llvm-project/llvm/unittests/FuzzMutate/RandomIRBuilderTest.cpp
Henry Yu 258cd1fc38 [FuzzMutate] Handle BB without predecessor, avoid insertion after musttail call, avoid sinking token type
FuzzMutate didn't consider some corner cases and leads to mutation failure when mutating some modules.
This patch fixes 3 bugs:

- Add null check when encountering basic blocks without predecessor to avoid segmentation fault
- Avoid insertion after `musttail call` instruction
- Avoid sinking token type

Unit tests are also added.

Reviewed By: Peter

Differential Revision: https://reviews.llvm.org/D151936
2023-06-01 19:52:16 -07:00

616 lines
21 KiB
C++

//===- RandomIRBuilderTest.cpp - Tests for injector strategy --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/FuzzMutate/RandomIRBuilder.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/AsmParser/SlotMapping.h"
#include "llvm/FuzzMutate/IRMutator.h"
#include "llvm/FuzzMutate/OpDescriptor.h"
#include "llvm/FuzzMutate/Operations.h"
#include "llvm/FuzzMutate/Random.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
using namespace llvm;
static constexpr int Seed = 5;
namespace {
std::unique_ptr<Module> parseAssembly(const char *Assembly,
LLVMContext &Context) {
SMDiagnostic Error;
std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context);
std::string ErrMsg;
raw_string_ostream OS(ErrMsg);
Error.print("", OS);
assert(M && !verifyModule(*M, &errs()));
return M;
}
TEST(RandomIRBuilderTest, ShuffleVectorIncorrectOperands) {
// Test that we don't create load instruction as a source for the shuffle
// vector operation.
LLVMContext Ctx;
const char *Source =
"define <2 x i32> @test(<2 x i1> %cond, <2 x i32> %a) {\n"
" %A = alloca <2 x i32>\n"
" %I = insertelement <2 x i32> %a, i32 1, i32 1\n"
" ret <2 x i32> undef\n"
"}";
auto M = parseAssembly(Source, Ctx);
fuzzerop::OpDescriptor Descr = fuzzerop::shuffleVectorDescriptor(1);
// Empty known types since we ShuffleVector descriptor doesn't care about them
RandomIRBuilder IB(Seed, {});
// Get first basic block of the first function
Function &F = *M->begin();
BasicBlock &BB = *F.begin();
SmallVector<Instruction *, 32> Insts;
for (auto I = BB.getFirstInsertionPt(), E = BB.end(); I != E; ++I)
Insts.push_back(&*I);
// Pick first and second sources
SmallVector<Value *, 2> Srcs;
ASSERT_TRUE(Descr.SourcePreds[0].matches(Srcs, Insts[1]));
Srcs.push_back(Insts[1]);
ASSERT_TRUE(Descr.SourcePreds[1].matches(Srcs, Insts[1]));
Srcs.push_back(Insts[1]);
// Create new source. Check that it always matches with the descriptor.
// Run some iterations to account for random decisions.
for (int i = 0; i < 10; ++i) {
Value *LastSrc = IB.newSource(BB, Insts, Srcs, Descr.SourcePreds[2]);
ASSERT_TRUE(Descr.SourcePreds[2].matches(Srcs, LastSrc));
}
}
TEST(RandomIRBuilderTest, InsertValueIndexes) {
// Check that we will generate correct indexes for the insertvalue operation
LLVMContext Ctx;
const char *Source = "%T = type {i8, i32, i64}\n"
"define void @test() {\n"
" %A = alloca %T\n"
" %L = load %T, ptr %A"
" ret void\n"
"}";
auto M = parseAssembly(Source, Ctx);
fuzzerop::OpDescriptor IVDescr = fuzzerop::insertValueDescriptor(1);
std::array<Type *, 3> Types = {Type::getInt8Ty(Ctx), Type::getInt32Ty(Ctx),
Type::getInt64Ty(Ctx)};
RandomIRBuilder IB(Seed, Types);
// Get first basic block of the first function
Function &F = *M->begin();
BasicBlock &BB = *F.begin();
// Pick first source
Instruction *Src = &*std::next(BB.begin());
SmallVector<Value *, 2> Srcs(2);
ASSERT_TRUE(IVDescr.SourcePreds[0].matches({}, Src));
Srcs[0] = Src;
// Generate constants for each of the types and check that we pick correct
// index for the given type
for (auto *T : Types) {
// Loop to account for possible random decisions
for (int i = 0; i < 10; ++i) {
// Create value we want to insert. Only it's type matters.
