAChainSeeds.clear();
|
|
if (Phase != AMDGPU::SchedulingPhase::PostRA && !analyzeDAG(TII))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MFMAExpInterleaveOpt::applyIGLPStrategy(
|
|
DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
|
|
DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
|
|
AMDGPU::SchedulingPhase Phase) {
|
|
|
|
bool IsSmallKernelType =
|
|
MFMAEnablement == 2 && ExpRequirement == 4 && TransPipeCount == 32;
|
|
bool IsLargeKernelType =
|
|
MFMAEnablement == 4 && ExpRequirement == 4 && TransPipeCount == 64;
|
|
|
|
if (!(IsSmallKernelType || IsLargeKernelType))
|
|
return false;
|
|
|
|
const GCNSubtarget &ST = DAG->MF.getSubtarget<GCNSubtarget>();
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
|
|
unsigned PipelineSyncID = 0;
|
|
SchedGroup *SG = nullptr;
|
|
|
|
unsigned MFMAChain = 0;
|
|
unsigned PositionInChain = 0;
|
|
unsigned CurrMFMAForTransPosition = 0;
|
|
|
|
auto incrementTransPosition = [&MFMAChain, &PositionInChain,
|
|
&CurrMFMAForTransPosition]() {
|
|
CurrMFMAForTransPosition += MFMAEnablement;
|
|
PositionInChain = (CurrMFMAForTransPosition / MFMAChains);
|
|
MFMAChain = CurrMFMAForTransPosition % MFMAChains;
|
|
};
|
|
|
|
auto getNextTransPositionInChain = [&CurrMFMAForTransPosition]() {
|
|
auto TempMFMAForTrans = CurrMFMAForTransPosition + MFMAEnablement;
|
|
return (TempMFMAForTrans / MFMAChains);
|
|
};
|
|
|
|
auto getNextTransMFMAChain = [&CurrMFMAForTransPosition]() {
|
|
auto TempMFMAForTrans = CurrMFMAForTransPosition + MFMAEnablement;
|
|
return TempMFMAForTrans % MFMAChains;
|
|
};
|
|
|
|
unsigned CurrMFMAPosition = 0;
|
|
unsigned MFMAChainForMFMA = 0;
|
|
unsigned PositionInChainForMFMA = 0;
|
|
|
|
auto incrementMFMAPosition = [&CurrMFMAPosition, &MFMAChainForMFMA,
|
|
&PositionInChainForMFMA]() {
|
|
++CurrMFMAPosition;
|
|
MFMAChainForMFMA = CurrMFMAPosition % MFMAChains;
|
|
PositionInChainForMFMA = CurrMFMAPosition / MFMAChains;
|
|
};
|
|
|
|
bool IsPostRA = Phase == AMDGPU::SchedulingPhase::PostRA;
|
|
assert(IsPostRA || MFMAChainSeeds.size() == MFMAChains);
|
|
|
|
bool UsesFMA = IsSmallKernelType || !IsPostRA;
|
|
bool UsesDSRead = IsLargeKernelType && !IsPostRA && FirstPipeDSR;
|
|
bool UsesCvt = HasCvt && (IsSmallKernelType || !IsPostRA);
|
|
bool UsesVALU = IsSmallKernelType;
|
|
|
|
// PHASE 1: "Prefetch"
|
|
if (UsesFMA) {
|
|
// First Round FMA
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VALU, ExpRequirement, PipelineSyncID, DAG, TII);
|
|
if (!IsPostRA && MFMAChains) {
|
|
SG->addRule(std::make_shared<EnablesNthMFMAInChain>(
|
|
PositionInChain, MFMAChainSeeds[MFMAChain], TII, SG->getSGID(),
|
|
true));
|
|
} else
|
|
SG->addRule(
|
|
std::make_shared<EnablesNthMFMA>(1, TII, SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<IsFMA>(TII, SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
// Second Round FMA
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VALU, ExpRequirement, PipelineSyncID, DAG, TII);
|
|
if (!IsPostRA && MFMAChains) {
|
|
SG->addRule(std::make_shared<EnablesNthMFMAInChain>(
|
|
getNextTransPositionInChain(),
|
|
MFMAChainSeeds[getNextTransMFMAChain()], TII, SG->getSGID(), true));
|
|
} else
|
|
SG->addRule(std::make_shared<EnablesNthMFMA>(MFMAEnablement + 1, TII,
|
|
SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<IsFMA>(TII, SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
|
|
if (UsesDSRead) {
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::DS_READ, 2, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<OccursAtOrAfterNode>(*FirstPipeDSR, TII,
|
|
SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
|
|
// First Round EXP
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::TRANS, ExpRequirement, PipelineSyncID, DAG, TII);
|
|
if (!IsPostRA && MFMAChains)
|
|
SG->addRule(std::make_shared<EnablesNthMFMAInChain>(
|
|
PositionInChain, MFMAChainSeeds[MFMAChain], TII, SG->getSGID(), true));
|
|
else
|
|
SG->addRule(std::make_shared<EnablesNthMFMA>(1, TII, SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<IsPipeExp>(TII, SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<LessThanNSuccs>(8, TII, SG->getSGID(),
|
|
HasChainBetweenCvt));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
incrementTransPosition();
|
|
|
|
// First Round CVT, Third Round FMA, Second Round EXP; interleaved
|
|
for (unsigned I = 0; I < ExpRequirement; I++) {
|
|
// First Round CVT
|
|
if (UsesCvt) {
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VALU, 1, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<IsCvt>(TII, SG->getSGID()));
|
|
if (HasChainBetweenCvt)
|
|
