llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyFastISel.cpp
Congcong Cai a71147dd28
[WebAssembly] improve getRegForPromotedValue to avoid meanless value copy (#80469)
When promoted value, it is meaningless to copy value from reg to another
reg with the same type.
This PR add additional check for this cases to reduce the code size.
Fixes: #80053.
2024-02-06 09:07:58 +08:00

1440 lines
42 KiB
C++

//===-- WebAssemblyFastISel.cpp - WebAssembly FastISel implementation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the WebAssembly-specific support for the FastISel
/// class. Some of the target-specific code is generated by tablegen in the file
/// WebAssemblyGenFastISel.inc, which is #included here.
///
/// TODO: kill flags
///
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
#include "Utils/WebAssemblyTypeUtilities.h"
#include "WebAssembly.h"
#include "WebAssemblyMachineFunctionInfo.h"
#include "WebAssemblySubtarget.h"
#include "WebAssemblyTargetMachine.h"
#include "WebAssemblyUtilities.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "wasm-fastisel"
namespace {
class WebAssemblyFastISel final : public FastISel {
// All possible address modes.
class Address {
public:
using BaseKind = enum { RegBase, FrameIndexBase };
private:
BaseKind Kind = RegBase;
union {
unsigned Reg;
int FI;
} Base;
// Whether the base has been determined yet
bool IsBaseSet = false;
int64_t Offset = 0;
const GlobalValue *GV = nullptr;
public:
// Innocuous defaults for our address.
Address() { Base.Reg = 0; }
void setKind(BaseKind K) {
assert(!isSet() && "Can't change kind with non-zero base");
Kind = K;
}
BaseKind getKind() const { return Kind; }
bool isRegBase() const { return Kind == RegBase; }
bool isFIBase() const { return Kind == FrameIndexBase; }
void setReg(unsigned Reg) {
assert(isRegBase() && "Invalid base register access!");
assert(!IsBaseSet && "Base cannot be reset");
Base.Reg = Reg;
IsBaseSet = true;
}
unsigned getReg() const {
assert(isRegBase() && "Invalid base register access!");
return Base.Reg;
}
void setFI(unsigned FI) {
assert(isFIBase() && "Invalid base frame index access!");
assert(!IsBaseSet && "Base cannot be reset");
Base.FI = FI;
IsBaseSet = true;
}
unsigned getFI() const {
assert(isFIBase() && "Invalid base frame index access!");
return Base.FI;
}
void setOffset(int64_t NewOffset) {
assert(NewOffset >= 0 && "Offsets must be non-negative");
Offset = NewOffset;
}
int64_t getOffset() const { return Offset; }
void setGlobalValue(const GlobalValue *G) { GV = G; }
const GlobalValue *getGlobalValue() const { return GV; }
bool isSet() const { return IsBaseSet; }
};
/// Keep a pointer to the WebAssemblySubtarget around so that we can make the
/// right decision when generating code for different targets.
const WebAssemblySubtarget *Subtarget;
LLVMContext *Context;
private:
// Utility helper routines
MVT::SimpleValueType getSimpleType(Type *Ty) {
EVT VT = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
return VT.isSimple() ? VT.getSimpleVT().SimpleTy
: MVT::INVALID_SIMPLE_VALUE_TYPE;
}
MVT::SimpleValueType getLegalType(MVT::SimpleValueType VT) {
switch (VT) {
case MVT::i1:
case MVT::i8:
case MVT::i16:
return MVT::i32;
case MVT::i32:
case MVT::i64:
case MVT::f32:
case MVT::f64:
return VT;
case MVT::funcref:
case MVT::externref:
if (Subtarget->hasReferenceTypes())
return VT;
break;
case MVT::f16:
return MVT::f32;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v4f32:
case MVT::v2i64:
case MVT::v2f64:
if (Subtarget->hasSIMD128())
return VT;
break;
default:
break;
}
return MVT::INVALID_SIMPLE_VALUE_TYPE;
}
bool computeAddress(const Value *Obj, Address &Addr);
void materializeLoadStoreOperands(Address &Addr);
void addLoadStoreOperands(const Address &Addr, const MachineInstrBuilder &MIB,
MachineMemOperand *MMO);
unsigned maskI1Value(unsigned Reg, const Value *V);
unsigned getRegForI1Value(const Value *V, const BasicBlock *BB, bool &Not);
unsigned zeroExtendToI32(unsigned Reg, const Value *V,
MVT::SimpleValueType From);
unsigned signExtendToI32(unsigned Reg, const Value *V,
MVT::SimpleValueType From);
unsigned zeroExtend(unsigned Reg, const Value *V, MVT::SimpleValueType From,
MVT::SimpleValueType To);
unsigned signExtend(unsigned Reg, const Value *V, MVT::SimpleValueType From,
MVT::SimpleValueType To);
unsigned getRegForUnsignedValue(const Value *V);
unsigned getRegForSignedValue(const Value *V);
unsigned getRegForPromotedValue(const Value *V, bool IsSigned);
unsigned notValue(unsigned Reg);
unsigned copyValue(unsigned Reg);
// Backend specific FastISel code.
unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
unsigned fastMaterializeConstant(const Constant *C) override;
bool fastLowerArguments() override;
// Selection routines.
bool selectCall(const Instruction *I);
bool selectSelect(const Instruction *I);
bool selectTrunc(const Instruction *I);
bool selectZExt(const Instruction *I);
bool selectSExt(const Instruction *I);
bool selectICmp(const Instruction *I);
bool selectFCmp(const Instruction *I);
bool selectBitCast(const Instruction *I);
bool selectLoad(const Instruction *I);
bool selectStore(const Instruction *I);
bool selectBr(const Instruction *I);
bool selectRet(const Instruction *I);
bool selectUnreachable(const Instruction *I);
public:
// Backend specific FastISel code.
WebAssemblyFastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo)
: FastISel(FuncInfo, LibInfo, /*SkipTargetIndependentISel=*/true) {
Subtarget = &FuncInfo.MF->getSubtarget<WebAssemblySubtarget>();
Context = &FuncInfo.Fn->getContext();
}
bool fastSelectInstruction(const Instruction *I) override;
#include "WebAssemblyGenFastISel.inc"
};
} // end anonymous namespace
bool WebAssemblyFastISel::computeAddress(const Value *Obj, Address &Addr) {
const User *U = nullptr;
unsigned Opcode = Instruction::UserOp1;
if (const auto *I = dyn_cast<Instruction>(Obj)) {
// Don't walk into other basic blocks unless the object is an alloca from
// another block, otherwise it may not have a virtual register assigned.
if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
Opcode = I->getOpcode();
U = I;
}
} else if (const auto *C = dyn_cast<ConstantExpr>(Obj)) {
Opcode = C->getOpcode();
U = C;
}
if (auto *Ty = dyn_cast<PointerType>(Obj->getType()))
if (Ty->getAddressSpace() > 255)
// Fast instruction selection doesn't support the special
// address spaces.
return false;
if (const auto *GV = dyn_cast<GlobalValue>(Obj)) {
if (TLI.isPositionIndependent())
return false;
if (Addr.getGlobalValue())
return false;
if (GV->isThreadLocal())
return false;
Addr.setGlobalValue(GV);
return true;
}
switch (Opcode) {
default:
break;
case Instruction::BitCast: {
// Look through bitcasts.
return computeAddress(U->getOperand(0), Addr);
}
case Instruction::IntToPtr: {
// Look past no-op inttoptrs.
if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
TLI.getPointerTy(DL))
return computeAddress(U->getOperand(0), Addr);
break;
}
case Instruction::PtrToInt: {
// Look past no-op ptrtoints.
if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
return computeAddress(U->getOperand(0), Addr);
break;
}
case Instruction::GetElementPtr: {
Address SavedAddr = Addr;
uint64_t TmpOffset = Addr.getOffset();
// Non-inbounds geps can wrap; wasm's offsets can't.
if (!cast<GEPOperator>(U)->isInBounds())
goto unsupported_gep;
// Iterate through the GEP folding the constants into offsets where
// we can.
for (gep_type_iterator GTI = gep_type_begin(U), E = gep_type_end(U);
GTI != E; ++GTI) {
const Value *Op = GTI.getOperand();
if (StructType *STy = GTI.getStructTypeOrNull()) {
const StructLayout *SL = DL.getStructLayout(STy);
unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
TmpOffset += SL->getElementOffset(Idx);
} else {
uint64_t S = GTI.getSequentialElementStride(DL);
for (;;) {
if (const auto *CI = dyn_cast<ConstantInt>(Op)) {
// Constant-offset addressing.
TmpOffset += CI->getSExtValue() * S;
break;
}
if (S == 1 && Addr.isRegBase() && Addr.getReg() == 0) {
// An unscaled add of a register. Set it as the new base.
Register Reg = getRegForValue(Op);
if (Reg == 0)
return false;
Addr.setReg(Reg);
break;
}
if (canFoldAddIntoGEP(U, Op)) {
// A compatible add with a constant operand. Fold the constant.
auto *CI = cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
TmpOffset += CI->getSExtValue() * S;
// Iterate on the other operand.
Op = cast<AddOperator>(Op)->getOperand(0);
continue;
}
// Unsupported
goto unsupported_gep;
}
}
}
// Don't fold in negative offsets.
if (int64_t(TmpOffset) >= 0) {
// Try to grab the base operand now.
Addr.setOffset(TmpOffset);
if (computeAddress(U->getOperand(0), Addr))
return true;
}
// We failed, restore everything and try the other options.
Addr = SavedAddr;
unsupported_gep:
break;
}
case Instruction::Alloca: {
const auto *AI = cast<AllocaInst>(Obj);
DenseMap<const AllocaInst *, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
if (Addr.isSet()) {
return false;
}
Addr.setKind(Address::FrameIndexBase);
Addr.setFI(SI->second);
return true;
}
break;
}
case Instruction::Add: {
// Adds of constants are common and easy enough.
const Value *LHS = U->getOperand(0);
const Value *RHS = U->getOperand(1);
if (isa<ConstantInt>(LHS))
std::swap(LHS, RHS);
if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
uint64_t TmpOffset = Addr.getOffset() + CI->getSExtValue();
if (int64_t(TmpOffset) >= 0) {
Addr.setOffset(TmpOffset);
return computeAddress(LHS, Addr);
}
}
Address Backup = Addr;
if (computeAddress(LHS, Addr) && computeAddress(RHS, Addr))
return true;
Addr = Backup;
break;
}
case Instruction::Sub: {
// Subs of constants are common and easy enough.