Srcs[1] = ConstantInt::get(T, 5);
// Try to pick correct index
Value *Src =
IB.findOrCreateSource(BB, &*BB.begin(), Srcs, IVDescr.SourcePreds[2]);
ASSERT_TRUE(IVDescr.SourcePreds[2].matches(Srcs, Src));
}
}
}
TEST(RandomIRBuilderTest, ShuffleVectorSink) {
// Check that we will never use shuffle vector mask as a sink from the
// unrelated operation.
LLVMContext Ctx;
const char *SourceCode =
"define void @test(<4 x i32> %a) {\n"
" %S1 = shufflevector <4 x i32> %a, <4 x i32> %a, <4 x i32> undef\n"
" %S2 = shufflevector <4 x i32> %a, <4 x i32> %a, <4 x i32> undef\n"
" ret void\n"
"}";
auto M = parseAssembly(SourceCode, Ctx);
fuzzerop::OpDescriptor IVDescr = fuzzerop::insertValueDescriptor(1);
RandomIRBuilder IB(Seed, {});
// Get first basic block of the first function
Function &F = *M->begin();
BasicBlock &BB = *F.begin();
// Source is %S1
Instruction *Source = &*BB.begin();
// Sink is %S2
SmallVector<Instruction *, 1> Sinks = {&*std::next(BB.begin())};
// Loop to account for random decisions
for (int i = 0; i < 10; ++i) {
// Try to connect S1 to S2. We should always create new sink.
IB.connectToSink(BB, Sinks, Source);
ASSERT_TRUE(!verifyModule(*M, &errs()));
}
}
TEST(RandomIRBuilderTest, InsertValueArray) {
// Check that we can generate insertvalue for the vector operations
LLVMContext Ctx;
const char *SourceCode = "define void @test() {\n"
" %A = alloca [8 x i32]\n"
" %L = load [8 x i32], ptr %A"
" ret void\n"
"}";
auto M = parseAssembly(SourceCode, Ctx);
fuzzerop::OpDescriptor Descr = fuzzerop::insertValueDescriptor(1);
std::array<Type *, 3> Types = {Type::getInt8Ty(Ctx), Type::getInt32Ty(Ctx),
Type::getInt64Ty(Ctx)};
RandomIRBuilder IB(Seed, Types);
// Get first basic block of the first function
Function &F = *M->begin();
BasicBlock &BB = *F.begin();
// Pick first source
Instruction *Source = &*std::next(BB.begin());
ASSERT_TRUE(Descr.SourcePreds[0].matches({}, Source));
SmallVector<Value *, 2> Srcs(2);
// Check that we can always pick the last two operands.
for (int i = 0; i < 10; ++i) {
Srcs[0] = Source;
Srcs[1] = IB.findOrCreateSource(BB, {Source}, Srcs, Descr.SourcePreds[1]);
IB.findOrCreateSource(BB, {}, Srcs, Descr.SourcePreds[2]);
}
}
TEST(RandomIRBuilderTest, Invokes) {
// Check that we never generate load or store after invoke instruction
LLVMContext Ctx;
const char *SourceCode =
"declare ptr @f()"
"declare i32 @personality_function()"
"define ptr @test() personality ptr @personality_function {\n"
"entry:\n"
" %val = invoke ptr @f()\n"
" to label %normal unwind label %exceptional\n"
"normal:\n"
" ret ptr %val\n"
"exceptional:\n"
" %landing_pad4 = landingpad token cleanup\n"
" ret ptr undef\n"
"}";
auto M = parseAssembly(SourceCode, Ctx);
std::array<Type *, 1> Types = {Type::getInt8Ty(Ctx)};
RandomIRBuilder IB(Seed, Types);
// Get first basic block of the test function
Function &F = *M->getFunction("test");
BasicBlock &BB = *F.begin();
Instruction *Invoke = &*BB.begin();
// Find source but never insert new load after invoke
for (int i = 0; i < 10; ++i) {
(void)IB.findOrCreateSource(BB, {Invoke}, {}, fuzzerop::anyIntType());
ASSERT_TRUE(!verifyModule(*M, &errs()));
}
}
TEST(RandomIRBuilderTest, SwiftError) {
// Check that we never pick swifterror value as a source for operation
// other than load, store and call.
