
IGLP itself will be in SavedMutations via mutations added during Scheduler creation, thus falling back results in reapplying IGLP. In PostRA scheduling, if we have multiple regions with IGLP instructions, then we may have infinite loop. Disable the feature for now.
1699 lines
61 KiB
C++
1699 lines
61 KiB
C++
//===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// The AMDGPU target machine contains all of the hardware specific
|
|
/// information needed to emit code for SI+ GPUs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUAliasAnalysis.h"
|
|
#include "AMDGPUCtorDtorLowering.h"
|
|
#include "AMDGPUExportClustering.h"
|
|
#include "AMDGPUIGroupLP.h"
|
|
#include "AMDGPUMacroFusion.h"
|
|
#include "AMDGPURegBankSelect.h"
|
|
#include "AMDGPUTargetObjectFile.h"
|
|
#include "AMDGPUTargetTransformInfo.h"
|
|
#include "AMDGPUUnifyDivergentExitNodes.h"
|
|
#include "GCNIterativeScheduler.h"
|
|
#include "GCNSchedStrategy.h"
|
|
#include "GCNVOPDUtils.h"
|
|
#include "R600.h"
|
|
#include "R600MachineFunctionInfo.h"
|
|
#include "R600TargetMachine.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "SIMachineScheduler.h"
|
|
#include "TargetInfo/AMDGPUTargetInfo.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm/Analysis/CGSCCPassManager.h"
|
|
#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
|
|
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
|
|
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
|
|
#include "llvm/CodeGen/GlobalISel/Localizer.h"
|
|
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
|
|
#include "llvm/CodeGen/MIRParser/MIParser.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/RegAllocRegistry.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/MC/TargetRegistry.h"
|
|
#include "llvm/Passes/PassBuilder.h"
|
|
#include "llvm/Transforms/HipStdPar/HipStdPar.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/IPO/AlwaysInliner.h"
|
|
#include "llvm/Transforms/IPO/GlobalDCE.h"
|
|
#include "llvm/Transforms/IPO/Internalize.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/GVN.h"
|
|
#include "llvm/Transforms/Scalar/InferAddressSpaces.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
|
|
#include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
|
|
#include <optional>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
namespace {
|
|
class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> {
|
|
public:
|
|
SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
|
|
: RegisterRegAllocBase(N, D, C) {}
|
|
};
|
|
|
|
class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> {
|
|
public:
|
|
VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
|
|
: RegisterRegAllocBase(N, D, C) {}
|
|
};
|
|
|
|
static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI,
|
|
const TargetRegisterClass &RC) {
|
|
return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
|
|
}
|
|
|
|
static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI,
|
|
const TargetRegisterClass &RC) {
|
|
return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
|
|
}
|
|
|
|
|
|
/// -{sgpr|vgpr}-regalloc=... command line option.
|
|
static FunctionPass *useDefaultRegisterAllocator() { return nullptr; }
|
|
|
|
/// A dummy default pass factory indicates whether the register allocator is
|
|
/// overridden on the command line.
|
|
static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag;
|
|
static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag;
|
|
|
|
static SGPRRegisterRegAlloc
|
|
defaultSGPRRegAlloc("default",
|
|
"pick SGPR register allocator based on -O option",
|
|
useDefaultRegisterAllocator);
|
|
|
|
static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false,
|
|
RegisterPassParser<SGPRRegisterRegAlloc>>
|
|
SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
|
|
cl::desc("Register allocator to use for SGPRs"));
|
|
|
|
static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false,
|
|
RegisterPassParser<VGPRRegisterRegAlloc>>
|
|
VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
|
|
cl::desc("Register allocator to use for VGPRs"));
|
|
|
|
|
|
static void initializeDefaultSGPRRegisterAllocatorOnce() {
|
|
RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
|
|
|
|
if (!Ctor) {
|
|
Ctor = SGPRRegAlloc;
|
|
SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc);
|
|
}
|
|
}
|
|
|
|
static void initializeDefaultVGPRRegisterAllocatorOnce() {
|
|
RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
|
|
|
|
if (!Ctor) {
|
|
Ctor = VGPRRegAlloc;
|
|
VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc);
|
|
}
|
|
}
|
|
|
|
static FunctionPass *createBasicSGPRRegisterAllocator() {
|
|
return createBasicRegisterAllocator(onlyAllocateSGPRs);
|
|
}
|
|
|
|
static FunctionPass *createGreedySGPRRegisterAllocator() {
|
|
return createGreedyRegisterAllocator(onlyAllocateSGPRs);
|
|
}
|
|
|
|
static FunctionPass *createFastSGPRRegisterAllocator() {
|
|
return createFastRegisterAllocator(onlyAllocateSGPRs, false);
|
|
}
|
|
|
|
static FunctionPass *createBasicVGPRRegisterAllocator() {
|
|
return createBasicRegisterAllocator(onlyAllocateVGPRs);
|
|
}
|
|
|
|
static FunctionPass *createGreedyVGPRRegisterAllocator() {
|
|
return createGreedyRegisterAllocator(onlyAllocateVGPRs);
|
|
}
|
|
|
|
static FunctionPass *createFastVGPRRegisterAllocator() {
|
|
return createFastRegisterAllocator(onlyAllocateVGPRs, true);
|
|
}
|
|
|
|
static SGPRRegisterRegAlloc basicRegAllocSGPR(
|
|
"basic", "basic register allocator", createBasicSGPRRegisterAllocator);
|
|
static SGPRRegisterRegAlloc greedyRegAllocSGPR(
|
|
"greedy", "greedy register allocator", createGreedySGPRRegisterAllocator);
|
|
|
|
static SGPRRegisterRegAlloc fastRegAllocSGPR(
|
|
"fast", "fast register allocator", createFastSGPRRegisterAllocator);
|
|
|
|
|
|
static VGPRRegisterRegAlloc basicRegAllocVGPR(
|
|
"basic", "basic register allocator", createBasicVGPRRegisterAllocator);
|
|
static VGPRRegisterRegAlloc greedyRegAllocVGPR(
|
|
"greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator);
|
|
|
|
static VGPRRegisterRegAlloc fastRegAllocVGPR(
|
|
"fast", "fast register allocator", createFastVGPRRegisterAllocator);
|
|
}
|
|
|
|
static cl::opt<bool>
|
|
EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
|
|
cl::desc("Run early if-conversion"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
|
|
cl::desc("Run pre-RA exec mask optimizations"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
LowerCtorDtor("amdgpu-lower-global-ctor-dtor",
|
|
cl::desc("Lower GPU ctor / dtors to globals on the device."),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
// Option to disable vectorizer for tests.
|
|
static cl::opt<bool> EnableLoadStoreVectorizer(
|
|
"amdgpu-load-store-vectorizer",
|
|
cl::desc("Enable load store vectorizer"),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
// Option to control global loads scalarization
|
|
static cl::opt<bool> ScalarizeGlobal(
|
|
"amdgpu-scalarize-global-loads",
|
|
cl::desc("Enable global load scalarization"),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
// Option to run internalize pass.
|
|
static cl::opt<bool> InternalizeSymbols(
|
|
"amdgpu-internalize-symbols",
|
|
cl::desc("Enable elimination of non-kernel functions and unused globals"),
|
|
cl::init(false),
|
|
cl::Hidden);
|
|
|
|
// Option to inline all early.