const Value *LHS = U->getOperand(0);
const Value *RHS = U->getOperand(1);
if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
int64_t TmpOffset = Addr.getOffset() - CI->getSExtValue();
if (TmpOffset >= 0) {
Addr.setOffset(TmpOffset);
return computeAddress(LHS, Addr);
}
}
break;
}
}
if (Addr.isSet()) {
return false;
}
Register Reg = getRegForValue(Obj);
if (Reg == 0)
return false;
Addr.setReg(Reg);
return Addr.getReg() != 0;
}
void WebAssemblyFastISel::materializeLoadStoreOperands(Address &Addr) {
if (Addr.isRegBase()) {
unsigned Reg = Addr.getReg();
if (Reg == 0) {
Reg = createResultReg(Subtarget->hasAddr64() ? &WebAssembly::I64RegClass
: &WebAssembly::I32RegClass);
unsigned Opc = Subtarget->hasAddr64() ? WebAssembly::CONST_I64
: WebAssembly::CONST_I32;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), Reg)
.addImm(0);
Addr.setReg(Reg);
}
}
}
void WebAssemblyFastISel::addLoadStoreOperands(const Address &Addr,
const MachineInstrBuilder &MIB,
MachineMemOperand *MMO) {
// Set the alignment operand (this is rewritten in SetP2AlignOperands).
// TODO: Disable SetP2AlignOperands for FastISel and just do it here.
MIB.addImm(0);
if (const GlobalValue *GV = Addr.getGlobalValue())
MIB.addGlobalAddress(GV, Addr.getOffset());
else
MIB.addImm(Addr.getOffset());
if (Addr.isRegBase())
MIB.addReg(Addr.getReg());
else
MIB.addFrameIndex(Addr.getFI());
MIB.addMemOperand(MMO);
}
unsigned WebAssemblyFastISel::maskI1Value(unsigned Reg, const Value *V) {
return zeroExtendToI32(Reg, V, MVT::i1);
}
unsigned WebAssemblyFastISel::getRegForI1Value(const Value *V,
const BasicBlock *BB,
bool &Not) {
if (const auto *ICmp = dyn_cast<ICmpInst>(V))
if (const ConstantInt *C = dyn_cast<ConstantInt>(ICmp->getOperand(1)))
if (ICmp->isEquality() && C->isZero() && C->getType()->isIntegerTy(32) &&
ICmp->getParent() == BB) {
Not = ICmp->isTrueWhenEqual();
return getRegForValue(ICmp->getOperand(0));
}
Not = false;
Register Reg = getRegForValue(V);
if (Reg == 0)
return 0;
return maskI1Value(Reg, V);
}
unsigned WebAssemblyFastISel::zeroExtendToI32(unsigned Reg, const Value *V,
MVT::SimpleValueType From) {
if (Reg == 0)
return 0;
switch (From) {
case MVT::i1:
// If the value is naturally an i1, we don't need to mask it. We only know
// if a value is naturally an i1 if it is definitely lowered by FastISel,
// not a DAG ISel fallback.
if (V != nullptr && isa<Argument>(V) && cast<Argument>(V)->hasZExtAttr())
return copyValue(Reg);
break;
case MVT::i8:
case MVT::i16:
break;
case MVT::i32:
return copyValue(Reg);
default:
return 0;
}
Register Imm = createResultReg(&WebAssembly::I32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
TII.get(WebAssembly::CONST_I32), Imm)
.addImm(~(~uint64_t(0) << MVT(From).getSizeInBits()));
Register Result = createResultReg(&WebAssembly::I32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
TII.get(WebAssembly::AND_I32), Result)
.addReg(Reg)
.addReg(Imm);
return Result;
}
unsigned WebAssemblyFastISel::signExtendToI32(unsigned Reg, const Value *V,
MVT::SimpleValueType From) {
if (Reg == 0)
return 0;
switch (From) {
case MVT::i1:
case MVT::i8:
case MVT::i16:
break;
case MVT::i32:
return copyValue(Reg);
default:
return 0;
}
Register Imm = createResultReg(&WebAssembly::I32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
TII.get(WebAssembly::CONST_I32), Imm)
.addImm(32 - MVT(From).getSizeInBits());
Register Left = createResultReg(&WebAssembly::I32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
TII.get(WebAssembly::SHL_I32), Left)
.addReg(Reg)
.addReg(Imm);
Register Right = createResultReg(&WebAssembly::I32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
TII.get(WebAssembly::SHR_S_I32), Right)
.addReg(Left)
.addReg(Imm);
return Right;
}
unsigned WebAssemblyFastISel::zeroExtend(unsigned Reg, const Value *V,
MVT::SimpleValueType From,
MVT::SimpleValueType To) {
if (To == MVT::i64) {
if (From == MVT::i64)
return copyValue(Reg);
Reg = zeroExtendToI32(Reg, V, From);
Register Result = createResultReg(&WebAssembly::I64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
TII.get(WebAssembly::I64_EXTEND_U_I32), Result)
.addReg(Reg);
return Result;
}
if (To == MVT::i32)
return zeroExtendToI32(Reg, V, From);
return 0;
}
unsigned WebAssemblyFastISel::signExtend(unsigned Reg, const Value *V,
MVT::SimpleValueType From,
MVT::SimpleValueType To) {
if (To == MVT::i64) {
if (From == MVT::i64)
return copyValue(Reg);
Reg = signExtendToI32(Reg, V, From);