LLVMContext Ctx;
const char *SourceCode = "declare void @use(ptr swifterror %err)"
"define void @test() {\n"
"entry:\n"
" %err = alloca swifterror ptr, align 8\n"
" call void @use(ptr swifterror %err)\n"
" ret void\n"
"}";
auto M = parseAssembly(SourceCode, Ctx);
std::array<Type *, 1> Types = {Type::getInt8Ty(Ctx)};
RandomIRBuilder IB(Seed, Types);
// Get first basic block of the test function
Function &F = *M->getFunction("test");
BasicBlock &BB = *F.begin();
Instruction *Alloca = &*BB.begin();
fuzzerop::OpDescriptor Descr = fuzzerop::gepDescriptor(1);
for (int i = 0; i < 10; ++i) {
Value *V = IB.findOrCreateSource(BB, {Alloca}, {}, Descr.SourcePreds[0]);
ASSERT_FALSE(isa<AllocaInst>(V));
}
}
TEST(RandomIRBuilderTest, dontConnectToSwitch) {
// Check that we never put anything into switch's case branch
// If we accidently put a variable, the module is invalid.
LLVMContext Ctx;
const char *SourceCode = "\n\
define void @test(i1 %C1, i1 %C2, i32 %I, i32 %J) { \n\
Entry: \n\
%I.1 = add i32 %I, 42 \n\
%J.1 = add i32 %J, 42 \n\
%IJ = add i32 %I, %J \n\
switch i32 %I, label %Default [ \n\
i32 1, label %OnOne \n\
] \n\
Default: \n\
%CIEqJ = icmp eq i32 %I.1, %J.1 \n\
%CISltJ = icmp slt i32 %I.1, %J.1 \n\
%CAnd = and i1 %C1, %C2 \n\
br i1 %CIEqJ, label %Default, label %Exit \n\
OnOne: \n\
br i1 %C1, label %OnOne, label %Exit \n\
Exit: \n\
ret void \n\
}";
std::array<Type *, 2> Types = {Type::getInt32Ty(Ctx), Type::getInt1Ty(Ctx)};
RandomIRBuilder IB(Seed, Types);
for (int i = 0; i < 20; i++) {
std::unique_ptr<Module> M = parseAssembly(SourceCode, Ctx);
Function &F = *M->getFunction("test");
auto RS = makeSampler(IB.Rand, make_pointer_range(F));
BasicBlock *BB = RS.getSelection();
SmallVector<Instruction *, 32> Insts;
for (auto I = BB->getFirstInsertionPt(), E = BB->end(); I != E; ++I)
Insts.push_back(&*I);
if (Insts.size() < 2)
continue;
// Choose an instruction and connect to later operations.
size_t IP = uniform<size_t>(IB.Rand, 1, Insts.size() - 1);
Instruction *Inst = Insts[IP - 1];
auto ConnectAfter = ArrayRef(Insts).slice(IP);
IB.connectToSink(*BB, ConnectAfter, Inst);
ASSERT_FALSE(verifyModule(*M, &errs()));
}
}
TEST(RandomIRBuilderTest, createStackMemory) {
LLVMContext Ctx;
const char *SourceCode = "\n\
define void @test(i1 %C1, i1 %C2, i32 %I, i32 %J) { \n\
Entry: \n\
ret void \n\
}";
Type *Int32Ty = Type::getInt32Ty(Ctx);
Constant *Int32_1 = ConstantInt::get(Int32Ty, APInt(32, 1));
Type *Int64Ty = Type::getInt64Ty(Ctx);
Constant *Int64_42 = ConstantInt::get(Int64Ty, APInt(64, 42));
Type *DoubleTy = Type::getDoubleTy(Ctx);
Constant *Double_0 =
ConstantFP::get(Ctx, APFloat::getZero(DoubleTy->getFltSemantics()));
std::array<Type *, 8> Types = {
Int32Ty,
Int64Ty,
DoubleTy,
PointerType::get(Ctx, 0),
PointerType::get(Int32Ty, 0),
VectorType::get(Int32Ty, 4, false),
StructType::create({Int32Ty, DoubleTy, Int64Ty}),
ArrayType::get(Int64Ty, 4),
};
std::array<Value *, 8> Inits = {
Int32_1,
Int64_42,
Double_0,
UndefValue::get(Types[3]),
UndefValue::get(Types[4]),
ConstantVector::get({Int32_1, Int32_1, Int32_1, Int32_1}),
ConstantStruct::get(cast<StructType>(Types[6]),
{Int32_1, Double_0, Int64_42}),
ConstantArray::get(cast<ArrayType>(Types[7]),
{Int64_42, Int64_42, Int64_42, Int64_42}),
};
ASSERT_EQ(Types.size(), Inits.size());
unsigned NumTests = Types.size();
RandomIRBuilder IB(Seed, Types);
auto CreateStackMemoryAndVerify = [&Ctx, &SourceCode, &IB](Type *Ty,
Value *Init) {
std::unique_ptr<Module> M = parseAssembly(SourceCode, Ctx);
Function &F = *M->getFunction("test");
// Create stack memory without initializer.