|
|
static cl::opt<bool> EarlyInlineAll(
|
|
"amdgpu-early-inline-all",
|
|
cl::desc("Inline all functions early"),
|
|
cl::init(false),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> RemoveIncompatibleFunctions(
|
|
"amdgpu-enable-remove-incompatible-functions", cl::Hidden,
|
|
cl::desc("Enable removal of functions when they"
|
|
"use features not supported by the target GPU"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> EnableSDWAPeephole(
|
|
"amdgpu-sdwa-peephole",
|
|
cl::desc("Enable SDWA peepholer"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> EnableDPPCombine(
|
|
"amdgpu-dpp-combine",
|
|
cl::desc("Enable DPP combiner"),
|
|
cl::init(true));
|
|
|
|
// Enable address space based alias analysis
|
|
static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
|
|
cl::desc("Enable AMDGPU Alias Analysis"),
|
|
cl::init(true));
|
|
|
|
// Option to run late CFG structurizer
|
|
static cl::opt<bool, true> LateCFGStructurize(
|
|
"amdgpu-late-structurize",
|
|
cl::desc("Enable late CFG structurization"),
|
|
cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
|
|
cl::Hidden);
|
|
|
|
// Enable lib calls simplifications
|
|
static cl::opt<bool> EnableLibCallSimplify(
|
|
"amdgpu-simplify-libcall",
|
|
cl::desc("Enable amdgpu library simplifications"),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> EnableLowerKernelArguments(
|
|
"amdgpu-ir-lower-kernel-arguments",
|
|
cl::desc("Lower kernel argument loads in IR pass"),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> EnableRegReassign(
|
|
"amdgpu-reassign-regs",
|
|
cl::desc("Enable register reassign optimizations on gfx10+"),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> OptVGPRLiveRange(
|
|
"amdgpu-opt-vgpr-liverange",
|
|
cl::desc("Enable VGPR liverange optimizations for if-else structure"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
static cl::opt<ScanOptions> AMDGPUAtomicOptimizerStrategy(
|
|
"amdgpu-atomic-optimizer-strategy",
|
|
cl::desc("Select DPP or Iterative strategy for scan"),
|
|
cl::init(ScanOptions::Iterative),
|
|
cl::values(
|
|
clEnumValN(ScanOptions::DPP, "DPP", "Use DPP operations for scan"),
|
|
clEnumValN(ScanOptions::Iterative, "Iterative",
|
|
"Use Iterative approach for scan"),
|
|
clEnumValN(ScanOptions::None, "None", "Disable atomic optimizer")));
|
|
|
|
// Enable Mode register optimization
|
|
static cl::opt<bool> EnableSIModeRegisterPass(
|
|
"amdgpu-mode-register",
|
|
cl::desc("Enable mode register pass"),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
// Enable GFX11.5+ s_singleuse_vdst insertion
|
|
static cl::opt<bool>
|
|
EnableInsertSingleUseVDST("amdgpu-enable-single-use-vdst",
|
|
cl::desc("Enable s_singleuse_vdst insertion"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
// Enable GFX11+ s_delay_alu insertion
|
|
static cl::opt<bool>
|
|
EnableInsertDelayAlu("amdgpu-enable-delay-alu",
|
|
cl::desc("Enable s_delay_alu insertion"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
// Enable GFX11+ VOPD
|
|
static cl::opt<bool>
|
|
EnableVOPD("amdgpu-enable-vopd",
|
|
cl::desc("Enable VOPD, dual issue of VALU in wave32"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
// Option is used in lit tests to prevent deadcoding of patterns inspected.
|
|
static cl::opt<bool>
|
|
EnableDCEInRA("amdgpu-dce-in-ra",
|
|
cl::init(true), cl::Hidden,
|
|
cl::desc("Enable machine DCE inside regalloc"));
|
|
|
|
static cl::opt<bool> EnableSetWavePriority("amdgpu-set-wave-priority",
|
|
cl::desc("Adjust wave priority"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool> EnableScalarIRPasses(
|
|
"amdgpu-scalar-ir-passes",
|
|
cl::desc("Enable scalar IR passes"),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> EnableStructurizerWorkarounds(
|
|
"amdgpu-enable-structurizer-workarounds",
|
|
cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool, true> EnableLowerModuleLDS(
|
|
"amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"),
|
|
cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> EnablePreRAOptimizations(
|
|
"amdgpu-enable-pre-ra-optimizations",
|
|
cl::desc("Enable Pre-RA optimizations pass"), cl::init(true),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> EnablePromoteKernelArguments(
|
|
"amdgpu-enable-promote-kernel-arguments",
|
|
cl::desc("Enable promotion of flat kernel pointer arguments to global"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> EnableImageIntrinsicOptimizer(
|
|
"amdgpu-enable-image-intrinsic-optimizer",
|
|
cl::desc("Enable image intrinsic optimizer pass"), cl::init(true),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool>
|
|
EnableLoopPrefetch("amdgpu-loop-prefetch",
|
|
cl::desc("Enable loop data prefetch on AMDGPU"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> EnableMaxIlpSchedStrategy(
|
|
"amdgpu-enable-max-ilp-scheduling-strategy",
|
|
cl::desc("Enable scheduling strategy to maximize ILP for a single wave."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> EnableRewritePartialRegUses(
|
|
"amdgpu-enable-rewrite-partial-reg-uses",
|
|
cl::desc("Enable rewrite partial reg uses pass"), cl::init(true),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> EnableHipStdPar(
|
|
"amdgpu-enable-hipstdpar",
|
|
cl::desc("Enable HIP Standard Parallelism Offload support"), cl::init(false),
|
|
cl::Hidden);
|
|
|
|
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
|
|
// Register the target
|
|
RegisterTargetMachine<R600TargetMachine> X(getTheR600Target());
|
|
RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
|
|
|
|
PassRegistry *PR = PassRegistry::getPassRegistry();
|
|
initializeR600ClauseMergePassPass(*PR);
|
|
initializeR600ControlFlowFinalizerPass(*PR);
|
|
initializeR600PacketizerPass(*PR);
|
|
initializeR600ExpandSpecialInstrsPassPass(*PR);
|
|
initializeR600VectorRegMergerPass(*PR);
|
|
initializeGlobalISel(*PR);
|
|
initializeAMDGPUDAGToDAGISelPass(*PR);
|
|
initializeGCNDPPCombinePass(*PR);
|
|
initializeSILowerI1CopiesPass(*PR);
|
|
initializeAMDGPUGlobalISelDivergenceLoweringPass(*PR);
|
|
initializeSILowerWWMCopiesPass(*PR);
|
|
initializeAMDGPUMarkLastScratchLoadPass(*PR);
|
|
initializeSILowerSGPRSpillsPass(*PR);
|
|
initializeSIFixSGPRCopiesPass(*PR);
|
|
initializeSIFixVGPRCopiesPass(*PR);
|
|
initializeSIFoldOperandsPass(*PR);
|
|
initializeSIPeepholeSDWAPass(*PR);
|
|
initializeSIShrinkInstructionsPass(*PR);
|
|
initializeSIOptimizeExecMaskingPreRAPass(*PR);
|
|
initializeSIOptimizeVGPRLiveRangePass(*PR);
|
|
initializeSILoadStoreOptimizerPass(*PR);
|
|
initializeAMDGPUCtorDtorLoweringLegacyPass(*PR);
|
|
initializeAMDGPUAlwaysInlinePass(*PR);
|
|
initializeAMDGPUAttributorLegacyPass(*PR);
|
|
initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
|
|
initializeAMDGPUAnnotateUniformValuesPass(*PR);
|
|
initializeAMDGPUArgumentUsageInfoPass(*PR);
|
|
initializeAMDGPUAtomicOptimizerPass(*PR);
|
|
initializeAMDGPULowerKernelArgumentsPass(*PR);
|
|
initializeAMDGPUPromoteKernelArgumentsPass(*PR);
|
|
initializeAMDGPULowerKernelAttributesPass(*PR);
|
|
initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
|
|
initializeAMDGPUPostLegalizerCombinerPass(*PR);
|
|
initializeAMDGPUPreLegalizerCombinerPass(*PR);
|
|
initializeAMDGPURegBankCombinerPass(*PR);
|
|
initializeAMDGPURegBankSelectPass(*PR);
|
|
initializeAMDGPUPromoteAllocaPass(*PR);
|
|
initializeAMDGPUPromoteAllocaToVectorPass(*PR);
|
|
initializeAMDGPUCodeGenPreparePass(*PR);
|
|
initializeAMDGPULateCodeGenPreparePass(*PR);
|
|
initializeAMDGPURemoveIncompatibleFunctionsPass(*PR);
|
|
initializeAMDGPULowerModuleLDSLegacyPass(*PR);
|
|