Register Result = createResultReg(&WebAssembly::I64RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
TII.get(WebAssembly::I64_EXTEND_S_I32), Result)
.addReg(Reg);
return Result;
}
if (To == MVT::i32)
return signExtendToI32(Reg, V, From);
return 0;
}
unsigned WebAssemblyFastISel::getRegForUnsignedValue(const Value *V) {
MVT::SimpleValueType From = getSimpleType(V->getType());
MVT::SimpleValueType To = getLegalType(From);
Register VReg = getRegForValue(V);
if (VReg == 0)
return 0;
if (From == To)
return VReg;
return zeroExtend(VReg, V, From, To);
}
unsigned WebAssemblyFastISel::getRegForSignedValue(const Value *V) {
MVT::SimpleValueType From = getSimpleType(V->getType());
MVT::SimpleValueType To = getLegalType(From);
Register VReg = getRegForValue(V);
if (VReg == 0)
return 0;
if (From == To)
return VReg;
return signExtend(VReg, V, From, To);
}
unsigned WebAssemblyFastISel::getRegForPromotedValue(const Value *V,
bool IsSigned) {
return IsSigned ? getRegForSignedValue(V) : getRegForUnsignedValue(V);
}
unsigned WebAssemblyFastISel::notValue(unsigned Reg) {
assert(MRI.getRegClass(Reg) == &WebAssembly::I32RegClass);
Register NotReg = createResultReg(&WebAssembly::I32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
TII.get(WebAssembly::EQZ_I32), NotReg)
.addReg(Reg);
return NotReg;
}
unsigned WebAssemblyFastISel::copyValue(unsigned Reg) {
Register ResultReg = createResultReg(MRI.getRegClass(Reg));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(WebAssembly::COPY),
ResultReg)
.addReg(Reg);
return ResultReg;
}
unsigned WebAssemblyFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
DenseMap<const AllocaInst *, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
Register ResultReg =
createResultReg(Subtarget->hasAddr64() ? &WebAssembly::I64RegClass
: &WebAssembly::I32RegClass);
unsigned Opc =
Subtarget->hasAddr64() ? WebAssembly::COPY_I64 : WebAssembly::COPY_I32;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
.addFrameIndex(SI->second);
return ResultReg;
}
return 0;
}
unsigned WebAssemblyFastISel::fastMaterializeConstant(const Constant *C) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
if (TLI.isPositionIndependent())
return 0;
if (GV->isThreadLocal())
return 0;
Register ResultReg =
createResultReg(Subtarget->hasAddr64() ? &WebAssembly::I64RegClass
: &WebAssembly::I32RegClass);
unsigned Opc = Subtarget->hasAddr64() ? WebAssembly::CONST_I64
: WebAssembly::CONST_I32;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
.addGlobalAddress(GV);
return ResultReg;
}
// Let target-independent code handle it.
return 0;
}
bool WebAssemblyFastISel::fastLowerArguments() {
if (!FuncInfo.CanLowerReturn)
return false;
const Function *F = FuncInfo.Fn;
if (F->isVarArg())
return false;
if (FuncInfo.Fn->getCallingConv() == CallingConv::Swift)
return false;
unsigned I = 0;
for (auto const &Arg : F->args()) {
const AttributeList &Attrs = F->getAttributes();
if (Attrs.hasParamAttr(I, Attribute::ByVal) ||
Attrs.hasParamAttr(I, Attribute::SwiftSelf) ||
Attrs.hasParamAttr(I, Attribute::SwiftError) ||
Attrs.hasParamAttr(I, Attribute::InAlloca) ||
Attrs.hasParamAttr(I, Attribute::Nest))
return false;
Type *ArgTy = Arg.getType();
if (ArgTy->isStructTy() || ArgTy->isArrayTy())
return false;
if (!Subtarget->hasSIMD128() && ArgTy->isVectorTy())
return false;
unsigned Opc;
const TargetRegisterClass *RC;
switch (getSimpleType(ArgTy)) {
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
Opc = WebAssembly::ARGUMENT_i32;
RC = &WebAssembly::I32RegClass;
break;
case MVT::i64:
Opc = WebAssembly::ARGUMENT_i64;
RC = &WebAssembly::I64RegClass;
break;
case MVT::f32:
Opc = WebAssembly::ARGUMENT_f32;
RC = &WebAssembly::F32RegClass;
break;
case MVT::f64:
Opc = WebAssembly::ARGUMENT_f64;
RC = &WebAssembly::F64RegClass;
break;
case MVT::v16i8:
Opc = WebAssembly::ARGUMENT_v16i8;
RC = &WebAssembly::V128RegClass;
break;
case MVT::v8i16:
Opc = WebAssembly::ARGUMENT_v8i16;
RC = &WebAssembly::V128RegClass;
break;
case MVT::v4i32:
Opc = WebAssembly::ARGUMENT_v4i32;
RC = &WebAssembly::V128RegClass;
break;
case MVT::v2i64:
Opc = WebAssembly::ARGUMENT_v2i64;
RC = &WebAssembly::V128RegClass;
break;
case MVT::v4f32:
Opc = WebAssembly::ARGUMENT_v4f32;
RC = &WebAssembly::V128RegClass;
break;
case MVT::v2f64:
Opc = WebAssembly::ARGUMENT_v2f64;
RC = &WebAssembly::V128RegClass;
break;
case MVT::funcref:
Opc = WebAssembly::ARGUMENT_funcref;
RC = &WebAssembly::FUNCREFRegClass;
break;
case MVT::externref:
