
AlignmentFromAssumptions uses SCEV to update the load/store alignment. It tracks down the use-def chains for the pointer which it takes from the assumption cache until it reaches the load or store instruction. It mistakenly adds to the worklist the users of the load result irrespective of the fact that the load result has no connection with the original pointer, moreover, it is not a pointer at all in most cases. Thus the def-use chain contains irrelevant load users. When it is a store instruction the algorithm attempts to adjust its alignment to the alignment of the original pointer. The problem appears when the load and store memory operand pointers belong to different address spaces and possibly have different sizes. The 4bf015c035e4e5b63c7222dfb15ff274a5ed905c was an attempt to address a similar problem. The truncation or zero extension was added to make pointers the same size. That looks strange to me because the zero extension of the pointer is not legal. The test in the 4bf015c035e4e5b63c7222dfb15ff274a5ed905c does not work any longer as for the explicit address spaces conversion the addrspacecast is generated. Summarize: 1. For the alloca to global address spaces conversion addrspacecasts are used, so the code added by the 4bf015c035e4e5b63c7222dfb15ff274a5ed905c is no longer functional. 2. The AlignmentFromAssumptions algorithm should not add the load users to the worklist as they have nothing to do with the original pointer. 3. Instead we only track users that are: GetelementPtrIns, PHINodes.
313 lines
12 KiB
C++
313 lines
12 KiB
C++
//===----------------------- AlignmentFromAssumptions.cpp -----------------===//
|
|
// Set Load/Store Alignments From Assumptions
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a ScalarEvolution-based transformation to set
|
|
// the alignments of load, stores and memory intrinsics based on the truth
|
|
// expressions of assume intrinsics. The primary motivation is to handle
|
|
// complex alignment assumptions that apply to vector loads and stores that
|
|
// appear after vectorization and unrolling.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "alignment-from-assumptions"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumLoadAlignChanged,
|
|
"Number of loads changed by alignment assumptions");
|
|
STATISTIC(NumStoreAlignChanged,
|
|
"Number of stores changed by alignment assumptions");
|
|
STATISTIC(NumMemIntAlignChanged,
|
|
"Number of memory intrinsics changed by alignment assumptions");
|
|
|
|
// Given an expression for the (constant) alignment, AlignSCEV, and an
|
|
// expression for the displacement between a pointer and the aligned address,
|
|
// DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
|
|
// to a constant. Using SCEV to compute alignment handles the case where
|
|
// DiffSCEV is a recurrence with constant start such that the aligned offset
|
|
// is constant. e.g. {16,+,32} % 32 -> 16.
|
|
static MaybeAlign getNewAlignmentDiff(const SCEV *DiffSCEV,
|
|
const SCEV *AlignSCEV,
|
|
ScalarEvolution *SE) {
|
|
// DiffUnits = Diff % int64_t(Alignment)
|
|
const SCEV *DiffUnitsSCEV = SE->getURemExpr(DiffSCEV, AlignSCEV);
|
|
|
|
LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
|
|
<< *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
|
|
|
|
if (const SCEVConstant *ConstDUSCEV =
|
|
dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
|
|
int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
|
|
|
|
// If the displacement is an exact multiple of the alignment, then the
|
|
// displaced pointer has the same alignment as the aligned pointer, so
|
|
// return the alignment value.
|
|
if (!DiffUnits)
|
|
return cast<SCEVConstant>(AlignSCEV)->getValue()->getAlignValue();
|
|
|
|
// If the displacement is not an exact multiple, but the remainder is a
|
|
// constant, then return this remainder (but only if it is a power of 2).
|
|
uint64_t DiffUnitsAbs = std::abs(DiffUnits);
|
|
if (isPowerOf2_64(DiffUnitsAbs))
|
|
return Align(DiffUnitsAbs);
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
// There is an address given by an offset OffSCEV from AASCEV which has an
|
|
// alignment AlignSCEV. Use that information, if possible, to compute a new
|
|
// alignment for Ptr.
|
|
static Align getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
|
|
const SCEV *OffSCEV, Value *Ptr,
|
|
ScalarEvolution *SE) {
|
|
const SCEV *PtrSCEV = SE->getSCEV(Ptr);
|
|
|
|
const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
|
|
if (isa<SCEVCouldNotCompute>(DiffSCEV))
|
|
return Align(1);
|
|
|
|
// On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
|
|
// sign-extended OffSCEV to i64, so make sure they agree again.