initializeAMDGPURewriteOutArgumentsPass(*PR);
|
|
initializeAMDGPURewriteUndefForPHILegacyPass(*PR);
|
|
initializeAMDGPUUnifyMetadataPass(*PR);
|
|
initializeSIAnnotateControlFlowPass(*PR);
|
|
initializeAMDGPUInsertSingleUseVDSTPass(*PR);
|
|
initializeAMDGPUInsertDelayAluPass(*PR);
|
|
initializeSIInsertHardClausesPass(*PR);
|
|
initializeSIInsertWaitcntsPass(*PR);
|
|
initializeSIModeRegisterPass(*PR);
|
|
initializeSIWholeQuadModePass(*PR);
|
|
initializeSILowerControlFlowPass(*PR);
|
|
initializeSIPreEmitPeepholePass(*PR);
|
|
initializeSILateBranchLoweringPass(*PR);
|
|
initializeSIMemoryLegalizerPass(*PR);
|
|
initializeSIOptimizeExecMaskingPass(*PR);
|
|
initializeSIPreAllocateWWMRegsPass(*PR);
|
|
initializeSIFormMemoryClausesPass(*PR);
|
|
initializeSIPostRABundlerPass(*PR);
|
|
initializeGCNCreateVOPDPass(*PR);
|
|
initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
|
|
initializeAMDGPUAAWrapperPassPass(*PR);
|
|
initializeAMDGPUExternalAAWrapperPass(*PR);
|
|
initializeAMDGPUImageIntrinsicOptimizerPass(*PR);
|
|
initializeAMDGPUPrintfRuntimeBindingPass(*PR);
|
|
initializeAMDGPUResourceUsageAnalysisPass(*PR);
|
|
initializeGCNNSAReassignPass(*PR);
|
|
initializeGCNPreRAOptimizationsPass(*PR);
|
|
initializeGCNPreRALongBranchRegPass(*PR);
|
|
initializeGCNRewritePartialRegUsesPass(*PR);
|
|
initializeGCNRegPressurePrinterPass(*PR);
|
|
}
|
|
|
|
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
|
|
return std::make_unique<AMDGPUTargetObjectFile>();
|
|
}
|
|
|
|
static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
|
|
return new SIScheduleDAGMI(C);
|
|
}
|
|
|
|
static ScheduleDAGInstrs *
|
|
createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
|
|
const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
|
|
ScheduleDAGMILive *DAG =
|
|
new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
|
|
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
|
|
if (ST.shouldClusterStores())
|
|
DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
|
|
DAG->addMutation(createIGroupLPDAGMutation(AMDGPU::SchedulingPhase::Initial));
|
|
DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
|
|
DAG->addMutation(createAMDGPUExportClusteringDAGMutation());
|
|
return DAG;
|
|
}
|
|
|
|
static ScheduleDAGInstrs *
|
|
createGCNMaxILPMachineScheduler(MachineSchedContext *C) {
|
|
ScheduleDAGMILive *DAG =
|
|
new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxILPSchedStrategy>(C));
|
|
DAG->addMutation(createIGroupLPDAGMutation(AMDGPU::SchedulingPhase::Initial));
|
|
return DAG;
|
|
}
|
|
|
|
static ScheduleDAGInstrs *
|
|
createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
|
|
const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
|
|
auto DAG = new GCNIterativeScheduler(C,
|
|
GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
|
|
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
|
|
if (ST.shouldClusterStores())
|
|
DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
|
|
return DAG;
|
|
}
|
|
|
|
static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
|
|
return new GCNIterativeScheduler(C,
|
|
GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
|
|
}
|
|
|
|
static ScheduleDAGInstrs *
|
|
createIterativeILPMachineScheduler(MachineSchedContext *C) {
|
|
const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
|
|
auto DAG = new GCNIterativeScheduler(C,
|
|
GCNIterativeScheduler::SCHEDULE_ILP);
|
|
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
|
|
if (ST.shouldClusterStores())
|
|
DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
|
|
DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
|
|
return DAG;
|
|
}
|
|
|
|
static MachineSchedRegistry
|
|
SISchedRegistry("si", "Run SI's custom scheduler",
|
|
createSIMachineScheduler);
|
|
|
|
static MachineSchedRegistry
|
|
GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
|
|
"Run GCN scheduler to maximize occupancy",
|
|
createGCNMaxOccupancyMachineScheduler);
|
|
|
|
static MachineSchedRegistry
|
|
GCNMaxILPSchedRegistry("gcn-max-ilp", "Run GCN scheduler to maximize ilp",
|
|
createGCNMaxILPMachineScheduler);
|
|
|
|
static MachineSchedRegistry IterativeGCNMaxOccupancySchedRegistry(
|
|
"gcn-iterative-max-occupancy-experimental",
|
|
"Run GCN scheduler to maximize occupancy (experimental)",
|
|
createIterativeGCNMaxOccupancyMachineScheduler);
|
|
|
|
static MachineSchedRegistry GCNMinRegSchedRegistry(
|
|
"gcn-iterative-minreg",
|
|
"Run GCN iterative scheduler for minimal register usage (experimental)",
|
|
createMinRegScheduler);
|
|
|
|
static MachineSchedRegistry GCNILPSchedRegistry(
|
|
"gcn-iterative-ilp",
|
|
"Run GCN iterative scheduler for ILP scheduling (experimental)",
|
|
createIterativeILPMachineScheduler);
|
|
|
|
static StringRef computeDataLayout(const Triple &TT) {
|
|
if (TT.getArch() == Triple::r600) {
|
|
// 32-bit pointers.
|
|
return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
|
|
"-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1";
|
|
}
|
|
|
|
// 32-bit private, local, and region pointers. 64-bit global, constant and
|
|
// flat. 160-bit non-integral fat buffer pointers that include a 128-bit
|
|
// buffer descriptor and a 32-bit offset, which are indexed by 32-bit values
|
|
// (address space 7), and 128-bit non-integral buffer resourcees (address
|
|
// space 8) which cannot be non-trivilally accessed by LLVM memory operations
|
|
// like getelementptr.
|
|
return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
|
|
"-p7:160:256:256:32-p8:128:128-p9:192:256:256:32-i64:64-v16:16-v24:32-"
|
|
"v32:32-v48:64-v96:"
|
|
"128-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-"
|
|
"G1-ni:7:8:9";
|
|
}
|
|
|
|
LLVM_READNONE
|
|
static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
|
|
if (!GPU.empty())
|
|
return GPU;
|
|
|
|
// Need to default to a target with flat support for HSA.
|
|
if (TT.getArch() == Triple::amdgcn)
|
|
return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
|
|
|
|
return "r600";
|
|
}
|
|
|
|
static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) {
|
|
// The AMDGPU toolchain only supports generating shared objects, so we
|
|
// must always use PIC.
|
|
return Reloc::PIC_;
|
|
}
|
|
|
|
AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
std::optional<Reloc::Model> RM,
|
|
std::optional<CodeModel::Model> CM,
|
|
CodeGenOptLevel OptLevel)
|
|
: LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
|
|
FS, Options, getEffectiveRelocModel(RM),
|
|
getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
|
|
TLOF(createTLOF(getTargetTriple())) {
|
|
initAsmInfo();
|
|
if (TT.getArch() == Triple::amdgcn) {
|
|
if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64"))
|
|
MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64));
|
|
else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32"))
|
|
MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32));
|
|
}
|
|
}
|
|
|
|
bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
|
|
bool AMDGPUTargetMachine::EnableFunctionCalls = false;
|
|
bool AMDGPUTargetMachine::EnableLowerModuleLDS = true;
|
|
|
|
AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
|
|
|
|
StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
|
|
Attribute GPUAttr = F.getFnAttribute("target-cpu");
|
|
return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU();
|
|
}
|
|
|
|
StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
|
|
Attribute FSAttr = F.getFnAttribute("target-features");
|
|
|
|
return FSAttr.isValid() ? FSAttr.getValueAsString()
|
|
: getTargetFeatureString();
|
|
}
|
|
|
|
/// Predicate for Internalize pass.