Opc = WebAssembly::ARGUMENT_externref;
RC = &WebAssembly::EXTERNREFRegClass;
break;
default:
return false;
}
Register ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
.addImm(I);
updateValueMap(&Arg, ResultReg);
++I;
}
MRI.addLiveIn(WebAssembly::ARGUMENTS);
auto *MFI = MF->getInfo<WebAssemblyFunctionInfo>();
for (auto const &Arg : F->args()) {
MVT::SimpleValueType ArgTy = getLegalType(getSimpleType(Arg.getType()));
if (ArgTy == MVT::INVALID_SIMPLE_VALUE_TYPE) {
MFI->clearParamsAndResults();
return false;
}
MFI->addParam(ArgTy);
}
if (!F->getReturnType()->isVoidTy()) {
MVT::SimpleValueType RetTy =
getLegalType(getSimpleType(F->getReturnType()));
if (RetTy == MVT::INVALID_SIMPLE_VALUE_TYPE) {
MFI->clearParamsAndResults();
return false;
}
MFI->addResult(RetTy);
}
return true;
}
bool WebAssemblyFastISel::selectCall(const Instruction *I) {
const auto *Call = cast<CallInst>(I);
// TODO: Support tail calls in FastISel
if (Call->isMustTailCall() || Call->isInlineAsm() ||
Call->getFunctionType()->isVarArg())
return false;
Function *Func = Call->getCalledFunction();
if (Func && Func->isIntrinsic())
return false;
if (Call->getCallingConv() == CallingConv::Swift)
return false;
bool IsDirect = Func != nullptr;
if (!IsDirect && isa<ConstantExpr>(Call->getCalledOperand()))
return false;
FunctionType *FuncTy = Call->getFunctionType();
unsigned Opc = IsDirect ? WebAssembly::CALL : WebAssembly::CALL_INDIRECT;
bool IsVoid = FuncTy->getReturnType()->isVoidTy();
unsigned ResultReg;
if (!IsVoid) {
if (!Subtarget->hasSIMD128() && Call->getType()->isVectorTy())
return false;
MVT::SimpleValueType RetTy = getSimpleType(Call->getType());
switch (RetTy) {
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
ResultReg = createResultReg(&WebAssembly::I32RegClass);
break;
case MVT::i64:
ResultReg = createResultReg(&WebAssembly::I64RegClass);
break;
case MVT::f32:
ResultReg = createResultReg(&WebAssembly::F32RegClass);
break;
case MVT::f64:
ResultReg = createResultReg(&WebAssembly::F64RegClass);
break;
case MVT::v16i8:
ResultReg = createResultReg(&WebAssembly::V128RegClass);
break;
case MVT::v8i16:
ResultReg = createResultReg(&WebAssembly::V128RegClass);
break;
case MVT::v4i32:
ResultReg = createResultReg(&WebAssembly::V128RegClass);
break;
case MVT::v2i64:
ResultReg = createResultReg(&WebAssembly::V128RegClass);
break;
case MVT::v4f32:
ResultReg = createResultReg(&WebAssembly::V128RegClass);
break;
case MVT::v2f64:
ResultReg = createResultReg(&WebAssembly::V128RegClass);
break;
case MVT::funcref:
ResultReg = createResultReg(&WebAssembly::FUNCREFRegClass);
break;
case MVT::externref:
ResultReg = createResultReg(&WebAssembly::EXTERNREFRegClass);
break;
default:
return false;
}
}
SmallVector<unsigned, 8> Args;
for (unsigned I = 0, E = Call->arg_size(); I < E; ++I) {
Value *V = Call->getArgOperand(I);
MVT::SimpleValueType ArgTy = getSimpleType(V->getType());
if (ArgTy == MVT::INVALID_SIMPLE_VALUE_TYPE)
return false;
const AttributeList &Attrs = Call->getAttributes();
if (Attrs.hasParamAttr(I, Attribute::ByVal) ||
Attrs.hasParamAttr(I, Attribute::SwiftSelf) ||
Attrs.hasParamAttr(I, Attribute::SwiftError) ||
Attrs.hasParamAttr(I, Attribute::InAlloca) ||
Attrs.hasParamAttr(I, Attribute::Nest))
return false;
unsigned Reg;
if (Call->paramHasAttr(I, Attribute::SExt))
Reg = getRegForSignedValue(V);
else if (Call->paramHasAttr(I, Attribute::ZExt))
Reg = getRegForUnsignedValue(V);
else
Reg = getRegForValue(V);
if (Reg == 0)
return false;
Args.push_back(Reg);
}
unsigned CalleeReg = 0;
if (!IsDirect) {
CalleeReg = getRegForValue(Call->getCalledOperand());
if (!CalleeReg)
return false;
}
auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc));
if (!IsVoid)
MIB.addReg(ResultReg, RegState::Define);
if (IsDirect) {
MIB.addGlobalAddress(Func);
} else {
// Placeholder for the type index.
MIB.addImm(0);
// The table into which this call_indirect indexes.
MCSymbolWasm *Table = WebAssembly::getOrCreateFunctionTableSymbol(
MF->getMMI().getContext(), Subtarget);
if (Subtarget->hasReferenceTypes()) {
MIB.addSym(Table);
} else {
// Otherwise for the MVP there is at most one table whose number is 0, but
// we can't write a table symbol or issue relocations. Instead we just
// ensure the table is live.
Table->setNoStrip();
MIB.addImm(0);
}
// See if we must truncate the function pointer.
// CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
// as 64-bit for uniformity with other pointer types.
