
Unify VPlan verifiers in verifyVPlanIsValid. This adds verification for various properties on blocks to the verifier used for VPlans generated by the inner loop vectorizer. It also adds def-use checks for the verifier used in the VPlan native path. This drops the separate flag to enable HCFG verification. Instead, all VPlans are verified once they have been created, if assertions are enabled. This also removes VPWidenPHIRecipe from VPHeaderPHIRecipe; it is used to model any phi node in the native path.
311 lines
9.9 KiB
C++
311 lines
9.9 KiB
C++
//===-- VPlanVerifier.cpp -------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file defines the class VPlanVerifier, which contains utility functions
|
|
/// to check the consistency and invariants of a VPlan.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VPlanVerifier.h"
|
|
#include "VPlan.h"
|
|
#include "VPlanCFG.h"
|
|
#include "VPlanDominatorTree.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
#define DEBUG_TYPE "loop-vectorize"
|
|
|
|
using namespace llvm;
|
|
|
|
// Verify that phi-like recipes are at the beginning of \p VPBB, with no
|
|
// other recipes in between. Also check that only header blocks contain
|
|
// VPHeaderPHIRecipes.
|
|
static bool verifyPhiRecipes(const VPBasicBlock *VPBB) {
|
|
auto RecipeI = VPBB->begin();
|
|
auto End = VPBB->end();
|
|
unsigned NumActiveLaneMaskPhiRecipes = 0;
|
|
const VPRegionBlock *ParentR = VPBB->getParent();
|
|
bool IsHeaderVPBB = ParentR && !ParentR->isReplicator() &&
|
|
ParentR->getEntryBasicBlock() == VPBB;
|
|
while (RecipeI != End && RecipeI->isPhi()) {
|
|
if (isa<VPActiveLaneMaskPHIRecipe>(RecipeI))
|
|
NumActiveLaneMaskPhiRecipes++;
|
|
|
|
if (IsHeaderVPBB && !isa<VPHeaderPHIRecipe, VPWidenPHIRecipe>(*RecipeI)) {
|
|
errs() << "Found non-header PHI recipe in header VPBB";
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
errs() << ": ";
|
|
RecipeI->dump();
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
if (!IsHeaderVPBB && isa<VPHeaderPHIRecipe>(*RecipeI)) {
|
|
errs() << "Found header PHI recipe in non-header VPBB";
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
errs() << ": ";
|
|
RecipeI->dump();
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
RecipeI++;
|
|
}
|
|
|
|
if (NumActiveLaneMaskPhiRecipes > 1) {
|
|
errs() << "There should be no more than one VPActiveLaneMaskPHIRecipe";
|
|
return false;
|
|
}
|
|
|
|
while (RecipeI != End) {
|
|
if (RecipeI->isPhi() && !isa<VPBlendRecipe>(&*RecipeI)) {
|
|
errs() << "Found phi-like recipe after non-phi recipe";
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
errs() << ": ";
|
|
RecipeI->dump();
|
|
errs() << "after\n";
|
|
std::prev(RecipeI)->dump();
|
|
#endif
|
|
return false;
|
|
}
|
|
RecipeI++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool verifyVPBasicBlock(const VPBasicBlock *VPBB,
|
|
const VPDominatorTree &VPDT) {
|
|
if (!verifyPhiRecipes(VPBB))
|
|
return false;
|
|
|
|
// Verify that defs in VPBB dominate all their uses. The current
|
|
// implementation is still incomplete.
|
|
DenseMap<const VPRecipeBase *, unsigned> RecipeNumbering;
|
|
unsigned Cnt = 0;
|
|
for (const VPRecipeBase &R : *VPBB)
|
|
RecipeNumbering[&R] = Cnt++;
|
|
|
|
for (const VPRecipeBase &R : *VPBB) {
|
|
for (const VPValue *V : R.definedValues()) {
|
|
for (const VPUser *U : V->users()) {
|
|
auto *UI = dyn_cast<VPRecipeBase>(U);
|
|
// TODO: check dominance of incoming values for phis properly.