|
|
static bool mustPreserveGV(const GlobalValue &GV) {
|
|
if (const Function *F = dyn_cast<Function>(&GV))
|
|
return F->isDeclaration() || F->getName().starts_with("__asan_") ||
|
|
F->getName().starts_with("__sanitizer_") ||
|
|
AMDGPU::isEntryFunctionCC(F->getCallingConv());
|
|
|
|
GV.removeDeadConstantUsers();
|
|
return !GV.use_empty();
|
|
}
|
|
|
|
void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) {
|
|
AAM.registerFunctionAnalysis<AMDGPUAA>();
|
|
}
|
|
|
|
void AMDGPUTargetMachine::registerPassBuilderCallbacks(
|
|
PassBuilder &PB, bool PopulateClassToPassNames) {
|
|
PB.registerPipelineParsingCallback(
|
|
[this](StringRef PassName, ModulePassManager &PM,
|
|
ArrayRef<PassBuilder::PipelineElement>) {
|
|
if (PassName == "amdgpu-attributor") {
|
|
PM.addPass(AMDGPUAttributorPass(*this));
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-unify-metadata") {
|
|
PM.addPass(AMDGPUUnifyMetadataPass());
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-printf-runtime-binding") {
|
|
PM.addPass(AMDGPUPrintfRuntimeBindingPass());
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-always-inline") {
|
|
PM.addPass(AMDGPUAlwaysInlinePass());
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-lower-module-lds") {
|
|
PM.addPass(AMDGPULowerModuleLDSPass(*this));
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-lower-ctor-dtor") {
|
|
PM.addPass(AMDGPUCtorDtorLoweringPass());
|
|
return true;
|
|
}
|
|
return false;
|
|
});
|
|
PB.registerPipelineParsingCallback(
|
|
[this](StringRef PassName, FunctionPassManager &PM,
|
|
ArrayRef<PassBuilder::PipelineElement>) {
|
|
if (PassName == "amdgpu-simplifylib") {
|
|
PM.addPass(AMDGPUSimplifyLibCallsPass());
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-image-intrinsic-opt") {
|
|
PM.addPass(AMDGPUImageIntrinsicOptimizerPass(*this));
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-usenative") {
|
|
PM.addPass(AMDGPUUseNativeCallsPass());
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-promote-alloca") {
|
|
PM.addPass(AMDGPUPromoteAllocaPass(*this));
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-promote-alloca-to-vector") {
|
|
PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-lower-kernel-attributes") {
|
|
PM.addPass(AMDGPULowerKernelAttributesPass());
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-promote-kernel-arguments") {
|
|
PM.addPass(AMDGPUPromoteKernelArgumentsPass());
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-unify-divergent-exit-nodes") {
|
|
PM.addPass(AMDGPUUnifyDivergentExitNodesPass());
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-atomic-optimizer") {
|
|
PM.addPass(
|
|
AMDGPUAtomicOptimizerPass(*this, AMDGPUAtomicOptimizerStrategy));
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-codegenprepare") {
|
|
PM.addPass(AMDGPUCodeGenPreparePass(*this));
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-lower-kernel-arguments") {
|
|
PM.addPass(AMDGPULowerKernelArgumentsPass(*this));
|
|
return true;
|
|
}
|
|
if (PassName == "amdgpu-rewrite-undef-for-phi") {
|
|
PM.addPass(AMDGPURewriteUndefForPHIPass());
|
|
return true;
|
|
}
|
|
return false;
|
|
});
|
|
|
|
PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) {
|
|
FAM.registerPass([&] { return AMDGPUAA(); });
|
|
});
|
|
|
|
PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) {
|
|
if (AAName == "amdgpu-aa") {
|
|
AAM.registerFunctionAnalysis<AMDGPUAA>();
|
|
return true;
|
|
}
|
|
return false;
|
|
});
|
|
|
|
PB.registerPipelineStartEPCallback(
|
|
[](ModulePassManager &PM, OptimizationLevel Level) {
|
|
FunctionPassManager FPM;
|
|
FPM.addPass(AMDGPUUseNativeCallsPass());
|
|
if (EnableLibCallSimplify && Level != OptimizationLevel::O0)
|
|
FPM.addPass(AMDGPUSimplifyLibCallsPass());
|
|
PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
|
|
if (EnableHipStdPar)
|
|
PM.addPass(HipStdParAcceleratorCodeSelectionPass());
|
|
});
|
|
|
|
PB.registerPipelineEarlySimplificationEPCallback(
|
|
[](ModulePassManager &PM, OptimizationLevel Level) {
|
|
PM.addPass(AMDGPUPrintfRuntimeBindingPass());
|
|
|
|
if (Level == OptimizationLevel::O0)
|
|
return;
|
|
|
|
PM.addPass(AMDGPUUnifyMetadataPass());
|
|
|
|
if (InternalizeSymbols) {
|
|
PM.addPass(InternalizePass(mustPreserveGV));
|
|
PM.addPass(GlobalDCEPass());
|
|
}
|
|
|
|
if (EarlyInlineAll && !EnableFunctionCalls)
|
|
PM.addPass(AMDGPUAlwaysInlinePass());
|
|
});
|
|
|
|
PB.registerCGSCCOptimizerLateEPCallback(
|
|
[this](CGSCCPassManager &PM, OptimizationLevel Level) {
|
|
if (Level == OptimizationLevel::O0)
|
|
return;
|
|
|
|
FunctionPassManager FPM;
|
|
|
|
// Add promote kernel arguments pass to the opt pipeline right before
|
|
// infer address spaces which is needed to do actual address space
|
|
// rewriting.
|
|
if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() &&
|
|
EnablePromoteKernelArguments)
|
|
FPM.addPass(AMDGPUPromoteKernelArgumentsPass());
|
|
|
|
// Add infer address spaces pass to the opt pipeline after inlining
|
|
// but before SROA to increase SROA opportunities.
|
|
FPM.addPass(InferAddressSpacesPass());
|
|
|
|
// This should run after inlining to have any chance of doing
|
|
// anything, and before other cleanup optimizations.
|
|
FPM.addPass(AMDGPULowerKernelAttributesPass());
|
|
|
|
if (Level != OptimizationLevel::O0) {
|
|
// Promote alloca to vector before SROA and loop unroll. If we
|
|
// manage to eliminate allocas before unroll we may choose to unroll
|
|
// less.
|
|
FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
|
|
}
|
|
|
|
PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM)));
|
|
});
|
|
}
|
|
|
|
int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) {
|
|
return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
|
|
AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
|
|
AddrSpace == AMDGPUAS::REGION_ADDRESS)
|
|
? -1
|
|
: 0;
|
|
}
|
|
|
|
bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
|
|
unsigned DestAS) const {
|
|
return AMDGPU::isFlatGlobalAddrSpace(SrcAS) &&
|
|
AMDGPU::isFlatGlobalAddrSpace(DestAS);
|
|
}
|
|
|
|
unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const {
|
|
const auto *LD = dyn_cast<LoadInst>(V);
|
|
if (!LD)
|
|
return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
|
|
|
|
// It must be a generic pointer loaded.
|
|
assert(V->getType()->isPointerTy() &&
|
|
V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS);
|
|
|
|
const auto *Ptr = LD->getPointerOperand();
|
|
if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
|
|
return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
|
|
// For a generic pointer loaded from the constant memory, it could be assumed
|
|
// as a global pointer since the constant memory is only populated on the
|
|
// host side. As implied by the offload programming model, only global
|
|
// pointers could be referenced on the host side.
|
|
return AMDGPUAS::GLOBAL_ADDRESS;
|
|
}
|
|
|
|
std::pair<const Value *, unsigned>
|
|
AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const {
|
|
if (auto *II = dyn_cast<IntrinsicInst>(V)) {
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::amdgcn_is_shared:
|
|
return std::pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS);
|
|
case Intrinsic::amdgcn_is_private:
|
|
return std::pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS);
|
|
default:
|
|
break;
|
|
}
|
|
return std::pair(nullptr, -1);
|
|
}
|
|
// Check the global pointer predication based on
|
|
// (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and
|
|
// the order of 'is_shared' and 'is_private' is not significant.