|
|
DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
|
|
|
|
// What we really want to know is the overall offset to the aligned
|
|
// address. This address is displaced by the provided offset.
|
|
DiffSCEV = SE->getAddExpr(DiffSCEV, OffSCEV);
|
|
|
|
LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
|
|
<< *AlignSCEV << " and offset " << *OffSCEV
|
|
<< " using diff " << *DiffSCEV << "\n");
|
|
|
|
if (MaybeAlign NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE)) {
|
|
LLVM_DEBUG(dbgs() << "\tnew alignment: " << DebugStr(NewAlignment) << "\n");
|
|
return *NewAlignment;
|
|
}
|
|
|
|
if (const SCEVAddRecExpr *DiffARSCEV = dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
|
|
// The relative offset to the alignment assumption did not yield a constant,
|
|
// but we should try harder: if we assume that a is 32-byte aligned, then in
|
|
// for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
|
|
// 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
|
|
// As a result, the new alignment will not be a constant, but can still
|
|
// be improved over the default (of 4) to 16.
|
|
|
|
const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
|
|
const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
|
|
|
|
LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
|
|
<< *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
|
|
|
|
// Now compute the new alignment using the displacement to the value in the
|
|
// first iteration, and also the alignment using the per-iteration delta.
|
|
// If these are the same, then use that answer. Otherwise, use the smaller
|
|
// one, but only if it divides the larger one.
|
|
MaybeAlign NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
|
|
MaybeAlign NewIncAlignment =
|
|
getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
|
|
|
|
LLVM_DEBUG(dbgs() << "\tnew start alignment: " << DebugStr(NewAlignment)
|
|
<< "\n");
|
|
LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << DebugStr(NewIncAlignment)
|
|
<< "\n");
|
|
|
|
if (!NewAlignment || !NewIncAlignment)
|
|
return Align(1);
|
|
|
|
const Align NewAlign = *NewAlignment;
|
|
const Align NewIncAlign = *NewIncAlignment;
|
|
if (NewAlign > NewIncAlign) {
|
|
LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: "
|
|
<< DebugStr(NewIncAlign) << "\n");
|
|
return NewIncAlign;
|
|
}
|
|
if (NewIncAlign > NewAlign) {
|
|
LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign)
|
|
<< "\n");
|
|
return NewAlign;
|
|
}
|
|
assert(NewIncAlign == NewAlign);
|
|
LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << DebugStr(NewAlign)
|
|
<< "\n");
|
|
return NewAlign;
|
|
}
|
|
|
|
return Align(1);
|
|
}
|
|
|
|
bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
|
|
unsigned Idx,
|
|
Value *&AAPtr,
|
|
const SCEV *&AlignSCEV,
|
|
const SCEV *&OffSCEV) {
|
|
Type *Int64Ty = Type::getInt64Ty(I->getContext());
|
|
OperandBundleUse AlignOB = I->getOperandBundleAt(Idx);
|
|
if (AlignOB.getTagName() != "align")
|
|
return false;
|
|
assert(AlignOB.Inputs.size() >= 2);
|
|
AAPtr = AlignOB.Inputs[0].get();
|
|
// TODO: Consider accumulating the offset to the base.
|
|
AAPtr = AAPtr->stripPointerCastsSameRepresentation();
|
|
AlignSCEV = SE->getSCEV(AlignOB.Inputs[1].get());
|
|
AlignSCEV = SE->getTruncateOrZeroExtend(AlignSCEV, Int64Ty);
|
|
if (!isa<SCEVConstant>(AlignSCEV))
|
|
// Added to suppress a crash because consumer doesn't expect non-constant
|
|
// alignments in the assume bundle. TODO: Consider generalizing caller.
|
|
return false;
|
|
if (!cast<SCEVConstant>(AlignSCEV)->getAPInt().isPowerOf2())
|
|
// Only power of two alignments are supported.