IB.createStackMemory(&F, Ty, nullptr);
// Create stack memory with initializer.
IB.createStackMemory(&F, Ty, Init);
EXPECT_FALSE(verifyModule(*M, &errs()));
};
for (unsigned i = 0; i < NumTests; i++) {
CreateStackMemoryAndVerify(Types[i], Inits[i]);
}
}
TEST(RandomIRBuilderTest, findOrCreateGlobalVariable) {
LLVMContext Ctx;
const char *SourceCode = "\n\
@G0 = external global i16 \n\
@G1 = global i32 1 \n\
";
std::array<Type *, 3> Types = {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx),
Type::getInt64Ty(Ctx)};
RandomIRBuilder IB(Seed, Types);
// Find external global
std::unique_ptr<Module> M0 = parseAssembly(SourceCode, Ctx);
Type *ExternalTy = M0->globals().begin()->getValueType();
ASSERT_TRUE(ExternalTy->isIntegerTy(16));
IB.findOrCreateGlobalVariable(&*M0, {}, fuzzerop::onlyType(Types[0]));
ASSERT_FALSE(verifyModule(*M0, &errs()));
unsigned NumGV0 = M0->getNumNamedValues();
auto [GV0, DidCreate0] =
IB.findOrCreateGlobalVariable(&*M0, {}, fuzzerop::onlyType(Types[0]));
ASSERT_FALSE(verifyModule(*M0, &errs()));
ASSERT_EQ(M0->getNumNamedValues(), NumGV0 + DidCreate0);
// Find existing global
std::unique_ptr<Module> M1 = parseAssembly(SourceCode, Ctx);
IB.findOrCreateGlobalVariable(&*M1, {}, fuzzerop::onlyType(Types[1]));
ASSERT_FALSE(verifyModule(*M1, &errs()));
unsigned NumGV1 = M1->getNumNamedValues();
auto [GV1, DidCreate1] =
IB.findOrCreateGlobalVariable(&*M1, {}, fuzzerop::onlyType(Types[1]));
ASSERT_FALSE(verifyModule(*M1, &errs()));
ASSERT_EQ(M1->getNumNamedValues(), NumGV1 + DidCreate1);
// Create new global
std::unique_ptr<Module> M2 = parseAssembly(SourceCode, Ctx);
auto [GV2, DidCreate2] =
IB.findOrCreateGlobalVariable(&*M2, {}, fuzzerop::onlyType(Types[2]));
ASSERT_FALSE(verifyModule(*M2, &errs()));
ASSERT_TRUE(DidCreate2);
}
/// Checks if the source and sink we find for an instruction has correct
/// domination relation.