|
|
Value *Ptr;
|
|
if (match(
|
|
const_cast<Value *>(V),
|
|
m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))),
|
|
m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>(
|
|
m_Deferred(Ptr))))))
|
|
return std::pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS);
|
|
|
|
return std::pair(nullptr, -1);
|
|
}
|
|
|
|
unsigned
|
|
AMDGPUTargetMachine::getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
|
|
switch (Kind) {
|
|
case PseudoSourceValue::Stack:
|
|
case PseudoSourceValue::FixedStack:
|
|
return AMDGPUAS::PRIVATE_ADDRESS;
|
|
case PseudoSourceValue::ConstantPool:
|
|
case PseudoSourceValue::GOT:
|
|
case PseudoSourceValue::JumpTable:
|
|
case PseudoSourceValue::GlobalValueCallEntry:
|
|
case PseudoSourceValue::ExternalSymbolCallEntry:
|
|
return AMDGPUAS::CONSTANT_ADDRESS;
|
|
}
|
|
return AMDGPUAS::FLAT_ADDRESS;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GCN Target Machine (SI+)
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
std::optional<Reloc::Model> RM,
|
|
std::optional<CodeModel::Model> CM,
|
|
CodeGenOptLevel OL, bool JIT)
|
|
: AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
|
|
|
|
const TargetSubtargetInfo *
|
|
GCNTargetMachine::getSubtargetImpl(const Function &F) const {
|
|
StringRef GPU = getGPUName(F);
|
|
StringRef FS = getFeatureString(F);
|
|
|
|
SmallString<128> SubtargetKey(GPU);
|
|
SubtargetKey.append(FS);
|
|
|
|
auto &I = SubtargetMap[SubtargetKey];
|
|
if (!I) {
|
|
// This needs to be done before we create a new subtarget since any
|
|
// creation will depend on the TM and the code generation flags on the
|
|
// function that reside in TargetOptions.
|
|
resetTargetOptions(F);
|
|
I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
|
|
}
|
|
|
|
I->setScalarizeGlobalBehavior(ScalarizeGlobal);
|
|
|
|
return I.get();
|
|
}
|
|
|
|
TargetTransformInfo
|
|
GCNTargetMachine::getTargetTransformInfo(const Function &F) const {
|
|
return TargetTransformInfo(GCNTTIImpl(this, F));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AMDGPU Pass Setup
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const {
|
|
return getStandardCSEConfigForOpt(TM->getOptLevel());
|
|
}
|
|
|
|
namespace {
|
|
|
|
class GCNPassConfig final : public AMDGPUPassConfig {
|
|
public:
|
|
GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
|
|
: AMDGPUPassConfig(TM, PM) {
|
|
// It is necessary to know the register usage of the entire call graph. We
|
|
// allow calls without EnableAMDGPUFunctionCalls if they are marked
|
|
// noinline, so this is always required.
|
|
setRequiresCodeGenSCCOrder(true);
|
|
substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
|
|
}
|
|
|
|
GCNTargetMachine &getGCNTargetMachine() const {
|
|
return getTM<GCNTargetMachine>();
|
|
}
|
|
|
|
ScheduleDAGInstrs *
|
|
createMachineScheduler(MachineSchedContext *C) const override;
|
|
|
|
ScheduleDAGInstrs *
|
|
createPostMachineScheduler(MachineSchedContext *C) const override {
|
|
ScheduleDAGMI *DAG = new GCNPostScheduleDAGMILive(
|
|
C, std::make_unique<PostGenericScheduler>(C),
|
|
/*RemoveKillFlags=*/true);
|
|
const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
|
|
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
|
|
if (ST.shouldClusterStores())
|
|
DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
|
|
DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII));
|
|
DAG->addMutation(
|
|
createIGroupLPDAGMutation(AMDGPU::SchedulingPhase::PostRA));
|
|
if (isPassEnabled(EnableVOPD, CodeGenOptLevel::Less))
|
|
DAG->addMutation(createVOPDPairingMutation());
|
|
return DAG;
|
|
}
|
|
|
|
bool addPreISel() override;
|
|
void addMachineSSAOptimization() override;
|
|
bool addILPOpts() override;
|
|
bool addInstSelector() override;
|
|
bool addIRTranslator() override;
|
|
void addPreLegalizeMachineIR() override;
|
|
bool addLegalizeMachineIR() override;
|
|
void addPreRegBankSelect() override;
|
|
bool addRegBankSelect() override;
|
|
void addPreGlobalInstructionSelect() override;
|
|
bool addGlobalInstructionSelect() override;
|
|
void addFastRegAlloc() override;
|
|
void addOptimizedRegAlloc() override;
|
|
|
|
FunctionPass *createSGPRAllocPass(bool Optimized);
|
|
FunctionPass *createVGPRAllocPass(bool Optimized);
|
|
FunctionPass *createRegAllocPass(bool Optimized) override;
|
|
|
|
bool addRegAssignAndRewriteFast() override;
|
|
bool addRegAssignAndRewriteOptimized() override;
|
|
|
|
void addPreRegAlloc() override;
|
|
bool addPreRewrite() override;
|
|
void addPostRegAlloc() override;
|
|
void addPreSched2() override;
|
|
void addPreEmitPass() override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
|
|
: TargetPassConfig(TM, PM) {
|
|
// Exceptions and StackMaps are not supported, so these passes will never do
|
|
// anything.
|
|
disablePass(&StackMapLivenessID);
|
|
disablePass(&FuncletLayoutID);
|
|
// Garbage collection is not supported.
|
|
disablePass(&GCLoweringID);
|
|
disablePass(&ShadowStackGCLoweringID);
|
|
}
|
|
|
|
void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
|
|
if (getOptLevel() == CodeGenOptLevel::Aggressive)
|
|
addPass(createGVNPass());
|
|
else
|
|
addPass(createEarlyCSEPass());
|
|
}
|
|
|
|
void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
|
|
if (isPassEnabled(EnableLoopPrefetch, CodeGenOptLevel::Aggressive))
|
|
addPass(createLoopDataPrefetchPass());
|
|
addPass(createSeparateConstOffsetFromGEPPass());
|
|
// ReassociateGEPs exposes more opportunities for SLSR. See
|
|
// the example in reassociate-geps-and-slsr.ll.
|
|
addPass(createStraightLineStrengthReducePass());
|
|
// SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
|
|
// EarlyCSE can reuse.
|
|
addEarlyCSEOrGVNPass();
|
|
// Run NaryReassociate after EarlyCSE/GVN to be more effective.
|
|
addPass(createNaryReassociatePass());
|
|
// NaryReassociate on GEPs creates redundant common expressions, so run
|
|
// EarlyCSE after it.
|
|
addPass(createEarlyCSEPass());
|
|
}
|
|
|
|
void AMDGPUPassConfig::addIRPasses() {
|
|
const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
|
|
|
|
Triple::ArchType Arch = TM.getTargetTriple().getArch();
|
|
if (RemoveIncompatibleFunctions && Arch == Triple::amdgcn)
|
|
addPass(createAMDGPURemoveIncompatibleFunctionsPass(&TM));
|
|
|
|
// There is no reason to run these.
|
|
disablePass(&StackMapLivenessID);
|
|
disablePass(&FuncletLayoutID);
|
|
disablePass(&PatchableFunctionID);
|
|
|
|
addPass(createAMDGPUPrintfRuntimeBinding());
|
|
if (LowerCtorDtor)
|
|
addPass(createAMDGPUCtorDtorLoweringLegacyPass());
|
|
|
|
if (isPassEnabled(EnableImageIntrinsicOptimizer))
|
|
addPass(createAMDGPUImageIntrinsicOptimizerPass(&TM));
|
|
|
|
// Function calls are not supported, so make sure we inline everything.
|
|
addPass(createAMDGPUAlwaysInlinePass());
|
|
addPass(createAlwaysInlinerLegacyPass());
|
|
|
|
// Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
|
|
if (Arch == Triple::r600)
|
|
addPass(createR600OpenCLImageTypeLoweringPass());
|
|
|
|
// Replace OpenCL enqueued block function pointers with global variables.
|
|
addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
|
|
|
|
// Runs before PromoteAlloca so the latter can account for function uses
|
|
if (EnableLowerModuleLDS) {
|
|
addPass(createAMDGPULowerModuleLDSLegacyPass(&TM));
|
|
}
|
|
|
|
// AMDGPUAttributor infers lack of llvm.amdgcn.lds.kernel.id calls, so run
|
|
// after their introduction
|
|
if (TM.getOptLevel() > CodeGenOptLevel::None)
|
|
addPass(createAMDGPUAttributorLegacyPass());
|
|
|
|
if (TM.getOptLevel() > CodeGenOptLevel::None)
|
|
addPass(createInferAddressSpacesPass());
|
|
|
|
// Run atomic optimizer before Atomic Expand
|
|
if ((TM.getTargetTriple().getArch() == Triple::amdgcn) &&
|
|
(TM.getOptLevel() >= CodeGenOptLevel::Less) &&
|
|
(AMDGPUAtomicOptimizerStrategy != ScanOptions::None)) {
|
|
addPass(createAMDGPUAtomicOptimizerPass(AMDGPUAtomicOptimizerStrategy));
|
|
}
|
|
|
|
addPass(createAtomicExpandLegacyPass());
|
|
|
|
if (TM.getOptLevel() > CodeGenOptLevel::None) {
|
|
addPass(createAMDGPUPromoteAlloca());
|
|
|
|
if (isPassEnabled(EnableScalarIRPasses))
|
|
addStraightLineScalarOptimizationPasses();
|
|
|
|
if (EnableAMDGPUAliasAnalysis) {
|
|
addPass(createAMDGPUAAWrapperPass());
|
|
addPass(createExternalAAWrapperPass([](Pass &P, Function &,
|
|
AAResults &AAR) {
|
|
if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
|
|
AAR.addAAResult(WrapperPass->getResult());
|
|
}));
|
|
}
|
|
|
|
if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
|
|
// TODO: May want to move later or split into an early and late one.