SG->addRule(std::make_shared<IsReachableFromPrevNthGroup>(
|
|
1 + (2 + UsesFMA) * I, TII, SG->getSGID()));
|
|
else
|
|
SG->addRule(std::make_shared<IsSuccOfPrevNthGroup>(
|
|
1 + (2 + UsesFMA) * I, TII, SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
|
|
// Third Round FMA
|
|
if (UsesFMA) {
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VALU, 1, PipelineSyncID, DAG, TII);
|
|
if (!IsPostRA && MFMAChains) {
|
|
SG->addRule(std::make_shared<EnablesNthMFMAInChain>(
|
|
getNextTransPositionInChain(),
|
|
MFMAChainSeeds[getNextTransMFMAChain()], TII, SG->getSGID(), true));
|
|
} else
|
|
SG->addRule(std::make_shared<EnablesNthMFMA>(2 * MFMAEnablement + 1,
|
|
TII, SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<IsFMA>(TII, SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
|
|
// Second Round EXP
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::TRANS, 1, PipelineSyncID, DAG, TII);
|
|
if (!IsPostRA && MFMAChains)
|
|
SG->addRule(std::make_shared<EnablesNthMFMAInChain>(
|
|
PositionInChain, MFMAChainSeeds[MFMAChain], TII, SG->getSGID(),
|
|
true));
|
|
else
|
|
SG->addRule(std::make_shared<EnablesNthMFMA>(MFMAEnablement + 1, TII,
|
|
SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<IsPipeExp>(TII, SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<LessThanNSuccs>(8, TII, SG->getSGID(),
|
|
HasChainBetweenCvt));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
|
|
// The "extra" EXP which enables all MFMA
|
|
// TODO: UsesExtraExp
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::TRANS, 1, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<IsPipeExp>(TII, SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<GreaterThanOrEqualToNSuccs>(
|
|
8, TII, SG->getSGID(), HasChainBetweenCvt));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
// PHASE 2: Main Interleave Loop
|
|
|
|
// The number of MFMAs per iteration
|
|
unsigned MFMARatio =
|
|
MFMAEnablement > ExpRequirement ? MFMAEnablement / ExpRequirement : 1;
|
|
// The number of Exps per iteration
|
|
unsigned ExpRatio =
|
|
MFMAEnablement > ExpRequirement ? 1 : ExpRequirement / MFMAEnablement;
|
|
// The reamaining Exps
|
|
unsigned RemainingExp = TransPipeCount > (2 * ExpRequirement)
|
|
? TransPipeCount - (2 * ExpRequirement)
|
|
: 0;
|
|
unsigned ExpLoopCount = RemainingExp / ExpRatio;
|
|
// In loop MFMAs
|
|
unsigned MFMAInLoop = MFMAPipeCount > (MFMAEnablement * 2)
|
|
? MFMAPipeCount - (MFMAEnablement * 2)
|
|
: 0;
|
|
unsigned MFMALoopCount = MFMAInLoop / MFMARatio;
|
|
unsigned VALUOps =
|
|
AddPipeCount < MFMAPipeCount ? 1 : AddPipeCount / MFMAPipeCount;
|
|
unsigned LoopSize = std::min(ExpLoopCount, MFMALoopCount);
|
|
|
|
for (unsigned I = 0; I < LoopSize; I++) {
|
|
if (!(I * ExpRatio % ExpRequirement))
|
|
incrementTransPosition();
|
|
|
|
// Round N MFMA
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::MFMA, MFMARatio, PipelineSyncID, DAG, TII);
|
|
if (!IsPostRA && MFMAChains)
|
|
SG->addRule(std::make_shared<IsExactMFMA>(
|
|
PositionInChainForMFMA, MFMAChainSeeds[MFMAChainForMFMA], TII,
|
|
SG->getSGID(), true));
|
|
else
|
|
SG->addRule(std::make_shared<OccursAfterExp>(TII, SG->getSGID(), true));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
incrementMFMAPosition();
|
|
|
|
if (UsesVALU) {
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VALU, VALUOps, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<IsPipeAdd>(TII, SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
|
|
if (UsesDSRead && !(I % 4)) {
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::DS_READ, 2, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<OccursAtOrAfterNode>(*FirstPipeDSR, TII,
|
|
SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
|
|
// CVT, EXP, FMA Interleaving
|
|
for (unsigned J = 0; J < ExpRatio; J++) {
|
|
auto MFMAOffset = (1 + UsesVALU) * MFMARatio * (I + 1);
|
|
auto MaxMFMAOffset =
|
|
(1 + UsesVALU) * ExpRequirement * MFMARatio / ExpRatio;
|
|
|
|
// Round N + 1 CVT
|
|
if (UsesCvt) {
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VALU, 1, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<IsCvt>(TII, SG->getSGID()));
|
|
auto BaseDiff = (2 + UsesFMA) * (ExpRequirement - 1) + 1;
|
|
auto DSROffset = I / 4 + 1;
|
|
auto MaxDSROffset = MaxMFMAOffset / 4;
|
|
// TODO: UsesExtraExp
|
|
auto ExpOffset = I * ExpRatio + J >= ExpRequirement ? 0 : 1;
|
|
auto CurrentOffset = UsesDSRead * std::min(MaxDSROffset, DSROffset) +
|
|
std::min(MaxMFMAOffset, MFMAOffset) + BaseDiff +
|
|
ExpOffset;
|
|
if (HasChainBetweenCvt)
|
|
SG->addRule(std::make_shared<IsReachableFromPrevNthGroup>(
|
|
CurrentOffset, TII, SG->getSGID()));