|
|
if (!UI ||
|
|
isa<VPHeaderPHIRecipe, VPWidenPHIRecipe, VPPredInstPHIRecipe>(UI))
|
|
continue;
|
|
|
|
// If the user is in the same block, check it comes after R in the
|
|
// block.
|
|
if (UI->getParent() == VPBB) {
|
|
if (RecipeNumbering[UI] < RecipeNumbering[&R]) {
|
|
errs() << "Use before def!\n";
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (!VPDT.dominates(VPBB, UI->getParent())) {
|
|
errs() << "Use before def!\n";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Utility function that checks whether \p VPBlockVec has duplicate
|
|
/// VPBlockBases.
|
|
static bool hasDuplicates(const SmallVectorImpl<VPBlockBase *> &VPBlockVec) {
|
|
SmallDenseSet<const VPBlockBase *, 8> VPBlockSet;
|
|
for (const auto *Block : VPBlockVec) {
|
|
if (VPBlockSet.count(Block))
|
|
return true;
|
|
VPBlockSet.insert(Block);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool verifyBlock(const VPBlockBase *VPB, const VPDominatorTree &VPDT) {
|
|
auto *VPBB = dyn_cast<VPBasicBlock>(VPB);
|
|
if (VPBB && !verifyVPBasicBlock(VPBB, VPDT))
|
|
return false;
|
|
|
|
// Check block's condition bit.
|
|
if (VPB->getNumSuccessors() > 1 ||
|
|
(VPBB && VPBB->getParent() && VPBB->isExiting() &&
|
|
!VPBB->getParent()->isReplicator())) {
|
|
if (!VPBB || !VPBB->getTerminator()) {
|
|
errs() << "Block has multiple successors but doesn't "
|
|
"have a proper branch recipe!\n";
|
|
return false;
|
|
}
|
|
} else {
|
|
if (VPBB && VPBB->getTerminator()) {
|
|
errs() << "Unexpected branch recipe!\n";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check block's successors.
|
|
const auto &Successors = VPB->getSuccessors();
|
|
// There must be only one instance of a successor in block's successor list.
|
|
// TODO: This won't work for switch statements.
|
|
if (hasDuplicates(Successors)) {
|
|
errs() << "Multiple instances of the same successor.\n";
|
|
return false;
|
|
}
|
|
|
|
for (const VPBlockBase *Succ : Successors) {
|
|
// There must be a bi-directional link between block and successor.
|
|
const auto &SuccPreds = Succ->getPredecessors();
|
|
if (!is_contained(SuccPreds, VPB)) {
|
|
errs() << "Missing predecessor link.\n";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check block's predecessors.
|
|
const auto &Predecessors = VPB->getPredecessors();
|
|
// There must be only one instance of a predecessor in block's predecessor
|
|
// list.
|
|
// TODO: This won't work for switch statements.
|
|
if (hasDuplicates(Predecessors)) {
|
|
errs() << "Multiple instances of the same predecessor.\n";
|
|
return false;
|
|
}
|
|
|
|
for (const VPBlockBase *Pred : Predecessors) {
|
|
// Block and predecessor must be inside the same region.
|
|
if (Pred->getParent() != VPB->getParent()) {
|
|
errs() << "Predecessor is not in the same region.\n";
|
|
return false;
|
|
}
|
|
|
|
// There must be a bi-directional link between block and predecessor.
|
|
const auto &PredSuccs = Pred->getSuccessors();
|
|
if (!is_contained(PredSuccs, VPB)) {
|
|
errs() << "Missing successor link.\n";
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Helper function that verifies the CFG invariants of the VPBlockBases within
|
|
/// \p Region. Checks in this function are generic for VPBlockBases. They are
|
|
/// not specific for VPBasicBlocks or VPRegionBlocks.
|
|
static bool verifyBlocksInRegion(const VPRegionBlock *Region,
|
|
const VPDominatorTree &VPDT) {
|
|
for (const VPBlockBase *VPB : vp_depth_first_shallow(Region->getEntry())) {
|
|
// Check block's parent.
|
|
if (VPB->getParent() != Region) {
|
|
errs() << "VPBlockBase has wrong parent\n";
|
|
return false;
|
|
}
|
|
|
|
if (!verifyBlock(VPB, VPDT))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Verify the CFG invariants of VPRegionBlock \p Region and its nested
|
|
/// VPBlockBases. Do not recurse inside nested VPRegionBlocks.