TEST(RandomIRBuilderTest, findSourceAndSink) {
const char *Source = "\n\
define i64 @test(i1 %0, i1 %1, i1 %2, i32 %3, i32 %4) { \n\
Entry: \n\
%A = alloca i32, i32 8, align 4 \n\
%E.1 = and i32 %3, %4 \n\
%E.2 = add i32 %4 , 1 \n\
%A.GEP.1 = getelementptr i32, ptr %A, i32 0 \n\
%A.GEP.2 = getelementptr i32, ptr %A.GEP.1, i32 1 \n\
%L.2 = load i32, ptr %A.GEP.2 \n\
%L.1 = load i32, ptr %A.GEP.1 \n\
%E.3 = sub i32 %E.2, %L.1 \n\
%Cond.1 = icmp eq i32 %E.3, %E.2 \n\
%Cond.2 = and i1 %0, %1 \n\
%Cond = or i1 %Cond.1, %Cond.2 \n\
br i1 %Cond, label %BB0, label %BB1 \n\
BB0: \n\
%Add = add i32 %L.1, %L.2 \n\
%Sub = sub i32 %L.1, %L.2 \n\
%Sub.1 = sub i32 %Sub, 12 \n\
%Cast.1 = bitcast i32 %4 to float \n\
%Add.2 = add i32 %3, 1 \n\
%Cast.2 = bitcast i32 %Add.2 to float \n\
%FAdd = fadd float %Cast.1, %Cast.2 \n\
%Add.3 = add i32 %L.2, %L.1 \n\
%Cast.3 = bitcast float %FAdd to i32 \n\
%Sub.2 = sub i32 %Cast.3, %Sub.1 \n\
%SExt = sext i32 %Cast.3 to i64 \n\
%A.GEP.3 = getelementptr i64, ptr %A, i32 1 \n\
store i64 %SExt, ptr %A.GEP.3 \n\
br label %Exit \n\
BB1: \n\
%PHI.1 = phi i32 [0, %Entry] \n\
%SExt.1 = sext i1 %Cond.2 to i32 \n\
%SExt.2 = sext i1 %Cond.1 to i32 \n\
%E.164 = zext i32 %E.1 to i64 \n\
%E.264 = zext i32 %E.2 to i64 \n\
%E.1264 = mul i64 %E.164, %E.264 \n\
%E.12 = trunc i64 %E.1264 to i32 \n\
%A.GEP.4 = getelementptr i32, ptr %A, i32 2 \n\
%A.GEP.5 = getelementptr i32, ptr %A.GEP.4, i32 2 \n\
store i32 %E.12, ptr %A.GEP.5 \n\
br label %Exit \n\
Exit: \n\
%PHI.2 = phi i32 [%Add, %BB0], [%E.3, %BB1] \n\
%PHI.3 = phi i64 [%SExt, %BB0], [%E.1264, %BB1] \n\
%ZExt = zext i32 %PHI.2 to i64 \n\
%Add.5 = add i64 %PHI.3, 3 \n\
ret i64 %Add.5 \n\
}";
LLVMContext Ctx;
std::array<Type *, 3> Types = {Type::getInt1Ty(Ctx), Type::getInt32Ty(Ctx),
Type::getInt64Ty(Ctx)};
std::mt19937 mt(Seed);
std::uniform_int_distribution<int> RandInt(INT_MIN, INT_MAX);
// Get a random instruction, try to find source and sink, make sure it is
// dominated.
for (int i = 0; i < 100; i++) {
RandomIRBuilder IB(RandInt(mt), Types);
std::unique_ptr<Module> M = parseAssembly(Source, Ctx);
Function &F = *M->getFunction("test");
DominatorTree DT(F);
BasicBlock *BB = makeSampler(IB.Rand, make_pointer_range(F)).getSelection();
SmallVector<Instruction *, 32> Insts;
for (auto I = BB->getFirstInsertionPt(), E = BB->end(); I != E; ++I)
Insts.push_back(&*I);
// Choose an insertion point for our new instruction.
size_t IP = uniform<size_t>(IB.Rand, 1, Insts.size() - 2);
auto InstsBefore = ArrayRef(Insts).slice(0, IP);
auto InstsAfter = ArrayRef(Insts).slice(IP);
Value *Src = IB.findOrCreateSource(
*BB, InstsBefore, {}, fuzzerop::onlyType(Types[i % Types.size()]));
ASSERT_TRUE(DT.dominates(Src, Insts[IP + 1]));
Instruction *Sink = IB.connectToSink(*BB, InstsAfter, Insts[IP - 1]);
if (!DT.dominates(Insts[IP - 1], Sink)) {
errs() << *Insts[IP - 1] << "\n" << *Sink << "\n ";
}
ASSERT_TRUE(DT.dominates(Insts[IP - 1], Sink));
}
}
TEST(RandomIRBuilderTest, sinkToInstrinsic) {
const char *Source = "\n\
declare double @llvm.sqrt.f64(double %Val) \n\
declare void @llvm.ubsantrap(i8 immarg) cold noreturn nounwind \n\
\n\
define double @test(double %0, double %1, i64 %2, i64 %3, i64 %4, i8 %5) { \n\