|
|
else
|
|
SG->addRule(std::make_shared<IsSuccOfPrevNthGroup>(CurrentOffset, TII,
|
|
SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
|
|
// Round N + 3 FMA
|
|
if (UsesFMA) {
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VALU, 1, PipelineSyncID, DAG, TII);
|
|
if (!IsPostRA && MFMAChains)
|
|
SG->addRule(std::make_shared<EnablesNthMFMAInChain>(
|
|
getNextTransPositionInChain(),
|
|
MFMAChainSeeds[getNextTransMFMAChain()], TII, SG->getSGID(),
|
|
true));
|
|
else
|
|
SG->addRule(std::make_shared<EnablesNthMFMA>(
|
|
(((I * ExpRatio + J) / ExpRequirement) + 3) * MFMAEnablement + 1,
|
|
TII, SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<IsFMA>(TII, SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
|
|
// Round N + 2 Exp
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::TRANS, 1, PipelineSyncID, DAG, TII);
|
|
if (!IsPostRA && MFMAChains)
|
|
SG->addRule(std::make_shared<EnablesNthMFMAInChain>(
|
|
PositionInChain, MFMAChainSeeds[MFMAChain], TII, SG->getSGID(),
|
|
true));
|
|
else
|
|
SG->addRule(std::make_shared<EnablesNthMFMA>(
|
|
(((I * ExpRatio + J) / ExpRequirement) + 2) * MFMAEnablement + 1,
|
|
TII, SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<IsPipeExp>(TII, SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<LessThanNSuccs>(8, TII, SG->getSGID(),
|
|
HasChainBetweenCvt));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
}
|
|
|
|
// PHASE 3: Remaining MFMAs
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::MFMA, MFMAEnablement * 2, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<OccursAfterExp>(TII, SG->getSGID(), true));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
return true;
|
|
}
|
|
|
|
class MFMASmallGemmSingleWaveOpt final : public IGLPStrategy {
|
|
private:
|
|
// Whether the DS_READ is a predecessor of first four MFMA in region
|
|
class EnablesInitialMFMA final : public InstructionRule {
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
if (!SyncPipe.size())
|
|
return false;
|
|
int MFMAsFound = 0;
|
|
if (!Cache->size()) {
|
|
for (auto &Elt : SyncPipe[0].DAG->SUnits) {
|
|
if (TII->isMFMAorWMMA(*Elt.getInstr())) {
|
|
++MFMAsFound;
|
|
if (MFMAsFound > 4)
|
|
break;
|
|
Cache->push_back(&Elt);
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(Cache->size());
|
|
auto DAG = SyncPipe[0].DAG;
|
|
for (auto &Elt : *Cache) {
|
|
if (DAG->IsReachable(Elt, const_cast<SUnit *>(SU)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
EnablesInitialMFMA(const SIInstrInfo *TII, unsigned SGID,
|
|
bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache) {}
|
|
};
|
|
|
|
// Whether the MI is a V_PERM and is a predecessor of a common DS_WRITE
|
|
class IsPermForDSW final : public InstructionRule {
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
auto MI = SU->getInstr();
|
|
if (MI->getOpcode() != AMDGPU::V_PERM_B32_e64)
|
|
return false;
|
|
|
|
bool FitsInGroup = false;
|
|
// Does the VALU have a DS_WRITE successor
|
|
if (!Collection.size()) {
|
|
for (auto &Succ : SU->Succs) {
|
|
SUnit *SuccUnit = Succ.getSUnit();
|
|
if (TII->isDS(*SuccUnit->getInstr()) &&
|
|
SuccUnit->getInstr()->mayStore()) {
|
|
Cache->push_back(SuccUnit);
|
|
FitsInGroup = true;
|
|
}
|
|
}
|
|
return FitsInGroup;
|
|
}
|
|
|
|
assert(Cache->size());
|
|
|
|
// Does the VALU have a DS_WRITE successor that is the same as other
|
|
// VALU already in the group. The V_PERMs will all share 1 DS_W succ
|
|
return llvm::any_of(*Cache, [&SU](SUnit *Elt) {
|
|
return llvm::any_of(SU->Succs, [&Elt](const SDep &ThisSucc) {
|
|
return ThisSucc.getSUnit() == Elt;
|
|
});
|
|
});
|
|
}
|
|
|
|
IsPermForDSW(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache) {}
|
|
};
|
|
|
|
// Whether the SU is a successor of any element in previous SchedGroup
|
|
class IsSuccOfPrevGroup final : public InstructionRule {
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
SchedGroup *OtherGroup = nullptr;
|
|
for (auto &PipeSG : SyncPipe) {
|
|
if ((unsigned)PipeSG.getSGID() == SGID - 1) {
|
|
OtherGroup = &PipeSG;
|
|
}
|
|
}
|
|
|
|
if (!OtherGroup)
|
|
return false;
|
|
if (!OtherGroup->Collection.size())
|
|
return true;
|
|
|
|
// Does the previous VALU have this DS_Write as a successor
|
|
return (std::any_of(OtherGroup->Collection.begin(),
|
|
OtherGroup->Collection.end(), [&SU](SUnit *Elt) {
|
|
return std::any_of(Elt->Succs.begin(),
|
|
Elt->Succs.end(),
|
|
[&SU](SDep &Succ) {
|
|
return Succ.getSUnit() == SU;
|
|
});
|
|
}));
|
|
}
|
|
IsSuccOfPrevGroup(const SIInstrInfo *TII, unsigned SGID,
|
|
bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache) {}
|
|
};
|