|
|
static bool verifyRegion(const VPRegionBlock *Region,
|
|
const VPDominatorTree &VPDT) {
|
|
const VPBlockBase *Entry = Region->getEntry();
|
|
const VPBlockBase *Exiting = Region->getExiting();
|
|
|
|
// Entry and Exiting shouldn't have any predecessor/successor, respectively.
|
|
if (Entry->getNumPredecessors() != 0) {
|
|
errs() << "region entry block has predecessors\n";
|
|
return false;
|
|
}
|
|
if (Exiting->getNumSuccessors() != 0) {
|
|
errs() << "region exiting block has successors\n";
|
|
return false;
|
|
}
|
|
|
|
return verifyBlocksInRegion(Region, VPDT);
|
|
}
|
|
|
|
/// Verify the CFG invariants of VPRegionBlock \p Region and its nested
|
|
/// VPBlockBases. Recurse inside nested VPRegionBlocks.
|
|
static bool verifyRegionRec(const VPRegionBlock *Region,
|
|
const VPDominatorTree &VPDT) {
|
|
// Recurse inside nested regions and check all blocks inside the region.
|
|
return verifyRegion(Region, VPDT) &&
|
|
all_of(vp_depth_first_shallow(Region->getEntry()),
|
|
[&VPDT](const VPBlockBase *VPB) {
|
|
const auto *SubRegion = dyn_cast<VPRegionBlock>(VPB);
|
|
return !SubRegion || verifyRegionRec(SubRegion, VPDT);
|
|
});
|
|
}
|
|
|
|
bool llvm::verifyVPlanIsValid(const VPlan &Plan) {
|
|
VPDominatorTree VPDT;
|
|
VPDT.recalculate(const_cast<VPlan &>(Plan));
|
|
|
|
if (any_of(
|
|
vp_depth_first_shallow(Plan.getEntry()),
|
|
[&VPDT](const VPBlockBase *VPB) { return !verifyBlock(VPB, VPDT); }))
|
|
return false;
|
|
|
|
const VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
|
|
if (!verifyRegionRec(TopRegion, VPDT))
|
|
return false;
|
|
|
|
if (TopRegion->getParent()) {
|
|
errs() << "VPlan Top Region should have no parent.\n";
|
|
return false;
|
|
}
|
|
|
|
const VPBasicBlock *Entry = dyn_cast<VPBasicBlock>(TopRegion->getEntry());
|
|
if (!Entry) {
|
|
errs() << "VPlan entry block is not a VPBasicBlock\n";
|
|
return false;
|
|
}
|
|
|
|
if (!isa<VPCanonicalIVPHIRecipe>(&*Entry->begin())) {
|
|
errs() << "VPlan vector loop header does not start with a "
|
|
"VPCanonicalIVPHIRecipe\n";
|
|
return false;
|
|
}
|
|
|
|
const VPBasicBlock *Exiting = dyn_cast<VPBasicBlock>(TopRegion->getExiting());
|
|
if (!Exiting) {
|
|
errs() << "VPlan exiting block is not a VPBasicBlock\n";
|
|
return false;
|
|
}
|
|
|
|
if (Exiting->empty()) {
|
|
errs() << "VPlan vector loop exiting block must end with BranchOnCount or "
|
|
"BranchOnCond VPInstruction but is empty\n";
|
|
return false;
|
|
}
|
|
|
|
auto *LastInst = dyn_cast<VPInstruction>(std::prev(Exiting->end()));
|
|
if (!LastInst || (LastInst->getOpcode() != VPInstruction::BranchOnCount &&
|
|
LastInst->getOpcode() != VPInstruction::BranchOnCond)) {
|
|
errs() << "VPlan vector loop exit must end with BranchOnCount or "
|
|
"BranchOnCond VPInstruction\n";
|
|
return false;
|
|
}
|
|
|
|
for (const auto &KV : Plan.getLiveOuts())
|
|
if (KV.second->getNumOperands() != 1) {
|
|
errs() << "live outs must have a single operand\n";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|