|
|
addPass(createAMDGPUCodeGenPreparePass());
|
|
}
|
|
|
|
// Try to hoist loop invariant parts of divisions AMDGPUCodeGenPrepare may
|
|
// have expanded.
|
|
if (TM.getOptLevel() > CodeGenOptLevel::Less)
|
|
addPass(createLICMPass());
|
|
}
|
|
|
|
TargetPassConfig::addIRPasses();
|
|
|
|
// EarlyCSE is not always strong enough to clean up what LSR produces. For
|
|
// example, GVN can combine
|
|
//
|
|
// %0 = add %a, %b
|
|
// %1 = add %b, %a
|
|
//
|
|
// and
|
|
//
|
|
// %0 = shl nsw %a, 2
|
|
// %1 = shl %a, 2
|
|
//
|
|
// but EarlyCSE can do neither of them.
|
|
if (isPassEnabled(EnableScalarIRPasses))
|
|
addEarlyCSEOrGVNPass();
|
|
}
|
|
|
|
void AMDGPUPassConfig::addCodeGenPrepare() {
|
|
if (TM->getTargetTriple().getArch() == Triple::amdgcn) {
|
|
// FIXME: This pass adds 2 hacky attributes that can be replaced with an
|
|
// analysis, and should be removed.
|
|
addPass(createAMDGPUAnnotateKernelFeaturesPass());
|
|
}
|
|
|
|
if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
|
|
EnableLowerKernelArguments)
|
|
addPass(createAMDGPULowerKernelArgumentsPass());
|
|
|
|
TargetPassConfig::addCodeGenPrepare();
|
|
|
|
if (isPassEnabled(EnableLoadStoreVectorizer))
|
|
addPass(createLoadStoreVectorizerPass());
|
|
|
|
// LowerSwitch pass may introduce unreachable blocks that can
|
|
// cause unexpected behavior for subsequent passes. Placing it
|
|
// here seems better that these blocks would get cleaned up by
|
|
// UnreachableBlockElim inserted next in the pass flow.
|
|
addPass(createLowerSwitchPass());
|
|
}
|
|
|
|
bool AMDGPUPassConfig::addPreISel() {
|
|
if (TM->getOptLevel() > CodeGenOptLevel::None)
|
|
addPass(createFlattenCFGPass());
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUPassConfig::addInstSelector() {
|
|
addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel()));
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUPassConfig::addGCPasses() {
|
|
// Do nothing. GC is not supported.
|
|
return false;
|
|
}
|
|
|
|
llvm::ScheduleDAGInstrs *
|
|
AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const {
|
|
const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
|
|
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
|
|
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
|
|
if (ST.shouldClusterStores())
|
|
DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
|
|
return DAG;
|
|
}
|
|
|
|
MachineFunctionInfo *R600TargetMachine::createMachineFunctionInfo(
|
|
BumpPtrAllocator &Allocator, const Function &F,
|
|
const TargetSubtargetInfo *STI) const {
|
|
return R600MachineFunctionInfo::create<R600MachineFunctionInfo>(
|
|
Allocator, F, static_cast<const R600Subtarget *>(STI));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GCN Pass Setup
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
|
|
MachineSchedContext *C) const {
|
|
const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
|
|
if (ST.enableSIScheduler())
|
|
return createSIMachineScheduler(C);
|
|
|
|
if (EnableMaxIlpSchedStrategy)
|
|
return createGCNMaxILPMachineScheduler(C);
|
|
|
|
return createGCNMaxOccupancyMachineScheduler(C);
|
|
}
|
|
|
|
bool GCNPassConfig::addPreISel() {
|
|
AMDGPUPassConfig::addPreISel();
|
|
|
|
if (TM->getOptLevel() > CodeGenOptLevel::None)
|
|
addPass(createAMDGPULateCodeGenPreparePass());
|
|
|
|
if (TM->getOptLevel() > CodeGenOptLevel::None)
|
|
addPass(createSinkingPass());
|
|
|
|
// Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
|
|
// regions formed by them.
|
|
addPass(&AMDGPUUnifyDivergentExitNodesID);
|
|
if (!LateCFGStructurize) {
|
|
if (EnableStructurizerWorkarounds) {
|
|
addPass(createFixIrreduciblePass());
|
|
addPass(createUnifyLoopExitsPass());
|
|
}
|
|
addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions
|
|
}
|
|
addPass(createAMDGPUAnnotateUniformValues());
|
|
if (!LateCFGStructurize) {
|
|
addPass(createSIAnnotateControlFlowPass());
|
|
// TODO: Move this right after structurizeCFG to avoid extra divergence
|
|
// analysis. This depends on stopping SIAnnotateControlFlow from making
|
|
// control flow modifications.
|
|
addPass(createAMDGPURewriteUndefForPHILegacyPass());
|
|
}
|
|
addPass(createLCSSAPass());
|
|
|
|
if (TM->getOptLevel() > CodeGenOptLevel::Less)
|
|
addPass(&AMDGPUPerfHintAnalysisID);
|
|
|
|
return false;
|
|
}
|
|
|
|
void GCNPassConfig::addMachineSSAOptimization() {
|
|
TargetPassConfig::addMachineSSAOptimization();
|
|
|
|
// We want to fold operands after PeepholeOptimizer has run (or as part of
|
|
// it), because it will eliminate extra copies making it easier to fold the
|
|
// real source operand. We want to eliminate dead instructions after, so that
|
|
// we see fewer uses of the copies. We then need to clean up the dead
|
|
// instructions leftover after the operands are folded as well.
|
|
//
|
|
// XXX - Can we get away without running DeadMachineInstructionElim again?
|
|
addPass(&SIFoldOperandsID);
|
|
if (EnableDPPCombine)
|
|
addPass(&GCNDPPCombineID);
|
|
addPass(&SILoadStoreOptimizerID);
|
|
if (isPassEnabled(EnableSDWAPeephole)) {
|
|
addPass(&SIPeepholeSDWAID);
|
|
addPass(&EarlyMachineLICMID);
|
|
addPass(&MachineCSEID);
|
|
addPass(&SIFoldOperandsID);
|
|
}
|
|
addPass(&DeadMachineInstructionElimID);
|
|
addPass(createSIShrinkInstructionsPass());
|
|
}
|
|
|
|
bool GCNPassConfig::addILPOpts() {
|
|
if (EnableEarlyIfConversion)
|
|
addPass(&EarlyIfConverterID);
|
|
|
|
TargetPassConfig::addILPOpts();
|
|
return false;
|
|
}
|
|
|
|
bool GCNPassConfig::addInstSelector() {
|
|
AMDGPUPassConfig::addInstSelector();
|
|
addPass(&SIFixSGPRCopiesID);
|
|
addPass(createSILowerI1CopiesPass());
|
|
return false;
|
|
}
|
|
|
|
bool GCNPassConfig::addIRTranslator() {
|
|
addPass(new IRTranslator(getOptLevel()));
|
|
return false;
|
|
}
|
|
|
|
void GCNPassConfig::addPreLegalizeMachineIR() {
|
|
bool IsOptNone = getOptLevel() == CodeGenOptLevel::None;
|
|
addPass(createAMDGPUPreLegalizeCombiner(IsOptNone));
|
|
addPass(new Localizer());
|
|
}
|
|
|
|
bool GCNPassConfig::addLegalizeMachineIR() {
|
|
addPass(new Legalizer());
|
|
return false;
|
|
}
|
|
|
|
void GCNPassConfig::addPreRegBankSelect() {
|
|
bool IsOptNone = getOptLevel() == CodeGenOptLevel::None;
|
|
addPass(createAMDGPUPostLegalizeCombiner(IsOptNone));
|
|
addPass(createAMDGPUGlobalISelDivergenceLoweringPass());
|
|
}
|
|
|
|
bool GCNPassConfig::addRegBankSelect() {
|
|
addPass(new AMDGPURegBankSelect());
|
|
return false;
|
|
}
|
|
|
|
void GCNPassConfig::addPreGlobalInstructionSelect() {
|
|
bool IsOptNone = getOptLevel() == CodeGenOptLevel::None;
|
|
addPass(createAMDGPURegBankCombiner(IsOptNone));
|
|
}
|
|
|
|
bool GCNPassConfig::addGlobalInstructionSelect() {
|
|
addPass(new InstructionSelect(getOptLevel()));
|
|
return false;
|
|
}
|
|
|
|
void GCNPassConfig::addPreRegAlloc() {
|
|
if (LateCFGStructurize) {
|
|
addPass(createAMDGPUMachineCFGStructurizerPass());
|
|
}
|
|
}
|
|
|
|
void GCNPassConfig::addFastRegAlloc() {
|
|
// FIXME: We have to disable the verifier here because of PHIElimination +
|
|
// TwoAddressInstructions disabling it.