|
|
|
// Whether the combined load width of group is 128 bits
|
|
class VMEMSize final : public InstructionRule {
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
auto MI = SU->getInstr();
|
|
if (MI->getOpcode() == TargetOpcode::BUNDLE)
|
|
return false;
|
|
if (!Collection.size())
|
|
return true;
|
|
|
|
int NumBits = 0;
|
|
|
|
auto TRI = TII->getRegisterInfo();
|
|
auto &MRI = MI->getParent()->getParent()->getRegInfo();
|
|
for (auto &Elt : Collection) {
|
|
auto Op = Elt->getInstr()->getOperand(0);
|
|
auto Size =
|
|
TRI.getRegSizeInBits(*TRI.getRegClassForOperandReg(MRI, Op));
|
|
NumBits += Size;
|
|
}
|
|
|
|
if (NumBits < 128) {
|
|
assert(TII->isVMEM(*MI) && MI->mayLoad());
|
|
if (NumBits + TRI.getRegSizeInBits(*TRI.getRegClassForOperandReg(
|
|
MRI, MI->getOperand(0))) <=
|
|
128)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
VMEMSize(const SIInstrInfo *TII, unsigned SGID, bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache) {}
|
|
};
|
|
|
|
/// Whether the SU shares a V_PERM predecessor with any SU in the SchedGroup
|
|
/// that is \p Distance steps away
|
|
class SharesPredWithPrevNthGroup final : public InstructionRule {
|
|
private:
|
|
unsigned Distance = 1;
|
|
|
|
public:
|
|
bool apply(const SUnit *SU, const ArrayRef<SUnit *> Collection,
|
|
SmallVectorImpl<SchedGroup> &SyncPipe) override {
|
|
SchedGroup *OtherGroup = nullptr;
|
|
if (!SyncPipe.size())
|
|
return false;
|
|
|
|
if (!Cache->size()) {
|
|
|
|
for (auto &PipeSG : SyncPipe) {
|
|
if ((unsigned)PipeSG.getSGID() == SGID - Distance) {
|
|
OtherGroup = &PipeSG;
|
|
}
|
|
}
|
|
|
|
if (!OtherGroup)
|
|
return false;
|
|
if (!OtherGroup->Collection.size())
|
|
return true;
|
|
|
|
for (auto &OtherEle : OtherGroup->Collection) {
|
|
for (auto &Pred : OtherEle->Preds) {
|
|
if (Pred.getSUnit()->getInstr()->getOpcode() ==
|
|
AMDGPU::V_PERM_B32_e64)
|
|
Cache->push_back(Pred.getSUnit());
|
|
}
|
|
}
|
|
|
|
// If the other group has no PERM preds, then this group won't share any
|
|
if (!Cache->size())
|
|
return false;
|
|
}
|
|
|
|
auto DAG = SyncPipe[0].DAG;
|
|
// Does the previous DS_WRITE share a V_PERM predecessor with this
|
|
// VMEM_READ
|
|
return llvm::any_of(*Cache, [&SU, &DAG](SUnit *Elt) {
|
|
return DAG->IsReachable(const_cast<SUnit *>(SU), Elt);
|
|
});
|
|
}
|
|
SharesPredWithPrevNthGroup(unsigned Distance, const SIInstrInfo *TII,
|
|
unsigned SGID, bool NeedsCache = false)
|
|
: InstructionRule(TII, SGID, NeedsCache), Distance(Distance) {}
|
|
};
|
|
|
|
public:
|
|
bool applyIGLPStrategy(
|
|
DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
|
|
DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
|
|
AMDGPU::SchedulingPhase Phase) override;
|
|
|
|
bool shouldApplyStrategy(ScheduleDAGInstrs *DAG,
|
|
AMDGPU::SchedulingPhase Phase) override {
|
|
return true;
|
|
}
|
|
|
|
MFMASmallGemmSingleWaveOpt(ScheduleDAGInstrs *DAG, const SIInstrInfo *TII)
|
|
: IGLPStrategy(DAG, TII) {
|
|
IsBottomUp = 0;
|
|
}
|
|
};
|
|
|
|
static unsigned DSWCount = 0;
|
|
static unsigned DSWWithPermCount = 0;
|
|
static unsigned DSWWithSharedVMEMCount = 0;
|
|
|
|
bool MFMASmallGemmSingleWaveOpt::applyIGLPStrategy(
|
|
DenseMap<int, SUnitsToCandidateSGsMap> &SyncedInstrs,
|
|
DenseMap<int, SmallVector<SchedGroup, 4>> &SyncedSchedGroups,
|
|
AMDGPU::SchedulingPhase Phase) {
|
|
unsigned MFMACount = 0;
|
|
unsigned DSRCount = 0;
|
|
|
|
bool IsInitial = Phase == AMDGPU::SchedulingPhase::Initial;
|
|
|
|
assert((!IsInitial || (DSWCount == 0 && DSWWithPermCount == 0 &&
|
|
DSWWithSharedVMEMCount == 0)) &&
|
|
"DSWCounters should be zero in pre-RA scheduling!");
|
|
SmallVector<SUnit *, 6> DSWithPerms;
|
|
for (auto &SU : DAG->SUnits) {
|
|
auto I = SU.getInstr();
|
|
if (TII->isMFMAorWMMA(*I))
|
|
++MFMACount;
|
|
else if (TII->isDS(*I)) {
|
|
if (I->mayLoad())
|
|
++DSRCount;
|
|
else if (I->mayStore() && IsInitial) {
|
|
++DSWCount;
|
|
for (auto Pred : SU.Preds) {
|
|
if (Pred.getSUnit()->getInstr()->getOpcode() ==
|
|
AMDGPU::V_PERM_B32_e64) {
|
|
DSWithPerms.push_back(&SU);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (IsInitial) {
|
|
DSWWithPermCount = DSWithPerms.size();
|
|
auto I = DSWithPerms.begin();
|
|
auto E = DSWithPerms.end();
|
|
|
|
// Get the count of DS_WRITES with V_PERM predecessors which
|
|
// have loop carried dependencies (WAR) on the same VMEM_READs.
|
|
// We consider partial overlap as a miss -- in other words,
|
|
// for a given DS_W, we only consider another DS_W as matching
|
|
// if there is a corresponding (in terms of the VMEM_R it uses) V_PERM pred
|
|
// for every V_PERM pred of this DS_W.