// See also: WebAssemblyISelLowering.cpp: LowerCallResults
if (Subtarget->hasAddr64()) {
auto Wrap = BuildMI(*FuncInfo.MBB, std::prev(FuncInfo.InsertPt), MIMD,
TII.get(WebAssembly::I32_WRAP_I64));
Register Reg32 = createResultReg(&WebAssembly::I32RegClass);
Wrap.addReg(Reg32, RegState::Define);
Wrap.addReg(CalleeReg);
CalleeReg = Reg32;
}
}
for (unsigned ArgReg : Args)
MIB.addReg(ArgReg);
if (!IsDirect)
MIB.addReg(CalleeReg);
if (!IsVoid)
updateValueMap(Call, ResultReg);
return true;
}
bool WebAssemblyFastISel::selectSelect(const Instruction *I) {
const auto *Select = cast<SelectInst>(I);
bool Not;
unsigned CondReg =
getRegForI1Value(Select->getCondition(), I->getParent(), Not);
if (CondReg == 0)
return false;
Register TrueReg = getRegForValue(Select->getTrueValue());
if (TrueReg == 0)
return false;
Register FalseReg = getRegForValue(Select->getFalseValue());
if (FalseReg == 0)
return false;
if (Not)
std::swap(TrueReg, FalseReg);
unsigned Opc;
const TargetRegisterClass *RC;
switch (getSimpleType(Select->getType())) {
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
Opc = WebAssembly::SELECT_I32;
RC = &WebAssembly::I32RegClass;
break;
case MVT::i64:
Opc = WebAssembly::SELECT_I64;
RC = &WebAssembly::I64RegClass;
break;
case MVT::f32:
Opc = WebAssembly::SELECT_F32;
RC = &WebAssembly::F32RegClass;
break;
case MVT::f64:
Opc = WebAssembly::SELECT_F64;
RC = &WebAssembly::F64RegClass;
break;
case MVT::funcref:
Opc = WebAssembly::SELECT_FUNCREF;
RC = &WebAssembly::FUNCREFRegClass;
break;
case MVT::externref:
Opc = WebAssembly::SELECT_EXTERNREF;
RC = &WebAssembly::EXTERNREFRegClass;
break;
default:
return false;
}
Register ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
.addReg(TrueReg)
.addReg(FalseReg)
.addReg(CondReg);
updateValueMap(Select, ResultReg);
return true;
}
bool WebAssemblyFastISel::selectTrunc(const Instruction *I) {
const auto *Trunc = cast<TruncInst>(I);
Register Reg = getRegForValue(Trunc->getOperand(0));
if (Reg == 0)
return false;
if (Trunc->getOperand(0)->getType()->isIntegerTy(64)) {
Register Result = createResultReg(&WebAssembly::I32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
TII.get(WebAssembly::I32_WRAP_I64), Result)
.addReg(Reg);
Reg = Result;
}
updateValueMap(Trunc, Reg);
return true;
}
bool WebAssemblyFastISel::selectZExt(const Instruction *I) {
const auto *ZExt = cast<ZExtInst>(I);
const Value *Op = ZExt->getOperand(0);
MVT::SimpleValueType From = getSimpleType(Op->getType());
MVT::SimpleValueType To = getLegalType(getSimpleType(ZExt->getType()));
Register In = getRegForValue(Op);
if (In == 0)
return false;
unsigned Reg = zeroExtend(In, Op, From, To);
if (Reg == 0)
return false;
updateValueMap(ZExt, Reg);
return true;
}
bool WebAssemblyFastISel::selectSExt(const Instruction *I) {
const auto *SExt = cast<SExtInst>(I);
const Value *Op = SExt->getOperand(0);
MVT::SimpleValueType From = getSimpleType(Op->getType());
MVT::SimpleValueType To = getLegalType(getSimpleType(SExt->getType()));
Register In = getRegForValue(Op);
if (In == 0)
return false;
unsigned Reg = signExtend(In, Op, From, To);
if (Reg == 0)
return false;
updateValueMap(SExt, Reg);
return true;
}
bool WebAssemblyFastISel::selectICmp(const Instruction *I) {
const auto *ICmp = cast<ICmpInst>(I);
bool I32 = getSimpleType(ICmp->getOperand(0)->getType()) != MVT::i64;
unsigned Opc;
bool IsSigned = false;
switch (ICmp->getPredicate()) {
case ICmpInst::ICMP_EQ:
Opc = I32 ? WebAssembly::EQ_I32 : WebAssembly::EQ_I64;
break;
case ICmpInst::ICMP_NE:
Opc = I32 ? WebAssembly::NE_I32 : WebAssembly::NE_I64;
break;
case ICmpInst::ICMP_UGT:
Opc = I32 ? WebAssembly::GT_U_I32 : WebAssembly::GT_U_I64;
break;
case ICmpInst::ICMP_UGE:
Opc = I32 ? WebAssembly::GE_U_I32 : WebAssembly::GE_U_I64;
break;
case ICmpInst::ICMP_ULT:
Opc = I32 ? WebAssembly::LT_U_I32 : WebAssembly::LT_U_I64;