|
|
|
|
// This must be run immediately after phi elimination and before
|
|
// TwoAddressInstructions, otherwise the processing of the tied operand of
|
|
// SI_ELSE will introduce a copy of the tied operand source after the else.
|
|
insertPass(&PHIEliminationID, &SILowerControlFlowID);
|
|
|
|
insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID);
|
|
|
|
TargetPassConfig::addFastRegAlloc();
|
|
}
|
|
|
|
void GCNPassConfig::addOptimizedRegAlloc() {
|
|
// Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation
|
|
// instructions that cause scheduling barriers.
|
|
insertPass(&MachineSchedulerID, &SIWholeQuadModeID);
|
|
|
|
if (OptExecMaskPreRA)
|
|
insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
|
|
|
|
if (EnableRewritePartialRegUses)
|
|
insertPass(&RenameIndependentSubregsID, &GCNRewritePartialRegUsesID);
|
|
|
|
if (isPassEnabled(EnablePreRAOptimizations))
|
|
insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID);
|
|
|
|
// This is not an essential optimization and it has a noticeable impact on
|
|
// compilation time, so we only enable it from O2.
|
|
if (TM->getOptLevel() > CodeGenOptLevel::Less)
|
|
insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
|
|
|
|
// FIXME: when an instruction has a Killed operand, and the instruction is
|
|
// inside a bundle, seems only the BUNDLE instruction appears as the Kills of
|
|
// the register in LiveVariables, this would trigger a failure in verifier,
|
|
// we should fix it and enable the verifier.
|
|
if (OptVGPRLiveRange)
|
|
insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID);
|
|
// This must be run immediately after phi elimination and before
|
|
// TwoAddressInstructions, otherwise the processing of the tied operand of
|
|
// SI_ELSE will introduce a copy of the tied operand source after the else.
|
|
insertPass(&PHIEliminationID, &SILowerControlFlowID);
|
|
|
|
if (EnableDCEInRA)
|
|
insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID);
|
|
|
|
TargetPassConfig::addOptimizedRegAlloc();
|
|
}
|
|
|
|
bool GCNPassConfig::addPreRewrite() {
|
|
addPass(&SILowerWWMCopiesID);
|
|
if (EnableRegReassign)
|
|
addPass(&GCNNSAReassignID);
|
|
return true;
|
|
}
|
|
|
|
FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) {
|
|
// Initialize the global default.
|
|
llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag,
|
|
initializeDefaultSGPRRegisterAllocatorOnce);
|
|
|
|
RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
|
|
if (Ctor != useDefaultRegisterAllocator)
|
|
return Ctor();
|
|
|
|
if (Optimized)
|
|
return createGreedyRegisterAllocator(onlyAllocateSGPRs);
|
|
|
|
return createFastRegisterAllocator(onlyAllocateSGPRs, false);
|
|
}
|
|
|
|
FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) {
|
|
// Initialize the global default.
|
|
llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag,
|
|
initializeDefaultVGPRRegisterAllocatorOnce);
|
|
|
|
RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
|
|
if (Ctor != useDefaultRegisterAllocator)
|
|
return Ctor();
|
|
|
|
if (Optimized)
|
|
return createGreedyVGPRRegisterAllocator();
|
|
|
|
return createFastVGPRRegisterAllocator();
|
|
}
|
|
|
|
FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) {
|
|
llvm_unreachable("should not be used");
|
|
}
|
|
|
|
static const char RegAllocOptNotSupportedMessage[] =
|
|
"-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc";
|
|
|
|
bool GCNPassConfig::addRegAssignAndRewriteFast() {
|
|
if (!usingDefaultRegAlloc())
|
|
report_fatal_error(RegAllocOptNotSupportedMessage);
|
|
|
|
addPass(&GCNPreRALongBranchRegID);
|
|
|
|
addPass(createSGPRAllocPass(false));
|
|
|
|
// Equivalent of PEI for SGPRs.
|
|
addPass(&SILowerSGPRSpillsID);
|
|
addPass(&SIPreAllocateWWMRegsID);
|
|
|
|
addPass(createVGPRAllocPass(false));
|
|
|
|
addPass(&SILowerWWMCopiesID);
|
|
return true;
|
|
}
|
|
|
|
bool GCNPassConfig::addRegAssignAndRewriteOptimized() {
|
|
if (!usingDefaultRegAlloc())
|
|
report_fatal_error(RegAllocOptNotSupportedMessage);
|
|
|
|
addPass(&GCNPreRALongBranchRegID);
|
|
|
|
addPass(createSGPRAllocPass(true));
|
|
|
|
// Commit allocated register changes. This is mostly necessary because too
|
|
// many things rely on the use lists of the physical registers, such as the
|
|
// verifier. This is only necessary with allocators which use LiveIntervals,
|
|
// since FastRegAlloc does the replacements itself.
|
|
addPass(createVirtRegRewriter(false));
|
|
|
|
// Equivalent of PEI for SGPRs.
|
|
addPass(&SILowerSGPRSpillsID);
|
|
addPass(&SIPreAllocateWWMRegsID);
|
|
|
|
addPass(createVGPRAllocPass(true));
|
|
|
|
addPreRewrite();
|
|
addPass(&VirtRegRewriterID);
|
|
|
|
addPass(&AMDGPUMarkLastScratchLoadID);
|
|
|
|
return true;
|
|
}
|
|
|
|
void GCNPassConfig::addPostRegAlloc() {
|
|
addPass(&SIFixVGPRCopiesID);
|
|
if (getOptLevel() > CodeGenOptLevel::None)
|
|
addPass(&SIOptimizeExecMaskingID);
|
|
TargetPassConfig::addPostRegAlloc();
|
|
}
|
|
|
|
void GCNPassConfig::addPreSched2() {
|
|
if (TM->getOptLevel() > CodeGenOptLevel::None)
|
|
addPass(createSIShrinkInstructionsPass());
|
|
addPass(&SIPostRABundlerID);
|
|
}
|
|
|
|
void GCNPassConfig::addPreEmitPass() {
|
|
if (isPassEnabled(EnableVOPD, CodeGenOptLevel::Less))
|
|
addPass(&GCNCreateVOPDID);
|
|
addPass(createSIMemoryLegalizerPass());
|
|
addPass(createSIInsertWaitcntsPass());
|
|
|
|
addPass(createSIModeRegisterPass());
|
|
|
|
if (getOptLevel() > CodeGenOptLevel::None)
|
|
addPass(&SIInsertHardClausesID);
|
|
|
|
addPass(&SILateBranchLoweringPassID);
|
|
if (isPassEnabled(EnableSetWavePriority, CodeGenOptLevel::Less))
|
|
addPass(createAMDGPUSetWavePriorityPass());
|
|
if (getOptLevel() > CodeGenOptLevel::None)
|
|
addPass(&SIPreEmitPeepholeID);
|
|
// The hazard recognizer that runs as part of the post-ra scheduler does not
|
|
// guarantee to be able handle all hazards correctly. This is because if there
|
|
// are multiple scheduling regions in a basic block, the regions are scheduled
|
|
// bottom up, so when we begin to schedule a region we don't know what
|
|
// instructions were emitted directly before it.