|
|
DenseMap<MachineInstr *, SUnit *> VMEMLookup;
|
|
SmallVector<SUnit *, 6> Counted;
|
|
for (; I != E; I++) {
|
|
SUnit *Cand = nullptr;
|
|
bool MissedAny = false;
|
|
for (auto &Pred : (*I)->Preds) {
|
|
if (Pred.getSUnit()->getInstr()->getOpcode() != AMDGPU::V_PERM_B32_e64)
|
|
continue;
|
|
|
|
if (Cand && llvm::is_contained(Counted, Cand))
|
|
break;
|
|
|
|
for (auto &Succ : Pred.getSUnit()->Succs) {
|
|
auto MI = Succ.getSUnit()->getInstr();
|
|
if (!TII->isVMEM(*MI) || !MI->mayLoad())
|
|
continue;
|
|
|
|
if (MissedAny || !VMEMLookup.size()) {
|
|
MissedAny = true;
|
|
VMEMLookup[MI] = *I;
|
|
continue;
|
|
}
|
|
|
|
if (!VMEMLookup.contains(MI)) {
|
|
MissedAny = true;
|
|
VMEMLookup[MI] = *I;
|
|
continue;
|
|
}
|
|
|
|
Cand = VMEMLookup[MI];
|
|
if (llvm::is_contained(Counted, Cand)) {
|
|
MissedAny = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!MissedAny && Cand) {
|
|
DSWWithSharedVMEMCount += 2;
|
|
Counted.push_back(Cand);
|
|
Counted.push_back(*I);
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(DSWWithSharedVMEMCount <= DSWWithPermCount);
|
|
SchedGroup *SG;
|
|
unsigned PipelineSyncID = 0;
|
|
// For kernels with V_PERM, there are enough VALU to mix in between MFMAs
|
|
if (DSWWithPermCount) {
|
|
for (unsigned I = 0; I < MFMACount; I++) {
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VALU, 2, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
}
|
|
|
|
PipelineSyncID = 1;
|
|
// Phase 1: Break up DS_READ and MFMA clusters.
|
|
// First DS_READ to make ready initial MFMA, then interleave MFMA with DS_READ
|
|
// prefetch
|
|
|
|
// Make ready initial MFMA
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::DS_READ, 4, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<EnablesInitialMFMA>(TII, SG->getSGID(), true));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
// Interleave MFMA with DS_READ prefetch
|
|
for (unsigned I = 0; I < DSRCount - 4; ++I) {
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::DS_READ, 1, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
|
|
// Phase 2a: Loop carried dependency with V_PERM
|
|
// Schedule VPerm & DS_WRITE as closely as possible to the VMEM_READ they
|
|
// depend on. Interleave MFMA to keep XDL unit busy throughout.
|
|
for (unsigned I = 0; I < DSWWithPermCount - DSWWithSharedVMEMCount; ++I) {
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VALU, 4, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<IsPermForDSW>(TII, SG->getSGID(), true));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<IsSuccOfPrevGroup>(TII, SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
|
|
1, TII, SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
|
|
3, TII, SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
|
|
// Phase 2b: Loop carried dependency without V_PERM
|
|
// Schedule DS_WRITE as closely as possible to the VMEM_READ they depend on.
|
|
// Interleave MFMA to keep XDL unit busy throughout.
|
|
for (unsigned I = 0; I < DSWCount - DSWWithPermCount; I++) {
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
|
|
// Phase 2c: Loop carried dependency with V_PERM, VMEM_READs are
|
|
// ultimately used by two DS_WRITE
|
|
// Schedule VPerm & DS_WRITE as closely as possible to the VMEM_READ they
|
|
// depend on. Interleave MFMA to keep XDL unit busy throughout.
|
|
|
|
for (unsigned I = 0; I < DSWWithSharedVMEMCount; ++I) {
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VALU, 4, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<IsPermForDSW>(TII, SG->getSGID(), true));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<IsSuccOfPrevGroup>(TII, SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VALU, 4, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<IsPermForDSW>(TII, SG->getSGID(), true));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::DS_WRITE, 1, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<IsSuccOfPrevGroup>(TII, SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
|
|
2, TII, SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::VMEM_READ, 4, PipelineSyncID, DAG, TII);
|
|
SG->addRule(std::make_shared<SharesPredWithPrevNthGroup>(
|
|
4, TII, SG->getSGID(), true));
|
|
SG->addRule(std::make_shared<VMEMSize>(TII, SG->getSGID()));
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
|
|
SG = &SyncedSchedGroups[PipelineSyncID].emplace_back(
|
|
SchedGroupMask::MFMA, 1, PipelineSyncID, DAG, TII);
|
|
SG->initSchedGroup(SyncedInstrs[SG->getSyncID()]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static std::unique_ptr<IGLPStrategy>
|
|
createIGLPStrategy(IGLPStrategyID ID, ScheduleDAGInstrs *DAG,
|
|
const SIInstrInfo *TII) {
|
|
switch (ID) {
|
|
case MFMASmallGemmOptID:
|
|
return std::make_unique<MFMASmallGemmOpt>(DAG, TII);
|
|
case MFMASmallGemmSingleWaveOptID:
|
|
return std::make_unique<MFMASmallGemmSingleWaveOpt>(DAG, TII);
|
|
case MFMAExpInterleave:
|
|
return std::make_unique<MFMAExpInterleaveOpt>(DAG, TII);
|
|
}
|
|
|
|
llvm_unreachable("Unknown IGLPStrategyID");
|
|
}
|
|
|
|
class IGroupLPDAGMutation : public ScheduleDAGMutation {
|
|
private:
|
|
const SIInstrInfo *TII;
|
|
|
|
ScheduleDAGMI *DAG;
|
|
|
|
// Organize lists of SchedGroups by their SyncID. SchedGroups /
|
|
// SCHED_GROUP_BARRIERs with different SyncIDs will have no edges added
|
|
// between then.
|
|
DenseMap<int, SmallVector<SchedGroup, 4>> SyncedSchedGroups;
|
|
|
|
// Used to track instructions that can be mapped to multiple sched groups
|
|
DenseMap<int, SUnitsToCandidateSGsMap> SyncedInstrs;
|
|
|
|
// Add DAG edges that enforce SCHED_BARRIER ordering.