break;
case ICmpInst::ICMP_ULE:
Opc = I32 ? WebAssembly::LE_U_I32 : WebAssembly::LE_U_I64;
break;
case ICmpInst::ICMP_SGT:
Opc = I32 ? WebAssembly::GT_S_I32 : WebAssembly::GT_S_I64;
IsSigned = true;
break;
case ICmpInst::ICMP_SGE:
Opc = I32 ? WebAssembly::GE_S_I32 : WebAssembly::GE_S_I64;
IsSigned = true;
break;
case ICmpInst::ICMP_SLT:
Opc = I32 ? WebAssembly::LT_S_I32 : WebAssembly::LT_S_I64;
IsSigned = true;
break;
case ICmpInst::ICMP_SLE:
Opc = I32 ? WebAssembly::LE_S_I32 : WebAssembly::LE_S_I64;
IsSigned = true;
break;
default:
return false;
}
unsigned LHS = getRegForPromotedValue(ICmp->getOperand(0), IsSigned);
if (LHS == 0)
return false;
unsigned RHS = getRegForPromotedValue(ICmp->getOperand(1), IsSigned);
if (RHS == 0)
return false;
Register ResultReg = createResultReg(&WebAssembly::I32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
.addReg(LHS)
.addReg(RHS);
updateValueMap(ICmp, ResultReg);
return true;
}
bool WebAssemblyFastISel::selectFCmp(const Instruction *I) {
const auto *FCmp = cast<FCmpInst>(I);
Register LHS = getRegForValue(FCmp->getOperand(0));
if (LHS == 0)
return false;
Register RHS = getRegForValue(FCmp->getOperand(1));
if (RHS == 0)
return false;
bool F32 = getSimpleType(FCmp->getOperand(0)->getType()) != MVT::f64;
unsigned Opc;
bool Not = false;
switch (FCmp->getPredicate()) {
case FCmpInst::FCMP_OEQ:
Opc = F32 ? WebAssembly::EQ_F32 : WebAssembly::EQ_F64;
break;
case FCmpInst::FCMP_UNE:
Opc = F32 ? WebAssembly::NE_F32 : WebAssembly::NE_F64;
break;
case FCmpInst::FCMP_OGT:
Opc = F32 ? WebAssembly::GT_F32 : WebAssembly::GT_F64;
break;
case FCmpInst::FCMP_OGE:
Opc = F32 ? WebAssembly::GE_F32 : WebAssembly::GE_F64;
break;
case FCmpInst::FCMP_OLT:
Opc = F32 ? WebAssembly::LT_F32 : WebAssembly::LT_F64;
break;
case FCmpInst::FCMP_OLE:
Opc = F32 ? WebAssembly::LE_F32 : WebAssembly::LE_F64;
break;
case FCmpInst::FCMP_UGT:
Opc = F32 ? WebAssembly::LE_F32 : WebAssembly::LE_F64;
Not = true;
break;
case FCmpInst::FCMP_UGE:
Opc = F32 ? WebAssembly::LT_F32 : WebAssembly::LT_F64;
Not = true;
break;
case FCmpInst::FCMP_ULT:
Opc = F32 ? WebAssembly::GE_F32 : WebAssembly::GE_F64;
Not = true;
break;
case FCmpInst::FCMP_ULE:
Opc = F32 ? WebAssembly::GT_F32 : WebAssembly::GT_F64;
Not = true;
break;
default:
return false;
}
Register ResultReg = createResultReg(&WebAssembly::I32RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
.addReg(LHS)
.addReg(RHS);
if (Not)
ResultReg = notValue(ResultReg);
updateValueMap(FCmp, ResultReg);
return true;
}
bool WebAssemblyFastISel::selectBitCast(const Instruction *I) {
// Target-independent code can handle this, except it doesn't set the dead
// flag on the ARGUMENTS clobber, so we have to do that manually in order
// to satisfy code that expects this of isBitcast() instructions.
EVT VT = TLI.getValueType(DL, I->getOperand(0)->getType());
EVT RetVT = TLI.getValueType(DL, I->getType());
if (!VT.isSimple() || !RetVT.isSimple())
return false;
Register In = getRegForValue(I->getOperand(0));
if (In == 0)
return false;
if (VT == RetVT) {
// No-op bitcast.
updateValueMap(I, In);
return true;
}
Register Reg = fastEmit_ISD_BITCAST_r(VT.getSimpleVT(), RetVT.getSimpleVT(),
In);
if (!Reg)
return false;
MachineBasicBlock::iterator Iter = FuncInfo.InsertPt;
--Iter;
assert(Iter->isBitcast());
Iter->setPhysRegsDeadExcept(ArrayRef<Register>(), TRI);
updateValueMap(I, Reg);
return true;
}
bool WebAssemblyFastISel::selectLoad(const Instruction *I) {
const auto *Load = cast<LoadInst>(I);
if (Load->isAtomic())
return false;
if (!WebAssembly::isDefaultAddressSpace(Load->getPointerAddressSpace()))
return false;
if (!Subtarget->hasSIMD128() && Load->getType()->isVectorTy())
return false;
Address Addr;
if (!computeAddress(Load->getPointerOperand(), Addr))
return false;
// TODO: Fold a following sign-/zero-extend into the load instruction.