|
|
//
|
|
// Here we add a stand-alone hazard recognizer pass which can handle all
|
|
// cases.
|
|
addPass(&PostRAHazardRecognizerID);
|
|
|
|
if (isPassEnabled(EnableInsertSingleUseVDST, CodeGenOptLevel::Less))
|
|
addPass(&AMDGPUInsertSingleUseVDSTID);
|
|
|
|
if (isPassEnabled(EnableInsertDelayAlu, CodeGenOptLevel::Less))
|
|
addPass(&AMDGPUInsertDelayAluID);
|
|
|
|
addPass(&BranchRelaxationPassID);
|
|
}
|
|
|
|
TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
return new GCNPassConfig(*this, PM);
|
|
}
|
|
|
|
void GCNTargetMachine::registerMachineRegisterInfoCallback(
|
|
MachineFunction &MF) const {
|
|
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
MF.getRegInfo().addDelegate(MFI);
|
|
}
|
|
|
|
MachineFunctionInfo *GCNTargetMachine::createMachineFunctionInfo(
|
|
BumpPtrAllocator &Allocator, const Function &F,
|
|
const TargetSubtargetInfo *STI) const {
|
|
return SIMachineFunctionInfo::create<SIMachineFunctionInfo>(
|
|
Allocator, F, static_cast<const GCNSubtarget *>(STI));
|
|
}
|
|
|
|
yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
|
|
return new yaml::SIMachineFunctionInfo();
|
|
}
|
|
|
|
yaml::MachineFunctionInfo *
|
|
GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
return new yaml::SIMachineFunctionInfo(
|
|
*MFI, *MF.getSubtarget<GCNSubtarget>().getRegisterInfo(), MF);
|
|
}
|
|
|
|
bool GCNTargetMachine::parseMachineFunctionInfo(
|
|
const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
|
|
SMDiagnostic &Error, SMRange &SourceRange) const {
|
|
const yaml::SIMachineFunctionInfo &YamlMFI =
|
|
static_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
|
|
MachineFunction &MF = PFS.MF;
|
|
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
|
|
if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange))
|
|
return true;
|
|
|
|
if (MFI->Occupancy == 0) {
|
|
// Fixup the subtarget dependent default value.
|
|
MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize());
|
|
}
|
|
|
|
auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) {
|
|
Register TempReg;
|
|
if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) {
|
|
SourceRange = RegName.SourceRange;
|
|
return true;
|
|
}
|
|
RegVal = TempReg;
|
|
|
|
return false;
|
|
};
|
|
|
|
auto parseOptionalRegister = [&](const yaml::StringValue &RegName,
|
|
Register &RegVal) {
|
|
return !RegName.Value.empty() && parseRegister(RegName, RegVal);
|
|
};
|
|
|
|
if (parseOptionalRegister(YamlMFI.VGPRForAGPRCopy, MFI->VGPRForAGPRCopy))
|
|
return true;
|
|
|
|
if (parseOptionalRegister(YamlMFI.SGPRForEXECCopy, MFI->SGPRForEXECCopy))
|
|
return true;
|
|
|
|
if (parseOptionalRegister(YamlMFI.LongBranchReservedReg,
|
|
MFI->LongBranchReservedReg))
|
|
return true;
|
|
|
|
auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
|
|
// Create a diagnostic for a the register string literal.
|
|
const MemoryBuffer &Buffer =
|
|
*PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
|
|
Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
|
|
RegName.Value.size(), SourceMgr::DK_Error,
|
|
"incorrect register class for field", RegName.Value,
|
|
std::nullopt, std::nullopt);
|
|
SourceRange = RegName.SourceRange;
|
|
return true;
|
|
};
|
|
|
|
if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
|
|
parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
|
|
parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
|
|
return true;
|
|
|
|
if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
|
|
!AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) {
|
|
return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
|
|
}
|
|
|
|
if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
|
|
!AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
|
|
return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
|
|
}
|
|
|
|
if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
|
|
!AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
|
|
return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
|
|
}
|
|
|
|
for (const auto &YamlReg : YamlMFI.WWMReservedRegs) {
|
|
Register ParsedReg;
|
|
if (parseRegister(YamlReg, ParsedReg))
|
|
return true;
|
|
|
|
MFI->reserveWWMRegister(ParsedReg);
|
|
}
|
|
|
|
auto parseAndCheckArgument = [&](const std::optional<yaml::SIArgument> &A,
|
|
const TargetRegisterClass &RC,
|
|
ArgDescriptor &Arg, unsigned UserSGPRs,
|
|
unsigned SystemSGPRs) {
|
|
// Skip parsing if it's not present.
|
|
if (!A)
|
|
return false;
|
|
|
|
if (A->IsRegister) {
|
|
Register Reg;
|
|
if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
|
|
SourceRange = A->RegisterName.SourceRange;
|
|
return true;
|
|
}
|
|
if (!RC.contains(Reg))
|
|
return diagnoseRegisterClass(A->RegisterName);
|
|
Arg = ArgDescriptor::createRegister(Reg);
|
|
} else
|
|
Arg = ArgDescriptor::createStack(A->StackOffset);
|
|
// Check and apply the optional mask.
|
|
if (A->Mask)
|
|
Arg = ArgDescriptor::createArg(Arg, *A->Mask);
|
|
|
|
MFI->NumUserSGPRs += UserSGPRs;
|
|
MFI->NumSystemSGPRs += SystemSGPRs;
|
|
return false;
|
|
};
|
|
|
|
if (YamlMFI.ArgInfo &&
|
|
(parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
|
|
AMDGPU::SGPR_128RegClass,
|
|
MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
|
|
AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
|
|
2, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
|
|
MFI->ArgInfo.QueuePtr, 2, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
|
|
AMDGPU::SReg_64RegClass,
|
|
MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
|
|
AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
|
|
2, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
|
|
AMDGPU::SReg_64RegClass,
|
|
MFI->ArgInfo.FlatScratchInit, 2, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
|
|
AMDGPU::SGPR_32RegClass,
|
|
MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->LDSKernelId,
|
|
AMDGPU::SGPR_32RegClass,
|
|
MFI->ArgInfo.LDSKernelId, 0, 1) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
|
|
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
|
|
0, 1) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
|
|
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
|
|
0, 1) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
|
|
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
|
|
0, 1) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
|
|
AMDGPU::SGPR_32RegClass,
|
|
MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
|
|
AMDGPU::SGPR_32RegClass,
|
|
MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
|
|
AMDGPU::SReg_64RegClass,
|
|
MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
|
|
AMDGPU::SReg_64RegClass,
|
|
MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
|
|
AMDGPU::VGPR_32RegClass,
|
|
MFI->ArgInfo.WorkItemIDX, 0, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
|
|
AMDGPU::VGPR_32RegClass,
|
|
MFI->ArgInfo.WorkItemIDY, 0, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
|
|
AMDGPU::VGPR_32RegClass,
|
|
MFI->ArgInfo.WorkItemIDZ, 0, 0)))
|
|
return true;
|
|
|
|
if (ST.hasIEEEMode())
|
|
MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
|
|
if (ST.hasDX10ClampMode())
|
|
MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
|
|
|
|
// FIXME: Move proper support for denormal-fp-math into base MachineFunction
|
|
MFI->Mode.FP32Denormals.Input = YamlMFI.Mode.FP32InputDenormals
|
|
? DenormalMode::IEEE
|
|
: DenormalMode::PreserveSign;
|
|
MFI->Mode.FP32Denormals.Output = YamlMFI.Mode.FP32OutputDenormals
|
|
? DenormalMode::IEEE
|
|
: DenormalMode::PreserveSign;
|
|
|
|
MFI->Mode.FP64FP16Denormals.Input = YamlMFI.Mode.FP64FP16InputDenormals
|
|
? DenormalMode::IEEE
|
|
: DenormalMode::PreserveSign;
|
|
MFI->Mode.FP64FP16Denormals.Output = YamlMFI.Mode.FP64FP16OutputDenormals
|
|
? DenormalMode::IEEE
|
|
: DenormalMode::PreserveSign;
|
|
|
|
return false;
|
|
}
|