|
|
void addSchedBarrierEdges(SUnit &SU);
|
|
|
|
// Use a SCHED_BARRIER's mask to identify instruction SchedGroups that should
|
|
// not be reordered accross the SCHED_BARRIER. This is used for the base
|
|
// SCHED_BARRIER, and not SCHED_GROUP_BARRIER. The difference is that
|
|
// SCHED_BARRIER will always block all instructions that can be classified
|
|
// into a particular SchedClass, whereas SCHED_GROUP_BARRIER has a fixed size
|
|
// and may only synchronize with some SchedGroups. Returns the inverse of
|
|
// Mask. SCHED_BARRIER's mask describes which instruction types should be
|
|
// allowed to be scheduled across it. Invert the mask to get the
|
|
// SchedGroupMask of instructions that should be barred.
|
|
SchedGroupMask invertSchedBarrierMask(SchedGroupMask Mask) const;
|
|
|
|
// Create SchedGroups for a SCHED_GROUP_BARRIER.
|
|
void initSchedGroupBarrierPipelineStage(
|
|
std::vector<SUnit>::reverse_iterator RIter);
|
|
|
|
bool initIGLPOpt(SUnit &SU);
|
|
|
|
public:
|
|
void apply(ScheduleDAGInstrs *DAGInstrs) override;
|
|
|
|
// The order in which the PipelineSolver should process the candidate
|
|
// SchedGroup for a PipelineInstr. BOTTOM_UP will try to add SUs to the last
|
|
// created SchedGroup first, and will consider that as the ultimate
|
|
// predecessor group when linking. TOP_DOWN instead links and processes the
|
|
// first created SchedGroup first.
|
|
bool IsBottomUp = 1;
|
|
|
|
// The scheduling phase this application of IGLP corresponds with.
|
|
AMDGPU::SchedulingPhase Phase = AMDGPU::SchedulingPhase::Initial;
|
|
|
|
IGroupLPDAGMutation() = default;
|
|
IGroupLPDAGMutation(AMDGPU::SchedulingPhase Phase) : Phase(Phase) {}
|
|
};
|
|
|
|
unsigned SchedGroup::NumSchedGroups = 0;
|
|
|
|
bool SchedGroup::tryAddEdge(SUnit *A, SUnit *B) {
|
|
if (A != B && DAG->canAddEdge(B, A)) {
|
|
DAG->addEdge(B, SDep(A, SDep::Artificial));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SchedGroup::canAddMI(const MachineInstr &MI) const {
|
|
bool Result = false;
|
|
if (MI.isMetaInstruction())
|
|
Result = false;
|
|
|
|
else if (((SGMask & SchedGroupMask::ALU) != SchedGroupMask::NONE) &&
|
|
(TII->isVALU(MI) || TII->isMFMAorWMMA(MI) || TII->isSALU(MI) ||
|
|
TII->isTRANS(MI)))
|
|
Result = true;
|
|
|
|
else if (((SGMask & SchedGroupMask::VALU) != SchedGroupMask::NONE) &&
|
|
TII->isVALU(MI) && !TII->isMFMAorWMMA(MI) && !TII->isTRANS(MI))
|
|
Result = true;
|
|
|
|
else if (((SGMask & SchedGroupMask::SALU) != SchedGroupMask::NONE) &&
|
|
TII->isSALU(MI))
|
|
Result = true;
|
|
|
|
else if (((SGMask & SchedGroupMask::MFMA) != SchedGroupMask::NONE) &&
|
|
TII->isMFMAorWMMA(MI))
|
|
Result = true;
|
|
|
|
else if (((SGMask & SchedGroupMask::VMEM) != SchedGroupMask::NONE) &&
|
|
(TII->isVMEM(MI) || (TII->isFLAT(MI) && !TII->isDS(MI))))
|
|
Result = true;
|
|
|
|
else if (((SGMask & SchedGroupMask::VMEM_READ) != SchedGroupMask::NONE) &&
|
|
MI.mayLoad() &&
|
|
(TII->isVMEM(MI) || (TII->isFLAT(MI) && !TII->isDS(MI))))
|
|
Result = true;
|
|
|
|
else if (((SGMask & SchedGroupMask::VMEM_WRITE) != SchedGroupMask::NONE) &&
|
|
MI.mayStore() &&
|
|
(TII->isVMEM(MI) || (TII->isFLAT(MI) && !TII->isDS(MI))))
|
|
Result = true;
|
|
|
|
else if (((SGMask & SchedGroupMask::DS) != SchedGroupMask::NONE) &&
|
|
TII->isDS(MI))
|
|
Result = true;
|
|
|
|
else if (((SGMask & SchedGroupMask::DS_READ) != SchedGroupMask::NONE) &&
|
|
MI.mayLoad() && TII->isDS(MI))
|
|
Result = true;
|
|
|
|
else if (((SGMask & SchedGroupMask::DS_WRITE) != SchedGroupMask::NONE) &&
|
|
MI.mayStore() && TII->isDS(MI))
|
|
Result = true;
|
|
|
|
else if (((SGMask & SchedGroupMask::TRANS) != SchedGroupMask::NONE) &&
|
|
TII->isTRANS(MI))
|
|
Result = true;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "For SchedGroup with mask " << format_hex((int)SGMask, 10, true)
|
|
<< (Result ? " could classify " : " unable to classify ") << MI);
|
|
|
|
return Result;
|
|
}
|
|
|
|
int SchedGroup::link(SUnit &SU, bool MakePred,
|
|
std::vector<std::pair<SUnit *, SUnit *>> &AddedEdges) {
|
|
int MissedEdges = 0;
|
|
for (auto *A : Collection) {
|
|
SUnit *B = &SU;
|
|
if (A == B || A->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER)
|
|
continue;
|
|
if (MakePred)
|
|
std::swap(A, B);
|
|
|
|
if (DAG->IsReachable(B, A))
|
|
continue;
|
|
|
|
// tryAddEdge returns false if there is a dependency that makes adding
|
|
// the A->B edge impossible, otherwise it returns true;
|
|
bool Added = tryAddEdge(A, B);
|
|
if (Added)
|
|
AddedEdges.push_back(std::pair(A, B));
|
|
else
|
|
++MissedEdges;
|
|
}
|
|
|
|
return MissedEdges;
|
|
}
|
|
|
|
void SchedGroup::link(SUnit &SU, bool MakePred) {
|
|
for (auto *A : Collection) {
|
|
SUnit *B = &SU;
|
|
if (A->getInstr()->getOpcode() == AMDGPU::SCHED_GROUP_BARRIER)
|
|
continue;
|
|
if (MakePred)
|
|
std::swap(A, B);
|
|
|
|
tryAddEdge(A, B);
|
|
}
|
|
}
|
|
|
|
void SchedGroup::link(SUnit &SU,
|
|
function_ref<bool(const SUnit *A, const SUnit *B)> P) {
|
|
for (auto *A : Collection) {
|
|
SUnit *B = &SU;
|
|
if (P(A, B))
|
|
std::swap(A, B);
|
|
|
|
tryAddEdge(A, B);
|
|
}
|
|
}
|
|
|
|
void SchedGroup::link(SchedGroup &OtherGroup) {
|
|
for (auto *B : OtherGroup.Collection)
|
|
link(*B);
|
|
}
|
|
|
|
bool SchedGroup::canAddSU(SUnit &SU) const {
|
|
MachineInstr &MI = *SU.getInstr();
|
|
if (MI.getOpcode() != TargetOpcode::BUNDLE)
|
|
return canAddMI(MI);
|
|
|
|
// Special case for bundled MIs.