Entry: \n\
%sqrt = call double @llvm.sqrt.f64(double %0) \n\
call void @llvm.ubsantrap(i8 1) \n\
ret double %sqrt \n\
}";
LLVMContext Ctx;
std::array<Type *, 3> Types = {Type::getInt8Ty(Ctx), Type::getInt64Ty(Ctx),
Type::getDoubleTy(Ctx)};
std::mt19937 mt(Seed);
std::uniform_int_distribution<int> RandInt(INT_MIN, INT_MAX);
RandomIRBuilder IB(RandInt(mt), Types);
std::unique_ptr<Module> M = parseAssembly(Source, Ctx);
Function &F = *M->getFunction("test");
BasicBlock &BB = F.getEntryBlock();
bool Modified = false;
Instruction *I = &*BB.begin();
for (int i = 0; i < 20; i++) {
Value *OldOperand = I->getOperand(0);
Value *Src = F.getArg(1);
IB.connectToSink(BB, {I}, Src);
Value *NewOperand = I->getOperand(0);
Modified |= (OldOperand != NewOperand);
ASSERT_FALSE(verifyModule(*M, &errs()));
}
ASSERT_TRUE(Modified);
Modified = false;
I = I->getNextNonDebugInstruction();
for (int i = 0; i < 20; i++) {
Value *OldOperand = I->getOperand(0);
Value *Src = F.getArg(5);
IB.connectToSink(BB, {I}, Src);
Value *NewOperand = I->getOperand(0);
Modified |= (OldOperand != NewOperand);
ASSERT_FALSE(verifyModule(*M, &errs()));
}
ASSERT_FALSE(Modified);
}
TEST(RandomIRBuilderTest, DoNotCallPointerWhenSink) {
const char *Source = "\n\
declare void @g() \n\
define void @f(ptr %ptr) { \n\
Entry: \n\
call void @g() \n\
ret void \n\
}";
LLVMContext Ctx;
std::mt19937 mt(Seed);
std::uniform_int_distribution<int> RandInt(INT_MIN, INT_MAX);
RandomIRBuilder IB(RandInt(mt), {});
std::unique_ptr<Module> M = parseAssembly(Source, Ctx);
Function &F = *M->getFunction("f");
BasicBlock &BB = F.getEntryBlock();
bool Modified = false;
Instruction *I = &*BB.begin();
for (int i = 0; i < 20; i++) {
Value *OldOperand = I->getOperand(0);
Value *Src = F.getArg(0);
IB.connectToSink(BB, {I}, Src);
Value *NewOperand = I->getOperand(0);
Modified |= (OldOperand != NewOperand);
ASSERT_FALSE(verifyModule(*M, &errs()));
}
ASSERT_FALSE(Modified);
}
TEST(RandomIRBuilderTest, SrcAndSinkWOrphanBlock) {
const char *Source = "\n\
define i1 @test(i1 %Bool, i32 %Int, i64 %Long) { \n\
Entry: \n\
%Eq0 = icmp eq i64 %Long, 0 \n\
br i1 %Eq0, label %True, label %False \n\
True: \n\
%Or = or i1 %Bool, %Eq0 \n\
ret i1 %Or \n\
False: \n\
%And = and i1 %Bool, %Eq0 \n\
ret i1 %And \n\
Orphan_1: \n\
%NotBool = sub i1 1, %Bool \n\
ret i1 %NotBool \n\
Orphan_2: \n\
%Le42 = icmp sle i32 %Int, 42 \n\
ret i1 %Le42 \n\
}";
LLVMContext Ctx;
std::mt19937 mt(Seed);
std::uniform_int_distribution<int> RandInt(INT_MIN, INT_MAX);
std::array<Type *, 3> IntTys(
{Type::getInt64Ty(Ctx), Type::getInt32Ty(Ctx), Type::getInt1Ty(Ctx)});
std::vector<Value *> Constants;
for (Type *IntTy : IntTys) {
for (size_t v : {1, 42}) {
Constants.push_back(ConstantInt::get(IntTy, v));
}
}
for (int i = 0; i < 10; i++) {
RandomIRBuilder IB(RandInt(mt), IntTys);
std::unique_ptr<Module> M = parseAssembly(Source, Ctx);
Function &F = *M->getFunction("test");
for (BasicBlock &BB : F) {
SmallVector<Instruction *, 4> Insts;
for (Instruction &I : BB) {
Insts.push_back(&I);
}
for (int j = 0; j < 10; j++) {
IB.findOrCreateSource(BB, Insts);
}
for (Value *V : Constants) {
IB.connectToSink(BB, Insts, V);
}
}
}
}
} // namespace