|
|
return false;
|
|
if (AlignOB.Inputs.size() == 3)
|
|
OffSCEV = SE->getSCEV(AlignOB.Inputs[2].get());
|
|
else
|
|
OffSCEV = SE->getZero(Int64Ty);
|
|
OffSCEV = SE->getTruncateOrZeroExtend(OffSCEV, Int64Ty);
|
|
return true;
|
|
}
|
|
|
|
bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall,
|
|
unsigned Idx) {
|
|
Value *AAPtr;
|
|
const SCEV *AlignSCEV, *OffSCEV;
|
|
if (!extractAlignmentInfo(ACall, Idx, AAPtr, AlignSCEV, OffSCEV))
|
|
return false;
|
|
|
|
// Skip ConstantPointerNull and UndefValue. Assumptions on these shouldn't
|
|
// affect other users.
|
|
if (isa<ConstantData>(AAPtr))
|
|
return false;
|
|
|
|
const SCEV *AASCEV = SE->getSCEV(AAPtr);
|
|
|
|
// Apply the assumption to all other users of the specified pointer.
|
|
SmallPtrSet<Instruction *, 32> Visited;
|
|
SmallVector<Instruction*, 16> WorkList;
|
|
for (User *J : AAPtr->users()) {
|
|
if (J == ACall)
|
|
continue;
|
|
|
|
if (Instruction *K = dyn_cast<Instruction>(J))
|
|
WorkList.push_back(K);
|
|
}
|
|
|
|
while (!WorkList.empty()) {
|
|
Instruction *J = WorkList.pop_back_val();
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
|
|
if (!isValidAssumeForContext(ACall, J, DT))
|
|
continue;
|
|
Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
|
|
LI->getPointerOperand(), SE);
|
|
if (NewAlignment > LI->getAlign()) {
|
|
LI->setAlignment(NewAlignment);
|
|
++NumLoadAlignChanged;
|
|
}
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
|
|
if (!isValidAssumeForContext(ACall, J, DT))
|
|
continue;
|
|
Align NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
|
|
SI->getPointerOperand(), SE);
|
|
if (NewAlignment > SI->getAlign()) {
|
|
SI->setAlignment(NewAlignment);
|
|
++NumStoreAlignChanged;
|
|
}
|
|
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
|
|
if (!isValidAssumeForContext(ACall, J, DT))
|
|
continue;
|
|
Align NewDestAlignment =
|
|
getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MI->getDest(), SE);
|
|
|
|
LLVM_DEBUG(dbgs() << "\tmem inst: " << DebugStr(NewDestAlignment)
|
|
<< "\n";);
|
|
if (NewDestAlignment > *MI->getDestAlign()) {
|
|
MI->setDestAlignment(NewDestAlignment);
|
|
++NumMemIntAlignChanged;
|
|
}
|
|
|
|
// For memory transfers, there is also a source alignment that
|
|
// can be set.
|
|
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
|
|
Align NewSrcAlignment =
|
|
getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MTI->getSource(), SE);
|
|
|
|
LLVM_DEBUG(dbgs() << "\tmem trans: " << DebugStr(NewSrcAlignment)
|
|
<< "\n";);
|
|
|
|
if (NewSrcAlignment > *MTI->getSourceAlign()) {
|
|
MTI->setSourceAlignment(NewSrcAlignment);
|
|
++NumMemIntAlignChanged;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that we've updated that use of the pointer, look for other uses of
|
|
// the pointer to update.
|
|
Visited.insert(J);
|
|
if (isa<GetElementPtrInst>(J) || isa<PHINode>(J))
|
|
for (auto &U : J->uses()) {
|
|
if (U->getType()->isPointerTy()) {
|
|
Instruction *K = cast<Instruction>(U.getUser());
|
|
StoreInst *SI = dyn_cast<StoreInst>(K);
|
|
if (SI && SI->getPointerOperandIndex() != U.getOperandNo())
|
|
continue;
|
|
if (!Visited.count(K))
|
|
WorkList.push_back(K);
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
|
|
ScalarEvolution *SE_,
|
|
DominatorTree *DT_) {
|
|
SE = SE_;
|
|
DT = DT_;
|
|
|
|
bool Changed = false;
|
|
for (auto &AssumeVH : AC.assumptions())
|
|
if (AssumeVH) {
|
|
CallInst *Call = cast<CallInst>(AssumeVH);
|
|
for (unsigned Idx = 0; Idx < Call->getNumOperandBundles(); Idx++)
|
|
Changed |= processAssumption(Call, Idx);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
PreservedAnalyses
|
|
AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
|
|
AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
|
|
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
if (!runImpl(F, AC, &SE, &DT))
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<ScalarEvolutionAnalysis>();
|
|
return PA;
|
|
}
|