|
|
const MachineBasicBlock *MBB = MI.getParent();
|
|
MachineBasicBlock::instr_iterator B = MI.getIterator(), E = ++B;
|
|
while (E != MBB->end() && E->isBundledWithPred())
|
|
++E;
|
|
|
|
// Return true if all of the bundled MIs can be added to this group.
|
|
return std::all_of(B, E, [this](MachineInstr &MI) { return canAddMI(MI); });
|
|
}
|
|
|
|
void SchedGroup::initSchedGroup() {
|
|
for (auto &SU : DAG->SUnits) {
|
|
if (isFull())
|
|
break;
|
|
|
|
if (canAddSU(SU))
|
|
add(SU);
|
|
}
|
|
}
|
|
|
|
void SchedGroup::initSchedGroup(std::vector<SUnit>::reverse_iterator RIter,
|
|
SUnitsToCandidateSGsMap &SyncedInstrs) {
|
|
SUnit &InitSU = *RIter;
|
|
for (auto E = DAG->SUnits.rend(); RIter != E; ++RIter) {
|
|
auto &SU = *RIter;
|
|
if (isFull())
|
|
break;
|
|
|
|
if (canAddSU(SU))
|
|
SyncedInstrs[&SU].push_back(SGID);
|
|
}
|
|
|
|
add(InitSU);
|
|
assert(MaxSize);
|
|
(*MaxSize)++;
|
|
}
|
|
|
|
void SchedGroup::initSchedGroup(SUnitsToCandidateSGsMap &SyncedInstrs) {
|
|
auto I = DAG->SUnits.rbegin();
|
|
auto E = DAG->SUnits.rend();
|
|
for (; I != E; ++I) {
|
|
auto &SU = *I;
|
|
if (isFull())
|
|
break;
|
|
if (canAddSU(SU))
|
|
SyncedInstrs[&SU].push_back(SGID);
|
|
}
|
|
}
|
|
|
|
void IGroupLPDAGMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
|
|
const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel();
|
|
if (!TSchedModel || DAGInstrs->SUnits.empty())
|
|
return;
|
|
|
|
LLVM_DEBUG(dbgs() << "Applying IGroupLPDAGMutation...\n");
|
|
const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>();
|
|
TII = ST.getInstrInfo();
|
|
DAG = static_cast<ScheduleDAGMI *>(DAGInstrs);
|
|
SyncedSchedGroups.clear();
|
|
SyncedInstrs.clear();
|
|
bool FoundSB = false;
|
|
bool FoundIGLP = false;
|
|
bool ShouldApplyIGLP = false;
|
|
for (auto R = DAG->SUnits.rbegin(), E = DAG->SUnits.rend(); R != E; ++R) {
|
|
unsigned Opc = R->getInstr()->getOpcode();
|
|
// SCHED_[GROUP_]BARRIER and IGLP are mutually exclusive.
|
|
if (Opc == AMDGPU::SCHED_BARRIER) {
|
|
addSchedBarrierEdges(*R);
|
|
FoundSB = true;
|
|
} else if (Opc == AMDGPU::SCHED_GROUP_BARRIER) {
|
|
initSchedGroupBarrierPipelineStage(R);
|
|
FoundSB = true;
|
|
} else if (Opc == AMDGPU::IGLP_OPT) {
|
|
resetEdges(*R, DAG);
|
|
if (!FoundSB && !FoundIGLP) {
|
|
FoundIGLP = true;
|
|
ShouldApplyIGLP = initIGLPOpt(*R);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (FoundSB || (FoundIGLP && ShouldApplyIGLP)) {
|
|
PipelineSolver PS(SyncedSchedGroups, SyncedInstrs, DAG, IsBottomUp);
|
|
// PipelineSolver performs the mutation by adding the edges it
|
|
// determined as the best
|
|
PS.solve();
|
|
return;
|
|
}
|
|
}
|
|
|
|
void IGroupLPDAGMutation::addSchedBarrierEdges(SUnit &SchedBarrier) {
|
|
MachineInstr &MI = *SchedBarrier.getInstr();
|
|
assert(MI.getOpcode() == AMDGPU::SCHED_BARRIER);
|
|
// Remove all existing edges from the SCHED_BARRIER that were added due to the
|
|
// instruction having side effects.