unsigned Opc;
const TargetRegisterClass *RC;
bool A64 = Subtarget->hasAddr64();
switch (getSimpleType(Load->getType())) {
case MVT::i1:
case MVT::i8:
Opc = A64 ? WebAssembly::LOAD8_U_I32_A64 : WebAssembly::LOAD8_U_I32_A32;
RC = &WebAssembly::I32RegClass;
break;
case MVT::i16:
Opc = A64 ? WebAssembly::LOAD16_U_I32_A64 : WebAssembly::LOAD16_U_I32_A32;
RC = &WebAssembly::I32RegClass;
break;
case MVT::i32:
Opc = A64 ? WebAssembly::LOAD_I32_A64 : WebAssembly::LOAD_I32_A32;
RC = &WebAssembly::I32RegClass;
break;
case MVT::i64:
Opc = A64 ? WebAssembly::LOAD_I64_A64 : WebAssembly::LOAD_I64_A32;
RC = &WebAssembly::I64RegClass;
break;
case MVT::f32:
Opc = A64 ? WebAssembly::LOAD_F32_A64 : WebAssembly::LOAD_F32_A32;
RC = &WebAssembly::F32RegClass;
break;
case MVT::f64:
Opc = A64 ? WebAssembly::LOAD_F64_A64 : WebAssembly::LOAD_F64_A32;
RC = &WebAssembly::F64RegClass;
break;
default:
return false;
}
materializeLoadStoreOperands(Addr);
Register ResultReg = createResultReg(RC);
auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
ResultReg);
addLoadStoreOperands(Addr, MIB, createMachineMemOperandFor(Load));
updateValueMap(Load, ResultReg);
return true;
}
bool WebAssemblyFastISel::selectStore(const Instruction *I) {
const auto *Store = cast<StoreInst>(I);
if (Store->isAtomic())
return false;
if (!WebAssembly::isDefaultAddressSpace(Store->getPointerAddressSpace()))
return false;
if (!Subtarget->hasSIMD128() &&
Store->getValueOperand()->getType()->isVectorTy())
return false;
Address Addr;
if (!computeAddress(Store->getPointerOperand(), Addr))
return false;
unsigned Opc;
bool VTIsi1 = false;
bool A64 = Subtarget->hasAddr64();
switch (getSimpleType(Store->getValueOperand()->getType())) {
case MVT::i1:
VTIsi1 = true;
[[fallthrough]];
case MVT::i8:
Opc = A64 ? WebAssembly::STORE8_I32_A64 : WebAssembly::STORE8_I32_A32;
break;
case MVT::i16:
Opc = A64 ? WebAssembly::STORE16_I32_A64 : WebAssembly::STORE16_I32_A32;
break;
case MVT::i32:
Opc = A64 ? WebAssembly::STORE_I32_A64 : WebAssembly::STORE_I32_A32;
break;
case MVT::i64:
Opc = A64 ? WebAssembly::STORE_I64_A64 : WebAssembly::STORE_I64_A32;
break;
case MVT::f32:
Opc = A64 ? WebAssembly::STORE_F32_A64 : WebAssembly::STORE_F32_A32;
break;
case MVT::f64:
Opc = A64 ? WebAssembly::STORE_F64_A64 : WebAssembly::STORE_F64_A32;
break;
default:
return false;
}
materializeLoadStoreOperands(Addr);
Register ValueReg = getRegForValue(Store->getValueOperand());
if (ValueReg == 0)
return false;
if (VTIsi1)
ValueReg = maskI1Value(ValueReg, Store->getValueOperand());
auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc));
addLoadStoreOperands(Addr, MIB, createMachineMemOperandFor(Store));
MIB.addReg(ValueReg);
return true;
}
bool WebAssemblyFastISel::selectBr(const Instruction *I) {
const auto *Br = cast<BranchInst>(I);
if (Br->isUnconditional()) {
MachineBasicBlock *MSucc = FuncInfo.MBBMap[Br->getSuccessor(0)];
fastEmitBranch(MSucc, Br->getDebugLoc());
return true;
}
MachineBasicBlock *TBB = FuncInfo.MBBMap[Br->getSuccessor(0)];
MachineBasicBlock *FBB = FuncInfo.MBBMap[Br->getSuccessor(1)];
bool Not;
unsigned CondReg = getRegForI1Value(Br->getCondition(), Br->getParent(), Not);
if (CondReg == 0)
return false;
unsigned Opc = WebAssembly::BR_IF;
if (Not)
Opc = WebAssembly::BR_UNLESS;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc))
.addMBB(TBB)
.addReg(CondReg);
finishCondBranch(Br->getParent(), TBB, FBB);
return true;
}
bool WebAssemblyFastISel::selectRet(const Instruction *I) {
if (!FuncInfo.CanLowerReturn)
return false;
const auto *Ret = cast<ReturnInst>(I);
if (Ret->getNumOperands() == 0) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
TII.get(WebAssembly::RETURN));
return true;
}
// TODO: support multiple return in FastISel
if (Ret->getNumOperands() > 1)
return false;
Value *RV = Ret->getOperand(0);
if (!Subtarget->hasSIMD128() && RV->getType()->isVectorTy())
return false;
switch (getSimpleType(RV->getType())) {
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
case MVT::f32:
case MVT::f64:
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
case MVT::funcref:
case MVT::externref:
break;
default:
return false;
}
unsigned Reg;
if (FuncInfo.Fn->getAttributes().hasRetAttr(Attribute::SExt))
Reg = getRegForSignedValue(RV);
else if (FuncInfo.Fn->getAttributes().hasRetAttr(Attribute::ZExt))
Reg = getRegForUnsignedValue(RV);
else
Reg = getRegForValue(RV);
if (Reg == 0)
return false;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
TII.get(WebAssembly::RETURN))
.addReg(Reg);
return true;
}
bool WebAssemblyFastISel::selectUnreachable(const Instruction *I) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
TII.get(WebAssembly::UNREACHABLE));
return true;
}
bool WebAssemblyFastISel::fastSelectInstruction(const Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Call:
if (selectCall(I))
return true;
break;
case Instruction::Select:
return selectSelect(I);
case Instruction::Trunc:
return selectTrunc(I);
case Instruction::ZExt:
return selectZExt(I);
case Instruction::SExt:
return selectSExt(I);
case Instruction::ICmp:
return selectICmp(I);
case Instruction::FCmp:
return selectFCmp(I);
case Instruction::BitCast:
return selectBitCast(I);
case Instruction::Load:
return selectLoad(I);
case Instruction::Store:
return selectStore(I);
case Instruction::Br:
return selectBr(I);
case Instruction::Ret:
return selectRet(I);
case Instruction::Unreachable:
return selectUnreachable(I);
default:
break;
}
// Fall back to target-independent instruction selection.
return selectOperator(I, I->getOpcode());
}
FastISel *WebAssembly::createFastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo) {
return new WebAssemblyFastISel(FuncInfo, LibInfo);
}