|
|
resetEdges(SchedBarrier, DAG);
|
|
LLVM_DEBUG(dbgs() << "Building SchedGroup for SchedBarrier with Mask: "
|
|
<< MI.getOperand(0).getImm() << "\n");
|
|
auto InvertedMask =
|
|
invertSchedBarrierMask((SchedGroupMask)MI.getOperand(0).getImm());
|
|
SchedGroup SG(InvertedMask, std::nullopt, DAG, TII);
|
|
SG.initSchedGroup();
|
|
|
|
// Preserve original instruction ordering relative to the SCHED_BARRIER.
|
|
SG.link(
|
|
SchedBarrier,
|
|
(function_ref<bool(const SUnit *A, const SUnit *B)>)[](
|
|
const SUnit *A, const SUnit *B) { return A->NodeNum > B->NodeNum; });
|
|
}
|
|
|
|
SchedGroupMask
|
|
IGroupLPDAGMutation::invertSchedBarrierMask(SchedGroupMask Mask) const {
|
|
// Invert mask and erase bits for types of instructions that are implied to be
|
|
// allowed past the SCHED_BARRIER.
|
|
SchedGroupMask InvertedMask = ~Mask;
|
|
|
|
// ALU implies VALU, SALU, MFMA, TRANS.
|
|
if ((InvertedMask & SchedGroupMask::ALU) == SchedGroupMask::NONE)
|
|
InvertedMask &= ~SchedGroupMask::VALU & ~SchedGroupMask::SALU &
|
|
~SchedGroupMask::MFMA & ~SchedGroupMask::TRANS;
|
|
// VALU, SALU, MFMA, TRANS implies ALU.
|
|
else if ((InvertedMask & SchedGroupMask::VALU) == SchedGroupMask::NONE ||
|
|
(InvertedMask & SchedGroupMask::SALU) == SchedGroupMask::NONE ||
|
|
(InvertedMask & SchedGroupMask::MFMA) == SchedGroupMask::NONE ||
|
|
(InvertedMask & SchedGroupMask::TRANS) == SchedGroupMask::NONE)
|
|
InvertedMask &= ~SchedGroupMask::ALU;
|
|
|
|
// VMEM implies VMEM_READ, VMEM_WRITE.
|
|
if ((InvertedMask & SchedGroupMask::VMEM) == SchedGroupMask::NONE)
|
|
InvertedMask &= ~SchedGroupMask::VMEM_READ & ~SchedGroupMask::VMEM_WRITE;
|
|
// VMEM_READ, VMEM_WRITE implies VMEM.
|
|
else if ((InvertedMask & SchedGroupMask::VMEM_READ) == SchedGroupMask::NONE ||
|
|
(InvertedMask & SchedGroupMask::VMEM_WRITE) == SchedGroupMask::NONE)
|
|
InvertedMask &= ~SchedGroupMask::VMEM;
|
|
|
|
// DS implies DS_READ, DS_WRITE.
|
|
if ((InvertedMask & SchedGroupMask::DS) == SchedGroupMask::NONE)
|
|
InvertedMask &= ~SchedGroupMask::DS_READ & ~SchedGroupMask::DS_WRITE;
|
|
// DS_READ, DS_WRITE implies DS.
|
|
else if ((InvertedMask & SchedGroupMask::DS_READ) == SchedGroupMask::NONE ||
|
|
(InvertedMask & SchedGroupMask::DS_WRITE) == SchedGroupMask::NONE)
|
|
InvertedMask &= ~SchedGroupMask::DS;
|
|
|
|
LLVM_DEBUG(dbgs() << "After Inverting, SchedGroup Mask: " << (int)InvertedMask
|
|
<< "\n");
|
|
|
|
return InvertedMask;
|
|
}
|
|
|
|
void IGroupLPDAGMutation::initSchedGroupBarrierPipelineStage(
|
|
std::vector<SUnit>::reverse_iterator RIter) {
|
|
// Remove all existing edges from the SCHED_GROUP_BARRIER that were added due
|
|
// to the instruction having side effects.
|
|
resetEdges(*RIter, DAG);
|
|
MachineInstr &SGB = *RIter->getInstr();
|
|
assert(SGB.getOpcode() == AMDGPU::SCHED_GROUP_BARRIER);
|
|
int32_t SGMask = SGB.getOperand(0).getImm();
|
|
int32_t Size = SGB.getOperand(1).getImm();
|
|
int32_t SyncID = SGB.getOperand(2).getImm();
|
|
|
|
auto &SG = SyncedSchedGroups[SyncID].emplace_back((SchedGroupMask)SGMask,
|
|
Size, SyncID, DAG, TII);
|
|
|
|
SG.initSchedGroup(RIter, SyncedInstrs[SG.getSyncID()]);
|
|
}
|
|
|
|
bool IGroupLPDAGMutation::initIGLPOpt(SUnit &SU) {
|
|
IGLPStrategyID StrategyID =
|
|
(IGLPStrategyID)SU.getInstr()->getOperand(0).getImm();
|
|
auto S = createIGLPStrategy(StrategyID, DAG, TII);
|
|
if (!S->shouldApplyStrategy(DAG, Phase))
|
|
return false;
|
|
|
|
IsBottomUp = S->IsBottomUp;
|
|
return S->applyIGLPStrategy(SyncedInstrs, SyncedSchedGroups, Phase);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace llvm {
|
|
|
|
/// \p Phase specifes whether or not this is a reentry into the
|
|
/// IGroupLPDAGMutation. Since there may be multiple scheduling passes on the
|
|
/// same scheduling region (e.g. pre and post-RA scheduling / multiple
|
|
/// scheduling "phases"), we can reenter this mutation framework more than once
|
|
/// for a given region.
|
|
std::unique_ptr<ScheduleDAGMutation>
|
|
createIGroupLPDAGMutation(AMDGPU::SchedulingPhase Phase) {
|
|
return std::make_unique<IGroupLPDAGMutation>(Phase);
|
|
}
|
|
|
|
} // end namespace llvm
|